

 Siqi Tong

A thesis submitted in partial fulfilment of the requirements
for the degree of Master of Science in Computer Science

the University of Auckland, 2024.

An empirical study
investigating the use of Python identifier names

School of Computer Science
The University of Auckland

New Zealand

An empirical study investigating
the use of Python identifier

names

Siqi Tong

April 2024

Supervisors:

A Prof. Ewan Tempero

2

Abstract

Understanding software programs is very difficult and time consuming. Identifier names

have an important role in the source code, so it is an important part of enhancing com-

prehensibility. Many studies have demonstrated that using meaningful identifier names

can improve the comprehensibility of programs. However, most of the naming conven-

tions are rather general. We believe that more specific naming recommendations may be

needed depending on the different cases. In this thesis, we investigated 745,651 identifier

names from 100 open source Python projects from 6 different domains. We explored the

connection between naming conventions and 9 naming practices and their differences in

different contexts, such as loop statements, the size of scopes and different domains. Our

results show that the use of identifier names does vary across cases. Making more detailed

naming conventions based on different cases can help programmers to choose names that

more accurately describe the concept of identifiers and thus improve comprehensibility.

i

ii

Contents

1 Introduction 1

1.1 Program comprehension . 1

1.2 Motivation . 2

1.3 Thesis outline . 4

2 Related work 5

2.1 Proper names . 7

2.2 Naming conventions . 10

3 Methodology 15

3.1 Research question . 15

3.2 Naming conventions and naming practices 16

3.3 Data Collection . 20

3.4 Extracting identifier names in Python . 23

4 Results 33

4.1 Single letter . 34

4.2 Number at end . 42

4.3 Number in middle . 48

4.4 Verb Phrases for functions/methods . 54

4.5 Noun Phrases for class names . 59

4.6 Dictionary words . 63

4.7 Length and number of words . 68

4.8 Most common names . 74

4.9 Most common words . 78

5 Discussion 83

5.1 How are the different naming conventions used in practice? 83

5.2 How much influence does context have on the choice of identifier names? . 86

5.3 Is there a difference in the choice of names in different Python repositories? 87

iii

iv Contents

6 Conclusion 89

6.1 Contributions . 89

6.2 Future Work . 90

A Appendix 93

1
Introduction

1.1 Program comprehension

The cost of software development and maintenance is very high. Reading and under-

standing the source code cost at least half of the time in the maintenance [48]. Com-

prehensibility is an important part of software maintenance. Identifier names make up

70% of the source code [16]. This means that the choices of identifier names can affect

comprehensibility. There are proposed guidelines for how to choose good identifier names

to help with comprehensibility. One way to determine if developers trust these guidelines

is to determine to what degree developers follow them. The general goal of this thesis is

to understand to what degree developers follow these guidelines.

Studies have been conducted on developer adherence to naming guidelines in a number

of languages [5, 10, 24]. However there has been no study in Python. We believe this

thesis can help fill the gap in this area.

Some studies have shown that choosing good identifier names would have a positive

effect on comprehensibility and also can reduce the cost of software maintenance [18, 19,

34]. This is because that before modifying or adding new features, programmers must

read and understand the meaning of the code in the projects related to the new contents

[53]. As mentioned in the study by Deissenboeck et al. [16], although programmers agree

with using good identifier names, choosing the most appropriate name is still complex.

This is due to the lack of consensus among programmers. Even when facing to the same

1

2 Introduction

Figure 1.1: TIOBE Programming Community index: Evolution of the popularity of Python [58]

concepts, different programmers would use completely different words to describe it [20].

This causes confusion. In Clean Code [39], it is also mentioned that programmers should

use meaningful identifier names to avoid confusion. This raises the question: What is

a meaningful name? and How to determine it? Appropriate identifier names allow

programmers to understand the high-level meaning of the concepts that described by

the names [38]. The maintainability of code is closely related to the quality of identifier

names, leading to a consensus in the field that meaningful names should be used [2].

Binkley et al.’s study [6] mentions that reading and understanding source code is fun-

damentally different from that in natural language. Although the grammatical structure

of source code is very different from natural languages, programming languages are not

entirely unnatural [37]. This is especially true for identifier names. A survey showed

that 78.72% of the professional software developers involved strongly agree or agree that

identifier names should follow the correct grammatical structure [2]. This might mean

that using the identifier names that have correct grammatical structures might be easier

to understand. There are some guidelines related to grammatical structures. For exam-

ple, using verb phrases for functions/methods and using noun phrases for classes [39]. In

addition to the guidelines related to grammatical structures of identifier names, there are

many other different guidelines. For example, avoid using single letter identifier names

and use dictionary words to name identifiers. Generally, comprehensibility is improved by

programmers adhering to these guidelines when naming the identifier names. We believe

that the quality of guidelines is correlated with comprehensibility.

1.2 Motivation

We found that there are many empirical studies on identifier names from different aspects.

We think these studies usually have limitations.

The first limitation is that there are few studies related to Python among them. We

1.2 Motivation 3

found more studies related to Java [10, 11, 23, 34]. However, there are very few studies

related to Python. This might be related to the nature of Python as a dynamic language.

This means it is hard to get the types of identifiers in Python source code since the

structure and types can still be changed during run time. For example, the types of

variables and the output types of functions/methods. We think this might be the reason

that there are very few studies related to Python in the field of program comprehension.

Names might be different in different programming languages. In Python code, it

is possible that programmers choose identifier names that are different from those of

other programming languages. We think it is still necessary to investigate type-related

naming practices and also other aspects of the identifier names in Python repositories.

For example, the length of identifier names, grammatical structures and also dictionary

words. This is because Python is currently used in a variety of domains such as AI-related

and web repositories. The Figure 1.1 shows the TIOBE programming community index

which is used to measure the popularity of different programming languages. Python

has become more popular in the last ten years, and it is also the most popular language

in 2023. This makes us think that dynamic languages, such as Python, should not be

ignored.

The second limitation is that the choice of identifier names could be very different

in different situations. The names used as variables, functions and classes are all dif-

ferent [30]. However, most studies have usually focused on only one of these, such as

function/method [2, 24] and variable names [5]. We believe that it is also necessary to

compare these constructs to find out their actual differences in source code. In the em-

pirical studies by Gresta et al. [23, 24], it is mentioned that the choices and uses of

identifier names may be influenced by the context of the source code and properties of

repositories. This thesis is inspired by their studies. We found that in two different For

loops, programmers seem to choose different names. For example, in the For loop using

range, it is more common to use the letter i as the loop counter. This does not exist

in the For loop using list. Their study [24] investigated some specific naming practices

used as variables, parameters and attributes in Java and C++ projects. We are going to

discuss their studies in more detail in Chapter 2. We think it is a good idea to do a new

empirical study that examines certain naming practices according to the characteristics

of Python and also includes function/method names and class names to fill the gaps in

the field.

In this thesis, we are interested in whether programmers follow certain guidelines in the

open-source Python code and if they are related to the different contexts and repository

properties. Our results show that most of the identifier names are consistent with the

guidelines and the use of identifier names does vary across cases.

4 Introduction

1.3 Thesis outline

This thesis is structured in the following chapters:

Chapter 2 presents and summarises the related works in comprehensibility and naming

research area.

Chapter 3 describes the methodology of collecting source code, preprocessing data set,

extracting identifier names, and categorising.

Chapter 4 shows and discusses the application of 9 naming practices in different cases.

Chapter 5 discusses the overall results to answer the research questions.

Chapter 6 is the conclusion and points out future directions.

2
Related work

There are two complementary types of research in the existing research on software com-

prehension which are empirical and technical [55]. Empirical studies investigate existing

code in order to understand the programmer’s intentions and the cognitive processes in-

volved in programming the code. Technical studies are about developing tools that help

programmers understand code or write code that is easier to understand. Theories and

experiences drawn from empirical research are validated to provide suggestions to help

develop more efficient tools. They form a feedback loop.

Through the two researches mentioned above, a large number of different theories and

research methods have been developed over the last few decades. For example, Brook et

al.’s [9] Top-down comprehension, Bottom-up comprehension [44, 52], and Letovsky’s [36]

combination of the both. Top-down comprehension refers to the step of mapping existing

knowledge to source code. Bottom-up does the opposite in that programmers infer the

semantics of the overall code by understanding individual lines or sections of code first.

This thesis is also relevant to the psychology and cognition of programmers since this

is an empirical study. Past research has discussed that studies related to programmer

cognition vary widely in their minutiae. Generally they contain four key elements: exter-

nal representation, a knowledge base, a mental model and an assimilation process. These

models describe the process by which programmers understand code [43] (Figure 2.1).

Firstly, external representation refers to all external information that is useful to the

programmer, including but not limited to documentation and the source code itself. Sec-

5

6 Related work

Figure 2.1: Program comprehension model (Michael P O’brien [43])

ondly, knowledge base refers to the skills and knowledge that the programmer possesses

before understanding the code. For example, the understanding and consensus of a certain

domain. Then, the mental model is a special type of knowledge base that refers to the

current understanding of the program. It expands as the programmer’s understanding of

the code increases. The process of augmenting understanding and expanding the knowl-

edge base with external information is known as the assimilation process [43]. The longer

time it takes to read and understand identifier names will increase the time needed for

the assimilation process. In our thesis, we investigate whether identifier names in source

code are related to their associated contextual information. We believe this can help to

understand the relationship between the concepts of identifier names and programmers’

knowledge base.

There are relatively few studies on Python in the field of software comprehension.

Vavrová et al. [59] analysed 32,058,823 lines of Python code and compared the results

with those of Java by developing a tool to detect code smell. Their results show that

Python is different from Java in this respect. For example, Python is relatively more

prone to code smells with long methods, and less prone to too many parameters. We

think this might mean that programmers have a different choice of identifier names in

Python than in Java. Therefore, we think it is a good idea to do a a study of identifier

names in Python code. It might be helpful to understand the naming conventions in

Python.

In this thesis, we will mention 3 terms. They are naming conventions, naming sug-

gestions and guidelines. In general, naming conventions mean that programmers think

2.1 Proper names 7

certain names are good, so they choose to do the same things. From there, they might

become to be naming suggestions and then become to be guidelines. These 3 terms are

inter-changeably in this thesis.

2.1 Proper names

As mentioned in Chapter 1, identifier names can be made up with standard English

words. Deisenbock et al. [16] mentioned that the structure of identifier names is usually a

compound of words on the left side, modifying words on the right side. These choices are

more compatible with cognition [37]. In the programmer’s society, it is widely accepted

that some identifier names are better. Choosing proper identifier names is still challenging.

Since identifier names do not affect the operation of the program, the use of any names is

permitted. This includes but is not limited to full dictionary words, abbreviations, single

letters, made-up words and combinations of multiple words.

In identifier name related research, it is widely mentioned that a proper name should

be meaningful. As well, following naming conventions in projects improves maintainability

[4, 12, 35, 42, 57]. Most programmers also believe that conventions need to be followed

[2]. However, creating identifier names that adhere to the guidelines does not necessarily

mean that they are meaningful. We believe that depending on the context and domain,

more detailed and contextualised guidelines should be used. Parts of the information of

identifiers might be included in the contextual information. For example, the use of a

single letter i in a loop statement is acceptable [5].

There are two problems related to meaningful names. The first problem is that few

researchers have explained what kind of name can be called meaningful. The second

problem is that natural language is inherently ambiguous, such as the uses of synonyms,

polysemy and also homonyms [20]. In the English language, which is the most commonly

used in naming and also the subject of this study, this problem is completely unavoidable.

In Clean code, Martin and Ottinger refer to the need to use names that are clear and

intended to reveal [39]. This would help to communicate to developers the purpose of the

source code and its behaviour and eventually enable them to understand its true meaning

[28]. Specifically, the following two points are made.

Firstly, avoid using words with double meanings whenever possible to avoid ambiguity

about the meaning of the name when maintaining the code. Using double meaning words

can lead to semantic defects, which is an error related to the meaning, semantics or logic

of the program. A semantic defect usually occurs when a developer writes code that

fails to properly understand the requirements of the problem or correctly implements the

necessary logic. These types of defects may cause unexpected behaviour during program

execution or failure to perform certain functions as expected. It may include incorrect use

8 Related work

of variables, wrong conditions and also logic errors. This issue is also known as language

anti-patterns (LAs) [3]. Their study suggests that unintended practices are likely to lead

to misinterpretation of the source code and lead to wasted extra time. Deissenboeck and

Pizka have constructed a source code framework based on bijective mapping of names

and concepts to avoid this problem [16]. The definition of meaningful names and their

impact on programs is still to be discussed. However, this problem is effectively mitigated

by using meaningful names [28]. We are going to discuss this in Section 2.2.

Secondly, avoid using names with similar meanings and numbers, as this can also lead

to confusion. For example, using a single letter as a name can be difficult to locate in the

code, as it can appear anywhere in the code.

Finally, unsearchable and unpronounceable names can also be poor practices. For

example, using a single letter as a name is difficult to locate in the code, as it can appear

anywhere in the code. In most cases, programmers work in groups. The problem with

unpronounceable names is that they are difficult to describe during the code review process

[39].

In the study by Feitelson et al. [20], they conducted a series of multiple experiments

related to the choice of names. They constructed 11 specific programming scenarios

consisting of 47 naming questions in total. The experiment consisted of 334 programmers

who could be professional programmers or computer science students. However, the

median number of times that two programmers gave the same name was only 6.9%,

which means that for the same instance, different programmers may give very different

descriptions. This may be related to their knowledge base and personal experience. For

example, people who are not native English speakers may be more likely to choose names

that are not good enough.

It is important to note that choosing a different name is not the same as using a name

that creates ambiguity. Different identifier names can refer to the same concept. This

might be because different names can also used to describe the same concepts. In real

programming environments, because of contextual information, even if other programmers

use different but reasonable names with similar meanings, most of the time this will not

affect comprehensibility. Another possible reason is that most people are unable to choose

the most proper name for identifiers. There may be only one most accurate name but there

are many wrong choices. A proper identifier name needs to make different programmers

associate the same concepts when they read it. This is also known as consistency of

identifier names [16, 51].

Therefore, a proper name should clearly describe the concepts it refers to [31]. It

should also be able to associate the same concepts with the name when read by different

programmers. The maintainability of code is closely related to the quality of identifier

names [2]. The quality of names is not limited to the need to be meaningful, but also

2.1 Proper names 9

still takes into account other factors that may lead to reduced productivity. Therefore,

choosing meaningful, searchable and pronounceable names can effectively reduce the time

spent on maintenance. This can improve the efficiency and reduce costs.

10 Related work

2.2 Naming conventions

The research community has developed and recommended to programmers a wide range

of naming conventions [2]. This would help programmers to use identifier names that

can express the concepts more accurately. Pavlutin [17] explores the importance of some

practical naming conventions for readability.

As mentioned in Section 1.2, Gresta et al. [23, 24] investigated identifier names in 50

Java and C++ repositories respectively by empirical studies. The study investigated 8

naming practices related to naming conventions in different context. It only investigated

identifiers that are variables, attributes and parameters. The 8 naming practices are

listed below: Kings: Identifier names ending with a number; Median: Identifier names

that contain a number in the middle; Ditto: Identifier names with the same spelling as

their types; Diminutive: Identifier names that are part of their type names; Cognome:

Identifier names that contain a prefix or suffix of their types; Shorten: Single letter

identifier names that are acronyms of their types; Index: Other single letter identifier

names which use arbitrary letters; Famed: Most common Identifier names. These 8

naming practices can be classified into 4 types. They are number-related, length-related,

type-related and common words.

For the first type of naming practices, the two types of naming practices Kings and

Median are related to numbers used in identifier names. Number in middle and number

at end are discussed separately because of their different uses [24].

An exploratory study on the use of numbers in identifier names of Java repositories

was conducted by Peruma et al. [45]. Their study classified the meanings expressed by

numbers in identifier names into 6 categories which are listed below: Auto-generated:

Identifier names are automatically generated by code generation tools. The numbers

are arbitrary and have no meanings. Distinguisher: Numbers are used to distinguish

between two identical concepts in the same domain. It is usually used as a suffix to

identifier names which is called number at end in this thesis. Synonym: Numbers are

used to replace words that have the same pronunciation. The common used pairs are

2 and to, and also 4 and for. This function is used to shorten the length of identifier

names. Version number: Use a combination of V + number to store version-related

information in identifier names. Specification and Domain/Technology: These two

kinds of numbers are contained in a specific concepts which can be a known specification

and domain/technology names. For example, the word 2D refers to 2-dimensional. In

this thesis, we combine these two uses of numbers and call them special uses. The study

concluded that most of the time, identifier names with numbers are also meaningful.

For the second type of naming practice, in the study by Gresta et al.[24], the only

naming practice related to the length of identifier names is a single letter. Single letter

2.2 Naming conventions 11

names are acronyms which are the names of length 1. There is a lot of research related

to the length of identifier names [50]. It includes the number of characters (length) in the

identifier names, the number of words and dictionary words. Length-related topics are

one of the most popular research topics in comprehensibility field.

There are many studies suggest that name length is related to whether the name

clearly describes the concepts it refers to. Schankin et al. [2, 6, 40, 50] experimentally

compared names of different lengths. They found that longer names are more descriptive

and have a positive effect on comprehensibility. However, using method names that are

considered to be too long is a code smell [21]. There are a lot of different opinions about

the length of identifier names but there is no exact suggestion for the length of identifier

names.

Although longer names are more descriptive, they would increase the reading time.

There should be a fixed maximum length for identifier names. The length of identifier

names is affected by the naming style they use and also the length of words that are

not fixed. For example, names using under score will be longer on average than names

using camelCase. However, the difference in the effect on comprehensibility between the

two is almost none [6]. The human short-term memory maximum is 7 ± 2 words [40].

Memorization and differentiation between similar names become more difficult when an

identifier name has more words in it. In the survey of alsuhaibani et al. [2], 81% of the

professional programmers involved think that method names should use 5 ± 2 words.

This leads us to believe that investigating both the length and also the number of words

used in identifier names is necessary.

There are many studies mentioning that the use of full words and dictionary words

improves maintainability compared to abbreviations. Full dictionary words have exact

definitions [16]. This means that using other words that are not defined can cause confu-

sion and misunderstanding. Scanniello et al. [49] investigated in a controlled experiment

whether the use of full words and abbreviations has an impact on the ability of novice

software developers to identify and fix bugs in source code. Their results show that there

is no significant difference between full words and abbreviations. Takang et al.’s study [56]

showed that there is no statistical evidence on objective tests that using full words was

easier to understand than abbreviations. However, participants felt that full words are

easier to understand compared to abbreviations. Lawrie et al. [32] argue that identifiers

must be named using full words.

The study by Hofmeister et al.[28] found that using full dictionary word names can

increase the speed of understanding code during maintenance by an average of 19%. As

we mentioned above, single letter names are special abbreviations (acronyms). They are

sometimes discussed separately from abbreviations in research.

Lawrie et al. [34] designed a controlled experiment with three groups. Each of the

12 Related work

three groups of programmers is required to read and understand 12 functionally identical

functions but with names that use full words, abbreviations, and acronyms. However, we

believe that there are limitations to this study. The variables, attributes and parameters

in any arbitrary functions/methods are usually not all named in single letters. It is not

usual to name different identifiers with the same number of letters at the same time.

This means that it is unlikely there would be confusion between two different single letter

identifiers. IIn this case, it is impossible to see the names but not remember what the

concepts they refer to are. This is because that the functions used in this study are

small and the location of their first assignment can be found quickly. However, in a real

programming project, it is more difficult to find the locations of declarations in large

scopes.

Beniamini et al. [5] investigated variable names in 1,000 popular Github repositories

of 5 programming languages. Programmers generally think long descriptive names are

meaningful. However there are some other letters besides the commonly used i in loop

statements that are widely used. The use of these names might be consistent with another

meaningful explanation mentioned in Section 2.1 that programmers would think of the

same concepts when they are reading the single letters. The study also suggests that

single letters can be used in specific contexts to make the code more concise.

For the third type of naming practices, the results of the survey of type-related naming

practices show that programmers would save type-related information in identifier names

in both Java and C++ repositories [23, 24]. This is because using type-related names

can prevent mental mapping which is typically connected to the concepts of the problem

domain. The use of acronyms and abbreviated type names in names reduces the overload

of reading. This also helps programmers to remember the type of the identifiers, especially

when using acronyms [22]. Moreover, single letters related to type are not necessarily

abbreviations of type. For example, the use of letters i, j, k and n are more likely

related to integers, and the use of letters d, e, f, r, and t are related to floating

points [5, 10].

As mentioned in Chapter 1, in contrast to Java and C++, Python is a dynamic

language that the types do not have to be fixed. We need to investigate whether these

practices also occur in dynamic programming languages. As an alternative, in this thesis,

we investigated words that are commonly used in identifier names which is called most

used words. This will be discussed in detail in Section 3.2.

The last type of naming practice mentioned in Gresta et al.’s study [24] is about

common words. This might be because the common words exist in the programmers’

mindsets and can be easily remembered and comprehended. The problem is that using

too many same names in different ways in the same repository can be confusing and

difficult to search. However, common words are more likely to point to the same concepts

2.2 Naming conventions 13

Figure 2.2: An example of noun, verb and prepositional verb phrases [41]

in different programmers’ mindset [39]. For example, when they see the letter i in a loop

body, they would associate the letter to a loop index. We believe that not using them in

the same scope would not have negative impacts on comprehensibility.

In addition to the 4 types of naming practices mentioned above, grammar-related

ones are also widely mentioned in the relevant literature [26, 27, 37]. Newman et al. [41]

mentioned that different types of identifier names (variables, parameters, attributes, func-

tions/methods and classes) have different grammatical structures. Figure 2.2 shows some

examples of possible structures. Among them, we note two naming conventions related to

grammatical structures. They are the use of verb phrases for naming functions/methods

and the use of noun phrases for naming classes [39].

Caprile and Tonella [13] analysed the grammar of function/method names and found

several patterns. Most of them exist with verb phrases but not all names do. We think it

is necessary to investigate the reasons why they are not verb phrases and to judge whether

these usages are reasonable. Liblit et al. [37] considered that functions/methods to be used

to compute or perform an action, so verb phrases should be used. More specifically, Abebe

et al. [1] suggested that function/method names should start with a verb. They argue that

this approach can emphasis the action involved in functions/methods. Grammar-related

contents are not mentioned in the style guide for Python code (PEP8) [25], but this does

not mean that programmers are not following the suggestions from other guidelines.

Gupta et al. [26] developed a part-of-speech tagger (Posse) to analysis the grammatical

structure of identifier names in source code. Through their analysis, they found that using

noun phrases is typical for attributes and also classes. Singer and Kirkham [54] suggested

that the grammatical structure of classes should be (objective)* (noun)+ which is

a noun structure. Butler’s research [12] also found that 120000 unique class names in

60 Java repositories are mostly noun structures. The class names, that are not noun

14 Related work

structures, still contain nouns. This might be related to the interfaces and inheritance to

which they belong. Their studies focused more on the minor differences between different

noun structures. This thesis focuses more on whether class names in Python are noun

structures, and also the reasons for doing so or not.

As mentioned in Section 2.1, we believe that specific guidelines should meet the actual

needs in different situations. In Gresta et al.’s study [24] of two object-oriented languages,

the differences in choices of identifier names for different situations are discussed. It is

categorised into two types. The first is the contextual information related to identifier

names. The second is the external information related to repository properties.

For the first part, they only discussed the identifier names of variables, attributes and

parameters. On top of that, they investigated the differences between the names used in

While, For, If and Switch [24]. As mentioned in Chapter 1, we think this study should be

extended to variables, parameters, attributes, functions/methods, and classes in Python.

And also to investigate the different application of naming conventions between function

names and method names.

Secondly, Gresta et al. [24] investigated identifier names in different Github reposito-

ries, which contain three repository properties which are lines of code (LoC), number of

commits, and number of commiters. Their results show that in Java only Ditto, which

uses the same spelling as type, is related to LoC. Smaller repositories are more likely

to use Ditto. Whereas in C++, larger repositories use more names ending in numbers,

smaller repositories are more likely to use single letters. In both languages, neither the

number of commits nor the number of contributors has any relation to naming practices.

In addition to these three, the year of the repositories may also influence the choices of

identifier names. Lawrie et al. [33] mentioned that the quality of identifier names has

improved over the 30 years from the 1970s to the 2000s. With the development of tech-

nology, the choices of identifier names are no longer limited by the size of the memory,

especially for the length of the names [8]. This might also have an impact on naming

practices. Therefore, we think it is necessary to add first release dates and number of

releases in this thesis.

We believe that the categories of repositories also would have an impact on the choice

of identifier names. This is not mentioned in the study by Gresta et al. [24]. For

example, the single letter identifier names x and y would be more common in computer-

vision repositories, which use coordinate axes. In our study, we categorised the 100

repositories into 6 categories related to common uses of Python. They are AI, web,

scientific-computing, visualisation, computer-vision and automated tools which will be

discussed in detail in Chapter 3.

3
Methodology

In this chapter, we are going to discuss how the data is collected and analysed in this thesis.

We investigate how python programmers name identifier names in repositories through

empirical research. Empirical research is a form of academic study that uses direct and

indirect observation or experience to gather evidence and deepen our understanding of

the world. This thesis aims to investigate programmers’ compliance with selected naming

advice in a variety of contexts across a wide range of Python repositories. In this study,

we use quantitative research methods to statistically analyse the data collected and to

answer the empirical questions.

Specifically, we collected a total of 745,651 identifier names from 100 Python reposito-

ries. We also investigated the 9 naming practices that are related to naming conventions

(Section 3.2). In this thesis, we are going to discuss and present the data from multi-

ple perspectives in order to address and answer research questions mentioned in Section

3.1. We are going to introduce the methodology in the following sections. Section 3.1

describes the research question. Section 3.2 describes the 9 naming categories discussed

in the thesis. Section 3.3 describes the process of collecting the data. Section 3.4 is about

how the data is analysed.

3.1 Research question

We summarised what we discussed in Chapter 2 and formed 3 research questions.

15

16 Methodology

3.1.1 RQ1: How are the different naming conventions used in

practice?

We investigated the use of the 9 naming practices related to naming conventions in 100

Python open source repositories from Github.

3.1.2 RQ2: How much influence does context have on the choice

of identifier names?

We investigated the 6 different kinds of identifier names, which are variables, parame-

ters, attributes, functions, methods and classes. There are also sub-categories related to

context. For example, loop statements (For, While), If statements, the scopes and scope

length. We investigated if there is any relationship in name selection in different context.

3.1.3 RQ3: Is there a difference in the choice of names in dif-

ferent Python repositories?

We investigated if repository properties would affect the choice of identifier names. They

are lines of code (LoC), number of commits, number of contributors, number of releases

and first release dates.

We classified the repositories into 6 categories according to the relevant domains. They

are AI, web, scientific-computing, visualisation, computer-vision and automated tools.

3.2 Naming conventions and naming practices

Python is a dynamically typed language. It is characterised by checking the type of data

in the code only at run-time and determining the type of a variable or object based on

the type of its value. This differs from statically typed languages such as Java and C++,

which check data types at compile time. In this thesis, we examined the 9 representative

naming practices for this characteristic of Python. In the following part, we are going to

list and describe the 9 naming practices. We will also explain the reasons for the choices

and what might make programmers choose to practice these in their repositories.

Single letter: This category refers to naming identifier names with a single letter

which includes both uppercase and lowercase letters. In the process of actual program-

ming, single letter names are difficult to search. Using single letter names in large scopes,

such as global variable, is not good for comprehensibility of the code [5, 24].

Single letter names may be appropriate for small scopes. In small scopes, programmers

are less likely to forget the concepts to which the letter refers. This is because where the

identifier is used is close enough to where it was created. Programmers can more easily

3.2 Naming conventions and naming practices 17

find and understand the reasons for using the letters. Programmers are also used to use

letters i, j and k as loop counters even when the loop body is large. This is the consensus

that exists in the knowledge base. These letters are also commonly used as loop counters

in both reference books and introductory textbooks. For example, Python phrasebook:

essential code and commands [15] is a reference book and Python3 object oriented

programming [46] is an introductory book which introduced the use of single letter i as

loop counters.

It is also used in Mathematics-related fields. For example, x, y, and z are letters

commonly used for this purpose. Programmers involved in a project would have some

knowledge of the field. They do not need to spend extra time to understand the meaning

of these letters. This is another consensus that exists in the knowledge base.

The problem of single letter names is that it is still possible for a single letter to refer

to multiple concepts in a given field. For example, in Web repositories, f may refer to

files or forms. The use of a single letter in such cases would cause confusion.

Number at end: This category refers to the use of numbers at the end of identifier

names, such as using num1 and num2 as parameters and using list1 and list2 as list

names.

The suggestion from Clean Code [39] is to use names with numbers only when nec-

essary. This means we need to discuss the different cases of using numbers in identifier

names. As mentioned in Section 2.2, in the study by Peruma et al. [45], most of the

types of names mentioned in relation to numbers are associated with numerical endings

except synonyms. They are arbitrary numbers (Auto-generated numbers), distinguishers,

versions and specific uses.

For the first category, we believe that using arbitrary numbers as endings is a very

poor choice. This is because it is useless for describing the concepts of identifiers and also

increases the length of identifier names. It also causes the programmer reading the code

to be confused about what the string of numbers means, thus slowing down the reading

speed and leading to less comprehensibility.

For the second category, we believe that distinguishers are meaningful. These names

usually end with a single digit, as in the examples we mentioned earlier, num1 and num2.

When we use these names, we usually do not care about their specific identities, but

rather about the concepts they refer to in the prefix name. For example, parameters are

used in a function that compares the size of two numbers. It would be difficult to find

a better choice in this case. We have considered the 2 pairs of names num one/num two

and num a/num b. The 2 pairs of names do not contain numbers. We do not think this

contributes to comprehensibility, but rather makes the names longer and harder to read.

We think using numbers in this case is visually clearer.

For the third category, in Chapter 2, we mentioned that version-related endings in-

18 Methodology

crease the length of the names but do not help with understanding the code. This infor-

mation is usually not related to the concepts of identifier names. Therefore, we think it

would be better to keep the information about the version as a comment if there is a need

for it.

For the fourth category, we believe that numbers that are considered to have a specific

purpose are meaningful. For example, web3 refers to the next iteration of the World

Wide Web and 95 refers to the confidence interval. For these names, there are no better

alternative names could be found. Even converting 95 to the full word ninety five would

not contribute positively to comprehensibility. Using numbers are more obvious in these

cases.

Number in middle: This category refers to the use of numbers in the middle of

identifier names such as float64 matrix and x1 shape.

All the types of names related to numbers mentioned in Section 2.2 can be related

to number in middle. These types are arbitrary numbers (Auto-generated numbers),

synonyms, distinguishers, versions and specific uses.

The synonyms are used to shorten identifier names and make connectives more intu-

itive. However, they are unpronounceable and can not be distinguished from words not

replaced by synonyms when communicating with other programmers.

The distinguishers, that are number in middle, are different from number at end.

This is because the part it uses to differentiate is usually a phrase containing 1 or more

numbers. For exmaple, the two method names nhwc3to4 and nhwc3to8 inAITemplate.

The reason for using longer phrases is related to more complex concepts. This means that

there might be identifiers, that need to be distinguished, are not close to each other in the

source code. For example, the two methods names mentioned above are more difficult to

detect as corresponding to each other than the common parameters in number at end.

The similar identifier names would make it difficult to search in the code. The sugges-

tion is to avoid using names with numbers extensively and to ensure that the other parts

of the identifier names consist of meaningful words [39].

Dictionary word: Dictionary word is a word that can be found in a standard dic-

tionary. As mentioned in Chapter 2, the guidelines state that identifier names should be

named by dictionary words. Past studies have pointed out that using full word identi-

fier names can effectively help programmers understand the meaning of the name and

relate the context [23, 24]. This can effectively reduce the time to evaluate and maintain

the code. However, in the actual code, there are numerous abbreviations are still tac-

itly accepted, such as URL for Uniform Resource Locator, and db for database. These

abbreviations are often well known.

For this naming practices, we are interested in the possible reasons for using these

identifier names with non-dictionary words and whether there is an impact on compre-

3.2 Naming conventions and naming practices 19

hensibility. We explored 4 different scenarios which are listed below: All: all the words

in the name are dictionary words At least one: at least 1 of the words in the name is a

dictionary word All but one not: Only 1 of the words in the name is not a dictionary

word None: All words in the name are not dictionary words

Most used names: This category contains the most commonly used names in the

programs. These names usually appear in some default situations, such as using result

to refer to the return value of function. However, using multiple identical names could

lead to reduced comprehensibility and also cause difficulties in searching and locating the

name in the code. Although these names are usually in programmers’ knowledge base,

there may also be names that more accurately describe their concepts [23, 24].

Most used words: This category contains the most commonly used words in identi-

fier names. We investigated through this naming practice whether programmers also use

words related to identifier types to name identifiers in a dynamic programming language

which is Python in this thesis. The benefits of investigating this naming practice will be

discussed in Chapter 5.

Verb Phrase for function/method: This suggests that method names should con-

tain a verb or verb phrases since a method should contain an action [2, 39]. When

programmers read an identifier name that contains a verb structure, they can intuitively

realises that it is a function/method and determines its functionality.

But there are actually exceptions in practice. For example, a class has an attribute

named size and a method also named size(). In this case both object.size and

object.size() would return the same value. Even if the method is a noun phrase, its

functionality, that is getting the size of the object, is relatively obvious compared to

other cases. In this thesis, we investigated identifier names that do not contain a verb

structure and also analyse possible reasons. We are also interested in the reasons for using

verb phrases in the names of other kinds of identifiers and if these practices would cause

comprehensibility problems.

Noun Phrase for class: This suggests that class names should be a noun or a noun

phrase, since a method is a verb that occurs on the object represented by the class [39].

In addition, variables, parameters and attributes do not contain actions, so they are

usually also noun phrases. We also investigated how they differ from the noun phrases in

classes.

Length and number of words: As mentioned in Section 2.2, The length of the

identifier name is a widely discussed and still controversial topic. In terms of maintain-

ability, using excessively long names is a form of code smell [21]. Although there seems no

straight relationship between the complexity of the concepts of identifiers and the length

of identifier names, accurately describing a conceptually complex identifiers might require

using longer names. We think it is a good idea to investigate the length of names that

20 Methodology

Figure 3.1: The categories of the 100 Python repositories used in this thesis

programmers need to describe different concepts in the actual source code.

Because of using different naming styles would influence the length of identifier names,

we investigate both the length and also the number of words used in the identifier names

in this thesis.

3.3 Data Collection

3.3.1 Repository selection

The data for this study came from 100 Python repositories on GitHub. These reposi-

tories are all based on English as the language used for programmers to make naming

decisions. English is the most widely used language in code [10]. Using English-based

repositories in our study also helped increase comparability between the data since it

becomes difficult to compare similarities and correlations between identifier names in dif-

ferent natural languages. For some of the naming practices mentioned in Section 3.2,

we use natural language processing (NLP) to do the analyse. These repositories cover a

number of different fields. We have categorised these into 6 different categories. They are

AI, web, scientific-computing, visualisation, computer-vision and automated tools (Figure

3.1). A repository may belong to more than one repository category since they can be

cross-disciplinary. Among the 100 repositories, 30 of them belong to multiple categories.

We made this decision because we want the repository categories to have adequate data

and we also want to choose repositories from different categories.

3.3 Data Collection 21

Figure 3.2: The distribution of first release year of the 100 repositories

We have included repositories that are popular in a variety of fields, all of which

have over 2,000 Github stars. We believe that repositories with this amount of stars are

representative enough and widely used in their field. We did not include forked repositories

in our selection. Our selection of repositories also includes both small repositories less than

500 lines of code (LoC) and large repositories greater than 100k LoC. We also consider

the diversity in the number of commits and the number of contributors in the selection

of repositories.

The year in which the repositories were created is also taken into account. In this the-

sis, we use the first release date on Github as the year in which the repositories were

created. We investigated the number of releases of these repositories. If the repository

does not use this feature, the date of the first stable release in tags is used and also the

number of tags are used. Out of 100 repositories, 9 do not use releases or tags. These

repositories are excluded from the statistical tests about the year and number of releases

in the following chapters. Programmers can upload unfinished repositories to Github, but

the versions that are put into releases or tags are usually working beta or stable versions.

This is the reason for choosing releases as the time that the repositories were created.

Figure 3.2 has shown the first release year of the repositories used in this thesis.

We collected these repositories in a variety of ways. Firstly, we used the Github

data mining tool developed by Ozren et al [14]. This tool provides over 12 different

filters of four types: History and Activity, Popularity Filters, Size of codebase and Date-

based Filters. Secondly, we include some of the packages used to develop our tools. We

also investigated a number of recommended lists to find suitable repositories. As these

22 Methodology

Python repositories are from different fields and have different features, we believe they

are relatively representative.

The data used in this thesis are time-sensitive since the Github repositories might be

updated through time. All the repositories and data used in this thesis were collected in

October 2023. Of the 100 repositories, 77 have been continuously updated in the last 6

months. Five of them have not been updated in the last 3 years.

3.3.2 Data preprocessing

We preprocessed the collected repositories before extracting identifier names and its re-

lated information from the code.

Firstly, the name of .zip file from Github usually contains extra branch information,

such as numpy-main and manim-master. This is because after October 2022, the original

branch of any Github repository would use main as the default branch name. These are

not the only options since some programmers might choose to use other suffixes, such as

dash-dev. These endings are not useful for this thesis. Therefore, we removed them for

all mentioned repository names in this research.

Secondly, We noticed that there are many irrelevant files in the repositories. The focus

of this research is on identifier names used in Python, but some repositories may contain

a small amount of code written in other languages. Therefore, only Python files ending

in .py or .pyi were retained in preprocessing stage. In this step, we also removed all

the document related files. These files hold important information about the use and

maintenance of software development, but are not useful to this thesis. These folders and

files are usually named docs or document, so we can detect the identifier names containing

these related words and remove them.

There is a certain type of Python (.py or .pyi) file that affects the data in this

study which is the code used for software testing. Testing is an essential process in

software development. It is an important step used to test that parts of the code, and the

software itself are as expected. However, this code may not be subject to the usual naming

convention and will differ from the usual Python code in a number of ways. For example,

professional programmers in the questionnaire mentioned that the function names used

in tests tend to be very long because they need to be longer to explain what the test does

[2]. Since multiple programmers may be responsible for quality assurance of a repository,

some teams would upload and keep these test files on Github. They are not the actual

code used in the repository, so we removed all folders and files containing the keyword

test and tst.

3.4 Extracting identifier names in Python 23

3.4 Extracting identifier names in Python

3.4.1 Extracting names and related information

In this section, we will describe how to extract identifier names and their associated

information from source code. Including the identifier names, we obtained 34 kinds of

related information for each identifier which will be discussed in the following paragraphs.

This information can be divided into four categories, namely the kinds of identifier names

(variable, attribute, parameter, function, method or class), the scope of the names (repo,

module and scope), the context of the names and the information related to the 9 naming

practices mentioned in Section 3.2.

Figure 3.3: Abstract Syntax Tree Example Graph

1 a = 10

2 b = 20

3 if a > b:

4 print("a is greater than b.")

Listing 3.1: Abstract Syntax Tree Example Code

24 Methodology

1 Module(

2 body=[

3 Assign(

4 targets =[

5 Name(id='a', ctx=Store())],

6 value=Constant(value =10)),

7 Assign(

8 targets =[

9 Name(id='b', ctx=Store())],

10 value=Constant(value =20)),

11 If(

12 test=Compare(

13 left=Name(id='a', ctx=Load()),

14 ops=[

15 Gt()],

16 comparators =[

17 Name(id='b', ctx=Load())]),

18 body=[

19 Expr(

20 value=Call(

21 func=Name(id='print ', ctx=Load()),

22 args=[

23 Constant(value='a is greater than b.')],
24 keywords =[]))],

25 orelse =[])],

26 type_ignores =[])

Listing 3.2: Abstract Syntax Tree Example

Firstly, there are 6 different kinds of identifiers are being discussed in this thesis.

They are variables, parameters, attributes, functions, methods and classes. In order to

get the identifier names of the 6 different kinds correctly, we used the Python Abstract

Syntax Tree package [47] as the base to build a tool. AST is a representation of the

abstract syntax structure of source code. It also includes the data used in this thesis that

are identifier names and related information. For example, the code in Listing 3.2 will be

divided into multiple levels in the AST output (Listing 3.1). All the identifier information

is included in the tree structure (Figure 3.3), and they follow specific rules. Therefore, we

can get the identifier information through automated tools based on the Breadth First

Search algorithm (BFS).

BFS is originally used to search nodes in a tree structure. Since it can traverse all the

nodes in a tree layer by layer, it can also be used in our tool. For example, Assign and

If are 2 different nodes (Listing 3.2). Our algorithm adds the child of the non-variable

node and its scope information obtained during traversal to a queue, since variable must

3.4 Extracting identifier names in Python 25

Figure 3.4: Identifier type - AST node

be a leaf in this tree structure. Scope information includes which of the module, class

or function/method the node belongs to, scope name and the size of the scope. In this

case, when traversing to the child node, the scope information to which it belongs can be

stored in the queue by saving in a Python list. The scope name is used to avoid recording

the same identifier repeatedly, which will be discussed in detail in section 3.4.2. The size

of scope is the contextual information used to analyse whether the naming practice is

related to it.

The 6 different kinds of identifiers (variable, parameter, attribute, function, method

and class) have different types of nodes in the AST structure (Figure 3.4). We need to use

a different way to get these identifier names. The same identifiers would only be recorded

once, so our tool would ignore the most special one ast.AugAssign. AugAssign is the

abbreviation of augmented assignment such as the code x += 1. Although the names of

the variables would also appear in this case, this assignment will only work correctly if

x is defined. We assume all the source code in the repositories used in this thesis has

been tested and with no compilation problems. Therefore, the identifiers related to node

ast.AugAssign should have been recorded before traversing this node, which is why the

tool can directly skip it.

1 variable1 , variable2 = 1, 2

Listing 3.3: Multiple Assign

In python syntax, two variables can be assigned values at the same time (Listing 3.3).

In this case the targets of ast.Assign node is different. Normally, the instance of targets

is ast.Name, which means that targets.id, which is the identifier name, can be extracted

directly. However, when assigning values to multiple variables in one line, targets is a list

containing multiple ast.Name objects.

26 Methodology

1 >>> imoport ast

2 >>> print(ast.dump(ast.parse('variable1 = 1; object.attribute1 = 1')
, indent = 4))

3 Module(

4 body=[

5 Assign(

6 targets =[

7 Name(id='variable1 ', ctx=Store())],

8 value=Constant(value =1)),

9 Assign(

10 targets =[

11 Attribute(

12 value=Name(id='object ', ctx=Load()),

13 attr='attribute1 ',
14 ctx=Store())],

15 value=Constant(value =1))],

16 type_ignores =[])

Listing 3.4: Attribute - AST Output

There is another case relates to variables. Class attribute is a kind of special variable,

and its expression in the AST structure is also different from ordinary variables. As shown

on Listing 3.4, the identifiers of ordinary variable assignments will be expressed in the

form Line 5 to Line 8, that is, Name and id. The assignment of attribute is expressed

in the form of Line 9 to Line 15. Firstly, it has an extra attribute level in targets. Our

tool would use this information to determine whether it is an attribute. Secondly, the id

of attribute refers to the name of the object rather than its own name. This is different

from the id of variable assignments as shown in Line 5 on Listing 3.2. Therefore, if it is

determined to be an attribute assignment, then our tool would get the value of attr in

Line 13 as identifier name which is attribute1.

In this thesis, we investigate 3 types of context-related information. They are loop

(For, While) statements, If statements and scope length of functions/methods. Unlike

other programming languages (e.g., Java or C++), there was no switch case feature in

Python before version 3.10. Although the structural pattern matching was added after

3.10, switch will not be discussed in this thesis because not all the source code samples

used in this study use versions later than 3.10.

3.4 Extracting identifier names in Python 27

1 # range

2 for i in range(1, 4):

3 pass

4

5 # list

6 list1 = [1, 2, 3]

7 for num in list1:

8 pass

Listing 3.5: For Loop

As shown in Listing 3.5, there are 2 types of For loop statements can be used in Python

source code. The first one uses range as the conditional statement. The second one uses

a list as the conditional statement. In this thesis, we are going to call them range type

For loop statement and list type For loop statement. As mentioned in Chapter

1, programmers might have different preferences for name selection when using these 2

types of for statements, so we discuss them separately.

The function/method refers to that the nodes of function and method in the AST are

both ast.FunctionDef or ast.AsyncFunctionDef. However, our tool can determine whether

it is a function or a method through the scope information recorded before. If the scope

is module or function, it is a function. If it belongs to a class, it is a class method.

For the 9 naming practices mentioned in section 3.2, our tool can determine if the

naming conventions are followed by the identifier names.

The first is the use of numbers in the identifier names, where we use a Boolean value

to record whether the name is Number at the end and Number in the middle.

Secondly, there are naming practices related to the length of the name, which includes

the length (the number of characters in the names), the number of words used, and infor-

mation related to the single letter. For example, the length of the name get list display

is 16 and the number of words of the name is 3. We not only record whether the name

is a Single letter name, but also record whether the name is uppercase or lowercase and

which letter is used for more detailed analysis.

In order to analyse the words used in identifier name and the grammatical structure.

We use the spaCy package[29] to split identifier names that contain multiple words. This

is a library can be used for advanced natural language processing in Python. For the

dictionary word detection part, we use the PyEnchant package which is a spellchecking

library for Python. It can be used to determine if the identifier name is a dictionary word

by checking if it matches the spelling of the words contained in the English spelling library

which can be treated as the dictionary. We record results not only for each individual

word, but also for the entire identifier name in three cases. These are whether all words in

a name use a dictionary word, whether there is more than or equal to one non-dictionary

28 Methodology

word, whether there is less than or equal to one dictionary word, and whether there is

more than or equal to one non-dictionary word. It is more detailed to discuss these cases

in categories for analysing names.

1 verb_phrase_pattern = [{'POS': 'VERB', 'OP': '?'},
2 {'POS': 'ADV', 'OP': '*'},
3 {'POS': 'VERB', 'OP': '+'}]

Listing 3.6: Verb Structure - Regular Expression

For part-of-speech detection we used textacy package which is based on the spaCy li-

brary. However, we need to preprocess the words since the training data used in textacy

is from natural language in standard prose which is different and has more contextual

information than identifier names. This problem would affect the correctness of the gram-

matical structure detection for function and class names in this thesis because there are

some words that can be different part of speech in different contexts. For example, the

word register can be both noun and verb, and both of them may appear as identifier

names. Therefore, we take the preprocessing method mentioned by Binkley et al. [7] to

add prefixes to words to make textacy can identify part of speech more accurately. Their

empirical study has shown that names processed by this method have an 88% accuracy

rate in identifying part of speech. The 2 naming practices related to part of speech in

this thesis are the use of verb structure for function/method naming and the use of noun

for class naming. For function/method names, we added the word Please, before the

verb to make sure it is correctly classified as a verb. Since grammatical structure can

be satisfied in different ways, regular expressions is used for SpaCy to distinguish verb

structure (Listing 3.6). For detecting Noun phrases, we use the method noun chunks

from the textacy package.

There are some special identifiers in Python. For example, the method init is a

constructor used to initialise a new Class object. The parameters self and cls are used

to access the instance methods/attributes and classes respectively. They are not reserved

words in Python, but we think that the use of these words is usually independent of the

programmer’s choices. Therefore, we removed these words before analysing our data set.

3.4.2 Dynamic variable name assignment

The Identifiers in the code have multiple properties. We are going to discuss 2 of them

which are declaration line numbers and names in this section. As a dynamic programming

language, Python is different from a static language. It does not require type declarations

when assigning values to variables. In Python abstract syntax trees (AST), all variable

assignments use ast.Assign. There is no declaration node as other programming languages

such as Java, so there is no easy way to distinguish the first use of the identifiers in

3.4 Extracting identifier names in Python 29

Python. The declaration line number cannot be extracted directly. We need to process

the identifier names extracted by AST to avoid recording duplicate names.

1 variable1 = 1

2 variable1 = 10

Listing 3.7: Variable Assignment

1 >>> import ast

2 >>> print(ast.dump(ast.parse('variable1 = 1; variable1 = 10'),
indent =4))

3 Interactive(

4 body=[

5 Assign(

6 targets =[

7 Name(id='variable1 ', ctx=Store())],

8 value=Constant(value =1)),

9 Assign(

10 targets =[

11 Name(id='variable1 ', ctx=Store())],

12 value=Constant(value =10))])

Listing 3.8: Variable Assignment - AST Output

In Listing 3.7, since variable1 is assigned twice, 2 ast.Assign will be generated

in the AST and their id are also the same. which is shown in Listing 3.8. This kinds

of repeated names only show that the variable is used multiple times in certain scope

(e.g. functions and classes). This has nothing to do with the choice of identifier names.

We have added code to determine whether identifiers are repeated in the tool to prevent

repeated recording of the same identifier. We will introduce how we choose the identifier

names in several different cases.

1 variable1 = 1

2 def new_variable ():

3 variable1 = 1

Listing 3.9: Identifier Names in Different Scopes

Firstly, duplicate identifier names in the same scope are only recorded once, which is

the case in Listing 3.7. The scope mentioned here includes module, function and class.

For example, in Listing 3.9, the scope of variable1 in Line 1 is the module of the code and

the scope of variable1 in Line 3 is the function new variable. Even though both names

are variable1, they are actually 2 different identifiers. As mentioned in 3.4.1, we will

record the names of the scopes of all identifiers. Then every time ast.Assign is detected,

the tool can automatically determine whether the identifier already exists in the scope

30 Methodology

through the scope names in the record.

1 variable1 = 1

2 def add():

3 global variable1

4 variable1 = variable1 + 1

Listing 3.10: keyword global

We have considered a special case, which is the use of the Python keyword global.

This keyword allows to reassign the variable outside the current scope. As shown in

Listing 3.10, the scope of variable1 in Line 1 is the module of the code and the scope of

variable1 in Line 4 is the function add. In this case, even if the two variable1 are in

different scopes, they are still the same identifier.

1 class Class1:

2 field1 = 1

3 field2 = 2

4 field3 = 3

5 field4 = None

6

7 def __init__(self):

8 self.field3 = 3

9

10 def method(self):

11 self.field4 = 4

12 self.field5 = 5

13

14 object = Class1 ()

15 object.field6 = 6

16 object.field5 = object.field5 + 1

17 object.field6 = object.field6 + 1

Listing 3.11: Class Attribute

Secondly, in Python, class attributes are also dynamic. This means that class at-

tributes can be added and also modified outside of the classes. This also involves the

issue of duplication. In order to avoid this problem, we will create a Python dictionary

when processing code files. This allows us to track the class attributes and avoid recording

the same attribute names repeatedly.

As shown in Listing 3.11, Class1 has 6 attributes. Among them, field3 appears

twice in Line 4 and Line 8. Because both of them are attributes belonging to Class1,

they belong to the same identifier. The same goes for another attribute field4 in Line

5 and Line 12. The situation of field5 and field6 is similar. Both of them are not

attributes added when the object is created. Through the dictionary mentioned above,

3.4 Extracting identifier names in Python 31

we can prevent them from being repeatedly added to the identifier name table when they

are reassigned in Line 16 and Line 17.

32 Methodology

4
Results

33

34 Results

Figure 4.1: Single letter

In this chapter, we are going to present results about the identifier names in Python

repositories in a variety of formats including, but not limited to, tables and charts. We not

only show how the 9 naming practices are existing in the source code, but also determine

some possible motivations through context and repository categories. The results are

shown in Appendix 1.

4.1 Single letter

Among all the 745,651 identifiers we investigated, there are 31,741 identifiers that use

a single letter as names. The percentage is 4.26%. As shown in Figure 4.1, all of the

uppercase and lowercase letters are used at least once. Among them, function/method

and class identifiers are rarely named with a single letter, which are 0.15% and 0.0074%

respectively.

In order to understand in what particular cases single letter is used as a class name,

we need to discuss the specific ones. We found there are only 2 classes are named by

a single letter. Both are extracted from Django and use F and Q as class names. Q is

used as an instance of query filters in the database-related files. Although it is possible

to associate Q with query after having some knowledge of database, we think it is difficult

to associate Q with filters before reading the comments. It might be easier to understand

by adding filter-related words to this identifier name.

The parent class of F shows that it is an object that can perform combination opera-

tions and is used to construct database query expressions. We think F can be one of the

4.1 Single letter 35

Figure 4.2: Single letter - variable

database-related concepts such as filter or field, which is ambiguous. We believe that the

amount of information involved in a single letter is not enough for describing the concepts

of classes.

In contrast to class names, the use of single letter is more common in variables, pa-

rameters and attributes, where 31,575 of the 31,741 single letter names are these. The

percentage of all names of these 3 kinds is 5.21%. In Gresta et al.’s study on identifier

names in object oriented programming [24], they investigated the 3 kinds of identifier

names, where the percentage of single letter names is 4.33% in C++ and 9.83% in Java.

Moreover, in Beniamini et al.’s study [5], they only investigated the percentage of single

letter names usage in variable was analysed. The usages are 14% for C, 9% for Java, 20%

for Perl, 4% for PHP and 37% for JavaScript. Whereas in our study, the usages are 5.77%

for variables , 5.49% for parameters and 0.92% for attributes. This indicates that using

single letter names in Python is less common compared to these programming languages

which are C, Java, Perl and JavaScript.

The most frequently used letters shown in Figure 4.1 are x and i. Not surprisingly,

the lowercase i is used as an index, which is an accepted practice among programmers.

Moreover, j and k are also commonly used in the same way as i. The use of x is different,

as none of the other five languages in Beniamini et al.’s study of variable showed any

significant use of x as an identifier name [5]. This then makes it necessary to discuss

variables and parameters separately. Even though the usage of single letter name is

similar in terms of the percentage of variables and parameters, the actual usage is quite

different which is shown in Figure 4.2 and Figure 4.3.

36 Results

Figure 4.3: Single letter - parameter

Figure 4.4: Single letter used in For loop

As shown in Figure 4.2, the use of x as a variable name is also relatively uncommon

compare to the usage of x in all the identifier names in Python. About 3
4
of the x’s

are parameters. This is similar to the results in other languages [5]. Figure 4.4 shows

the usage of all single letters as identifier names which is divided by the use of For loop

statements. The white bars refer to single letter names used in For loop statements, and

the green ones refer to single letter names are used for other purposes. As shown in Figure

4.1 Single letter 37

Figure 4.5: Single letter - repository category

4.4, For loop statements are the main use of single letter names i.

As our results shown, letter x is mostly used to name parameters. In the survey by

Beniamini et al. [5], the participants thought that x is mostly used for coordinate and

math operation and another study mentioned that in Java, x, y and z are well known

abbreviations which can be used to represent any numeric types [10]. In order to confirm

whether this statement also applies in Python naming, we investigated how x is used in

different categories of repositories (Figure 4.5). We noticed that x is relatively less often

used as identifier names in Web and Automation tools than in other types. This may be

due to the fact that they are not really associated with coordinates or math operations

and the small number of x applications may come from repositories that have more than 1

category. For example, ralph (a visual data management system) is associated with both

Web and Visualisation. Moreover, the source code shows that most of the x applications in

scientific-computing are related to math operations, while computer-vision, on the other

hand, is usually related to coordinates.

In addition to the use of x, Figure 4.5 also shows that there is certain usage of single

letter names in different categories. The similarity between the automation tool and the

web chart is due to the fact that there are 11 repositories in both categories. We can

still notice that in web-related repositories, the use of f as an identifier name is relatively

more frequent than other categories. Moreover, d is commonly used in both Automation

tool and Web, but rarely seen in other categories. Other cases are the lowercase a in

scientific-computing and the uppercase A in visualisation.

38 Results

1 for f in fields:

2

3 for f in forms:

4

5 for f in temp_files:

Listing 4.1: Letter f used in For loop

In Web-related repos, 44% of f’s are used as loop variables and 41% as parameter,

which account for 85% of all. In the case of using as loop variables, all the letters f

appear in the list type For loop, which is shown in List 4.1. These 3 examples are from

Web-related repositories. Letter f is also commonly used to abbreviate field, form,

and file in these cases. We believe that the concepts of acronyms in a small scope

might seem obvious, but it can still have a negative impact on comprehensibility. Even

though the 3 abbreviations for f in Listing 4.1 exist in several different repositories, they

are all web-related words. This means that programmers might have multiple different

interpretations when they notice a letter f in the code. We believe using full words, such

as field, form and file, is a better choice.

There are also some other cases where it is possible to tell the concepts of the single

letter names from the context that it is being passed as an abbreviation for a function,

but there are also several cases in the code where it is difficult to tell the meaning just by

reading the function itself. We believe this has a negative impact on comprehensibility

since it might be a general practice that requires some knowledge of the repository in

order to understand it.

The letter d is also used in list type For loop statements, which is similar to the cases

of f. Beyond that, it usually refers to data-related concepts such as data, document, and

dictionary. There are some exceptions, such as using d as distance.

1 def cmp(a, b):

2 return (a > b) - (a < b)

Listing 4.2: Letter a used in computational function

In addition to the list type For loop as an abbreviation for any list concepts, we find

two common cases where the lowercase letter a is used. One is as an abbreviation for array.

Another is as a parameter, which is commonly used in some computational functions as a

float number or vector (Listing 4.2). Both of the cases are related to scientific-computing,

so we believe that the use of such abbreviations in such specific contexts is acceptable.

But we think it is still important to be careful not to use the same acronyms to name

different concepts in certain scopes.

The letters a, d and fmentioned in the previous paragraphs are used as variables in list

type For loop statements, while most of the other letters have similar applications.Figure

4.1 Single letter 39

Figure 4.6: Single letter - For loop

4.6 shows that the letter i is the most used letter in For loop statements. The letters i, j

and k are mostly used in range type For loops because they are recognised by programmers

as identifier names that can be used for indices. The other letters are mostly used in range

loops, and their main use is as abbreviations for the concepts represented by the lists in

list loops. Moreover, uppercase letters are almost never used in For loop statements,

which is probably related to the Python naming styles, where variables usually start with

a lowercase letter.

We also investigated the use of single letter identifiers in While loop statements which

account for 25.05% of all variables used in While statements. This is very similar to the

27.19% for For loop statements. However, in contrast to For loop statements, not all

the single letters are used in While loop statements (Figure 4.7). As shown in Figure

4.8, only 11 kinds of single letters are used. There are maybe two reasons. The first is

because, unlike list type For loops as shown in Listing 4.1, there is no notion of allowing

abbreviations in While loop statements. Secondly, While loop statements are not as

common in the source code. In our data set there are 8,140 single letter identifiers in For

loop statements, but only 132 in While loop statements. However, since the percentages

are similar, we can still conclude that these single letters, which are not used, are rarely

or only used in specific cases for While loop statements. Similar to For loop statements,

single letter i is also commonly used in While loop statements which also relates to the

use of indices. This is also similar to the conclusions of Gresta et al. for Java and C++

[24], where indices are more commonly used in small scopes like loop statements.

We compared whether the size of lines of code (LoC) has an effect on the use of single

40 Results

Figure 4.7: Single letter - Loop

Figure 4.8: Single letter used in While loop

LoC Commits Contributors Releases First Release
cor 0.0858 -0.0863 -0.00796 -0.0208 0.0979
p-value 0.4 0.4 0.9 0.1 0.8

Table 4.1: Single letter - Spearman correlation

4.1 Single letter 41

Figure 4.9: Single Letter - LoC

letter identifiers. Overall, single letter identifiers have a slightly higher percentage in

smaller repositories. The percentage in small repositories is 4.66% compared to 4.20% in

large repositories. The difference is not significant (Table 4.1). Figure 4.9 shows the use of

different single letter identifiers. The overall trend is similar. We believe that some of the

differences might be related to repository categories. For example, p is more commonly

used in computer-vision and web repositories (Figure 4.5). Six of the 10 repositories

related to computer-vision are small repositories and 19 of the 26 repositories related to

the web are so. The use of single letter a in large repositories is similar which is related

to Scientific-computing. We also investigated whether the number of contributors and

commits affects the use of single letter identifiers. The results also show that there is no

significant association (Table 4.1).

The use of single letter identifiers varies across repositories (Appendix 1). Among all

the 100 repositories used in this thesis, 3 of them have more than 20% of single letter

identifiers, namely corona (23.08%), scipy (21.71%) and pyxel (20.00%). The first 2

of them are related to scientific-computing. There are 7 repositories that do not use

any single letter to name the identifiers. This might be due to their size. Six of these

repositories have LoC less than 400. Excluding the 6 repositories, there are 14 others that

use less than 1% of single letter identifiers. Eight are related to web and 9 are related

to automation tool. Thus, we believe that the use of single letter identifiers is related to

repository categories.

42 Results

4.2 Number at end

Out of all 745,651 identifier names investigated in this thesis, there are 12,416 identifier

names that end with a number. They account for 1.67% of all identifiers involved in this

thesis. Among these, there are 871 (0.73%) identifier names ending with a number used

for naming functions/methods, and 223 (0.83%) names used for naming classes. Of all

the 100 repositories used in this thesis, there are 77 have this naming practices.

For this kind of names used to name classes, the uses of these numbers can be divided

into 3 types. They are distinguishers, versions and specific uses which have been discussed

in Section 3.2.

The first is distinguishers. It is used to differentiate between specific functions when

they have the same concepts. An example is the two class identifiers nhwc3to4 and

nhwc3to8 in AITemplate. They are used to convert 3-channel data into either 4-channel

or 8-channel. The first half of the abbreviation is not discussed here for the moment. We

think it is reasonable to use numeric endings in this case. The two identifiers have nearly

the same concepts. It is also easier to read than using the full word version three to four.

Secondly, there are some specific words that end in numbers, such as web3 and Jinja2.

We think it would not be a problem if these words existed in programmers’ knowledge

base.

The third is a suffix that is used to refer to the version of the class. This is used

a lot in Gymnasium, such as ResizeObservationV0 and NormalizeRewardV1. However,

in all the repositories we used, there are no cases where both versions of the class occur

at the same time. They all keep only the latest version, so there is no distinction to be

made. Therefore, we consider this suffix to be redundant. As mentioned in Section 3.2,

we believe that version information should be stored as comment.

We also investigated the practical application of this type of names in functions and

methods. Except the auto-generated number, all the 3 types of number suffixes are

used in both functions and methods and we found that there is no difference in the

use of names ending in numbers between functions and methods. In contrast to class

names, specific uses of numbers are more common in functions/methods. For example,

read float64 is a function used to read 64-bit float numbers. 64-bit related names are

common in the category number in middle [23], but we find it used in number at end

as well. Moreover, we investigated functions and methods separately (Figure 4.10). The

name read float64 does not become more easier to understand by using the full word

version read float sixty four. The same applies to other identifier names such as rot90

in albumentations.

We found that there are cases where using multiple names with the same prefix but

with numbers belonging to special purposes as identifier names for functions/methods

4.2 Number at end 43

Figure 4.10: Number at end - function and method

may cause another code maintainability problem which is alterability. The bodies of

these functions/methods are usually highly repetitive.This is because they refer to similar

concepts and the functionality is also similar. For example, there are 14 such methods

in numpy which are is r2000, is r3000, is r3900, etc. All of these methods perform

exactly the same function of processing and determining CPU information and the suffix

stands for the CPU info. The only difference is the output, which is also related to

the number suffix. The problem here is that if the functionality of one of the methods

needs to be modified, then this step has to be repeated 14 times. The alterability is very

low. We think it is impossible to change these incomprehensible identifier names without

refactoring the code.

In contrast to function/method and class names, the use of names ending with a

number is more common in variables, parameters, and attributes. There are 11,376 which

accounts 1.87% of all the identifier names for variables, parameters, and attributes. This

is less common compared to Java (20.79%) and C++ (7.82%) [24]. The data for Java

[24] may be affected by 2 large repositories which are greater than 40%. After removing

these two extremes, there are still about 9.76% of variables, parameters and attributes

are named by identifier names ending with a number. This is still higher than the Python

results in this thesis. We think this might be related to the different uses of different

programming languages, as mentioned earlier in Section 3.3.

We investigated the use of variables, parameters, and attributes where the scope is

functions/methods.Figure 4.11 shows the percentage of identifier names that use names

ending in numbers in functions/methods of different lengths. The length is the number of

44 Results

Figure 4.11: Number at end - function/method scope length

Figure 4.12: Number at end - function/method scope length

lines of code of the function/method. Since 99% of the identifiers are in functions/methods

which have less than 30 lines, we only plot this part. We tested the Pearson correlation

coefficient. The result is that correlation is -0.182 and p-value is 0.3. Therefore, the data

does not show linear relationship.

4.2 Number at end 45

Figure 4.13: Number at end - variable, parameter and attribute

1 def get_broadcast_max_shape(shape1 , shape2):

2

3 def intersection(boxes1 , boxes2):

4

5 def forward(self , p2 , p3 , p4):

Listing 4.3: Number at end used as parameters

We also discuss variables, parameters, and attributes separately. As shown in Figure

4.13, identifier names ending with a number account for 1.66% in attributes, 1.03% in

parameters and 2.56% in variables. Compared to the other two identifier names, the use

of such names in parameters is the least. Although it has a small percentage, identifier

names ending in numbers used for parameters are almost used as distinguishers. They

usually appear as a plural number of the same prefix combined with a sequence of numeric

endings (Listing 4.3). Moreover, 54 of the 77 repositories that contain identifier names

of this naming practice have occurrences of this kind of application in Listings 4.3. Refer

to Section 3.2, we consider this application to be a consensus, and doing so in a small

scope would not cause comprehensibility problems. The results also shows that the use

of this type of parameters are similar in functions and methods. Moreover, the uses of

number at end in attributes and variables are similar. In addition to the common use in

parameters to provide some distinction between similar concepts, there are also suffixes

indicating 64-bits or 95% percentile. We consider these to be acceptable identifier names

since these numbers are only used when necessary.

46 Results

Figure 4.14: Number at end - category

1 for c1 in self.standings:

2 for c2 in self.standings:

Listing 4.4: Distinguishers used in Loop

Using names ending in numbers is less common in Loop compared to 1.67% of all

identifier names. The percentage is 0.5% for usages in For loop statements and 0.78% for

usages in While loop statements. The most common use is distinguisher which is used

to distinguish between different levels of loop variables in a nested loop. For example, as

shown in Listing 4.4, the identifiers c1 and c2 are used for this purpose in erpnext.

As mentioned above, we believe that different uses of programming languages affect

the use of numbers in identifier names. We also investigated the use of number at end in

different repository categories. As shown in Figure 4.14, identifier names ending with a

number are more common in computer-vision (5.98%) and scientific-computing (4.08%)

than in other repository categories. This might be due to the characteristics of the

categories. Firstly, in computer-vision repositories, there are a large number of uses related

to the axes and points. For example, x1, y1 and p1. In scientific-computing, we notice

that there are many identifier names related to algebra and vectors. For example, x1,

a1, r1 and vector1. These identifier names mentioned above can also be categorised as

providing distinction between similar concepts. As mentioned in Section 3.2, we believe

that the reason for the relatively small proportion of such names in other repository

categories might be because they are less likely to have identifiers with similar concepts

to distinguish.

4.2 Number at end 47

LoC Commits Contributors Releases First Release
cor 0.459 0.194 -0.0109 -0.0922 -0.266
p-value 2x10−6 0.06 0.9 0.5 0.4

Table 4.2: Number at end - Spearman correlation

The use of number at end varies in different repositories. Even though the average

value is 1.67% out of 100 repositories, there are still 3 repositories where names ending in

numbers account for more than 5% of the repositories. These are eht-imaging (12.24%),

spaCy (7.63%) and SiamMask (6.55%). They are all related to Computer-vision or AI,

which is in line with the results presented in Figure 4.14. There are 23 repositories which

do not use such identifier names at all. We think this may be related to that they are all

small repositories with LoC less than 5,000. We investigated 15 repositories other than

these 23 that had a number at end usage of less than 0.4%, and found that 8 of them

are related to the Automation tool, and 7 are related to the Web. Only 1 repository is

related to computer-vision, and none of them are related to AI or Scientific-computing.

This again confirms that different categories have an impact on the use of number at

end. There are also similarities across repositories in that there are almost no auto-

generated meaningless numeric endings seen in any of the repositories. We believe this

may be because these names are mostly found in test files and other files excluded from

our thesis. Certainly the use of such names is harmful for comprehensibility. Therefore,

we believe that the repositories we investigated are not problematic, at least in terms of

this aspect of identifier name choice.

As shown in Table 4.2, we investigated the correlation between properties of reposito-

ries and the usage of number at end. By Spearman correlation, we found that commits,

contributors, releases and first release dates all have no correlation with the percentage of

identifier names with a number at end. This is the same as in Java and C++ repositories

[24]. However, in Python, using names ending in numbers tends to be more common in

larger repositories (correlation = 0.459).

48 Results

Figure 4.15: Number in middle - Percentage

4.3 Number in middle

Number in middle is less common in Python source code compared to other naming

categories discussed in this thesis. In all the 745,651 identifier names, only 3,643 of them

belong to this category. They account for 0.49%. Among them, 175 identifier names

belong to both number at end and number in middle. This is 4.80% of all the identifiers

belong to number in middle. Most of these overlaps are used as suffixes. For example, as

mentioned in Section 4.2, the two distinguishers nhwc3to4 and nhwc3to8 in AITemplate

are belonging to both of the naming categories. Another case is Matrix3x3 which is used

in manim to refer to the size of the matrix. We think such identifier names should belong

to number at end. Since we have discussed these in Section 4.2, we are not going to repeat

the discussion in this section.

As shown in Figure 4.15, the use of number in middle varies across different kinds of

identifier names. It accounts for 5.22% of all class names. 0.72% in functions/methods.

0.23% in variables, parameters and attributes. The use of number in middle is less common

than 7.65% in Java and 3.27% in C++. [24]. Moreover, the usage in Python is 0.36% in

variables, 0.08% in parameters and 0.28% in attributes.

We investigated the use of number in middle for class names. We found that there are

3 types of class names named after the class name, synonyms, specific uses and versions

which have been discussed in Section 3.2. Firstly, for the synonyms, it is usually used

to replace monosyllabic words. For example, the number 2 in Speech2TextDecoder in

FlexGen is used to replace the word to. Therefore, the full word version of this name

4.3 Number in middle 49

is SpeechToTextDecoder. We think that the use of numbers in this case would better

emphasise that speech and text are the main concepts intended by the class name. It

separates the words Speech and Text by the number 2 to make them seem more obvious.

Interestingly, we found that synonyms only exist when the naming style is camelCase. It

is never used in under score style names. This might cause by that the words Speech and

Text seem more obvious in Speech to text decoder.

The other case is specific uses. For example, LayoutLMv3Model in FlexGen and

Md5File in pyinfra. LayoutLMv3 is a pre-trained model used for document and md5

is a widely used message-digest algorithm. As mentioned in Section 3.2, this kind of

identifier names are meaningful, since the numbers are required for the certain concepts.

Furthermore, for class names, most of the number in the middle are specific uses. They

are basically used for concepts relate to dimensions, such as 3D stands for 3-dimensional.

This will be discussed in detail in category paragraph.

For the number used as versions, it is only been used in the repository FlareSolverr.

It used V1RequestBase and V1ResponseBase to name 2 class names. We have not found

any other versions of the classes in this repository, such as V0 or V2. Moreover, they also

provided some version-related information as comments in the class body. As mentioned in

Section 3.2, we think it would be better to replace these identifier names with RequestBase

and ResponseBase.

In contrast to class names, the use of this category of identifier names is less common in

functions/methods. These function/method names are used for two purposes: synonyms

and specific uses.

Dimension-related concepts are also the most common uses, such asconv2d filter in

AITemplate. As mentioned in Section 3.2 and Section 4.2, changing these names to full

word form only reduces their readability. We don’t think using twoD or two d is more

obvious than using the word 2D.

For the synonyms, we found the use of str2bool in 5 different repositories. Other

uses include str2int, which converts a String to an integer. This may be due to the

characteristics of Python. It is a dynamic programming language, and the type of its

variables is not fixed. This naming convention does shorten the length of the identifier

name. It also makes it easier for the programmers to recognise the keywords when looking

at the identifier names. This case refers to the type that needs to be converted. However,

using numbers in middle of the names are difficult to search for in code and difficult to

pronounce [39]. We believe that if this kind of names are required, all similar uses of the

word to in a repository should be replaced with 2. Otherwise, do not use it at all. This is

because mixing 2 and to may cause confusion. For example, when a programmer searches

for the function it may not be clear whether strToInt or str2int should be used, which

would reduce the efficiency of maintaining code.

50 Results

Figure 4.16: Number in middle - function/method scope length - attribute & variable

Unlike parameters ending with a number, which are mostly distinguishers, we found

that parameters with numbers in the middle are mostly used as synonyms and specific

uses. This is similar to other identifier names. For synonyms, we also found cases where

2 is used to replace the word to in parameters. Among these identifier names, we found

some of them have comprehensibility issues, but we think they are not very relevant to

the numbers themselves. For example, w2h ratio in albumentations and m2m data in

django. Both of these identifier names use 2 instead of the word to. As mentioned

in Section 3.2, if their use is consistent throughout the repository, there is nearly no

impact on searchability or pronunciation. In the two cases, it is the letters w, h and m

around number 2 that cause the comprehensibility issues. As shown in the comments,

w2h is an abbreviation for width to height and m2m is an abbreviation for many to many.

We think it is difficult to understand the meanings from the names themselves and the

background information of the repositories without reading their comments. However,

using width2height ratio and many2many data would make these identifier names more

easier to understand. Similar to other kinds of identifier names, names with numbers

related to dimensions are also the most common ones in parameters.

By using Pearson correlation, we found that the use of variables and attributes in

functions/methods is positively and linearly correlated with the length of the scope across

the 100 repositories investigated. The correlation is 0.402 and the p-value is 0.03. Figure

4.16 demonstrates the percentage of the occurrence of number in middle of the type of

identifier names with scope length less than 30. This implies that variables and attributes

of the number in middle type are more common in larger functions/methods. In our data

4.3 Number in middle 51

Figure 4.17: Number in middle - Loop

Figure 4.18: Number in middle - For loop

set, we found that there is no significant association between the usages of number in

middle parameters and the scope length of functions/methods which they belong to. The

correlation is 0.0731 and the p-value is 0.7.

We also investigated the occurrence of number in middle as variables in loop state-

ments. As shown in Figure 4.17, we found that none of the 527 variables used in While

loop statements used numbers in the middle of their names. Although this could be re-

52 Results

Figure 4.19: Number in middle - Category

Figure 4.20: Number in middle/Number at end - Category

lated to the bias of our data set, we still can conclude that it is rare to use this kind of

identifier names in While loop statements. Moreover, for the names used in For loops

(Figure 4.18), we found the purpose of using number in middle is similar to other kinds

of identifier names. Moreover, the variables in both list type and range type For loop

statements are used as synonyms or specific uses. We have not found it to be special in

these cases.

4.3 Number in middle 53

LoC Commits Contributors Releases First Release
cor 0.536 0.21 0.104 -0.121 -0.196
p-value 9x10−9 0.04 0.4 0.4 0.5

Table 4.3: number in middle - Spearman correlation

As shown in Figure 4.19, the use of number in middle is different in different repository

categories. This kind of identifier names are more common in AI (0.60%), computer-vision

(0.72%) and scientific-computing (0.71%) related repositories. This is different from the

distribution of numbers at end (Figure 4.20). We believe that naming with this type of

identifier names is relevant to repository categories. This is because we found that of all

the number in the middle identifier names, regardless of the kinds (variable, parameter,

attribute, function/method, class), many of them are related to dimensions. For example,

the use of 3d to refer to three dimensions. This is commonly used in computer-vision and

AI related repositories. This is related to the convolutional neural networks which is a deep

learning algorithm widely used for analysing visual images. Dimension-related names are

also widely used in scientific-computing repositories for represent the dimension of matrix.

Another use is to refer to the Mathematical power. For example, the identifier name x2y

refers to x2y. This might be reason that there are more this type of identifier names in

the 3 repository categories. It does not happen in other repositories.

Overall, different repositories have different applications for using numbers in the

middle of identifier names. Firstly, among all of the 100 repositories, this type of identifier

names are never used in 39 repositories. This is more than other naming categories

investigated in this thesis. It is also consistent with that number in middle is the least

common one as mentioned in the beginning of this section. Of the 9 repositories with a

percentage greater than 1%, 3 are related to AI and 2 are related to computer-vision and

scientific-computing, respectively. Moreover, only one is related to automation tool and

none of the repositories are related to visualisation and web. This is consistent with the

results shown in Figure 4.19.

We investigated the correlation between the application of number in the middle in

the code and the properties of repositories. By the Spearman correlation (Table 4.3), We

found that in the data used in this thesis, number in middle are more likely to occur in

larger repositories. Since LoC has linear relationship with the percentage of number in

middle. The p-value is 9x10−9 and the correlation is 0.536. The statistical result also

shows that it is more likely to occur in repositories with more commits. The p-value is

0.04. Since the correlation value is 0.21, the relationship is less stronger than LoC. There

is no evidence showing that there is any significant association between the usages of

number in middle and the other 3 repository properties, that is number of contributors,

number of releases and the first release dates.

54 Results

Figure 4.21: Verb phrase - Percentage

Figure 4.22: Function/method - Percentage

4.4 Verb Phrases for functions/methods

Out of the total 745,651 identifier names, we classified 106884 of them are verb phrases.

This accounts for 14.34%. As shown in Figure 4.21, functions (60.39%) and methods

(65.05%) have the highest percentage. As shown in Figure 4.22, the overall proportion of

verb phrases in functions and methods are 63.56%. The next most frequent is noun with

4.4 Verb Phrases for functions/methods 55

23.58%. Only about 5% of identifier names other than functions and methods are verb

phrases. Its 4.99% for variables, 5.40% for parameters, 8.02% for attributes and 5.15%

for classes respectively. The difference with functions/methods is obvious. We believe

this indicates that programmers consciously choose verb phrases as identifier names when

naming functions or methods.

Even though the data shows that verb phrases are consciously used as function/method

names, there are still about 40% of the identifier names which belong to other grammatical

structures. By reading and analysing these names in the source code, we found that

there are 4 main reasons why they are not verb phrases. These are, grammatical errors,

abbreviations, assigning multiple functions to a single function/method and accuracy of

the classifier.

Firstly, grammatical errors in identifier names are very common but this does not

mean that the programmers are not trying to use the verb phrases. We believe that there

are maybe two reasons. The first is that the programmer’s understanding of grammatical

structure may be questionable. The second is that identifier names are different from

standard prose. They are usually single words or phrases with multiple words and rarely

appear as complete sentences. We believe this may lead to ignoring grammatical correct-

ness while naming. One of the most common syntax errors we found is using adjectives

to modify verbs, whereas the correct syntax is to use adverbs to modify verbs. For ex-

ample, random flip in albumentations and safe decode in borg. The first method

random flip has the functionality to call the flip function in a package openCV which

is used to flip a 2D array. The functionality of the second function safe decode is to

decode bytes to string when the status is safe. Although both decode and flip can be

used as nouns, we believe that the use of each of these names is intended to describe

the action indicated by its verb form. Their incorrect syntax causes them to appear as

a noun. As mentioned in Section 3.2, the structure of function/method names should

be grammatically correct. Therefore, the two identifier names in the example should be

randomly flip and safely decode, which are using adverbs to modify verbs.

Secondly, the use of abbreviations can be separated into two parts which are ab-

breviated words and abbreviated phrases. Abbreviated words mean that some or all of

the words are abbreviations. For example, auth, which can be found in 6 web-related

repositories, is the abbreviation of authorise. The identifier name cmp assoc values in

sweetviz is the abbreviation of compare associated values. Moreover, as mentioned

in Section 4.1, there are 0.15% of the function/method identifier names are single letter.

These abbreviated words may be classified as other incorrect parts of speech or be labeled

as unknown part of speech (“X”). These cases would affect the results of whether they are

verb phrases. In the above examples, the word auth is classified as a noun. The identifier

name cmp assoc values is classified as a noun phrase, since the words are classified as

56 Results

X, X and Noun, respectively. Obviously, both identifier names are verb phrases. More-

over, naming functions/methods with the abbreviation auth is common in web-related

repositories.

Abbreviated phrases refer to the omission of a part of the name, especially the verb.

For example, to string in 8 different repositories and max width in flet. By just read-

ing the names themselves, they are not verb phrases and there are also no verbs involved.

However, for both of the identifier names, their verb parts are removed. The function-

s/methods named to string have the functionality to convert a variable of another type

to a String type. The function max width is used to get the maximum width value which

is an attribute. Therefore, the full version of the two names in the example would be

convert to string and get max width. The full versions are indeed verb phrases. We

found many cases where the first verb word was omitted from the function/method name.

Usually it is some verbs that are commonly used in functions/methods, such as get and

convert mentioned in the example. We believe that in these cases, it does not affect

comprehensibility very much. This is because the omission of these verbs does not affect

the understanding of the functionality of functions/methods. Moreover, we think that

these cases can also be thought of as consciously using the verb phrase to name func-

tions/methods. Even if these phrases do not contain a verb, they still contain an action.

Moreover, this kind of identifier names are widely used as listener functions/methods. The

event listener functions and methods are typically used to record or modify the status

associated with the event. Therefore, the identifier names are usually used to describe

a completed action. For example, on mouse press in manim and menu open clicked in

AidLearning. They describe the status of having clicked the mouse and the status of

having clicked the button which can open the menu, respectively. However, the action

described by these two identifier names is not actually the concept that the functions

refer to. The verb record, which describes the functionality of these functions, has been

omitted in both cases. We think that omitting the verb in these cases could be confusing.

The third reason for why the names are not verb phrases is related to another main-

tainability problem which is when the functions/methods try to do multiple things [39].

Then it becomes difficult to describe the concepts by using a phrase. This also makes it

difficult for the identifier names to follow the naming conventions of using a verb structure

and being grammatically correct.

The last reason is the accuracy of the classifier. As mentioned in Section 3.4.1, even

with preprocessing, the accuracy of the classification of part of speech for identifier names

is about 88%.

We investigated the use of verb phrases in different repository categories. Since using

verb phrase is a naming convention related to functions and methods, we divided the data

into these two parts as shown in Figure 4.23. In all the 6 repository categories, compared

4.4 Verb Phrases for functions/methods 57

Figure 4.23: Verb phrase for function/method - Category

LoC Commits Contributors Releases First Release
cor 0.0816 0.0658 0.0149 0.00253 -0.357
p-value 0.4 0.5 0.9 1 0.3

Table 4.4: Verb Phrase - Spearman correlation - function/method

to other kinds of identifier names, the data shows that programmers are consciously using

verb phrases for naming functions and methods. We found that the probability of using

verb phrase in repositories related to scientific-computing is lower compared to other

categories. This might be related to that abbreviated phrases with omitted verbs are

more common in scientific-computing. Other than that, by investigating the source code,

we believe that categories do not have much relation with the use of verb phrases.

Since the difference between function/method names and others are large, we only

investigated the correlation between the usage of verb phrases as function/method names

and the properties of repositories. As shown in Table 4.4, the p-value of all the 5 properties

are greater than 0.05. This indicates that for the data used in this thesis, there is no

significant association involved.

We also investigated the use of verb phrases to name other kinds of identifier names

which are not functions or methods. Firstly, we found that there is a positive correlation

between the proportions of using verb phrases to name the identifiers (variables, param-

eters and attributes) in functions/methods and the scope length (Figure 4.24). Since the

distribution matches the normal distribution, we used the Pearson correlation test. The

p-value is 0.002 and the correlation is 0.553.

58 Results

Figure 4.24: Verb Phrase - function/method scope length

We noticed that many of the verb phrases in other kinds of identifier names are related

to inaccurate descriptions of the concepts. We found that in multiple repositories, verb

phrases are used for assigning list or tuple types. For example, create table is a variable

that stores a tuple. We believe that this kind of identifier names are inaccurate for the

describing the concepts. It should only keep the noun table and use some other words to

modify it. This is because the process and action of creating the table is not important

for a variable. When the variable is used again, the programmers do not need to know

about the action of creating it and only care about which tuple it is.

4.5 Noun Phrases for class names 59

Figure 4.25: Noun phrase - Percentage

4.5 Noun Phrases for class names

Among all the 745,651 identifier names used in this thesis, the overall percentage of noun

phrases is 71.20%. As shown in Figure 4.25, apart from functions and methods, most

other kinds of identifier names are named by noun phrases. The proportions are 78.58%

for variables, 82.11% for parameters, 77.13% for attributes, 28.11% for functions, 21.46%

for methods and 77.6% for classes. Although this naming suggestion is related to class,

variables, parameters and attributes also have similar proportions as classes. We think

this is because the concepts of them all describe a specific object. There should not

be any action involved in their concepts. Therefore, using noun phrases would be more

cognitively consistent for identifier names except functions/methods. Since the part of

speech related to functions/methods has already been explored in section 4.4, this chapter

will not repeat it.

As shown in Figure 4.26, in most cases, programmers consciously choose to name

classes using noun phrases. We investigated the cases where noun phrases are not used.

We found that there are 2 reasons other than errors in the classifier that make the part

of speech of class names to be of other kinds. As mentioned in Section 4.4, the accuracy

of the classification of part of speech for identifier names is about 88%. The 2 reasons

are abbreviations and wrong descriptions for concepts. Similar to the function/method

names in Section 4.4, abbreviations in class names can be divided into abbreviated words

and abbreviated phrases. The problem with abbreviated words is that it causes the

classifier to fail to recognise the part of speech of the words. Some of these identifier

60 Results

Figure 4.26: Class - Percentage

names are indeed noun phrases. For example, ImgurIE in youtube-dl is the abbreviation

of ImgurInfoExtractor. In this case, information extractor is clearly a noun phrase.

The word imgur is the name of a website which is used to modify InfoExtractor. We

believe that these identifier names do follow the naming suggestion for using noun phrases

as class names.

Regarding abbreviated phrases, we found that the practice in class names is to omit

the noun and only keep the adjective. For example, Lower in django is a class related

to lower case of letters. The full version of this class name should be LowerCase. We

believe that such names have a negative impact on comprehensibility. Its different from

the fact that most of the abbreviated phrases for function/method mentioned in section

are common verbs. The omission in the Class name could be any of the nouns. Although

it might be possible to figure out what is omitted by reading the comments and scope

names, it is difficult to do so when programmers are only allowed to read the class names.

Objects may be created and used in several different files, so we think they should keep

the nouns in the class names. We think it is inappropriate to use a verb or verb phrase to

describe a class name. This is because the concept of class does not contain any action.

This also is applied to the other 3 kinds of identifier names (variables, parameters and

attributes).

As shown in Figure 4.27 and 4.28, we investigated the use of noun phrases in different

repository categories and found that there is no huge difference. The two reasons men-

tioned above appear in all 6 categories. We think it might be a consensus to use noun

phrases for identifier names except functions/methods.

4.5 Noun Phrases for class names 61

Figure 4.27: Noun phrase - Category - class

Figure 4.28: Noun phrase - Category - variable, parameter and attribute

LoC Commits Contributors Releases First Release
cor -0.33 -0.12 -0.092 -0.00715 0.07
p-value 0.001 0.3 0.4 1 0.553

Table 4.5: Noun phrase - Spearman correlation

62 Results

Figure 4.29: Noun Phrase - function/method scope length

We investigated the association between proportions and repository properties using

noun phrases to name classes. Since the data is not normal distribution, we used the

Spearman correlation test (Figure 4.5). The p-value of LoC is less than 0.05; however,

the correlation is nearly zero. This means there is no correlation between LoC and using

noun phrases as class names. There is no statistical evidence shows that any of the

properties of repositories are related to the use of noun phrases for naming classes.

We found that noun phrases used in variables, parameters and attributes are similar

to classes. The difference is that class names have more modifiers Which means there are

more words in class names (Section 4.7). This is because classes usually contain larger and

more complex concepts than the other 3 kinds of identifier names. Abbreviated phrases

that omit the noun and retain only the adjective are also present in variables, parameters

and attributes. Moreover, the use of noun phrases also has no relationship to context. The

proportions are 88.97% for identifier names in loop statements and 81.88% for identifier

names in If statements. We think this is reasonable since even in different contexts, the

concepts that these identifiers refer to are all one or more objects. They should use noun

or noun phrases to describe.

We also investigated the association between the scope length of functions/methods

and the use of noun phrases (Figure 4.29). Since it fits to normal distribution, we used the

Pearson correlation. The result is that p-value is 0.5 and correlation is 0.145. Therefore,

in the data set used in this thesis, there is no significant association between using noun

phrases to name variables/attributes/parameters and the scope length of the function-

s/methods.

4.6 Dictionary words 63

Figure 4.30: Dictionary word - Percentage

4.6 Dictionary words

As mentioned in Section 3.4.1, we investigated 4 types of data related to dictionary words,

which are All, At least one, All but one and None (Figure 4.30). From all the 745,651

identifiers, we classified 514,486 (69.03%) names that all the words are dictionary words.

644,815 (86.52%) of them have at least one dictionary words. Among the remaining

13.48%, 4.26% are single letter identifier names. 713,279 (95.71%) of them contain at

most one non-dictionary word. 100,462 (13.5%) of them does not contain dictionary

words. As shown in Figure 4.30, the percentage for At least one and All but one are all

above 80% across the 6 different kinds of identifier names. This indicates that most of

the time, programmers are consciously using dictionary words to name identifiers. The

proportion of both All and None in class names is relatively low. This might be because

the concepts of classes are more complex. Programmers would use some abbreviations to

reduce the length of the class names and also the time of reading these names.

We found that the reasons for not being categorised as dictionary words can be divided

into 5 cases. These are, words that are commonly used in programming, abbreviations,

accuracy of the classifier, identifier names that use numbers, and single letter names. The

usage of last two has been discussed in Section 4.2, Section 4.3 and Section 4.1, so we are

not going to repeat in this section.

Firstly, for the words are commonly used in programming, some of them are actually

not dictionary words. For example, the word Matlab in MatlabObject and the word

backend in backend name. Neither of these words are dictionary words, but the use

64 Results

of them as names is not confusing. This is because they both have specific meanings

and are not ambiguous. Matlab is a programming language which is widely used for

scientific-computing and backend is the data access layer of a software. Since these kind

of words are only used in the software domain, programmers should know the specific

meaning of them. We believe that using these words does not cause any problems with

comprehensibility and they are actually the same as dictionary words.

Secondly, abbreviations are commonly used in identifier names. These can be divided

into three types, these are abbreviations that are commonly used in programming and

abbreviations that have meaning in a specific domain and acronyms.

In addition to the previously mentioned words that are commonly used in program-

ming, there are also abbreviations, such as the abbreviations int for integer, http for

Hypertext Transfer Protocol and gui for graphical user interface. These kind

of abbreviations would not cause any comprehensibility problems. This is because pro-

grammers would associate these abbreviations with the same concepts when they read

the identifier names that contain these abbreviations.

Some of the abbreviations are meaningful in certain domains but this does not mean

that they are all confusing. For example, the abbreviation conv is commonly used in

identifier names related to convolutional neural networks. The problem with conv is that

although programmers with a good understanding of the domain will probably think it is

the abbreviation of convolutional, it can still be misinterpreted as the word convention

or convert. These abbreviations, which have a high frequency of occurrence in a certain

domain, should be consistent. That is, an abbreviation should only refer to one concept in

a repository. If they are not used very often, these identifier names should use dictionary

words. Some other common abbreviations, such as num stands for number, are not con-

sidered to have an impact on comprehensibility. Since they are widely used, they would

not lead to multiple concepts which is not confusing. However, the other abbreviation for

number no can be confusing. This is because this abbreviation should be no., but it is

not allowed to have . in identifier names.

The acronyms are not like the previously mentioned abbreviations. They are usually

not associated with a particular domain. The class name RCR and RRR in AITemplate are

two exmaples of the initials of multiple words. The letter R refers to Row and C refers to

the Column. The problem of these two names is obvious. It is impossible to understand

the meanings of names before reading the comments. We think it is better to use the more

obvious names RowColumnRow or RowColRow in this case. The Col in the name RowColRow

can also be deduced to refer to the word Column when only reading the identifier name.

Moreover, the classifier error also needs to be taken into account. This is because of the

unavoidable problem of using spell checker to detect dictionary words. If an abbreviation

exists in the dictionary with the same spelling but a completely unrelated meaning, it

4.6 Dictionary words 65

Figure 4.31: Dictionary word - Loop

would still be labelled as a dictionary word by the classifier. For example, the word del

in del statement from moto is the abbreviation of delete. However, the word del is also

the word for a mathematical operator. This case is not very common and most words are

labelled correctly.

We investigated the use of dictionary words in class names. The percentage of using

all dictionary words is the lowest which is 57.75% which is the only kind of identifier name

with proportion less than 60%. Moreover, the proportion of class names that contain at

least one dictionary word is less than that have at most one non-dictionary word. This

is unique among the 6 kinds of identifier names. This means that it is more common to

use multiple abbreviations in class names than in the other kinds. This might be related

to that the classes are more likely referring to more complex concepts than other kinds

of identifiers. Then they require more words to modify the nouns. To shorten the length

of the name, programmers would choose to use abbreviations. However, as mentioned in

the paragraph about abbreviations above, we believe that directly reducing the length of

names in this way would cause negative effect to comprehensibility.

In variables, parameters and attributes, the use of all dictionary words for naming

variables is relatively low (Figure 4.30). The proportions for the other two types of

data are similar to parameters and attributes. We investigated the variables in different

contexts. For the variables in If statements, they are more likely to be full dictionary words

(74.33%). The proportions are relatively low in both loop statements which are 57.06%

for variables in For loop statements and 57.36% for variables in While loop statements

(Figure 4.31). Moreover, as shown in Figure 4.32, the use of dictionary words are very

66 Results

Figure 4.32: Dictionary word - For

different in list type and range type For loop statements. For variables used in range type

statements, the proportions of all dictionary words (16.36%) and at least one dictionary

words (22.06%) are low, but almost all identifier names contain at most one non-dictionary

word (98.01%). This is because single letter names are commonly used in the range type

statements which has been discussed in Section 4.1.

We also investigated the relevance of scope length for the use of dictionary words in

variables, parameters and attributes. Since the data does not have normal distribution,

we use the spearman correlation. The result is that p-value is 0.9 and correlation is -

0.0135. This indicates that there is no correlation involved. The use of dictionary words

is not affected by the scope length.

As shown in Figure 4.33, the use of dictionary words are different in various repo

categories. The proportions of dictionary words used in computer-vision and scientific-

computing are relatively low. As mentioned in Section 4.1, Section 4.2 and Section 4.3,

this is related to the greater use of single letters and numbers for identifier names in these

repositories.

By the Spearman correlation, we investigated the correlation between proportions of

dictionary words used and proportions of the repositories. As shown in Table 4.6, the All

but one has association with LoC. The correlation of LoC is -0.475 which means smaller

repositories have higher proportions. There is no evidence showing a correlation between

other proportions and the use of dictionary words.

4.6 Dictionary words 67

Figure 4.33: Dictionary words - Category

LoC Commits Contributors Releases First Release

All
cor 0.0309 0.162 0.0876 0.137 0.189
p-value 0.8 0.1 0.5 0.3 0.6

At least one
cor 0.187 0.176 0.111 0.139 -0.109
p-value 0.06 0.08 0.3 0.3 0.7

All but one
cor -0.457 -0.176 -0.0533 0.124 0.545
p-value 2x10−6 0.08 0.6 0.4 0.07

None
cor 0.06 0.08 0.3 0.3 0.6
p-value -0.187 -0.176 -0.111 -0.139 0.154

Table 4.6: Dictionary words - Spearman correlation

68 Results

Figure 4.34: Length - Average

Figure 4.35: Number of words - Average

4.7 Length and number of words

In this section, we will discuss the length of identifier names from two ways of measuring

which are the number of characters (length) and the number of words. Among the 745,651

identifiers names investigated, their average length is 10.20. Figure 4.34 shows that the

average length are different in different kinds of identifier names. Variables (9.22), param-

4.7 Length and number of words 69

Figure 4.36: Length - Frequency

Figure 4.37: Number of words - Frequency

eters (8.53) and attributes (10.75) are shorter. The other three kinds are longer which

are 16.03 for functions, 13.78 for methods and 16.14 for class names. As shown in Figure

4.35, the average number of words used in identifier names have a similar trend to the

average length of the name. They are 1.82 words for variables, 1.62 words for parameter,

1.89 words for attributes, 2.81 for functions, 2.32 for methods and 3.02 for classes.

The longest identifiers among the 100 repositories is the function name

70 Results

generate dummy inputs for sequence classification and question answering in

FlexGen. It uses 12 words and the length is 73. As shown in Figure 4.36 and Figure

4.37, the trend of length and number of words varies across kinds of identifier names. The

most common name lengths are 6 for variables, 4 for parameters, 10 for attributes, 14 for

functions, 7 for methods and 14 for classes. Variables and parameters are most commonly

named with 1 word, while the others are 2 words.

The average number of characters (length) of each word are 5.07 for variables, 5.27

for parameters, 5.69 for attributes, 5.70 for functions, 5.94 for methods, 5.34 for classes.

These are generally consistent with the results in Section 4.6. Since functions and methods

have the highest percentage of all dictionary words used as identifier names, each word is

longer. Generally full words are longer than abbreviations. The identifier names with more

dictionary words should be longer than non words. For example, the number in middle

name str2bool is shorter than strToBool. Although variables and parameters have a

higher percentage of dictionary words, they have higher average number of characters

than class names. This might be related to the classification error. This is because

acronyms such as RCR and RRR is treated as a word by SpaCy, but they are actually

3 words. As mentioned in Section 4.6, acronyms are used more often in class names.

Moreover, Section 4.1 mentioned that variables and parameters have higher proportion

of single letter identifier names than class names which means the error has less effect on

them. This might have an impact on the results.

The class names are the longest and the average number of words used is the only

one greater than 3. This is surprising due to the error mentioned in last paragraph and

also class names have the lowest usage of dictionary words (Section 4.6). Even in cases

where more abbreviations and numbers are used in classes names, longer names are still

needed to describe the classes. This means that classes contain more complex concepts

than other kinds of identifiers.

By using Spearman correlation, the length of variables, parameters, and attributes

used in functions and methods, and also number of words are correlated with the scope

length of functions/methods. The results for length are that p-value is 3x10−4 and cor-

relation is 0.622. Moreover, the results for number of words are that p-value is 2x10−5

and correlation is 0.709. These results show a trend that longer identifier names are more

likely to be used in larger functions. This might be because the concept of identifiers is

relatively more complex in large scopes, it is more difficult to find where identifiers were

first created and also there are more identifiers in total. This means that longer names

need to be used to accurately describe these identifiers.

The identifiers names used in the 4 types of statements investigated in this thesis

are all shorter compared to the others (Figure 4.38). 80% of these identifier names used

less than 3 words, and less than 12 characters (length). This is most obvious in the

4.7 Length and number of words 71

Figure 4.38: Length - Frequency - Statements

Figure 4.39: Length - Category

range type for statements. 84% of them use only one word. This might be because the

simpler concept of identifiers in statements. As well as these identifier names are usually

temporary, so it is more convenient to use shorter names.

As shown in Figure 4.39 and Figure 4.40, we investigated that the length and number

of words used for identifier names varies across repo categories. The identifiers in scientific-

computing and computer-vision are relatively short. This matches the results in single

72 Results

Figure 4.40: Number of words - Category

LoC Commits Contributors Releases First Release

Length
cor 0.278 0.117 0.0377 0.0748 -0.336
p-value 0.005 0.2 0.7 0.6 0.3

number of words
cor 0.36 0.107 -0.0177 0.0475 -0.79
p-value 3x10−4 0.3 0.9 0.7 0.004

Table 4.7: Length and Number of words - Spearman correlation

letter, number at end, number in middle, and dictionary words. When class names are

excluded, the names in automation tool have more words than in computer-vision, but

the average length is shorter. This means that the identifier names in the automation

tool usually consist of longer words.

We investigated the association between length/number of words and repository prop-

erties. As shown in Table 4.7, since the data does not have normal distribution, Spearman

correlation is used here. Firstly, the results show that both length and number of words

are correlated with LoC. Larger repositories tend to use longer identifier names. Figure

4.41 shows that this trend exists in all the 6 kinds of identifier names. Secondly the data

also shows that first release is correlated with number of words, but it is not correlated

with name length. The correlation with number of words is -0.79. This indicates that

identifier names in repositories created earlier used more words, but their name length

are not longer. The might because they use more abbreviations. The results also show

that the other 3 repository properties are not associated with neither length or number

of words.

4.7 Length and number of words 73

Figure 4.41: Length and Number of words - LoC

74 Results

Identifier Names
Number of
Repetitions

Number of
Repositories

Number of
Categories

Variable
%

Parameter
%

Attribute
%

Function
%

Method
%

Class
%

1 name 5286 81 6 23.33 66.1 8.65 0 1.93 0
2 x 4273 64 6 21.93 76.34 1.15 0.02 0.56 0
3 value 4165 75 6 17.17 75.97 5.62 0.05 1.2 0
4 config 3891 53 6 13.62 84.91 1 0.31 0.13 0.03
5 data 3487 80 6 41.07 50.24 7.69 0.09 0.92 0
6 i 3085 77 6 91.8 7.46 0.71 0 0.03 0
7 forward 2852 20 6 0.07 0.21 0.18 0.35 99.19 0
8 key 2706 75 6 45.97 47.04 6.36 0.15 0.48 0
9 args 2121 74 6 34.28 60.68 3.91 0 1.13 0
10 attention mask 1945 5 1 3.7 95.84 0.46 0 0 0
11 url 1875 54 6 19.79 76.11 1.71 0.16 2.24 0
12 output attentions 1857 2 1 0.05 97.79 2.15 0 0 0
13 y 1820 50 6 26.48 70.22 1.98 0 1.32 0
14 logger 1688 50 6 94.25 4.21 1.24 0.06 0.24 0
15 n 1681 54 6 48.9 48.3 2.74 0 0.06 0
16 model 1674 39 6 27.72 55.62 15.53 0.18 0.96 0
17 output 1647 51 6 50.46 30.12 18.52 0.12 0.79 0
18 d 1631 60 6 81.61 16.25 1.96 0.06 0.12 0
19 path 1631 70 6 30.41 65.11 2.51 0.06 1.9 0
20 hidden states 1600 3 1 2.25 92.25 5.5 0 0 0
21 result 1556 71 6 87.6 7.13 3.86 0.32 1.09 0
22 a 1469 52 6 31.45 67.39 1.09 0 0.07 0
23 k 1453 59 6 66.14 31.31 2.55 0 0 0
24 backends 1433 3 3 0.07 0 99.93 0 0 0
25 state 1429 44 6 14.77 71.8 12.67 0 0.77 0
26 params 1417 53 6 42.13 51.66 5.72 0 0.49 0
27 dtype 1386 31 6 17.6 75.47 4.26 0.07 2.6 0
28 input ids 1377 4 1 8.57 91.29 0.15 0 0 0
29 output hidden states 1359 2 1 0 97.87 2.13 0 0 0
30 return dict 1333 4 1 0 98.65 1.35 0 0 0
31 X 1319 22 5 5.08 94.54 0.3 0 0.08 0
32 item 1278 62 6 66.9 32.24 0.86 0 0 0
33 parser 1259 53 6 76.89 22.24 0.32 0.08 0.48 0
34 obj 1236 54 6 25.57 71.68 2.67 0 0.08 0
35 other 1223 47 6 1.72 97.87 0.41 0 0 0
36 filters 1201 14 5 21.9 76.85 1.08 0 0.17 0
37 size 1198 53 6 25.38 60.43 9.27 0.25 4.59 0.08
38 head mask 1164 2 1 0.6 99.4 0 0 0 0
39 func attrs 1154 1 1 0.09 99.91 0 0 0 0
40 dropout 1117 13 4 0.63 17.28 80.93 0.45 0.72 0
41 index 1094 60 6 38.57 45.52 14.08 0.64 1.19 0
42 p 1089 59 6 53.17 45.36 1.29 0.09 0.09 0
43 all 1084 45 6 100 0 0 0 0 0
44 inputs 1074 26 6 16.48 64.34 13.04 0 6.15 0
45 s 1068 65 6 56.74 37.45 5.71 0 0.09 0
46 df 1066 25 6 71.58 26.17 1.59 0.66 0 0
47 func 1059 58 6 28.23 64.21 4.25 2.74 0.57 0
48 VALID URL 1048 1 1 0 0 100 0 0 0
49 template 1034 34 6 79.4 11.9 7.74 0.19 0.77 0
50 request 1022 31 4 5.58 92.86 0.98 0.29 0.29 0

Table 4.8: Most common identifier names

4.8 Most common names

As shown in Table 4.8, we investigated the 50 most common identifier names among all

the 745,651 names. They used a total of 89,615 times which are 11.98% of all identifier

names. The three most common names are name, value and x that all used more than

4000 times. These names are almost always used for identifiers other than class names,

because in python naming convention, class names usually use CamelCase with leading

upper case letters. Only config and size are used for class names, which we believe

do not follow the naming convention. They should use Config and Size to name the

4.8 Most common names 75

corresponding classes. 40 of these names contain only 1 word, 9 names have 2 words and

only 1 name has 3 words.

There are 10 identifier names that are single letters, which are x, i, y, n, d, a,

k, X, p and s. As mentioned in Section 4.1, over 90% of these single letters are used

to name variables, attributes and parameters. 9 of these are lowercase. Both uppercase

and lowercase x are commonly used identifier names. These usages have been discussed

in Section 4.1, so we are not going to repeat in this section.

Except for the 9 single letters mentioned above, 11 of the top 50 identifier names

are or contain abbreviations. Moreover, 2 of them are acronyms which are url and df.

The identifier name url is commonly used in programming which is the abbreviation for

Uniform Resource Locator. This would not lead to confusion. For the identifier name

df, it is being used in 25 different repositories and all the 6 repository categories. We

found that it refers to different concepts in different repositories. For example, it is an

abbreviation for data frame in catalyst, and dominance frontiers in angr. These

usages can lead to misunderstandings especially in such very common identifier names.

They should use the full words to name these identifiers.

Nine of these names are only used in less than or equal to 5 different repositories. Most

of them belong to only 1 repo category. This means that they are commonly used words

in a particular field. For example, the identifier name attention mask can be found in 5

AI-related repositories. The attention mask is a binary tensor used to prevent the model

from paying attention to the padded indices by indicating the position. Therefore, It

is a word that is only used for training models, so it would only be used in AI-related

repositories. Of all the 9 identifier names that appear in only 1 repo category, 8 are AI-

related. Only VALID URL is found only in automation tool related repositories. There are

two possible reasons for this. Firstly, identifier names in AI-related repositories are the

most numerous that is 367,805. Secondly, there are more commonly used proper names

in AI-related fields compared to other categories.

Since variables, parameters and attributes make up the majority of identifiers, we also

investigated the 50 most common names in functions/methods and classes separately. As

shown in Table 4.9 and Table 4.10, using the same names for different identifiers also

exists in both functions/methods and classes. Their number of repositories and number

of categories are relatively less. This is particularly evident in the class names. Only

one of the class names (Model) appears in all 6 repo categories and only Config is used

in more than 10 different repositories. This might be because functions, methods and

classes contain more complex concepts, so there are fewer cases to use the same identifier

names. The top 50 function/method names have a total of 13925, which are 12.36% of all

function/method names. The top 50 class names have a total of 1,235, which are 4.57%

of all class names.

76 Results

Identifier Names
Number of

Repetitions

Number of

Repositories

Number of

Categories

1 forward 2839 17 6

2 call 974 13 5
3 real extract 968 1 1

4 execute 645 17 5
5 run 538 47 6

6 setup 361 15 5

7 validate 350 19 6
8 custom forward 280 2 1

9 create custom forward 279 2 1

10 get test params 266 1 1
11 get config 251 12 5

12 copy 250 20 6

13 get input embeddings 241 2 1
14 update 240 43 6

15 serving output 224 1 1
16 get 219 40 6

17 gen function 212 1 1

18 build 204 19 5
19 fit 198 2 2

20 check 198 16 6

21 set input embeddings 194 2 1
22 get data 189 17 5

23 main 180 54 6

24 fit 175 13 5
25 step 173 12 6

26 to dict 163 15 5

27 get output embeddings 158 2 1
28 render 157 18 5

29 reset 156 30 6
30 set output embeddings 151 2 1

31 apply 142 18 4

32 load 142 34 6
33 process 142 17 6

34 init weights 140 4 2

35 transform 140 2 2
36 get columns 137 5 5

37 close 135 35 6

38 gen function call 132 1 1
39 gen function decl 129 1 1

40 predict 129 13 5
41 prepare inputs for generation 125 2 1

42 to json 124 10 4

43 on update 119 3 2
44 predict 109 3 2

45 prune heads 109 2 1

46 delete 109 20 5
47 save 109 26 6

48 set gradient checkpointing 107 2 1

49 add 107 30 6
50 backward 106 8 3

Table 4.9: Most common identifier names - Function/Method

The identifier names commonly used to name functions/methods and classes are rela-

tively longer but do not exceed 4 words. Of the 50 names for functions and methods, 28

contain 1 word, 12 contain 2 words, 9 contain 3 words, and 1 contains 4 words. Similarly,

for classes, 30 identifier names contain 1 word, 13 contain 2 words, 5 contain 3 words and

2 contain 4 words.

The commonly used get and set methods are also present in top 50 identifiers. There

are 7 of them related to get. This also includes the single word name get. We think it

4.8 Most common names 77

Identifier Names
Number of

Repetitions

Number of

Repositories

Number of

Categories

1 Meta 333 9 4

2 Migration 271 4 3
3 Config 108 15 5

4 Command 56 7 4
5 ResourceNotFoundException 32 2 3

6 BasicTokenizer 20 2 1

7 WordpieceTokenizer 20 2 1
8 ValidationException 19 1 2

9 BenchmarkLayer 16 1 1

10 E2E 15 1 1
11 Encoder 15 4 1

12 Model 15 9 6

13 Node 14 10 4
14 Host 12 3 3

15 MyApp 11 1 1

16 ValidationError 11 4 3
17 Arbiter 10 1 1

18 Guest 10 1 1
19 InvalidParameterException 10 1 2

20 LayerNorm 10 4 1

21 Table 10 5 4
22 DatabaseWrapper 9 1 1

23 InvalidRequestException 9 1 2

24 Serializer 9 2 3
25 StorageSession 9 1 1

26 StorageTable 9 1 1

27 Block 8 6 4
28 CustomConverter 8 1 1

29 DatabaseFeatures 8 1 1

30 Media 8 3 3
31 ResourceNotFound 8 2 2

32 Session 8 7 3
33 Transformer 8 4 1

34 User 8 5 2

35 BadRequestException 7 2 3
36 BiasLayer 7 1 1

37 Decoder 7 2 1

38 Identity 7 5 2
39 Index 7 5 2

40 Layer 7 4 4

41 Operation 7 7 4
42 Pipeline 7 6 4

43 ResourceInUseException 7 1 2

44 Sequential 7 5 2
45 State 7 6 5

46 Task 7 6 3
47 Attention 6 3 1

48 BaseObject 6 3 5
49 Bottleneck 6 4 2
50 Client 6 4 3

Table 4.10: Most common identifier names - Class

is difficult to understand what it is getting when only reading the identifier name itself.

Therefore, the noun should be added to describe the objects to be fetched.

78 Results

Words
Number of
Repetitions

Number of
Repositories

Number of
Categories

Variable
%

Parameter
%

Attribute
%

Function
%

Method
%

Class
%

1 name 20531 92 6 31.2 48.56 13.26 1.78 4.72 0.48
2 get 16848 93 6 2.15 0.59 0.77 34.89 60.92 0.66
3 data 12349 88 6 37.34 33.4 9.58 6.86 8.98 3.84
4 id 11941 71 6 39.73 41.59 9.65 2.22 6.11 0.7
5 type 11127 83 6 29.61 42.18 13.37 3.98 7.94 2.92
6 output 10610 70 6 29.33 46.23 9.35 1.15 8.76 5.18
7 x 9688 70 6 35.17 56.16 4.1 0.84 1.84 1.9
8 model 9021 47 6 27.42 25.98 17.44 3.76 8.24 17.16
9 size 8727 77 6 31.06 43.66 17.97 1.57 5.23 0.52
10 mask 8720 41 6 23.67 64.16 4.76 2.29 4.22 0.89
11 value 8574 78 6 29.94 50.07 7.57 2.44 8.13 1.85
12 key 8292 86 6 42.08 36.93 7.51 4 7.36 2.12
13 config 8188 67 6 24.17 49.16 8.84 4.38 6.4 7.05
14 to 8097 86 6 22.5 17.66 12.23 17.12 28.22 2.27
15 input 7398 66 6 28.82 48.61 9.77 1.92 9.98 0.91
16 path 7083 90 6 36.28 42.79 10.53 4.42 4.6 1.37
17 list 6571 85 6 43.92 19.95 8.99 6 17.97 3.17
18 url 6228 71 6 34.65 32.84 23.39 2.68 6.02 0.42
19 2 6171 75 6 48.06 14.39 10.79 11 2.53 13.22
20 ids 6013 50 6 25.03 66.17 2.51 1.41 4.72 0.15
21 d 5996 70 6 46.05 30.77 6.5 8.76 2.99 4.94
22 num 5830 69 6 35.33 36.71 22.18 1.84 3.74 0.21
23 attention 5694 13 3 18.41 55.97 13.58 0.77 3.44 7.83
24 n 5432 65 6 50.24 37.56 8.41 1.31 1.47 1.01
25 token 5413 43 6 25.24 52.37 7.59 1.37 8.76 4.67
26 layer 5362 29 6 34.19 20.78 27.14 2.35 2.65 12.91
27 is 5306 86 6 24.76 16.74 18.77 18.21 20.77 0.75
28 hidden 5111 30 6 11.74 76.83 9.47 0.12 1.64 0.2
29 1 5074 69 6 59.7 21.17 11.43 4.26 1.04 2.4
30 dict 5048 75 6 30.27 47.5 5.25 5.23 10.3 1.45
31 max 4952 79 6 35.7 38.97 16.11 2.99 4.42 1.8
32 set 4861 76 6 11.97 11.71 5.88 9.67 56.26 4.51
33 shape 4790 42 6 48.27 31.57 8.68 2.94 7.89 0.65
34 state 4782 60 6 20.51 51.17 10.75 2.4 12.57 2.59
35 doc 4750 43 6 62.19 23.64 6.21 5.26 2.15 0.55
36 states 4664 30 6 16.47 75.11 6.33 0.36 1.52 0.21
37 y 4616 55 6 45.99 45.21 5.24 1.1 2.25 0.19
38 func 4603 70 6 31.98 52.42 4.52 7.15 2.85 1.09
39 i 4575 79 6 79.93 13.01 2.86 1.53 1.49 1.18
40 for 4521 64 6 23.65 5.82 2.96 11.04 23.38 33.16
41 args 4454 78 6 32.24 51.8 5.68 2.9 7.09 0.29
42 file 4381 87 6 40.93 29.1 9.24 9.13 7.42 4.18
43 new 4331 81 6 66.66 20.18 5.7 2.89 3.86 0.72
44 forward 4071 36 6 3.05 2.14 4.03 15.82 73.96 1.01
45 start 3960 77 6 43.26 33.61 10.81 2.88 9.19 0.25
46 all 3927 79 6 66.62 6.32 8.58 6.67 11.31 0.51
47 index 3844 77 6 46.57 30.18 11.81 3.51 6.35 1.59
48 params 3799 62 6 41.64 29.27 7.29 2.45 18.79 0.55
49 field 3777 39 6 38.87 28.99 11.68 4 9.9 6.57
50 template 3715 46 6 59.84 19.78 11.6 2.91 3.82 2.05

Table 4.11: Most common words used in identifier names

4.9 Most common words

Among all the 745,651 identifier names investigated in this thesis, there are 1,421,977

words are used. As mentioned in Section 3.2, all the words used in the 100 repositories

are converted to lower case. Table 4.11 shows the top 50 most common words. These

words are used a total of 333816 times. This accounts for 23.48% of all the words used. As

4.9 Most common words 79

Data types Words Number of uses Examples

Numeric

integer 102 weight integer
int 757 allow int inputs
float 238 read float64
double 124 is double

String
string 1880 export string
str 1679 xml str

Sequence
list 6571 vocab list
lst 107 lst len
array 936 ctype ndarray

Mapping
dictionary 127 data dictionary
dict 5048 word dict

Boolean
boolean 67 GetBooleanField
bool 186 is bool

Table 4.12: The uses of words related to built-in Python data types

mentioned in Section 4.8, some most common names are only used in specific repositories

and domains. In contrast, all most all the 50 most common words are used in the all

the 6 categories. Only the word attention is only existed in 3 categories which are AI,

automation Tool and computer-vision.

Five of the most common words are single letters, which are x, d, n, y and i. These

letters exist as separate words, such as the word i in the identifier name plot i dynamic.

Words that contain the letter are not being discussed here, such as the letter i in the word

integer. Two of top 50 most common words are numbers which are 1 and 2. Most of the

top 50 most common words are used in the names of variables, parameters and attributes.

Of the identifier names that contain the word i, they have the highest percentage of single

letter names. They are account for 70.2%. Followed by word x, which is 57.5%. Numbers

are not allowed to use individually as identifier names.

Most of the top 50 common words shown in Table 4.11 are dictionary words. Excluding

the seven single letters and numbers mentioned above, there are 8 abbreviations in the

top 50 most common names. These words are id, url, ids, num, dict, doc, func and

args. These are common abbreviations in programming. This means that programmers

consider the concepts they refer to to be meaningful. Programmers are probably familiar

with the common abbreviations. We believe that using these names might not cause

comprehensibility problems.

We investigated some words related to the built-in Python data types. Table 4.12

shows some of the words and abbreviations that we think might be used to refer to data

types. The table does not include acronyms. This is because most of the meanings they

refer to may be unrelated to the data type. For example, the lowercase letter l is almost

never used to refer to a list, and its most common application is to refer to the load in

80 Results

the file permissions read, load, and write. Another case is the use of i as an index, which

is not intended to emphasise that the type is an integer. As mentioned in Section 3.2,

this is just a common usage. We found that even in dynamic languages like Python,

programmers use words related to types in their names. Among them, the most used are

list and dict which are also occurred in the top 50 most used words. In contrast, it is

rarely specified in the name that it is a numeric data type in Python repositories.

There should be more integers compared to dictionaries and lists in source code but

there are relatively less words related to integers as shown in Table 4.12. We found

that the choice to use abbreviations is more frequent when the type name is longer. For

example, dictionary, boolean and integer are less frequent than dict, bool and int.

The abbreviation lst is less likely to be used than list. This might be because the

difference in length between the two words is not large enough. The abbreviation does

not shorten the identifier name much in this case. However, the word string and its

abbreviation str have similar number of uses.

We found that most of the common words are higher in variables, parameters, and

attributes. This is because most identifiers belong to these three. However, there are also

words that are used more in functions/methods, such as get, to, is and set. The words

get, set and is are all verbs and are commonly used as the first word in function/method

names. As shown in Table 4.13, among all functions/methods, 14.33% of their names use

the word get, 2.85% use set, and 1.84% use is. The word to is a linking word which is

mostly used in functions/methods related to change something and to-do something. For

exmaple, convert to in freqtrade and apply to keypoint in albumentations. Of the

top 50 most common words in functions/methods, 24 are verbs, which is about half. We

also found that in function/method names, words that are related to types are usually

related to the types of the return values.

As shown in Table 4.14, we also investigated the top 50 most common words in class

names. Compared to functions/methods, the repetition of words used in class names is

relatively low. The most common word model is only used in 28 repositories. There are

no particularly common words such as get in the class names. Even the word model is

only found in 5.73% of the class names. Abbreviations and numbers are more common in

class names. There are 12 of them in the top 50, and 7 of them are top 20 most common

words. The words exception and error are only commonly used in class names. This

is because that they are used in classes related to catch errors and print error messages.

Other words related to built-in data types are not commonly used in class names. We

noticed that the third commonly used word in the class is tf, which is not commonly

used in other programming languages. This term is an abbreviation for TensorFlow, a

library for machine learning and artificial intelligence, which is widely used in Python

repositories in related fields. If a class name contains this abbreviation, it means that the

4.9 Most common words 81

Words
Number of

Repetitions

Number of

Repositories

Number of

Categories

Usage

%

1 get 16143 93 6 14.33

2 to 3671 82 6 3.26
3 forward 3655 31 6 3.25

4 set 3205 70 6 2.85
5 create 2557 71 6 2.27

6 call 2430 37 6 2.16

7 from 2330 74 6 2.07
8 update 2214 67 6 1.97

9 is 2068 80 6 1.84

10 data 1956 58 6 1.74
11 validate 1873 52 6 1.66

12 add 1857 71 6 1.65

13 check 1833 71 6 1.63
14 extract 1659 44 6 1.47

15 list 1575 62 6 1.4

16 for 1556 58 6 1.38
17 on 1545 45 6 1.37

18 load 1401 68 6 1.24
19 name 1334 59 6 1.18

20 type 1326 56 6 1.18

21 function 1267 37 6 1.13
22 delete 1205 36 6 1.07

23 gen 1138 29 6 1.01

24 handle 1110 48 6 0.99
25 real 1092 17 6 0.97

26 model 1082 34 6 0.96

27 output 1051 51 6 0.93
28 make 1004 59 6 0.89

29 id 995 46 6 0.88

30 run 991 63 6 0.88
31 init 989 53 6 0.88

32 build 951 52 6 0.84
33 key 942 56 6 0.84

34 value 906 52 6 0.8

35 embeddings 904 9 3 0.8
36 process 892 61 6 0.79

37 and 886 63 6 0.79

38 config 883 50 6 0.78
39 input 880 38 6 0.78

40 2 835 51 6 0.74

41 convert 834 51 6 0.74
42 params 807 41 6 0.72

43 execute 792 24 6 0.7

44 dict 784 60 6 0.7
45 custom 748 28 6 0.66

46 parse 740 59 6 0.66
47 batch 725 27 6 0.64

48 file 725 71 6 0.64
49 state 716 44 6 0.64
50 apply 709 45 6 0.63

Table 4.13: Most common words - Function/Method

class might have an inheritance relationship with TensorFlow.

82 Results

Words
Number of

Repetitions

Number of

Repositories

Number of

Categories

Usage

%

1 model 1548 28 6 5.73

2 for 1499 13 6 5.55
3 tf 1157 7 6 4.29

4 error 1054 50 6 3.9

5 ie 1010 2 4 3.74
6 2 816 31 6 3.02

7 layer 692 16 6 2.56

8 base 672 55 6 2.49
9 flax 667 1 1 2.47

10 classification 595 6 3 2.2
11 bert 584 6 1 2.16

12 config 577 32 6 2.14

13 pre 552 3 6 2.04
14 output 550 19 6 2.04

15 lm 506 4 3 1.87

16 exception 504 24 6 1.87
17 data 474 44 6 1.76

18 not 464 26 6 1.72

19 encoder 452 18 5 1.67
20 attention 446 9 3 1.65

21 trained 430 2 2 1.59

22 t 427 14 6 1.58
23 meta 406 24 6 1.5

24 invalid 397 17 6 1.47
25 conv 325 11 6 1.2

26 type 325 40 6 1.2

27 net 316 12 6 1.17
28 head 310 9 5 1.15

29 sim 306 4 6 1.13

30 v 303 21 6 1.12
31 d 296 27 6 1.1

32 mixin 290 22 5 1.07

33 migration 289 7 4 1.07
34 found 283 21 6 1.05

35 sequence 272 11 6 1.01

36 vi 268 4 5 0.99
37 tokenizer 263 5 3 0.97

38 serializer 260 8 4 0.96

39 text 254 28 6 0.94
40 token 253 15 6 0.94

41 view 253 17 6 0.94
42 field 248 16 6 0.92

43 question 244 1 3 0.9
44 decoder 237 10 4 0.88
45 group 232 29 6 0.86
46 self 230 3 6 0.85

47 answering 228 1 1 0.84
48 backend 225 15 6 0.83

49 image 223 23 6 0.83
50 set 219 21 6 0.81

Table 4.14: Most common words - Class

5
Discussion

In the previous chapter, we have discussed the results of the 9 naming practices separately.

In this chapter, we are going to discuss the connection between these naming practices

and answer the 3 research questions (Section 3.1).

Overall, We can find some poor naming practices in the source code that are difficult to

understand, such as using single letter names for classes (Section 4.1). However, there are

also some naming practices that do not follow some general naming conventions but are

relatively easy to understand. For example, using some common abbreviations (Section

4.8).

5.1 How are the different naming conventions used

in practice?

We investigated the prevalence of 9 naming practices in the Python repositories. Among

them, 4.26% are single letter names, 1.67% are names ending with numbers, 0.49% have

numbers in the middle of the names, 69.03% are composed of dictionary words, 63.56%

of the function/method names are verb phrases and 77.6% of the class names are noun

phrases. In summary, for most parts, the choices of identifier names are consistent with

the guidelines.

With these results, we believe that programmers deliberately follow the general sug-

gestions from the naming conventions in most cases.

83

84 Discussion

In Section 2.2, we mentioned the use of numbers in identifier names can be categorised

into 6 types. They are arbitrary numbers, distinguishers, version numbers, synonyms and

special uses (specification and domain/technology) [45]. Among them, there are no arbi-

trary numbers in either of the 2 naming practices related to numbers. Arbitrary numbers

can not describe the concept of identifiers since they are meaningless. Programmers might

waste time trying to understand the meaning. Our results show that programmers prob-

ably agree that the guidelines for not using meaningless numbers are correct. We think

they recognise that it is good to follow such guidelines, and this is why they choose to do

so.

Except for the use of arbitrary numbers, the 2 naming practices related to numbers

are being used differently in the source code. For number at end, the numbers are more

likely to be used as distinguishers in variables, parameters and attributes. However, for

number in middle, there is a preference for specific uses and synonyms. These results

show that there is a difference in their uses. Number at end is used more to distinguish

similar concepts, and number in middle is used to shorten the length of names.

Among the length-related naming practices investigated in this thesis, it is shown that

class names are the longest and they consist of the largest number of words. Variables,

parameters and attributes are relatively shorter and they also have a higher percentage

of single letter names (Section 4.1). This might relate to the complexity of the concepts

of identifiers. The concepts of classes and functions/methods are usually more complex

compared to other identifiers. We believe that in order to accurately describe these more

complex concepts, naming conventions should be developed in a way that allows for the

use of more wordy names. The results also show that programmers generally accept the

use of longer names to name classes.

There are naming conventions that suggest the use of dictionary words for identifiers

[28]. 69.03% of the names are composed entirely of dictionary words. This might be

because the use of some common abbreviations does not cause confusion. Many words that

are not dictionary words also appear in the results of the top 50 for most common words

and most common names. This means that programmers are familiar with these words.

The names are in their knowledge base that are easier to understand and remember.

In the study by Gresta et al. [23], they mentioned that the indiscriminate use of the

same names for different concepts in one repository might cause misunderstanding. In our

results, only 9 of the 50 most common names were composed of two words, and the rest

were names of single words. This shows that the same names rarely occur when describing

relatively complex concepts. Relatively simple concepts are more likely to have the same

name, probably because these concepts themselves occur frequently in software. For

example, name, x, value, config, and data are the 5 most common names. These

concepts may not require additional modifiers other than the nouns themselves.

5.1 How are the different naming conventions used in practice? 85

We investigated the names with the words that may be associated with identifier types

in Python code. The results show that in dynamic programming language, programmers

would also choose to store the type-related information in the identifier names. This might

mean that the types of these identifiers will not be changed in subsequent code. We also

found that there are fewer uses of acronyms compared to full names and abbreviations

of types. We investigated letters related to types and found that they are usually not

related to types, but rather acronyms of other words. The study by Gresta et al. [23]

also mentions that the use of single letter names related to types is less common in Java

and C++ than other single letter names, although it does not investigate the use of type-

related words in names. The study also mentioned that the use of type-related names

may increase the reading load. We believe that the use of type-related words in identifier

names in Python may be different. The types of identifiers in Java or C++ can be found

in the declaration lines, but there is no declaration step in Python. Therefore, we think

doing this can emphasis the types of identifiers.

In this thesis, we investigated grammatical structures related to noun structures and

verb structures. The results show that programmers prefer to use verb structures for nam-

ing functions and methods. Other identifiers (variable, parameter, attribute, class) are

usually noun structures. We found cases where verbs are omitted from function/method

names, and also cases where nouns are omitted from classes names and only modifiers are

retained.

In the case of omitting verbs, if the verb get is omitted, we consider its impact on

comprehensibility to be small. This practice is common in the code we studied, so we

think programmers might be used to doing it. However, we think other cases are relatively

confusing. In particular, in the case of omitting nouns, it is difficult to infer the object

of the modification from the adjective itself. Moreover, there are no nouns in class names

can be used in same way as get in functions/methods. This means that there are no

words that programmers can immediately react to when they read a class name without a

noun. There are variables, parameters, attributes, and classes in the code that are named

as verb phrases. We believe that this would cause comprehensibility problems because

programmers might think the concepts of the identifiers containing actions.

In addition to suggesting the use of verb structures for naming functions/methods,

Abebe et al. [1] suggest that function/method names should start with a verb. We believe

that while this might be able to emphasis the actions contained in function/method names.

It is not really necessary, as the concepts of functions/methods are relatively complex and

require modifiers. This means that there are cases where adverbs are used to modify the

concepts before the verbs. The programmers still need to read the whole names to fully

understand the concept described by the identifier names.

86 Discussion

5.2 How much influence does context have on the

choice of identifier names?

We investigated the differences between 9 naming practices in different contexts. The

different contexts are identifiers used in statements (If, While, For) and scope length.

Our results show that most of the naming practices are different in different contexts.

This means that programmers might choose different identifier names depending on the

context of the identifiers.

By investigating naming practices related to length, we found that identifiers used in

statements (If, While, For) are shorter and have a higher percentage of using single letters

as identifier names. Our results also show that longer identifier names are more likely to

be used in larger functions/methods. This suggests that in some cases, the concepts of

identifiers are simpler or already partially contained in the knowledge base. For example,

the use of i as an index in range type for loop statements. In these cases, programmers

might commonly use less descriptive identifier names which are relatively shorter.

Apart from length, only the usage of number in middle is related to the scope length of

functions/methods. Our results show that in larger functions/methods, programmers tend

to use more identifier names that contain numbers in the middle. Usually in larger scopes,

the concepts of identifiers are more complex, thus requiring the use of longer names. As

we mentioned earlier in Section 5.1, number in the middle is used to shorten the length

of the name. We think this might mean that programmers intentionally shorten names

to improve reading speed and comprehensibility. Our results show that how parameters

are named does not change with respect for the scope length of functions/methods.

We found that the naming of functions and methods is similar in single letter, number

at end, number in middle, grammatical structure. However, the results show that methods

have a higher percentage of using dictionary words than functions and also method names

are relatively shorter than function names. We believe this may be related to their scope.

Since the scope of the method is a class, the concepts of methods might be simpler than

concepts of functions in a larger scope. This might because for method names, there

is no need to mention the information already contained in the class names. Part of

the concepts of the methods are already contained in their classes. This means that the

concepts of methods can be accurately described by using shorter names, and there is no

need to shorten the names by using abbreviations.

Our results also show that the naming of variables and attributes are similar in all the

context and repository properties. However, parameters are different for both of them in

some cases. In Section 4.1, we mentioned that almost all the single letter x’s are used

as parameters. In our results, using single letter x is much less common in other kinds

of identifiers. There is also relatively less use of names with numbers in the parameter

5.3 Is there a difference in the choice of names in different Python repositories?87

names.

Among all the 3 types of statements (If, While, For), the identifier names in If state-

ments are the longest. For loop and While loop are both loop statements, but the results

show that their names are also different. The range type for loop statements have the

shortest names, with 84.3% of them using only one word. They also have the highest

percentage of single letters. On the other hand, the 3 types of identifiers are similar in

the use of dictionary words and grammatical structures.

5.3 Is there a difference in the choice of names in

different Python repositories?

We investigated 5 repository properties, which are LoC, number of commits, number of

contributors, number of releases and the first release date. The statistical results show

that only some of the number of commits, number of contributors, and number of releases

correlate with the naming practices.

Both number at end and number at middle are more likely to be used in larger repos-

itories. This might because the concepts of identifiers are more complex in larger repos-

itories, which also leads to the possibility that they might need to be differentiated by

using numbers or reduce the length of the identifier names. In Java and C++ repositories,

number at end has the same trend, but it shows there is no relationship between number

in the middle and LoC [24].

In smaller repositories, identifier names are shorter and use fewer words. This also

shows the evidence of the concepts of identifiers are usually more complex in larger reposi-

tories, so they need more words to be accurately described. Our results show that the first

release is not related to the length of identifier names, but is related to number of words

used in the names. This means that identifier names in older repositories use more words

in identifier names, but the length of each word is shorter than in newer repositories. On

average, abbreviations are shorter than dictionary words because they are used to shorten

the length of the words. Therefore, our results indicate that older repositories might con-

tain more identifier names with abbreviations. This could also be used to demonstrate

that programmers have become more aware of using dictionary words for identifier names

in the recent 10 years.

Of the 4 types of data related to dictionary words All, At least one, All but

one, and None that we investigated for dictionary words, only All but one is related

to repository properties. Programmers prefer to use names that contain only one non-

dictionary word in small repositories. All but one also contains cases where there is only

one word and it is an abbreviation. We noted that single letter names are not related

88 Discussion

to these two repository properties. This could mean that they are related to single non-

acronym abbreviations.

For repository categories, our results show that they are related to most naming

practices. We noted that in scientific-computing repositories, the identifier names are

relatively short and use fewer words. This is also consistent with results in other nam-

ing practices. The percentage of using verb phrases for naming functions/methods in

scientific-computing is relatively lower which is only 49.37%. The results show that the

practice of omitting verbs is more common in scientific-computing compared to other

categories. This might because there are more functions/methods that are used to return

a certain thing which usually starts with get. Single letter, number at end and number

in middle are also more common in this category. The most common single letters used

in this category are x, a and i. Letter i is usually used as an index. Letters x and a are

used for unknown values. This can only be found in scientific-computing repositories.

Noun phrases are the same across categories. That is, no matter what the categories

are, programmers think that they should use noun phrases to name class names.

Another category that uses more identifier names containing numbers is computer-

vision. This category contains many identifier names related to 2D and 3D axes. This

means that these repositories would have many identifier names like x1, x2, y1, y2 to

distinguish between different points on the axis. The results for single letter also show

that x and i are the most common single letter names. Letter y is also used more than

any other categories.

We think this implies that the programmers’ knowledge base on name choices varies

across domains. This also needs to be considered when giving naming suggestions.

6
Conclusion

In this chapter, we are going to summarise the achievements of this empirical study which

investigated the use of Python identifier names and also some related future work.

6.1 Contributions

In this thesis, we have described how to use the Python AST package to build a tool for

extracting and examining the information of identifiers from source code. With this tool,

we investigated the use of 745,651 identifier names in 100 open source python repositories

in different context and the repository properties. To answer our research questions, we

have selected and discussed 9 naming practices in 5 areas. They are number-related,

length-related, type-related, syntactic structures and common words.

This thesis is inspired by Gresta et al.’s study [23, 24] of the association of naming

practices with context in Java and C++. In Chapter 2, we have introduced and discussed

the related work in software comprehension and also the definition of proper meaningful

identifier names.

We have introduced the 3 research questions in Section 3.1 which are also being listed

below:

RQ1: How are the different naming conventions used in practice?

RQ2: How much influence does context have on the choice of identifier names?

RQ3: Is there a difference in the choice of names in different Python repositories?

89

90 Conclusion

We have presented and discussed the results in Chapter 4 and Chapter 5. For research

question 1, our results show that, programmers are deliberately following the naming

conventions for most of the time. For research question 2 and 3, our results show that

the use of identifier names does vary across cases. The choice of identifier name can be

influenced not only by context but also by repository properties. We believe that this

may be related to the different information contained in the programmer’s knowledge base

in different contexts, which may already contain information that partially describes the

concepts of the identifiers.

As we mentioned in Section 5.3, method names are usually shorter than function

names. This might be the partial concepts related to methods overlap with the classes

they belong to. There would be no need to repeat it again in method names. This means

that in this case it might not be necessary to describe this part of the information in the

identifier name. Therefore, making more detailed naming conventions based on different

cases can help programmers to choose names that more accurately describe the concept

of identifiers and thus improve comprehensibility.

Our results also show that although Python is a dynamic programming language, it

has similarities with other static programming languages (such as Java and C++) in

the choice of identifier names. Some general naming conventions are common between

these languages, but might still require some more subdivided differences depending on the

different cases. For example, using single letter i as a loop counter and using distinguishers

as a pair of parameters should be allowed.

6.2 Future Work

This thesis focuses on the Python identifier names. We believe that this research can

be extended to other dynamic programming languages (such as PHP and JavaScript) as

well as static programming languages (such as Java, C++, and C#). By comparing the

differences between these languages, it might be helpful to suggest more detailed and

appropriate naming conventions.

In this thesis, we can only analyse the source code to find out some patterns of identifier

names, but it is not possible to know exactly why the programmers made these choices.

Therefore, we believe that a user study involving experienced programmers is necessary.

Through this kind of study, it might be possible to know the reasons why programmers

choose not to follow certain guidelines in some cases. This might help to the suggest

naming conventions that are better suited to certain cases.

We believe that the results of this thesis can also contribute to Python-related tech-

nical studies in the field of software comprehension. For example, the development of

a tool that can give proper naming suggestions depending on different contexts and do-

6.2 Future Work 91

mains. This could help programmers to choose more appropriate names and thus improve

comprehensibility.

At the end, we hope that the conclusions of this thesis will contribute to more Python-

related research in the software comprehension field.

92 Conclusion

A
Appendix

93

94 Appendix

Repository
Single letter Number at end Number in middle Dictionary word Verb structure (function/method) Noun structure (class) Length Number of words
n percentage % n percentage % n percentage % n percentage % n percentage % n percentage % average average

activitywatch 0 \ 0 \ 0 \ 59 93.65 2 40 0 \ 11 2.11
AidLearning-FrameWork 20 2.75 30 4.12 0 \ 508 69.78 48 41.74 11 84.62 9.25 1.88
AITemplate 1057 4.69 345 1.53 360 1.6 11976 53.13 1363 40.14 297 71.91 10.6 2.11
albumentations 291 7.01 131 3.16 3 0.07 2250 54.22 520 73.45 105 75.54 8.57 1.83
angr 1990 4.78 1064 2.55 191 0.46 25123 60.28 4179 63.12 1261 74.62 8.87 1.79
arrow 6 1.43 10 2.39 0 \ 296 70.64 35 39.33 0 \ 7.79 1.5
AugLy 117 4.2 16 0.57 1 0.04 1990 71.4 280 71.98 48 46.15 10.57 1.96
augmented-traffic-control 21 2.99 5 0.71 0 \ 453 64.53 110 79.14 0 \ 8.42 1.6
autoscraper 2 0.91 2 0.91 0 \ 154 70 25 83.33 0 \ 8.66 1.71
avatarify-python 38 8.82 6 1.39 0 \ 269 62.41 45 75 8 72.73 7.39 1.55
BayesianOptimization 40 9.78 0 \ 0 \ 289 70.66 40 45.45 14 93.33 8.11 1.48
BERTopic 24 2.44 0 \ 0 \ 775 78.92 86 84.31 23 76.67 9.54 1.64
borg 86 1.72 39 0.78 19 0.38 3796 75.98 558 66.91 134 64.42 8.7 1.68
Cactus 28 2.19 11 0.86 2 0.16 1001 78.39 187 58.81 55 90.16 8.93 1.6
catalyst 160 1.39 28 0.24 7 0.06 8797 76.18 1131 58.57 362 70.84 10.03 1.79
cli 15 0.74 25 1.24 1 0.05 1567 77.77 258 64.82 98 89.09 10.12 1.76
corona 15 23.08 0 \ 3 4.62 31 47.69 4 66.67 0 \ 4.66 1.26
dangerzone 11 1.3 1 0.12 0 \ 674 79.67 145 78.8 37 67.27 11.35 1.9
dash 44 2.44 8 0.44 0 \ 1355 75.24 205 68.11 48 88.89 10.52 1.86
deeplake 275 2.3 79 0.66 13 0.11 8822 73.84 1401 67.45 246 83.11 10.18 1.89
django 413 1.35 143 0.47 98 0.32 23990 78.2 3680 59.33 1336 80.05 10.2 1.79
dotbot 1 0.33 0 \ 0 \ 272 90.67 44 73.33 13 86.67 8.01 1.33
eht-imaging 1096 6.91 1941 12.24 190 1.2 6170 38.89 367 32.33 26 81.25 6.64 1.85
erpnext 963 2.88 56 0.17 0 \ 28576 85.43 5700 88.36 542 82.62 11.63 2.02
espnet 733 7.06 64 0.62 69 0.66 5294 50.99 518 52.32 255 86.73 8.02 1.78
evidently 77 1.53 42 0.83 4 0.08 3813 75.58 539 69.46 351 86.45 11.24 1.94
EyeWitness 42 9.84 1 0.23 0 \ 270 63.23 32 36.36 0 \ 7.96 1.58
face recognition 0 \ 0 \ 0 \ 111 77.62 14 56 0 \ 12.43 2.14
fairlearn 93 9.13 10 0.98 0 \ 627 61.53 75 60.48 14 73.68 10.72 1.95
fastapi 5 0.54 6 0.65 4 0.43 718 77.45 80 62.99 101 95.28 10.89 1.81
FATE 975 3.29 303 1.02 155 0.52 21496 72.57 3424 71.42 1095 88.88 10.58 1.96
feast 52 0.64 34 0.42 5 0.06 5786 70.95 847 57.82 263 82.97 12.19 2.11
FeelUOwn 111 3.06 36 0.99 2 0.06 2761 76 426 56.42 276 85.45 8.83 1.68
FlagAI 1009 6.51 332 2.14 110 0.71 10030 64.71 991 50.25 484 81.34 9.56 1.88
flair 156 2.3 32 0.47 11 0.16 5175 76.37 627 60.17 340 85.86 11.14 1.98
FlareSolverr 20 3.42 1 0.17 2 0.34 441 75.51 69 56.56 19 95 9.25 1.65
flask 51 4.19 0 \ 0 \ 895 73.6 169 56.71 40 90.91 9.06 1.65
flet 158 0.9 369 2.09 1 0.01 14903 84.55 867 34.89 258 86 13.38 2.21
FlexGen 2502 1.94 1354 1.05 1108 0.86 91796 71.02 8783 61.57 4031 64.13 12.44 2.2
flexx 355 9.6 133 3.6 5 0.14 2502 67.68 442 65.68 123 93.18 7.35 1.52
frappe 508 2.35 24 0.11 5 0.02 17713 82.01 4015 82.97 418 83.94 10.06 1.83
freemocap 83 2.91 15 0.53 81 2.84 1963 68.85 344 76.11 53 92.98 15.58 2.78
freqtrade 119 1.32 50 0.56 4 0.04 7076 78.65 1064 65.68 268 88.16 10.38 1.92
geemap 62 2.4 32 1.24 1 0.04 1802 69.74 198 53.23 18 85.71 9.35 1.78
genshin auto fish 115 5.12 91 4.05 5 0.22 1205 53.67 132 56.65 45 91.84 7.71 1.71
geopy 23 1.63 27 1.91 2 0.14 930 65.77 59 24.89 48 78.69 8.5 1.5
Gerapy 18 1.8 2 0.2 9 0.9 830 83.17 75 50 37 97.37 8.34 1.48
Gymnasium 326 4.94 160 2.43 10 0.15 4706 71.37 667 64.76 153 63.75 9.25 1.71
html2text 27 10.59 0 \ 3 1.18 173 67.84 15 34.88 0 \ 8.47 1.74
HTTPretty 12 2.09 5 0.87 0 \ 422 73.65 49 51.58 16 88.89 9.34 1.72
imgaug 353 3.17 448 4.02 29 0.26 7570 67.93 1016 64.84 211 63.94 9.45 1.84
jupyter-book 1 0.38 0 \ 0 \ 166 62.41 23 58.97 0 \ 9.42 1.74
keras 831 3.72 235 1.05 145 0.65 16126 72.26 2577 65.13 422 77.86 10.69 1.89
legit 8 3.38 0 \ 0 \ 185 78.06 28 56 3 75 7.95 1.41
lightfm 10 2.49 0 \ 0 \ 324 80.6 43 76.79 0 100 10.86 1.81
LinkFinder 2 2.74 0 \ 0 \ 58 79.45 3 37.5 0 \ 8.16 1.55
lora-scripts 6 5.45 0 \ 0 \ 72 65.45 17 70.83 0 \ 8.41 1.64
manim 241 3.71 229 3.53 38 0.59 4284 66.03 1061 74.88 170 70.54 9.67 1.93
memray 1 0.24 4 0.98 2 0.49 348 84.88 60 82.19 29 96.67 9.54 1.68
Meshroom 155 3.37 5 0.11 20 0.43 3784 82.23 567 66.32 159 84.57 9.17 1.71
ml-stable-diffusion 32 2.57 22 1.77 14 1.13 835 67.12 57 52.29 22 78.57 11.45 2.2
moco 10 17.54 0 \ 0 \ 23 40.35 1 16.67 2 66.67 8.19 1.82
moto 182 0.37 124 0.25 69 0.14 38868 78.71 6745 74.9 1522 75.27 12.61 2.06
neural-style 5 3.65 4 2.92 2 1.46 93 67.88 8 42.11 0 \ 8.77 1.62
noisy 0 \ 0 \ 0 \ 34 62.96 13 92.86 1 50 9.19 1.7
numpy 2432 13.35 688 3.78 237 1.3 10204 56.01 1521 49.71 284 82.56 7.06 1.61
OpenBBTerminal 383 1.61 172 0.72 29 0.12 17358 72.8 2742 82.17 173 89.64 9.13 1.69
osmnx 114 7.19 33 2.08 0 \ 923 58.2 100 55.56 0 \ 8.88 1.76
PandasGUI 88 4.87 24 1.33 0 \ 1396 77.21 181 56.39 60 89.55 8.47 1.69
pelican 46 3.31 0 \ 8 0.58 1146 82.39 161 74.54 40 95.24 8.98 1.61
pyforest 4 2.67 1 0.67 0 \ 103 68.67 18 72 0 \ 11.29 1.95
pyinfra 14 0.36 5 0.13 19 0.49 3126 79.91 467 76.18 185 91.58 9.13 1.62
pyTelegramBotAPI 8 0.88 0 \ 0 \ 814 89.75 151 71.23 49 80.33 8.12 1.62
pytesseract 0 \ 0 \ 0 \ 116 71.6 15 57.69 2 33.33 8.45 1.52
pyxel 222 20 48 4.32 1 0.09 636 57.3 87 63.97 0 \ 7.64 1.72
ralph 45 0.39 29 0.25 30 0.26 9383 80.44 1221 71.87 1456 91.63 11.14 1.87
requests 30 3.12 14 1.46 0 \ 730 75.88 106 59.22 40 90.91 8.42 1.54
scdl 0 \ 0 \ 0 \ 10 66.67 1 50 0 \ 7.33 1.47
SciencePlots 0 \ 0 \ 0 \ 3 50 0 \ 0 \ 12 2
scipy 6906 21.71 1553 4.88 162 0.51 13011 40.9 1320 32.28 315 87.02 5.79 1.49
sh 29 3.78 3 0.39 0 \ 470 61.2 102 68.46 19 82.61 8.7 1.72
SiamMask 296 8.07 240 6.55 7 0.19 1934 52.76 163 48.66 70 95.89 6.73 1.59
sktime 3097 14.08 574 2.61 21 0.1 11811 53.7 2008 73.53 406 84.23 8.68 1.72
SlowFast 422 7.58 121 2.17 22 0.4 3284 58.98 360 58.44 88 79.28 8.96 1.88
SonoffLAN 13 1.13 35 3.05 1 0.09 588 51.31 100 44.84 50 79.37 9.71 1.89
SpaceshipGenerator 15 4.52 0 \ 0 \ 252 75.9 22 84.62 0 \ 9.48 1.87
spaCy 123 2.31 406 7.63 42 0.79 3498 65.73 524 69.22 74 90.24 8.27 1.67
streamalert 0 \ 4 0.12 9 0.27 2774 82.51 543 67.96 136 86.08 11.15 1.8
s-tui 18 2.33 1 0.13 0 \ 582 75.29 110 70.51 24 92.31 10.72 2
Sublist3r 34 7.2 3 0.64 0 \ 348 73.73 68 81.93 13 81.25 7.99 1.54
sweetviz 33 3.86 17 1.99 1 0.12 623 72.87 80 75.47 9 81.82 11.19 2
tinygrad 302 12.21 32 1.29 14 0.57 1456 58.85 219 42.03 107 84.25 6.52 1.49
toapi 1 1.27 0 \ 0 \ 61 77.22 5 29.41 0 \ 6.3 1.22
tpot 50 5.62 20 2.25 0 \ 572 64.34 93 69.4 18 94.74 10.18 1.84
visdom 67 6.89 5 0.51 9 0.92 625 64.23 114 65.9 20 71.43 6.93 1.49
web3.py 20 0.51 147 3.77 3 0.08 2665 68.26 559 62.81 165 84.62 11.77 1.99
whoogle-search 11 2.73 0 \ 0 \ 255 63.28 33 55 0 \ 9.01 1.7
WireViz 10 2.63 5 1.32 3 0.79 248 65.26 27 46.55 0 \ 8.24 1.62
word cloud 34 5.7 12 2.01 1 0.17 405 67.95 58 72.5 0 \ 8.65 1.66
youtube-dl 692 2.78 90 0.36 221 0.89 17675 71.13 1148 42.49 1098 84.2 8.43 1.67

Bibliography

[1] Surafel Lemma Abebe, Sonia Haiduc, Paolo Tonella, and Andrian Marcus. Lexicon

bad smells in software. In 2009 16th Working Conference on Reverse Engineering,

pages 95–99. IEEE, 2009.

[2] Reem Alsuhaibani, Christian Newman, Michael Decker, Michael Collard, and

Jonathan Maletic. On the naming of methods: A survey of professional develop-

ers. In 2021 IEEE/ACM 43rd International Conference on Software Engineering

(ICSE), pages 587–599. IEEE, 2021.

[3] Venera Arnaoudova, Massimiliano Di Penta, Giuliano Antoniol, and Yann-Gaël

Guéhéneuc. A new family of software anti-patterns: Linguistic anti-patterns. In

2013 17th European conference on software maintenance and reengineering, pages

187–196. IEEE, 2013.

[4] Eran Avidan and Dror G Feitelson. Effects of variable names on comprehension:

An empirical study. In 2017 IEEE/ACM 25th International Conference on Program

Comprehension (ICPC), pages 55–65. IEEE, 2017.

[5] Gal Beniamini, Sarah Gingichashvili, Alon Klein Orbach, and Dror G Feitelson.

Meaningful identifier names: The case of single-letter variables. In 2017 IEEE/ACM

25th International Conference on Program Comprehension (ICPC), pages 45–54.

IEEE, 2017.

[6] Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan I Maletic, Christopher Mor-

rell, and Bonita Sharif. The impact of identifier style on effort and comprehension.

Empirical software engineering, 18:219–276, 2013.

[7] Dave Binkley, Matthew Hearn, and Dawn Lawrie. Improving identifier informative-

ness using part of speech information. In Proceedings of the 8th Working Conference

on Mining Software Repositories, pages 203–206, 2011.

95

96 BIBLIOGRAPHY

[8] Dave Binkley, Dawn Lawrie, Steve Maex, and Christopher Morrell. Identifier length

and limited programmer memory. Science of Computer Programming, 74(7):430–445,

2009.

[9] Ruven Brooks. Towards a theory of the comprehension of computer programs. In-

ternational journal of man-machine studies, 18(6):543–554, 1983.

[10] Simon Butler, Michel Wermelinger, and Yijun Yu. A survey of the forms of Java

reference names. In 2015 IEEE 23rd International Conference on Program Compre-

hension, pages 196–206. IEEE, 2015.

[11] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Exploring the influ-

ence of identifier names on code quality: An empirical study. In 2010 14th European

Conference on Software Maintenance and Reengineering, pages 156–165. IEEE, 2010.

[12] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Mining java class

naming conventions. In 2011 27th IEEE International Conference on Software Main-

tenance (ICSM), pages 93–102. IEEE, 2011.

[13] C Caprile and Paolo Tonella. Nomen est omen: Analyzing the language of func-

tion identifiers. In Sixth Working Conference on Reverse Engineering (Cat. No.

PR00303), pages 112–122. IEEE, 1999.

[14] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling projects in github for

MSR studies. In 2021 IEEE/ACM 18th International Conference on Mining Software

Repositories (MSR), pages 560–564. IEEE, 2021.

[15] Brad Dayley. Python phrasebook: essential code and commands. Sams Pub., 2007.

[16] Florian Deissenboeck and Markus Pizka. Concise and consistent naming. Software

Quality Journal, 14:261–282, 2006.

[17] Dmitri Pavlutin. Coding like shakespeare: Practical func-

tion naming conventions. https://dmitripavlutin.com/

coding-like-shakespeare-practical-function-naming-conventions. On-

line; accessed 6 December 2023.

[18] Len Erlikh. Leveraging legacy system dollars for e-business. IT professional, 2(3):17–

23, 2000.

[19] Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope. The effect of

poor source code lexicon and readability on developers’ cognitive load. In Proceedings

of the 26th Conference on Program Comprehension, pages 286–296, 2018.

BIBLIOGRAPHY 97

[20] Dror G Feitelson, Ayelet Mizrahi, Nofar Noy, Aviad Ben Shabat, Or Eliyahu, and Roy

Sheffer. How developers choose names. IEEE Transactions on Software Engineering,

48(1):37–52, 2020.

[21] Martin Fowler and Kent Beck. Refactoring: Improving the design of existing code.

In 11th European Conference. Jyväskylä, Finland, 1997.

[22] James Gosling. The Java language specification. Addison-Wesley Professional, 2000.

[23] Remo Gresta, Vinicius Durelli, and Elder Cirilo. Naming practices in java projects:

An empirical study. In Proceedings of the XX Brazilian Symposium on Software

Quality, pages 1–10, 2021.

[24] Remo Gresta, Vinicius Durelli, and Elder Cirilo. Naming practices in object-oriented

programming: An empirical study. Journal of Software Engineering Research and

Development, pages 5–1, 2023.

[25] Guido van Rossum, Barry Warsaw, Alyssa Coghlan. Pep 8 – style guide for python

code. https://peps.python.org/pep-0008/. Online; accessed 10 December 2023.

[26] Samir Gupta, Sana Malik, Lori Pollock, and K Vijay-Shanker. Part-of-speech tagging

of program identifiers for improved text-based software engineering tools. In 2013 21st

International Conference on Program Comprehension (ICPC), pages 3–12. IEEE,

2013.

[27] Emily Hill, Lori Pollock, and K Vijay-Shanker. Automatically capturing source code

context of nl-queries for software maintenance and reuse. In 2009 IEEE 31st Inter-

national Conference on Software Engineering, pages 232–242. IEEE, 2009.

[28] Johannes Hofmeister, Janet Siegmund, and Daniel V Holt. Shorter identifier names

take longer to comprehend. In 2017 IEEE 24th International conference on software

analysis, evolution and reengineering (SANER), pages 217–227. IEEE, 2017.

[29] Honnibal, Matthew and Montani, Ines and Van Landeghem, Sofie and Boyd, Adriane

and others. spacy: Industrial-strength natural language processing in python. https:

//spacy.io/. Online; accessed 22 October 2023.

[30] Einar W Høst and Bjarte M Østvold. The java programmer’s phrase book. In In-

ternational Conference on Software Language Engineering, pages 322–341. Springer,

2008.

[31] Dawn Lawrie, Henry Feild, and David Binkley. Syntactic identifier conciseness and

consistency. In 2006 Sixth IEEE International Workshop on Source Code Analysis

and Manipulation, pages 139–148. IEEE, 2006.

98 BIBLIOGRAPHY

[32] Dawn Lawrie, Henry Feild, and David Binkley. Extracting meaning from abbrevi-

ated identifiers. In Seventh IEEE International Working Conference on Source Code

Analysis and Manipulation (SCAM 2007), pages 213–222. IEEE, 2007.

[33] Dawn Lawrie, Henry Feild, and David Binkley. Quantifying identifier quality: an

analysis of trends. Empirical Software Engineering, 12:359–388, 2007.

[34] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. What’s in a

name? a study of identifiers. In 14th IEEE international conference on program

comprehension (ICPC’06), pages 3–12. IEEE, 2006.

[35] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. Effective iden-

tifier names for comprehension and memory. Innovations in Systems and Software

Engineering, 3:303–318, 2007.

[36] Stanley Letovsky. Cognitive processes in program comprehension. Journal of Systems

and software, 7(4):325–339, 1987.

[37] Ben Liblit, Andrew Begel, and Eve Sweetser. Cognitive perspectives on the role of

naming in computer programs. In PPIG, page 11, 2006.

[38] Jonathan I Maletic and Andrian Marcus. Supporting program comprehension us-

ing semantic and structural information. In Proceedings of the 23rd International

Conference on Software Engineering. ICSE 2001, pages 103–112. IEEE, 2001.

[39] Robert C Martin. Clean code: a handbook of agile software craftsmanship. Pearson

Education, 2009.

[40] George A Miller. The magical number seven, plus or minus two: Some limits on our

capacity for processing information. Psychological review, 63(2):81, 1956.

[41] Christian D Newman, Reem S AlSuhaibani, Michael J Decker, Anthony Peruma,

Dishant Kaushik, Mohamed Wiem Mkaouer, and Emily Hill. On the generation,

structure, and semantics of grammar patterns in source code identifiers. Journal of

Systems and Software, 170:110740, 2020.

[42] Delano Oliveira, Reydne Bruno, Fernanda Madeiral, and Fernando Castor. Evaluat-

ing code readability and legibility: An examination of human-centric studies. In 2020

IEEE International Conference on Software Maintenance and Evolution (ICSME),

pages 348–359. IEEE, 2020.

[43] Michael P O’brien. Software comprehension–a review & research direction. Depart-

ment of Computer Science & Information Systems University of Limerick, Ireland,

Technical Report, 2003.

BIBLIOGRAPHY 99

[44] Nancy Pennington. Stimulus structures and mental representations in expert com-

prehension of computer programs. Cognitive psychology, 19(3):295–341, 1987.

[45] Anthony Peruma and Christian D Newman. Understanding digits in identifier names:

An exploratory study. In Proceedings of the 1st International Workshop on Natural

Language-based Software Engineering, pages 9–16, 2022.

[46] Dusty Phillips. Python 3 object oriented programming. Packt Publishing Ltd, 2010.

[47] Python Software Foundation. Abstract Syntax Trees. https://docs.python.org/

3/library/ast.html. Online; accessed 17 September 2023.

[48] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. How do profes-

sional developers comprehend software? In 2012 34th International Conference on

Software Engineering (ICSE), pages 255–265. IEEE, 2012.

[49] Giuseppe Scanniello and Michele Risi. Dealing with faults in source code: Abbre-

viated vs. full-word identifier names. In 2013 IEEE International Conference on

Software Maintenance, pages 190–199. IEEE, 2013.

[50] Andrea Schankin, Annika Berger, Daniel V Holt, Johannes C Hofmeister, Till Riedel,

and Michael Beigl. Descriptive compound identifier names improve source code com-

prehension. In Proceedings of the 26th Conference on Program Comprehension, pages

31–40, 2018.

[51] Yusuke Shinyama, Yoshitaka Arahori, and Katsuhiko Gondow. Improving semantic

consistency of variable names with use-flow graph analysis. In 2021 28th Asia-Pacific

Software Engineering Conference (APSEC), pages 223–232. IEEE, 2021.

[52] Ben Shneiderman and Richard Mayer. Syntactic/semantic interactions in program-

mer behavior: A model and experimental results. International Journal of Computer

& Information Sciences, 8:219–238, 1979.

[53] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. An ex-

amination of software engineering work practices. In CASCON First Decade High

Impact Papers, pages 174–188. 2010.

[54] Jeremy Singer and Chris Kirkham. Exploiting the correspondence between micro

patterns and class names. In 2008 Eighth IEEE International Working Conference

on Source Code Analysis and Manipulation, pages 67–76. IEEE, 2008.

[55] Margaret-Anne Storey. Theories, tools and research methods in program compre-

hension: past, present and future. Software Quality Journal, 14:187–208, 2006.

100 BIBLIOGRAPHY

[56] Armstrong A Takang, Penny A Grubb, Robert D Macredie, et al. The effects of

comments and identifier names on program comprehensibility: an experimental in-

vestigation. J. Prog. Lang., 4(3):143–167, 1996.

[57] Barbee E Teasley. The effects of naming style and expertise on program comprehen-

sion. International Journal of Human-Computer Studies, 40(5):757–770, 1994.

[58] TIOBE organization. Tiobe index for november 2023. https://www.tiobe.com/

tiobe-index. Online; accessed 29 November 2023.

[59] Nicole Vavrová and Vadim Zaytsev. Does python smell like java? tool support for

design defect discovery in python. arXiv preprint arXiv:1703.10882, 2017.

	Binder3.pdf
	Binder2.pdf
	Binder1.pdf
	title page example MSc

	Tong-2024-thesis.pdf

