

RESEARCHSPACE@AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Panbiogeography: A Cladistic Approach

Roderic D. M. Page

Department of Zoology University of Auckland

This thesis is set in 12 pt Palatino. Text was prepared using Microsoft Word 5.0 on a IBM XT compatible microcomputer, and printed on an Apple LaserWriter Plus laser printer at the Department of Zoology, University of Auckland.

Apparently several cladists regard their dendrograms as final scientific achievements, but what precisely must the taxonomists do with them — frame them to hang them on the wall? [A. D. Meeuse]

Contents

	Acknowledgments
	Abstract xii
1.	Introduction
	A Guide to the Thesis
	Prospect
	References
2.	New Zealand and the New Biogeography
	Of Flies and Phylogenetics
	Croizat and the Poverty of Biogeography
	The New York School
	The False Opposition Between
	"Vicariance" and "Dispersal"
	New Developments in New Zealand
	Geology and Geomorphology
	Prospect
	Acknowledgments
	References
3.	Tracks and Trees in the Antipodes:
	A Reply to Humphries and Seberg
	Tracks and Spanning trees
	Tracks and Parsimony
	Croizat Did Draw Minimal
	Spanning Trees

	Relationships or Proximity? 3-8
	Cliques and Component Analysis
	Nelson's Consensus Method
	Is a Clique Method
	A Worked Example
	The Relationship Between
	Biogeography and Systematics
	The Ficus Example
	A Cladistic Version
	Coevolution as a
	Model for Biogeography
	An Alternative View
	Conclusion
	Acknowledgments
	References
4.	Quantitative Cladistic Biogeography:
	Constructing and Comparing Area Cladograms
	Constructing Area Cladograms
	The Problem
	Confusion about
	Components and Consensus
	Missing Areas
	Widespread Taxa
	Do Assumptions 1 and 2
	Discard Evidence from Characters? 4-8
	Redundant Distributions
	Algorithms
	Measures of Fit
	Comparing Area Cladograms

	Pairwise Tree Similarity
	Generalizing Pairwise Distances
	Comparing Multiple Equally
	Parsimonious Area Cladograms
	Statistical Test
	Why Biogeography Needs Statistics 4-18
	Null Hypotheses
	Test Protocol
	General Area Cladograms
	Implementation and Applications
	Discussion
	Acknowledgments
	References
	Appendix
	Algorithm for Assumption 1
	Algorithm for Assumption 2
5.	Comments on Component-Compatibility in
	Historical Biogeography
	The Rationale for Assumption 2
	Implementing Assumptions 1 and 2 5-7
	Constructing Area Cladograms
	Xiphophorus as an Example
	PAUP and "Nelson's Problem"
	Explaining the "Unexplained Jumps" 5-15
	Platnick's Reanalysis of
	Rosen's Data
	A Statistical Digression
	What is Nelson's Consensus Method?5-20
	Summary

	Acknowledgments
	References
	Appendix
	Nelson Consensus Tree 5-29
	Algorithm5-30
6.	Component Analysis: A Valiant Failure?
	Making Area Cladograms
	Wiley's Critique of Component Analysis 6-4
	What is Component Analysis? 6-5
	Missing Areas
	Widespread Taxa
	Wagner Parsimony in Biogeography 6-11
	The Difference between
	Rules and Algorithms 6-11
	Homoplasy in Wagner Trees
	Mapping Trees — an Alternative
	Parsimony Criterion
	Mapping Between Trees
	Assumptions 1 and 2
	Widespread Taxa
	Redundant Distributions 6-23
	Implementation and Application
	Summary
	Acknowledgments
	References
7.	COMPONENT: A MS DOS Program for Component Analysis
	Motivation
	Features
	Requirements

	What COMPONENT Doesn't Do — Yet
8.	Cladistics with Confidence: The Bootstrap Revisited
	Confidence Intervals for Trees
	Practical Issues
	An Example — Kluge's Epicrates Data 8-9
	Congruence
	Confidence Intervals
	Summary
	References
9.	Temporal Congruence and Cladistic Analysis
	of Biogeography and Cospeciation
	Temporal Congruence
	Materials and Methods
	Overview
	Data
	Parsimony
	Test for a Molecular Clock
	Phylogenetic Inferrence with a Clock 9-12
	Component Analysis
	Results
	Is There a Clock?
	Phylogenetic Estimates
	Component Analysis
	Discussion
	Limitations of the Analysis
	Temporal Congruence
	Acknowledgments
	References
	Appendix 9.1

	Appendix 9.2
Appe	endices
I.	COMPONENT User's Manual
II.	Graphs and Generalized Tracks: Quantifying Croizat's
	Panbiogeography.

Acknowledgments

Brian McArdle happily took me on as a student, although he freely admitted his ignorance of cladistics. It has become clear over the last four years that his ignorance was rather less than he thought, while my ignorance was much greater than I had ever imagined. I thank Brian for giving me both the freedom and the facilities to follow whatever line of enquiry I chose.

Robin Craw's 1978 essay "Two biogeographical frameworks: Implications for the biogeography of New Zealand" in *Tuatara* first kindled my interest in biogeography. I thank Robin for his interest in this work, and for some astute advice. I spent many a long lunchtime in the Senior Common Room discussing biology and evolution with Russell Gray. The time was well spent, and I thank Russell for challenging a closet empiricist to think about process and theory. Professor Pat Bergquist gave Russell and I the opportunity to teach an MSc course in systematics and biogeography for two years. That experience was invaluable, and I thank the students who took the course — although I fear I learnt more than they did.

The single most important event during my studies was my trip to the United States. I am indebted to Joel Cracraft for the invitation to attend the symposium on biogeography held at New Orleans, and I thank him and Dave Ritchie of Tony's Britannia Ltd for the financial assistance that made my attendance possible. Contacts made on that trip have been invaluable. I especially thank Gary Nelson and Norman Platnick for their continued interest in my work. The editorial staff and reviewers of the journals *Cladistics*

and Systematic Zoology improved much of the content of this thesis: in particular I thank Jim Carpenter and Robert Zink.

Abstract

This thesis develops a quantitative cladistic approach to panbiogeography. Algorithms for constructing and comparing area cladograms are developed and implemented in a computer program. Examples of the use of this software are described.

The principle results of this thesis are:

- (1) The description of algorithms for implementing Nelson and Platnick's (1981) methods for constructing area cladograms. These algorithms have been incorporated into a computer program.
- (2) Zandee and Roos' (1987) methods based on "component-compatibility" are shown to be flawed.
- (3) Recent criticisms of Nelson and Platnick's methods by E. O. Wiley are rebutted.
- (4) A quantitative reanalysis of Hafner and Nadler's (1988) allozyme data for gophers and their parasitic lice illustrates the utility of information on timing of speciation events in interpreting apparent incongruence between host and parasite cladograms.

In addition the thesis contains a survey of some current themes in biogeography, a reply to criticisms of my earlier work on track analysis, and an application of bootstrap and consensus methods to place confidence limits on estimates of cladograms.