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Abstract

This paper develops optimal or near-optimal redeployment policies for single-ambulance
problems. The first model aims to decide where to move the single ambulance on a net-
work so as to maximize the reward for the next call. A dynamic programming model is
formulated. Mathematical properties of optimal solutions are discussed and an efficient
solution technique is presented. The second model considers where to move the single
ambulance in order to maximize an expected number long run performance measure. To
deal with the high-dimensional state space in this model, we formulate a new dynamic
programming model with reduced state space. Examples are given to show insights.

1 Introduction

Facility location plays a vital role in strategic planning for a broad range of problems such as
deciding where to put bus stops, where to construct new libraries and where to allocate health
care facilities. Static location models give a single one-off solution such as might be required
when locating a building. Dynamic relocation models attempt to determine how to relocate
facilities to best react to changes in the environment such as demand or traffic congestion.
The relocation of facilities is not possible for many problems. However, if the facility can be
relocated for a reasonable cost and within a reasonable time, then dynamic relocation can be
beneficial. In particular, emergency services such as police, fire, repair and emergency medical
services (EMS) have attracted much interest from operations research (see [1, 2]) because of
the mobility of their servers.

This paper considers relocating ambulances in order to better respond to emergency calls.
However, we expect that the research presented here is useful for other problems involving
mobile servers. Examples include taxi services and towing services where a driver must decide
where to wait for future customers in order to maximize the profits or minimize the time to
get to a breakdown. Relocation can also be applied to elevator group control to minimize the
average waiting time for each passenger [3].

The ambulance problem we consider is characterised by the response process summarised
in Figure 1. When an emergency call is received, a dispatcher chooses an available ambulance
to dispatch. A typical dispatch policy will look at those vehicles waiting idle at a base or
returning to their base and find the vehicle that is closest to the accident scene. (The time
required for this dispatching process is typically small, and so will be ignored here.) This
dispatched ambulance travels to the scene of the emergency call. Once the ambulance reaches
the scene, the ambulance officers perform an initial at-scene treatment of the patient. If no
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more medical care is required then the ambulance becomes free at the scene, and returns to
its base. More typically, however, transportation is required to a hospital and the ambulance
then becomes free at the hospital after completing a patient hand-over. This response process
can be complicated by the presence of calls of different priorities and vehicles with different
capabilities, the need to dispatch multiple vehicles to some high priority calls, the use of lights
and sirens for some calls to reduce travel times, and the possible diversion of an ambulance
from one call to a higher priority one. However, we ignore these complexities at this stage.

Receive a 
call

Dispatch an 
ambulance

Ambulance 
arrive at 

scene

Treat patient 
at scene

Travel to 
hospital

Hand over 
at hospital

Travel to 
base

Wait at 
base

Response 
time

Service 
time

Figure 1 – A typical response process for an emergency call

The elapsed time between the receipt of the call and the vehicle arriving at the scene is
termed the response time. An ambulance organisation’s performance will often be measured
by the percentage of calls having a response time no greater than some target time W . When
trying to maximise their performance, ambulance operators typically refer to their readiness
to respond to the next call in terms of coverage, where a suburb is considered covered if its
centroid is no further than W minutes drive from the closest available ambulance. They also
refer to call coverage which is the probability that the location of the next call is no further
than W minutes drive from the closest available ambulance.

In many ambulance organisations, each ambulance is assigned a base to which the vehicle
returns after each call; determining the best base for each vehicle gives us a static location
problem. These problems are typically solved used using Integer Programming (IP) models
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which seek a vehicle-to-base assignment that maximises some simple coverage-based model of
expected system performance. In these IP models, the region of interest is partitioned into
suburbs or ‘zones’ each of which has an associated weight giving the expected number of calls
in that zone. Early models such as set covering location problem (SCLP) by Torgas et al. [4]
and the maximal covering location problem (MCLP) by Church and ReVelle [5] maximise the
weighted sum of zones covered by one or more vehicles. This objective implicitly assumes each
vehicle will always be available at its base, and that no extra benefit accrues from covering
a zone by multiple vehicles. To help correct for these simplifying assumptions, models which
consider the benefits of multiple coverage for a zone have been proposed; see Hogan and ReVelle
[6], Gendreau et al. [7] and Andersson et al. [8].

Ambulance vehicles are often busy for a high proportion of their time. To explicitly model
this, Daskin [9] extended earlier integer programming models to form the maximal expected
covering location model (MCLP) which assumes a system-wide busy probability for each vehicle.
A natural enhancement of this approach is to allow the busy probabilities to be station specific.
Budge [10] developed such a model that incorporates the hypercube approximation originally
developed by Larson [11, 12]. The Budge model also incorporated randomness in travel times
and pre-delays (time elapsed until a vehicle is dispatched). Although the model’s objective
is to find the minimum number and locations of ambulances needed for a given system-wide
coverage (average coverage of all zones), with slight changes, it can also be used to maximize
the expected coverage for a fixed number of ambulances. These models are still limited in their
ability to model complex real-world ambulance behavior, and so simulation is often used to
better predict the system performance, e.g. see [13]

In an attempt to improve their response times, some ambulance operators operate a rede-
ployment policy in which they move idle ambulances from one base to another, or even to street
corners, as they seek to improve their call coverage. This vehicle movement is an example of a
move-up. A common redeployment approach is System Status Management (SSM) which, for
any given number of free vehicles nfree, specifies a pre-defined vehicle configuration C(nfree) that
gives a standby location (i.e. a base or a street corner) for each of the idle vehicles; e.g. see [14],
[15]. Whenever the number of free vehicles changes, the dispatchers are required to determine
a set of moveups that efficiently move vehicles into the appropriate SSM configuration.

Gendreau et al. [16] propose an integer programming model that can be used to create Sys-
tem Status Management plans. Their objective is to maximize the expected coverage weighted
by the probability p(nfree) of having nfree idle vehicles. They restrict the number of different
waiting sites that can be used when going from configuration C(nfree) with nfree idle vehicles
to an ‘adjacent’ configuration C(nfree + 1) with nfree + 1 idle vehicles. This gives configurations
that are similar in that adjacent configurations share common standby locations. Simulations
were performed to show performance improvements over the ‘return-to-base’ policy in which
vehicles always return to their original bases. They showed that applying a relocation policy is
better than using a static approach when considering system performance such as the average
response time and the percentage of calls covered within 8 minutes. The computation time
varied from one minute for 3 vehicles to slightly more than three hours for 6 vehicles.

An alternative approach, which is the focus of our work, is to adopt dynamic relocation
models to determine optimal or near optimal moveups for the available ambulances. Unlike
System Status Management plans, these solutions do not enforce a single configuration C(nfree)
for each nfree = 1, 2, 3, ..., but instead allow the target configuration to depend on the current
vehicle locations.

A natural approach when considering relocation is to extend the integer programming cov-
erage models used for the static vehicle location problems. These extended models take as
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input some current vehicle configuration (i.e. set of locations) and produce a set of moveups for
the vehicles. They maximise an objective formed by some coverage-based performance mea-
sure of the final vehicle configuration less some cost function of the travel required to achieve
that configuration. For example, Gendreau, Laporte, and Semet [2] propose the dynamic dou-
ble standard model (DDSM) which chooses a set of vehicle moves that maximizes the total
demand-weighted backup coverage for all zones less the move up costs, where a zone has backup
coverage if it is covered by at least two ambulances. The model is solved whenever vehicles
become busy or free. The formulation is ‘single-shot’ in that it considers only the next set
of moveups. However, recent vehicle history is used to impose constraints such as avoiding
round trips, avoiding repeated movements of the same ambulance, etc. A parallel tabu search
heuristic algorithm is developed to speed up the solution process. This tabu search continu-
ously computes the best possible standby configuration for every possible future scenario in
which one of the idle ambulances is dispatched to the next call. No results are given on the
performance improvements generated by this relocation approach.

Richards [17] proposed a similar model with a different objective for calculating the benefits
from move up. Each additional ambulance, up to a target number for a zone, contributes
to a concave increasing performance function. Moreover, under the assumption of perfect
information, the current busy ambulances which are likely to be available at some ‘look-ahead’
time also contribute coverage to the particular zone in which they will become free. Andersson
et al. [18] proposed a dynamic ambulance relocation model based on a heuristic static model.
They propose a score function which is then used in constraints that ensure each zone achieves
some minimum score after relocation. The objective is to minimize the maximum travel time
of the vehicles being relocated.

The integer programming models all use some linearised approximation of system perfor-
mance. The approximations are limited in that they must approximate (or typically ignore)
vehicle busy probabilities, they assume all vehicles are idle at a standby location when they are
dispatched, and more importantly, they do not incorporate the benefits and costs associated
with future moveups. Dynamic Programming approaches can avoid these limitations. Berman
[1, 19, 20] developed a Dynamic Programming model to explicitly capture the impact on the
long-term performance due to moveups. The objective is to minimize the average response
time in the long-run. A set of bases is defined on the network, where each base can have up
to one vehicle waiting at it. Move-ups can be used to move vehicles between bases; no other
waiting locations are permitted for the vehicles. The system state is defined as the number of
idle vehicles at each base. Vehicles provide at-scene service (but no hospital transport) and
become free at the nearest vacant base location after an exponentially distributed service time.
Moveup of up to one vehicle is allowed to occur at any instant that the system undergoes a
service-oriented transition (being an initiation or completion of service, but not the completion
of a move-up). It is assumed that during move-up, only one event (a new call or a completion
of service) is possible. Therefore given a state and a move-up decision, possible service-oriented
transitions include those to a state in which: (1) a vehicle becomes free at a vacant base and
the move-up vehicle is at its new base; (2) one of the stationary vehicles becomes busy during
or after move-up and the move-up vehicle is at its new base; or (3) the move-up vehicle be-
comes busy during or after move-up. The immediate cost of the move-up action is the expected
response time for the next call which may arrive during or after the move-up. A numerical
example is given by Berman to give some insights. For low vehicle utilization factors and/or
for small travel times along the move-up paths, a vehicle tends to move from a ‘weak’ base (one
giving giving a poor expected response time) to a ‘strong’ base (with better response time).
When the utilization factor increases, a vehicle may continually move between bases if the call
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arrival rate on the path between the bases is greater than that at either base. If the utilization
factor is very high, then move-up occurs very rarely if the call arrival rate is low along the
moveup path.

The state space of a dynamic program becomes intractable for realistically-sized problems.
Henderson et al. [21] have recently proposed an approximate Dynamic Programming (ADP)
approach for making real-time ambulance relocation decisions. The objective of their model is
to minimize the discounted number of urgent calls that are not responded to on time. They use
an approximate value function that eliminates the need to store a function value for every state
and thus can model a greater complexity of ambulance operations such as an ambulance going
to the scene, treating at the scene and transporting to a hospital. A weighted combination
of six basis functions is used to approximate the value function. The weights used in this
function are tuned using simulation-based policy iterations. The CPU time for each iteration
of this policy iteration algorithm was 22 minutes. Their ADP model was compared with two
benchmark strategies. The first benchmark was a greedy policy that resulted from setting the
parameters of their approximate value functions to zero. The second benchmark was the best
‘return-to-base’ policy found through a simulation-based enumerative search. Two data sets
were tested using simulation, with the ADP approach outperforming both benchmark strategies.
The best performance improvements for the first data set were 4.7% and 4.0%, respectively, in
the percentage of calls reached on time. The best improvements in performance for the second
data set were 2.4% and 2.0%, respectively. The CPU time for generating the optimal decision
for real-time operation was about 45 milliseconds.

The main contribution of this paper is to develop optimal or near-optimal redeployment
policies for single-ambulance problems. Our models are both more realistic than the Berman
model [1] and more accurate than the integer programming models detailed above. They
provide valuable insights into the form and benefits of optimal move up that can help direct
the development of the approximate models needed for larger problems. The reminder of this
paper is organized as follows. In Section 2, we study the move up of a single ambulance on a
network when considering just the next call. A Dynamic Programming model is developed, and
worked examples are used to provide insights. An efficient solution technique is presented for
this problem. In Section 3, we extend our model to maximise an expected long run performance
measure. This is an extension to the model proposed by Berman [1]. In Berman’s model, a
vehicle becomes free at the nearest vacant base. In our Dynamic Programming model, a vehicle
can become free at any site on the network. State aggregation is then used in order to solve large
problems using a modified form of Policy Iteration [22]. Finally Section 4 contains discussions
of the results of the models and the insights they provide for models with more ambulances.

2 The Single-Ambulance Next-Call Model

Ambulance performance is typically measured and reported over periods of weeks or months,
and so any move-up policy should perhaps maximise an expected long run performance measure.
However, in some situations it may be acceptable to focus on the performance in the very near
future, perhaps over just the next one or two calls. For example, in a system with low vehicle
utilization, vehicles typically have time to return to their standby locations before becoming
busy, and so focusing on just the next call may give a near optimal policy. In this section,
we consider the move-up problem for a single ambulance where we maximise performance for
just the single next call. We assume all patients are treated at the scene, and so we ignore any
hospital effects.
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2.1 The Single-Ambulance Next-Call Formulation

Consider a single ambulance operating on a network G consisting of a set of nodes N and a set
of undirected links L, where (i, j) ∈ L is the undirected link joining nodes i and j, i, j ∈ N .
We define Nk = {j : (j, k) ∈ L} to be the set containing those nodes adjacent to node k.
The spacing of the nodes is such that each link requires a constant drive time ∆t to traverse
where ∆t is small enough that the probability of more than one call occurring during ∆t is
insignificant. Call arrivals follow a Poisson process with a total arrival rate λ. The probability
that the next call occurs at node k is pk with

∑

k∈N pk = 1.
Ambulance responses are given a reward of 1 if the ambulance can reach the call within the

specified target time W and 0 otherwise. The expected reward rk for the next call when the
ambulance is waiting at node k is given by:

rk =
∑

j∈N :dk,j≤W

pj ∀k ∈ N

where dk,j is the travel time along the shortest path from node k to node j, and W is the target
response time. (We assume dkj and W are both expressed as multiples of the time step δt, and
so dkj is also the number of nodes along the shortest path.)

We aim to find a move up policy that determines where to move the ambulance from any
initial node in order to maximize the expected reward for the next call. To model ambulance
movement, we use a ‘wait-and-jump’ discretisation in which the ambulance waits for time ∆t

at its current node k, then moves instantaneously to an adjacent node k′ ∈ Nk. If a call occurs
during this waiting time, the ambulance is dispatched from node k giving expected reward rk;
otherwise the moving ambulance jumps to node k′.

In order to find the maximum expected reward Vk for an ambulance initially at node k, we
formulate a Dynamic Programming model. The formulation requires the following additional
notation:

Vk = maximum expected reward for the next call under an optimal move up

policy when the vehicle is initially idle at node k

π(k) = move up policy that specifies the successor node when at node k; π(k) ∈ Nk ∪ {k}.

For the problem as defined, the optimality equation can be written as follows:

Vk = (1− e−λ∆t)rk + max
k′∈Nk∪{k}

e−λ∆tVk′. (1)

This can be interpreted as follows. The ambulance waits for time ∆t at its current location
k. If the next call occurs during this interval, the ambulance is dispatched giving an expected
reward rk. If no call arrives, the ambulance jumps to node k′, where k′ is an adjacent node
(k′ ∈ Nk) or k itself (k′ = k). Note that to ensure a policy is unique, we break ties in (1) by
assuming the vehicle only makes a move if this gives a strict improvement in the objective.

It is worth noting that this problem can be viewed as a stochastic shortest path problem [23]
if we reformulate the problem with the objective of minimising the probability of not getting to
the next call on time. The ‘cost’ for going to a neighboring node at node k is 1-rk in this case.
The termination node starting from any node k in this shortest path problem is the ‘absorbing
node’ at which the next call occurs.

2.2 Worked Examples and Insights

We use two examples to gain insights into the benefits of move up under this model. The first
example considers moveup on a single road. The second example considers a general network.

6



Example 1: Single-Ambulance Next-Call Model on a Line

The horizontal axis in Figure 2 represents a network consisting of 30 nodes located along a line
at one minute spacings. Using a target response time of W = 4 minutes, each node k has an
expected reward of rk as shown on the vertical axis. Solving (1) with λ = 0.5 call per hour
gives an optimal policy in which the idle vehicle always travels to and waits at node 20. The
expected reward Vk under this policy is shown on the plot.
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Figure 2 – Plot of reward function rk, value function Vk and the optimal move-up policy for
Example 1 with λ = 0.5 calls per hour. There is one optimal standby location, node
20. Note that rk gives the expected reward without move-up, while Vk gives the
maximum expected reward under the moveup policy.

Figure 3 shows the optimal policy and associated value function when the call arrival rate
increases to λ = 3 calls per hour. We can see that a new move-up policy is formed in which
there are two standby locations, nodes 5 and 20. If the ambulance is initially located between
node 1 and node 10, it moves to standby location 5; otherwise the ambulance moves to standby
location 20.

We can see that different optimal move up policies arise from the two call arrival rates.
With λ = 3, we note that driving to node 20 is no longer optimal for an initial ambulance
location between node 1 and 10, but instead the closer standby location (node 5) is optimal.
This occurs because, for the higher call arrival rate, there is too great a chance of the next call
occurring during the move-up while the vehicle is at a location with a low expected reward rk.

Figures 2 and 3 suggest the following propositions:

Proposition 1 For an optimal policy,

(i) π(k) 6= k ⇒ Vπ(k) > Vk > rk ∀ k ∈ N .

(ii) π(k) = k ⇒ Vk = rk ∀ k ∈ N .

Proof: From (1) we have the optimality equation

Vk = (1− e−λ∆t)rk + e−λ∆tVπ(k). (2)
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Figure 3 – Plot of reward function rk, value function Vk and the optimal move-up policy for
Example 1 with λ = 3 calls per hour. There are two optimal standby locations, nodes
5 and 20.

To prove (i), we simply note that in (2), Vk is a convex combination of rk and Vπ(k). To obtain
the strict inequality we require both 0 < e−λ∆t < 1 and Vπ(k) > rk. The former is true for
any finite non-zero λ. If the latter were not true, we would have Vk ≤ rk, which violates our
assumption of moving only if this gives a strict improvement. The proof of (ii) follows by
putting π(k) = k in (2).

Proposition 2 Under an optimal policy, the expected reward rk at a standby location k : k =
π(k) is a local maximum, i.e. rk ≥ rk′ ∀ k′ ∈ Nk.

Proof. We prove this by contradiction. Assume rk is not a local maximum, and so there is at
least one adjacent node k′ ∈ Nk with r′k > rk. The policy of staying at location k gives an
expected reward of Vk = rk. But, moving to k′ and waiting there gives an expected reward of
(1− e−λ∆t)rk + e−λ∆trk′ > rk. Hence we have a contradiction.

Proposition 3 Consider now a possible moveup in which a vehicle at node u travels along
some path and stops n nodes later at node v where it waits for the next call. Let the nodes be
re-numbered as 0, 1, ..., n− 1, n along this moveup path, and let Jc,n, c = 0, 1, ..., n− 1 denote
the expected reward when a vehicle following this moveup is at node c. The following conditions
are necessary for this moveup to occur in an optimal policy.

(i) Jc+1,n > rc, ∀ c = 0, 1, ..., n− 1

(ii) rn > rc, ∀ c = 0, 1, ..., n− 1

Proof. If this moveup describes an optimal policy, then we must have Jc,n = Vc, c = 0, 1, ..., n
and π(c) = c + 1, c = 0, 1, 2, ..., n− 1. Condition (i) above then follows from Proposition 1(i).
Proposition 1(i) and (ii) give rn = Jn,n > Jn−1,n > · · · > Jc+1,n > Jc,n > rc for c = 0, 1, 2, ..., n−
1, from which (ii) follows immediately.
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Proposition 4 For any moveup path satisfying the necessary conditions in Proposition 3,
Jc,n, c = 0, 1, ..., n− 1 is a non-increasing function of λ.

Proof. We proceed by induction. Note that, by definition, we have

Jc,n =

{

r(n) c = n

(1− e−λ∆t)rc + e−λ∆tJc+1,n c = 0, 1, ..., n− 1

We first show
dJn−1,n

dλ
< 0. Put c = n− 1 and differentiating Jc,n gives

dJn−1,n

dλ
= ∆t e−λ∆t(rn−1 − rn)

Using Proposition 3(ii), we have rn > rn−1, therefore
dJn−1,n

dλ
< 0.

We now show if dJc+1,n

dλ
< 0 for all c + 1 : 1 ≤ c + 1 ≤ n − 1, then we have dJc,n

dλ
< 0.

Differentiating Jc,n with
dJc+1,n

dλ
< 0 and using rc < Jc+1,n (Proposition 3(i)) gives

dJc,n

dλ
= ∆te−λ∆t(rc − Jc+1,n) + e−λ∆t dJc+1,n

dλ
< 0

Thus
dJ0,n

dλ
< 0 follows by induction.

Proposition 5 Vk is a non-increasing function of λ for all nodes k ∈ N .

Proof. Given a call arrival rate λ, let D(k, λ) be set of destination nodes for all paths C(k, λ)
starting from node k which satisfy the necessary conditions in Proposition 3. Modifying our
notation to explictly show the dependence on λ, we note that Proposition 4 shows λ1 < λ2 ⇒
Jk,n(λ1) ≥ Jk,n(λ2) for all destination nodes n ∈ D(k, λ1). We will shortly show that as λ

increases, the set D(k, λ) reduces in the sense that λ1 < λ2 ⇒ D(k, λ2) ⊆ D(k, λ1). Thus,
for λ1 < λ2 we have maxn∈D(k,λ1) Jk,n(λ1) ≥ maxn∈D(k,λ2) Jk,n(λ2). By definition, Vk(λ) =
max(maxn∈D(k,λ) Jk,n(λ), rk), and so our result follows.

To show that λ1 < λ2 ⇒ D(k, λ2) ⊆ D(k, λ1), we recall that D(k, λ) is the set of destination
nodes of paths satisfying the conditions in Proposition 3. Only the first condition, Jc+1,n > rc,
depends on λ. Proposition 4 shows that Jc+1,n is non-increasing in λ. Given that rc is constant,
our result follows immediately. Thus the proof is complete.

Proposition 6 Let πλ(k) be an optimal policy for a call arrival rate λ. An optimal standby
location k : k = πλ1(k) for arrival rate λ1 is also an optimal standby location for a higher call
arrival rate λ2 > λ1, i.e. πλ1(k) = k, λ2 > λ1 ⇒ πλ2(k) = k.

Proof. This proposition follows by considering the term maxk′∈Nk∪{k} e−λ∆tVk′ in the optimality
equation 1. If πλ(k) = k, then we must have Vk = rk, and Vk′ ≤ Vk ∀ k′ ∈ Nk. As we increase
λ, the policy of not moving will continue to give a reward of rk, while the rewards associated
with neighbouring nodes Vk′, k′ ∈ Nk will be non-increasing (Proposition 5). Thus the optimal
decision will not change, and so the result follows.
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r1 0.0646 r10 0.0669 r19 0.0644 r28 0.2227
r2 0.1077 r11 0.0673 r20 0.0458 r29 0.1226
r3 0.1398 r12 0.0635 r21 0.0404 r30 0.1942
r4 0.2142 r13 0.0055 r22 0.0211 r31 0.3088
r5 0.2865 r14 0.0056 r23 0.0164 r32 0.3090
r6 0.1677 r15 0.0535 r24 0.3698 r33 0.3131
r7 0.1422 r16 0.0774 r25 0.3696 r34 0.2497
r8 0.0662 r17 0.0588 r26 0.3615 r35 0.1643
r9 0.0554 r18 0.0700 r27 0.3184

Table 1 – The expected reward rk at each node for the next call for Example 2.

Example 2: Single-Ambulance Next-Call Model on a Network

We now apply the model to an undirected network of 35 nodes with a call arrival rate λ = 6
calls per hour. The target response time is assumed to be 2 minutes. The probability pk that
the next call occurs at node k is given in Appendix A. The expected reward rk at each node
for the next call is shown in Table 1.

Figure 4 illustrates the optimal move-up policy. The two solid circles at nodes 24 and 33
represent two optimal standby locations. We make the following observations.

Proposition 7 The move-up policy divides the network into separate trees with each optimal
stand-by node forming the root of a tree.

Proposition 8 An optimal move up path may not be a shortest path.

For example, for an ambulance at node 13, the shortest path to node 24 is 13-1-2-3-4-5-24, but
the optimal move up path is 13-14-15-16-29-28-27-26-25-24. In our model, an ambulance can
respond to the next call during move-up, and so the reward values rk at both the destination
and along the move-up path are important. From Table 1, we can see that the optimal move
up path is longer, but it includes more nodes (e.g., nodes 29, 28, 27, 26, 25, 24) with good
expected reward values rk.

2.3 Solution Techniques

We can use the standard value iteration approach [8] to solve our Dynamic Programming model.
Alternatively, Algorithm 1 presents a faster solution technique which solves the model in linear
time. This algorithm finds the objective value node by node in descending order of Vk. The
validity of this solution technique is proven in Appendix A.

We tested the standard value iteration and our improved algorithm on a 20000-node problem
in which the probability of the next call occurring at each node and the edges on the network
were randomly generated. The value iteration took 0.67 seconds to find the optimal policy
while our algorithm took 0.11 seconds.

3 The Single-Ambulance Infinite-Horizon model

The Single Ambulance Next Call model discussed in the previous section focused on the response
time for just the next call. In this section, we consider instead the long run benefit of move up
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Figure 4 – Single vehicle, next call move-up solution on a network. Nodes 24 and 33, shown as
solid circles, represent optimal standby locations. The optimal move-up path from
any node is shown by the arrows.

when a single ambulance responds to an infinite sequence of calls. Clearly this problem falls
into the category of infinite horizon problems. This section is organized as follows. Section
3.1 presents assumptions for this problem. Section 3.2 describes the state space and control.
Section 3.3 presents a Dynamic Programming model and the set of linear equations used to
solve the problem using Policy Iteration. Then in Section 3.4, state aggregation is used to allow
larger problems to be solved. Examples and insights are presented.

3.1 Problem Assumptions

The call arrival and vehicle travel models are the same as those used for the next-call model.
The at-scene service time is assumed to follow a negative exponential distribution with mean
rate u−1

p per hour. We assume that following the at-scene treatment, the ambulance may, with
probability ptransport, transport the patient to the closest hospital, or it may become free at the
scene. Any service time required at the hospital is also assumed to follow a negative exponential
distribution with rate uh. Finally we assume there is no queuing, and so calls that arrive while
the ambulance is busy are lost to the system.

3.2 State Space and Control

Consider now the states required in our model. These states, as illustrated in Figure 5, track
the steps in the typical response process described earlier. State (k, Free) indicates that the
ambulance is idle at node k. This is a decision state in that we must determine if the ambulance
stays at node k or moves to an adjacent node k′ ∈ Nk. In either case, the ambulance is
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Algorithm 1 An improved algorithm for the single-vehicle next-call problem

1 Assign an initial policy of staying put at every node k, i.e. put Vk = rk ∀ k ∈ N .

2 Define T to be the set of nodes with temporary labels. Initialise T = N .

3 Repeat

3.1 Set current node u = arg maxk∈T (Vk). Designate the label on node u as permanent
and remove u from set T .

3.2 For current node u, consider each temporary labeled neighbour node h ∈ T ∩ Nk

and update Vh:
Vh ← max(Vh, (1− e−λ∆t)rh + e−λ∆tVu)

Until every node is permanently labeled

State Space
Idle at node k

k-1 k k+1 i hospital

Travel from k to 
call at node i 

k-1 k k+1 i hospital

At scene (node i)

k-1 k k+1 i hospital

Travel from i to 
hospital

k-1 k k+1 i hospital

At hospital (node h)
k-1 k k+1 i hospital

(k,Free)

(k,i)

(i,i)

(i,H)

(h,H)

Figure 5 – Example of the State Space for the Single-Ambulance Infinite-Horizon problem.

considered to be at k for time ∆t, during which time a call may arrive with probability 1−e−λ∆t;
this call generates an expected reward rk. If a call arrives, then it can occur at any node i with
probability pi. When a vehicle is dispatched to the call, the system enters state (k, i) meaning
the vehicle is at node k traveling on a shortest path to a call at location i. After each ∆t time
step, the ambulance moves to the next node along this path. Arrival at the scene i is denoted
by the state (i, i). This state indicates that treatment is being undertaken at the scene. Under
the assumption of an exponential at-scene service time, after time step ∆t, the system will still
be in state (i, i) with probability e−up∆t, or the treatment will have been completed. If the
treatment completes, the system transitions either to state (i, Free), indicating the ambulance
is now free at the scene, or to state (i, H). The state (k, H) indicates that the ambulance is
currently at node k transporting a patient to the closest hospital. Assuming the closest hospital
is at node h = h(k), then at each time step ∆t, the ambulance takes one step along the shortest
path to node h. When the ambulance arrives at the hospital, we enter a new state (h, H)
indicating that the ambulance is at node h handing over the patient. Based on the assumption
of an exponential service time at the hospital, after time ∆t, the system may still be in state
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(h, H) with probability e−uh∆t, or have transitioned to the free state (h, Free).

3.3 Single-Ambulance Infinite-Horizon Formulation

For an infinite horizon problem, two common objectives are to maximize the discounted total
reward and to maximize the average reward in the long run. Ambulance organisations report
their performance over all calls, and so we use an un-discounted objective. In general, the
average reward g(s) [24] under a policy π when starting in some state s can be written as:

gπ(s) = lim
T→∞

E(
∑t=T−1

t=0 rπ
t (s))

T
,

where T represents the infinite time horizon and rπ
t (s) is the reward at time step t when

starting in state s under the policy π. For our problem, the whole state space forms a single
recurrent class, and so the average reward is independent of the starting state [24], giving
gπ = gπ(s) ∀s ∈ S where S is the set of all states.

For our problem, the average reward g is the average number of calls reached on time per
time step. The problem of maximising g can be formulated as a Dynamic Programming model.
The standard average reward Bellman equation [24] is

vs + g = max
a∈As

(rs,a +
∑

y∈S

pa
syvy) ∀s ∈ S (3)

where vs is the relative value at state s by setting the value of a reference state vs1 = 0, S is the
set of all states, As is the set of feasible actions at state s, rs,a is the immediate reward from
choosing action a in state s and pa

sy is the transition probability from state s to state y given
action a.

For our problem, we have a state space S = {(k, Free), (k, i), (k, H) : i, k ∈ N}. A set of
hospitals H are located at nodes of the network G. The move-up decisions we have to determine
are given by π(k), k ∈ {(k, Free) : k ∈ N}. To simplify our notation, we shall simply use π(k),
k ∈ N} to denote the neighbouring node we move to from node k under our moveup policy.
The non-zero transition probabilities associated with these free states are:

P{(π(k), Free)|(k, Free)} = e−λ∆t,

P{(π(k), i)|(k, Free)} = (1− e−λ∆t)pi i ∈ N.

where e−λ∆t is the probability of no call arriving during time interval ∆t. The expected imme-
diate reward when in state (k, Free) is

(1− e−λ∆t)rk

which is the expected reward at node k multiplied by the probability 1−e−λ∆t of a call occurring
during ∆t. Therefore (3) gives:

vk,Free + g = (1− e−λ∆t)rk + (1− e−λ∆t)
∑

i∈N

pivk,i + max
k′∈N ′

e−λ∆tvk′,Free, ∀k ∈ N (4)

Consider next states (k, i), k 6= i and (k, H), k 6= h(k) in which the ambulance is traveling
from node k to i to serve a call, or traveling to (but not yet reached) the closest hospital at
node h. There is only one transition state from each of these states, being to move to the next
node along the shortest path. There is no reward for either of these states. Thus (3) gives

vk,i + g = vnext(k,i),i k 6= i (5)
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vk,H + g = vnext(k,h(k)),H k 6= h(k) (6)

where next(k, j) represents the successor of node k along the shortest path to j.
State (i, i), in which the ambulance is treating at the scene, has the following non-zero

transition probabilities:

P{(i, i)|(i, i)} = e−up∆t

P{((i, Free)|(i, i)} = (1− e−up∆t)((1− ptransport)

P{((i, H)|(i, i)} = (1− e−up∆t)ptransport

There is no immediate reward for this state and so (3) gives

vi,i + g = e−up∆tvi,i + (1− e−up∆t)((1− ptransport)vi,F ree + ptransportvi,H) (7)

The last state (h, H), in which the ambulance is at the hospital node h handing over the
patient, has the following associated non-zero transition probabilities:

P{(h, H)|(h, H)} = e−uh∆t, h∀H

P{((h, Free)|(h, H)} = 1− e−uh∆t, h∀H

There is no immediate reward for this state and so (3) gives:

vh,H + g = e−uh∆tvh,H + (1− e−uh∆t)vh,Free (8)

To find the optimal policy, we use these average reward Bellman equations in relative value
iteration proposed by White [25]. Let s1 denote an arbitrary reference state. Let T (v)(s) denote
the mapping obtained by applying the right hand side of Bellman’s equation:

T (v)(s) = max
a∈As

(rx,a +
∑

yinS

pa
syvy).

We also define the span of a vector v as follows

sp(v) = max
s∈S

vs −min
s∈S

vs.

The relative value iteration algorithm is listed in Algorithm 2.

Algorithm 2 The relative value iteration

1 Initilize v0
s = 0 for all states s, and select an ǫ > 0. Set m = 0.

2 Set vm+1
s = T (vm)(s)− T (vm)(s1) over all s ∈ S.

3 if sp(vm+1 − vm) > ǫ, increment m and go to step 2

4 For each k ∈ N , choose π(k) = arg maxk′∈N ′((1 − e−λ∆t)rk + (1 − e−λ∆t)
∑

i∈N pivk,i +
e−λ∆tvk′,Free)
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3.4 State Space Reduction

The state space for the above Dynamic Programming model includes a state (k, i) for every
pair of nodes k ∈ N , i ∈ N , and so the state space size is of order |N |2, making it intractable
for large networks. This state space can be reduced by carefully observing equations (4)-(8)
which show that if the ambulance gets dispatched to the next call, it follows a deterministic
path to the call location and then becomes idle again either at call location or at hospital after
some expected service time. Therefore we can rewrite vk,i in terms of the average reward g, the
values vi,Free, and the value vh(i),H corresponding to the hospital location h(i) closest to node i:

vk,i = (1− ptransport)vi,Free + ptransportvh(i),Free

− (dk,i +
1

1− e−uP ∆t
)g

−ptransport(di,h(i) +
1

1− e−uh(i)∆t
)g (9)

where dk,i is the number of time steps required to travel from node k to i. This equation can
be interpreted as follows. The first two terms show possible transitions from the point of being
dispatched to becoming free upon the completion of a request. If no transport to hospital is
required, the ambulance will become free at the scene (node i); otherwise the ambulance will
become free at the closest hospital to the scene (node h(i)). The third and fourth terms give
the loss of reward due to ambulance unavailability. This loss of reward is the product of service
time and the average reward per time step. The third term shows the loss of reward due to
traveling to the call location and the expected service time at the scene. The fourth term
gives the further losses that occur as a result of any travel to and expected service time at the
hospital.

If we substitute (9) in (4)-(8), we obtain a new system of average reward Bellman equations:

vk,Free + g = (1− e−λ∆t)(rk + vk,Busy) + max
k′∈N ′

e−λ∆tvk′,Free ∀k ∈ N (10)

vk,Busy = (1− ptransport)
∑

i∈N

pivi,Free + ptransport

∑

i∈N

pivh(i),Free

−(
∑

i∈N

pidk,i +
1

1− e−up∆t
)g

−ptransport(
∑

i∈N

pi(di,h(i) +
1

1− e−uh(i))∆t
))g (11)

where vk,Busy =
∑

i∈N pivk,i corresponds to a new aggregated busy state (k, Busy).
We further substitute equation (11) into equation (10), we have

vk,Free + g = (1− e−λ∆t)(rk + (1− ptransport)
∑

i∈N

pivi,Free + ptransport

∑

i∈N

pivh(i),Free

− (
∑

i∈N

pidk,i +
1

1− e−up∆t
)g

− ptransport(
∑

i∈N

pi(di,h(i) +
1

1− e−uh(i))∆t
))g + max

k′∈N ′

e−λ∆tvk′,Free ∀k ∈ N

This gives a much reduced state space S = {(k, Free), k ∈ N} for which we have |S| = |N |. A
problem arises when we use the relative value iteration with this formulation. Note that the
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average reward g appears on the right hand side, which is unknown until we find the optimal
policy. We address this problem by using a modified relative value iteration. In this modified
algorithm, we use an approximate average reward gm at each iteration, which then is updated
using the current average increase rate over all states. The modified relative value iteration is
listed in Algorithm 3. The computational gains are obvious as we solved the standard DP using

Algorithm 3 The modified relative value iteration

1 Initialization:

Initilize gm = 0 and vm
k,Free = 0, ∀k ∈ N . Select a reference state (k1, Free).

Select an ǫ > 0.

Set iteration count m = 0.

2 Solve Bellman’s Equations:

vm+1
k,Free = (1− e−λ∆t)(rk + (1− ptransport)

∑

i∈N

piv
m
i,Free + ptransport

∑

i∈N

piv
m
h(i),Free

− (
∑

i∈N

pidk,i +
1

1− e−up∆t
)gm − ptransport(

∑

i∈N

pi(di,h(i) +
1

1− e−uh(i))∆t
))gm)

+ max
k′∈N ′

e−λ∆tvm
k′,Free ∀k ∈ N.

3 If sp(vm+1 − vm) < ǫ, go to step 4; otherwise set

m = m + 1,

gm = (1− α)gm−1 + α

∑

k∈N(vm
k,Free − vm−1

k1,Free)

|N |
,

vm
k,Free = vm

k,Free − vm−1
k1,Free ∀k ∈ N.

and go to step 2.

4 Set the optimal policy as:

π(k) = arg max
k′∈N ′

((1− e−λ∆t)(rk + (1− ptransport)
∑

i∈N

piv
m
i,Free + ptransport

∑

i∈N

piv
m
h(i),Free

− (
∑

i∈N

pidk,i +
1

1− e−up∆t
)gm − ptransport(

∑

i∈N

pi(di,h(i) +
1

1− e−uh(i))∆t
))gm)

+ e−λ∆tvm
k′,Free) ∀k ∈ N.

the relative value iteration and the reduced DP using the modified relative value iteration on a
line of 30 nodes. The probability of the next call occurring at each node is randomly generated.
The response time target is 4 minutes and the hospital is at node 2. The reduced DP took less
than 1 second to converge while the standard DP took 7 minutes to converge.
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3.5 Examples

In this section, we present two example problems for the single vehicle infinite horizon problem.
We also compare move up with a benchmark ‘return-to-base’ policy.

Consider a network consisting of 30 nodes on a line, a target response time of W = 3
minutes and a reward function rk as shown in Figure 6. The at-scene service rate is 10 calls
per hour. The at-hospital service rate is 1.2 calls per hour. There is a 0.2 probability of the
vehicle becoming free at scene and a 0.8 probability of becoming free at hospital. There is a
single hospital at node 24. In order to compare move up with a benchmark ‘return-to-base’
policy, we modified the model above to implement this no-moveup policy, and then evaluated
all possible base locations to find that giving the best average reward.

Table 2 shows the results for two call arrival rates. Solving our dynamic program for the
first λ = 0.5 case gave a moveup policy with just one optimal standby location at node 6. As we
would expect, our exhaustive search under the benchmark return-to-base policy showed that
the base should be placed at this location, giving a policy (and hence performance) identical
to that with moveup. Solving the λ = 3 case gave a moveup policy with two optimal standby
locations at nodes 6 and 26, with the best return-to-base policy occuring when the base was
placed at node 6. With move up, the ambulance is able to respond on time to 0.463 calls per
hour, a 4% improvment over the 0.445 calls per hour achieved without moveup.

LLMNLMOLMPLMQLMRLMS

N O P Q R S T U V NL NN NO NP NQ NR NS NT NU NV OL ON OO OP OQ OR OS OT OU OV PL
WXYZ[\Z]̂Z_̂̀
]

abcdefb fgehidgj
kl kr

Figure 6 – The reward function rk for a 30-node problem with a hospital at node 24.

In our earlier single-ambulance next-call model, we showed that standby locations occurred
at local maxima of rk, and that any standby location found in an optimal low-λ solution is
also a standby location for a higher arrival rate λ. We now show that these two results do not
hold for the infinite horizon model. Figure 7 shows a network consisting of 250 nodes located
on a line, a target response time of W = 8 minutes and a reward function rk as shown. The
at-scene service rate is 10 calls per hour and the service rate at hospital is 1.2 calls per hour.
The hospital is at node 100. We first solved this model using a very small call arrival rate of
0.001 call per hour and found node 242 to be the single optimal standby location. Intuitively,
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No Moveup Optimised Moveup
λ Best base gbase Vehicle location Optimal standby node g∗ Improvement

0.5 6 0.185 1-30 6 0.185 0%
3 6 0.445 1-19 6 0.463 4%

20-30 26

Table 2 – Comparison between moveup and return-to-base for two call arrival rates
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Figure 7 – The reward function rk and optimal move-up policy for a 250-node problem with
λ = 2 calls per hour.. The optimal standby location (node 191) illustrates the trade-
off required between average service time and expected call reward.

the call arrival rate is small enough to allow the vehicle enough time to complete its moveup
before the next call arrives. Locating the vehicle at node 242 gives the maximum reward for
each arriving call. We then increased the call arrival rate to 2 calls per hour, and found that
the optimal standby location changed to node 191. This confirms our two assertions above:
the previous standby location, node 242, is no longer a standby location for an increased call
arrival rate and the new standby location is not a local maximum of rk. To understand why,
we note that this optimal standby location represents a trade-off between two objectives. The
first objective is the reward received from each call responded to. Clearly, to maximise this
reward, the ambulance should wait at node 242, being the global maximum of rk. However,
one also needs to consider the time taken to service each call which determines the number of
calls that the vehicle responds to per hour. This service time includes the travel time to the
scene, which depends on the choice of standby location. In this case, we maximize the number
of calls served per hour by locating the vehicle at node 152. The optimal standby location of
191 represents a trade off between these two extremes. The importance of these two factors in
practice is likely to depend upon their relative magnitudes for a full scale problem.
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4 Discussions

This paper has developed new optimal models for the single vehicle moveup problem and
provided insights into the form and structure of optimal moveup policies and the benefit that
move up can offer. We have presented examples showing that an optimal move up policy for a
single ambulance is influenced by several factors including the call arrival rate λ and the reward
function rk along a potential moveup path.

The models we propose only consider a single ambulance, but are currently being extended to
handle multiple vehicles. The state space required to model multiple vehicles inevitably becomes
too large to deal with exactly and therefore some candidate approaches such as heuristics,
approximate Dynamic Programming and scenario planning are being explored to solve these
problems. This work is being guided by the insights from models we have described in this
paper.
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A Call Arrival Distribution Over the Network for Ex-

ample 2

p1 0.0048 p10 0.0335 p19 0.0008 p28 0.0239
p2 0.0239 p11 0.0093 p20 7.421E-05 p29 0.0287
p3 0.0359 p12 0.0119 p21 0.0349 p30 0.0007
p4 0.0431 p13 0.0048 p22 0.0048 p31 0.0682
p5 0.0321 p14 0.0002 p23 0.0115 p32 0.1053
p6 0.0074 p15 0.0005 p24 0.0718 p33 0.1341
p7 0.0005 p16 7.181E-05 p25 0.0958 p34 0.0007
p8 7.421E-05 p17 0.0192 p26 0.1196 p35 0.0048
p9 0.0119 p18 0.0048 p27 0.0503

Table 3 – The call arrival distribution for the next call

B Proof of Correctness of Algorithm 1

In this appendix, we prove the validity of Algorithm 1
We proceed by induction. Let Vk denote the value currently assigned to node k by Algo-

rithm 1, and V ∗
k denote the correct value for node k. Let us renumber the n nodes in decreasing

order of their true V ∗
k values, giving V ∗

1 ≥ V ∗
2 ≥ ... ≥ V ∗

n , where ties are broken in some pre-
dictable manner. Assume nodes P = {1, 2, ..., p − 1} currently have permanent labels, and
nodes T = {p, p + 1, ..., n} have temporary labels.

(i) If all permanently labelled nodes have their correct Vk = V ∗
k values, then the next step

of Algorithm 1 will permanently label node p with its correct Vp = V ∗
p value.

Proof: The value Vk of any temporarily labelled node k is calculated by Algorithm 1 as:

Vk = max

(

rk, (1− e−λ∆t)rk + e−λ∆t max
j∈Nk∩P

V ∗
j

)

(12)

Comparing this with the optimality equation, (1), we see that this equation excludes all neigh-
bouring nodes of k that have temporary labels. Thus, we must have Vk ≤ V ∗

k ∀ k ∈ T .
Consider now node p. By our ordering assumption, any neighbouring node excluded in

(12) for node p has V ∗
k ≤ V ∗

p , and so excluding this node in (1) would not alter the calculated
V ∗

p value, making (1) and (12) equivalent. Therefore, Vp = V ∗
p , and so node p is ready to be

permanently labelled. Furthermore, we have Vp = V ∗
p ≥ V ∗

k ≥ Vk ∀ k ∈ T , and so node p will
be the next node selected for a permanent label by Algorithm 1 (assuming any ties are broken
using the approach adopted when renumbering the nodes).

(ii) It remains to show that the first permanent label V1 is calculated correctly.
Proof: Algorithm 1 puts V1 = r1 = maxk=1..n rk, and so V1 is the reward gained by waiting

at node 1, being the node with the largest rk. Clearly, moving away from this node to wait at
some node with a lower rk cannot be a better policy, and so V1 = V ∗

1 .
This completes our proof.
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