Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence.

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.
STUDIES TO UNDERSTAND THE EFFECT OF CANCER ON HEPATIC CYP2C19 ACTIVITY

WING YEE LO

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Molecular Medicine, The University of Auckland.

June 2011
Inter-patient variation in effectiveness and toxicity of cancer chemotherapy may be due to differences in pharmacokinetics, influenced by genetic and environmental factors controlling the activity of hepatic drug metabolising enzymes. One such enzyme, CYP2C19, displays genetic variation; homozygous variant individuals have a poor metaboliser (PM) phenotype. Whilst this relationship is valid in healthy populations, genotype-phenotype discordance has been reported in cancer patients. The aim of this thesis was to determine if discordance occurs in a wider range of cancer patients and to elucidate mechanisms responsible for decreased CYP2C19 enzyme activity.

Two independent clinical studies were undertaken. Of 33 patients with terminal cancer, 37% were PM, significantly ($P < 0.0005$) higher than predicted from genotype. For 29 patients with colorectal carcinoma, 27% in stage IV and 14% of resected patients were PM. Although RECIST analysis of stage IV patients did not demonstrate a significant relationship between CYP2C19 activity and tumour burden, the one patient tested both before and after tumour resection, changed from a poor to an extensive metaboliser.

In patients with terminal cancer, no correlation between CYP2C19 status and inflammatory markers was observed. In contrast, PM phenotype in stage IV and resected patients was associated with elevated CRP ($P < 0.05$) and decreased serum TGF-β ($R_S = -0.5331, P < 0.005$). Interestingly, six patients changed phenotype categories over three test occasions reflected by changes in TGF-β. There was also an association between BMI and CYP2C19 activity ($R_S = 0.4953, P = 0.0063$).

NO-donor compounds reversibly inhibited CYP2C19 activity in human liver microsomes and cells over-expressing CYP2C19. In addition, 24h exposure of cells to NO-donor compounds irreversibly decreased CYP2C19 activity ($P < 0.0005$), which was blocked by MG132, an inhibitor of proteasomal degradation. However, there was no relationship between plasma nitrate/nitrite concentrations and CYP2C19 activity in the patients.

Total plasma protein and unbound drug fraction were determined for individual patients. It was demonstrated that the high drug/metabolite ratio in the PM subjects was not due to altered drug-protein binding and could only be accounted for by decreased enzyme activity (intrinsic clearance, CL_{int}).

In conclusion, some cancer patients have compromised CYP2C19 activity that may be due to factors including inflammation, obesity and nitrosative damage. Non-inherited variation in CYP2C19 activity may account for variable pharmacokinetics of some anticancer drugs, thus identification of phenotypic PM prior to treatment may reduce the wide variation in both toxicity and response to these agents.
Acknowledgements

First and foremost, I owe my deepest gratitude to my supervisor, Dr. Nuala Helsby. I am extremely thankful for her unconditional support and guidance throughout all these years. Without her continuous encouragement, this thesis would not have been possible. Her sincerity and endless enthusiasm to science never cease to amaze me and will always be my biggest inspiration.

I am very thankful to all the clinicians, research nurses and everyone at the Cancer Trials New Zealand for their help with the recruitment of patients into the clinical studies. In particular, I would like to thank Prof. Michael Findlay and Dr. George Laking for driving the clinical studies from beginning to completion. I am truly grateful to Dr. Laking for teaching me to use the clinical databases as well as performing RECIST analysis. Thank you to Ms. Melissa Murray and Ms. Karen Spells for the patient recruitment and their patience with my endless questions. Thank you to Ms. Jade Scott for overlooking the studies and setting up the clinical databases. To the patients, their patience and involvement in the study is greatly appreciated.

A very special thank you to my co-supervisor, A/Prof. Malcolm Tingle, whose invaluable words of wisdom has truly helped in completing this work successfully.

I am also thankful to Dr. Chris Guise, who allowed me to use his cell-lines and taught me to do cell culture. The unconditional help of Mr. Mike Goldthorpe with various labwork, techniques and proof-reading over the past years, as well as being a mentor and friend, have been invaluable.

The financial support from the Cancer Society New Zealand and the University of Auckland Doctoral Scholarship is also greatly appreciated.

I am grateful to many of my colleagues and friends: Mridula, Jie, Joyce, Kathryn, Virginia and Nancy. Without their encouragement and support, I would have become an “antisocial lab hermit”.

Deepest thanks to my family and Barry, who have been a constant source of support in many ways and their continuous belief in me have enabled me to carry my work to its final completion.
Publications arising from this thesis

Conference presentations

Table of Contents

Abstract ... i
Acknowledgements .. ii
Publications arising from this thesis ... iii
Table of Contents ... iv
List of Figures ... viii
List of Tables ... xiv
List of Abbreviations and Symbols ... xviii

CHAPTER 1 General introduction ... 1
 1.1 Therapeutic variability ... 2
 1.1.1 Pharmacokinetic variability in cancer chemotherapy 3
 1.1.2 Drug metabolising enzymes .. 5
 1.1.2.1 Cytochrome P450 enzymes ... 6
 1.1.2.2 Other drug metabolising enzymes ... 8
 1.2 Pharmacogenetics .. 8
 1.2.1 CYP2C19 genetic polymorphism .. 10
 1.2.1.1 Inter-ethnic variability ... 14
 1.2.1.2 CYP2C19 phenotype probe/tests .. 16
 1.2.1.3 Non-genetic factors affecting CYP2C19 activity and expression ... 18
 1.2.1.4 Genotype-phenotype discordance in disease 20
 1.3 Inflammation as a contributing factor to compromised drug metabolism 22
 1.3.1 Cancer-associated inflammation .. 25
 1.4 Objectives of this thesis .. 28
 1.5 Thesis organisation .. 28

CHAPTER 2 Methods .. 30
 2.1 Introduction ... 31
 2.2 Determination of CYP2C19 genotype ... 31
 2.2.1 DNA extraction from whole blood ... 31
 2.2.2 Polymerase chain reaction (PCR) .. 32
 2.2.2.1 CYP2C19 primers ... 32
 2.2.2.2 CYP2C19*2 and CYP2C19*3 amplification 33
 2.2.2.3 CYP2C19*17 amplification ... 34
 2.2.3 Restriction fragment length polymorphism (RFLP) 34
 2.2.3.1 CYP2C19*2 ... 35
2.9 CYP2C19 immunoblot analysis

2.9.1 Cell lysis

2.9.2 Cell-line microsome

2.9.3 Determination of the protein concentration

2.9.4 Reagents and buffers

2.9.5 SDS-PAGE

2.9.6 Protein transfer

2.3 Quantification and analysis of omeprazole and 5′hydroxy omeprazole metabolite levels in plasma

2.3.1 Preparation of drug standards

2.3.2 Preparation of plasma from whole blood

2.3.3 Calibration curve and solid phase extraction

2.3.4 HPLC conditions

2.4 Cytokine determination

2.4.1 Preparation of reagents

2.4.2 Preparation of serum from whole blood

2.4.3 Immunoassay procedure

2.4.4 Immunoassay procedure

2.5 Albumin determination

2.5.1 Preparation of standards

2.5.2 Assay procedure

2.5.3 Data analysis

2.6 Growth hormone determination

2.6.1 Preparation of solutions and standards

2.6.2 Assay procedure

2.6.3 Data analysis

2.7 Quantification and analysis of proguanil and cycloguanil in plasma

2.7.1 Preparation of drug standards

2.7.2 Calibration curve and drug extraction

2.7.3 HPLC conditions

2.8 HCT116.CYP2C19 cell culture

2.8.1 Preparation of cell culture solutions

2.8.2 Cell culture procedures

2.9 CYP2C19 immunoblot analysis

2.9.1 Cell lysis

2.9.2 Cell-line microsome

2.9.3 Determination of the protein concentration

2.9.4 Reagents and buffers

2.9.5 SDS-PAGE

2.9.6 Protein transfer
Table of Contents

2.9.7 CYP2C19 immunodetection ... 57
2.9.8 Beta-actin immunodetection ... 58
2.10 Real-time polymerase chain reaction (qPCR) 59
 - 2.10.1 Cell lysis ... 59
 - 2.10.2 Reverse transcription .. 59
 - 2.10.3 Real-time PCR ... 60
 - 2.10.4 Data analysis .. 60
2.11 Nitrite determination ... 61
 - 2.11.1 Sample pre-treatment ... 61
 - 2.11.2 Preparation of reagents ... 61
 - 2.11.3 Assay procedure ... 62
 - 2.11.4 Data analysis .. 63

CHAPTER 3 Compromised CYP2C19 activity in advanced cancer 64
 - 3.1 Introduction ... 65
 - 3.1.1 Study design ... 67
 - 3.2 Results ... 68
 - 3.2.1 Demographics .. 68
 - 3.2.2 CYP2C19 genotype ... 70
 - 3.2.3 CYP2C19 metabolic activity ... 71
 - 3.2.4 Relationship with inflammatory status 75
 - 3.3 Discussion ... 80

CHAPTER 4 CYP2C19 metabolic status at various stages of cancer 83
 - 4.1 Introduction ... 84
 - 4.1.1 Study design ... 86
 - 4.2 Results ... 88
 - 4.2.1 Demographics .. 88
 - 4.2.2 CYP2C19 genotype ... 90
 - 4.2.3 CYP2C19 metabolic activity ... 93
 - 4.2.4 Tumour burden .. 96
 - 4.2.5 Cancer chemotherapy .. 101
 - 4.2.6 Nutritional status .. 105
 - 4.2.7 Relationship with inflammatory status 109
 - 4.2.8 Repeated phenotyping test ... 115
 - 4.3 Discussion .. 125

CHAPTER 5 Effects of nitric oxide on CYP2C19 activity 130
 - 5.1 Introduction ... 131
CHAPTER 6 Protein binding of CYP2C19 substrates .. 161
 6.1 Introduction ... 162
 6.1.1 Study design ... 167
 6.1.1.1 Chemicals and reagents .. 167
 6.1.1.2 Preparation of solutions .. 167
 6.1.1.3 Incubation conditions .. 167
 6.1.1.4 Ultrafiltration procedure .. 168
 6.1.1.5 Calibration curve .. 169
 6.1.1.6 Inter-individual variability in total plasma protein concentration 170
 6.1.1.7 Data analysis .. 170
 6.2 Results .. 171
 6.2.1 Protein binding of omeprazole .. 171
 6.2.2 Protein binding of proguanil ... 180
 6.2.3 Individualised hepatic clearance of omeprazole and proguanil 191
 6.3 Discussion ... 199

CHAPTER 7 General discussion and conclusion .. 203
 7.1 General discussion and conclusion .. 204

References ... 215
List of Figures

Chapter 1

Figure 1.1. The proposed metabolic route of proguanil in humans. Structure I = proguanil, II = unstable intermediate, III = phenylbiguanide, IV = cycloguanil. Adapted from Herrlin et al. (2000). .. 17

Figure 1.2. The proposed downregulation of CYP450 enzymes during inflammation and infection. Modified from Renton (2004). ↑ = increased ↓ = decreased. ... 23

Figure 1.3. The complex relationship between cancer and inflammation. Adapted from Manotovani et al. (2008). The intrinsic and extrinsic pathways of cancer lead to activation of transcription factors which causes the tumour cells to produce an inflammatory response that becomes a feedback loop to elicit further inflammation. ... 26

Chapter 2

Figure 2.1. A representative HPLC chromatogram showing the elution of omeprazole (OMP; Rt 9.9 min), 5-hydroxy omeprazole (5-OH OMP; Rt 5.1 min) and internal standard (IS, phenacetin; Rt 7.6 min) at wavelengths of a) 302 nm and b) 254 nm. Inset shows the UV spectra of omeprazole, 5’hydroxy omeprazole and the internal standard. ... 39

Figure 2.2. A typical calibration curve of a) omeprazole (0-2000 ng/mL; y = 0.0006x - 0.002; r² = 0.99), and b) 5’hydroxy omeprazole (0-400 ng/mL; y = 0.0008x - 0.005; r² = 0.99) in triplicate determinations of spiked human plasma. ... 40

Figure 2.3. The calibration curve for the determination of albumin concentration using bovine serum albumin as the standard, y = 2.12x / 5.983 + x; r² = 0.9992. Values are the mean ± SD of duplicate determinations. ... 45

Figure 2.4. A typical calibration curve for the determination of human growth hormone concentration, y = 0.00045x + 0.017; r² = 0.9989. Values are the mean ± SD of triplicate determinations. ... 47

Figure 2.5. A representative HPLC chromatogram showing the elution of proguanil (PG; Rt 12.4 min), cycloguanil (CG; Rt 7.0 min) and internal standard (IS, chlorcycloguanil; Rt 9.9 min) at 245 nm. Inset shows the UV spectra of proguanil, cycloguanil and internal standard. ... 50

Figure 2.6. A typical calibration curve of a) proguanil (0-1000 ng/mL; y = 0.0027x - 0.001; r² = 0.998) and b) cycloguanil (0-1000 ng/mL; y = 0.0019x + 0.003; r² = 0.997) in triplicate determinations of spiked human plasma. ... 50

Figure 2.7. A map of the vector showing the relative location of the CYP2C19 cloning site and antibiotic resistance in HCT116 cell-line transfected with CYP2C19 (Guise et al. 2010). ... 52

Figure 2.8. A typical calibration curve for the determination of protein concentration using bovine serum albumin as a standard, y = 1.013x – 6.955, r² = 0.9864. Values are mean ± SD of triplicate determinations. ... 55

Figure 2.9. The calibration curve for the determination of nitrate concentration, y = 46.15x + 1189, r² = 0.9381. Values are mean ± SD of duplicate determinations. ... 63
Chapter 3

Figure 3.1. The potential relationship between cancer-associated inflammation and CYP2C19 activity. Cancer-associated inflammation, also described in Figure 1.3, leads to increased release of inflammatory cytokines which will induce the hepatic acute phase response; together this may influence expression or activity of CYP enzymes...

Figure 3.2. The frequency distribution of log omeprazole hydroxylation index of the advanced incurable cancer patients. The white bar indicates the one patient (#425) who was homozygous variant. The bimodal shape that was observed in a healthy population was absent.

Figure 3.3. The distribution of CYP2C19 metabolic activity in advanced incurable cancer patients with known CYP2C19 genotype. The difference in the proportions of phenotypic poor metabolisers in wt/wt or wt/var category were not significant ($P = 0.06$).

Figure 3.4. a) The cytokine concentrations and b) the CRP concentration of each advanced incurable patient. Bar shows the median concentration observed in the patients. The normal concentrations of the cytokines and CRP are shown in Table 1.10.

Figure 3.5. The lack of relationship between CYP2C19 activity and the levels of inflammatory cytokines and CRP in advanced incurable cancer patients. The P-values from Spearman’s rank correlation test are shown on the graphs.

Figure 3.6. a) The lack of relationship between CYP2C19 activity and albumin levels and b) the lack of relationship between CRP and albumin levels in advanced incurable cancer patients. The P-values from Spearman’s rank correlation test are shown on the graphs.

Figure 3.7. The lack of relationship between CYP2C19 activity and plasma growth hormone concentrations in advanced incurable cancer patients. Spearman $r = 0.1558$, $P = 0.4026$.

Chapter 4

Figure 4.1. The distribution of CYP2C19 metabolic activity in cancer patients with stage IV or no-evaluable disease relative to genotype. The difference in the proportions of phenotypic poor metabolisers in both disease categories was not significant ($P = 0.6513$). wt/wt = CYP2C19*1/*1, *1/17, *17/17; wt/var = CYP2C19*1/2, *1/*3, *17/2 and var/var = CYP2C19*2/*2 and *3/*3.

Figure 4.2. Proportion of CYP2C19 phenotypic poor metabolisers in different patient groups.

Figure 4.3. An example of RECIST performed on a CT scan of patient #1004. Dimensions were taken on the longest axis and measured in millimetres.

Figure 4.4. The association between higher tumour burden in stage IV patients who were poor metabolisers compared to extensive metabolisers, although not significant ($P = 0.47$). Circle represents those patients that have liver metastases, square represents absence of metastases (primary tumour only) and triangle represent metastases at lymph nodes. Data are shown as median (interquartile range).

Figure 4.5. The lack of relationship between CYP2C19 metabolic ratio and the tumour burden in patients with stage IV disease. Spearman $r = 0.1769$, $P = 0.5281$.
Figure 4.6. Typical chemotherapy regimens of the patients with stage IV or no-evaluable disease and the relationship to the wash-out period prior to phenotype test. Black arrow indicates time of chemotherapy and red arrow indicates time of phenotype test. Additional chemotherapy regimens include: capecitabine (1250 mg/m² po bid, day 1-14), and gemcitabine (1000 mg/m² iv day 1, 8, 15) where the phenotype test was undertaken during cycle intervals (i.e. day 7).

Figure 4.7. The relationship between the body mass index and CYP2C19 metabolic ratio in patients with a) stage IV or b) no-evaluable disease. The body mass index was calculated as weight/height² (kg/m²). The P-values from Spearman’s rank correlation test are shown on the graphs.

Figure 4.8. The relationship between the arm circumference and CYP2C19 metabolic ratio in patients with a) stage IV or b) no-evaluable disease. The P-values from Spearman’s rank correlation test are shown on the graphs.

Figure 4.9. The relationship between CYP2C19 metabolic function and a) arm fat area and b) arm muscle area in the patients. The P-values from Spearman’s rank correlation test are shown on the graphs.

Figure 4.10. The relationship between a) C-reactive protein and b) TGF-β in extensive and poor metabolisers from both stage IV and no-evaluable disease. Data are shown as median and interquartile range.

Figure 4.11. The relationship between TGF-β and CYP2C19 metabolic ratio in all patients in the study. The P-values from Spearman’s rank correlation test are shown on the graphs.

Figure 4.12. The relationship between TNF-α and CYP2C19 metabolic ratio in all patients in the study. The P-values from Spearman’s rank correlation test are shown on the graphs.

Figure 4.13. The relationship between CYP2C19 activity and the levels of inflammatory mediators. The P-values from Spearman’s rank correlation test are shown on the graphs.

Figure 4.14. The variability of the CYP2C19 metabolic ratio in individual patients with stage IV or no-evaluable disease over three separate occasions.

Figure 5.1. The overall reaction catalysed by nitric oxide synthase (NOS) and its cofactors. Blue indicates the bidomain structure of NOS: the N-terminal oxygenase domain contains binding sites for haem, BH₄ and L-arginine. The C-terminal reductase domain contains binding sites for FAD, FMN and NADPH. Electron flow through the reductase domain requires the presence of bound Ca²⁺ and calmodulin. Electrons donated by NADPH to the reductase domain proceeds to the oxygenase domain via FAD and FMN which then interact with haem and BH₄ to catalyse the reaction of oxygen with L-arginine to generate citrulline and NO. Diagram adapted from Alderton et al. (2001).

Figure 5.2. A simplified scheme of the metabolic pathways of nitric oxide in circulating blood. RSNO = S-nitrosothiols, GSH = glutathione, O₂⁻ = superoxide, Hb = haemoglobin, HbO₂ = oxyhaemoglobin, NO₂⁻ = nitrite, NO₃⁻ = nitrate. Broken arrow indicates decomposition. In plasma, NO may react with oxygen to form nitrite or with superoxide forming peroxynitrite which then decompose into nitrites and nitrates. It can also...
react with oxyhaemoglobin or haemoglobin forming nitrate and nitrosyhaemoglobin respectively as well as reacting with thiols forming nitrosothiols. Diagram adapted from Kelm (1999).

Figure 5.3. The chemical formulae of the nitric oxide donors used in this study (Glidewell et al. 1987; Hrabie et al. 1993; Singh et al. 1996).

Figure 5.4. The optimal number of HCT116.CYP2C19 cells required to detect CYP2C19 and GAPDH expression in real-time PCR.

Figure 5.5. CYP2C19 immunoreactive protein was not detected in the HCT116.CYP2C19 cell-line. Lane 1) CYP2C19 supersomes™, 2) human liver microsomes, 3) HCT116.CYP2C19 cell lysate and 4) HCT116.wildtype cell lysate.

Figure 5.6. The inhibitory effect of nitric oxide donors (SP, SNAP and NOC-18) on CYP2C19 activity in human liver microsomes (a-c); CYP2C19 supersomes™ (d-f) and in HCT116.CYP2C19 cells (g-i) of triplicate determinations. CYP2C19 activity was measured following co-incubation of nitric oxide donors with omeprazole for 20 minutes (microsomes/supersomes) or 1 hour (HCT116.CYP2C19 cells).

Figure 5.7. The inhibition of CYP2C19 activity in HCT116.CYP2C19 cell-line at high (> 1 mM) concentrations of SP of triplicate determinations.

Figure 5.8. The inhibitory effect of relative amounts of nitric oxide formed from nitric oxide donors on CYP2C19 activity in a) human liver microsomes, b) CYP2C19 supersomes and c) HCT116.CYP2C19 cells of triplicate determinations. Closed red circle = SP, open black circle = SNAP and closed blue triangle = NOC-18.

Figure 5.9. The inhibitory effect of SNAP and NAP on CYP2C19 activity in HCT116.CYP2C19 cell-line of triplicate determinations. NAP did not inhibit CYP2C19 activity.

Figure 5.10. CYP2C19 activity after incubation with SNAP (100 µM) with or without a washout period.

Figure 5.11. The inhibitory effect of 24 hour exposure to SNAP at a) 100 µM or b) 500 µM on CYP2C19 activity in HCT116.CYP2C19 cells of triplicate determinations. CYP2C19 activity significantly decreased following longer exposure (100 µM, 24 h; \(P = 0.04 \)) and at a higher SNAP concentration (500 µM, 1 h; \(P = 0.02 \)).

Figure 5.12. The effect of 24 hour exposure to nitric oxide donor (SNAP and NOC-18) on CYP2C19 activity in HCT116.CYP2C19 cells. a) 24h SNAP incubation and b) 24h NOC-18 incubation. % control activity was normalised to cell number. A concentration dependent decrease in CYP2C19 activity was observed as SNAP/NOC-18 increased.

Figure 5.13. The effect of exposure to nitric oxide donors (SNAP and NOC-18) on confluent cells. a) 5h SNAP incubation and b) 5h NOC-18 incubation. % control activity was normalised to cell number. A concentration dependent decrease in CYP2C19 activity was observed as SNAP/NOC-18 increased.

Figure 5.14. The effect of the proteasome inhibitor, MG132, on NO-mediated changes in CYP2C19 activity in HCT116.CYP2C19 cells. Confluent cells were incubated with 1000 µM NO-donors (a: SNAP or b: NOC-18) for 5 hours prior to determination of CYP2C19 activity. % control activity was normalised to cell number and the activity in the absence of NO-donor and MG132. Co-incubation of SNAP with MG132 prevented the decrease in CYP2C19 activity (\(P < 0.0001 \)). Co-incubation of NOC-18 with MG132 also prevented the decrease but was insignificant.
Figure 5.15. The reaction sequence of nitric oxide with oxygen to form nitrite and nitrate. Adapted from Feelish (1991).

Figure 5.16. The total plasma nitrate concentrations in different disease categories. Median and interquartile range are shown.

Figure 5.17. The lack of relationship between total plasma nitrate concentrations and CYP2C19 activity in the cancer patients with a) advanced incurable disease and b) stage IV or no-evaluable disease. The P-values from Spearman’s rank correlation test are shown on the graphs.

Chapter 6

Figure 6.1. A typical calibration curve of omeprazole in phosphate buffer of triplicate determinations. Slope = 3.395, $R^2 = 0.9997$, $P < 0.0001$. Inset shows the linearity of the calibration curve at lower concentrations.

Figure 6.2. A typical calibration curve of proguanil in phosphate buffer of triplicate determinations. Slope = 5.728, $R^2 = 0.9991$, $P < 0.0001$. Inset shows the linearity of the calibration curve at lower concentrations.

Figure 6.3. The percentage fraction unbound of omeprazole in various plasma protein solutions.

Figure 6.4. The lack of relationship between CYP2C19 omeprazole metabolic ratio and albumin concentrations in patients with advanced incurable cancer. The metabolic ratio was determined in chapter 3 as drug/metabolite and reported in Table 6.3. The P-values from Spearman’s rank correlation test are shown on the graph.

Figure 6.5. The positive relationship between concentrations of total plasma protein and unbound omeprazole in patients with advanced incurable cancer. Spearman r = 0.4196, $P = 0.0329$.

Figure 6.6. The relationship between the CYP2C19 omeprazole metabolic ratio and total plasma protein concentration in patients with advanced incurable cancer. The P-values from Spearman’s rank correlation test are shown on the graph. A significant positive relationship between total plasma protein and CYP2C19 metabolic ratio was only observed in patients with genotype-phenotype discordance ($R_S = 0.6833$, $P = 0.05$).

Figure 6.7. The lack of relationship between 5’hydroxy omeprazole metabolite and total plasma protein concentration in patients with advanced incurable cancer. Spearman r = -0.1755, $P = 0.3911$.

Figure 6.8. The percentage fraction unbound of proguanil in various proteins found in plasma.

Figure 6.9. The lack of relationship between concentrations of albumin and unbound proguanil in cancer patients with stage IV or no-evaluable disease. Spearman r = -0.0684, $P = 0.5740$.

Figure 6.10. The relationship between the CYP2C19 proguanil metabolic ratio and albumin concentrations in cancer patients with stage IV or no-evaluable disease. The P-values from Spearman’s rank correlation test are shown on the graph. A negative relationship between albumin concentration and CYP2C19 metabolic ratio was only observed in patients with genotype-phenotype discordance, although not significant ($R_S = -0.2985$, $P = 0.2446$).

Figure 6.11. The significant positive relationship between the concentrations of CRP and unbound proguanil in cancer patients with stage IV or no-evaluable disease. Spearman r = 0.2558, $P = 0.0268$.
Figure 6.12. *The lack of relationship between the concentrations of total plasma protein and unbound proguanil in cancer patients with stage IV or no-evaluable disease.* The P-values from Spearman's rank correlation test are shown on the graph. ... 188

Figure 6.13. *The relationship between the CYP2C19 proguanil metabolic ratio and total plasma protein concentration in cancer patients with stage IV or no-evaluable disease.* The P-values from Spearman's rank correlation test are shown on the graph. A significant positive relationship between total plasma protein and CYP2C19 metabolic ratio was only observed in patients with genotype-phenotype discordance ($R_S = 0.6904$, $P = 0.0015$). ... 189

Figure 6.14. *The negative relationship between the concentration of the cycloguanil metabolite and total plasma protein in cancer patients with stage IV or no-evaluable disease.* Spearman $r = -0.3584$, $P = 0.0008$................................. 190

Figure 6.15. *Relationship between amount of drug and metabolite in blood with respect to hepatic and renal clearance of the drug.* $P =$ parent drug, $M =$ metabolite, $po =$ per os (oral administration); $CL_H =$ hepatic clearance, $CL_R =$ renal clearance; $C =$ steady state concentration in blood, $Ce =$ concentration excreted in urine. Following oral administration, the parent drug undergoes hepatic metabolism and reaches steady state concentration which further undergoes renal clearance and is excreted in the urine. ... 191
List of Tables

Chapter 1

Table 1.1. Inter-patient variability in the pharmacokinetic parameters of various anticancer drugs. The percentages represent the coefficient of variation and others reflect the fold range. Vd = volume of distribution, CL = clearance, AUC = area under the time-concentration curve, Css = steady-state concentration, t\(_{1/2}\) = half-life. Adapted from Gurney (1996).

Table 1.2. The influential factors on the pharmacokinetic variability in chemotherapy. Adapted from Masson et al. (1997).

Table 1.3. Examples of major contributing CYP450 drug metabolising enzymes responsible for the metabolism of anticancer drugs. Adapted from Fujita (2006), Rendic (2002) and Scripture et al. (2006). a minor contribution by the enzyme and b other enzymes involved.

Table 1.4. Examples of other drug metabolising enzymes responsible for the metabolism of anticancer drugs. Adapted from Fujita (2006), Rendic (2002) and Scripture et al. (2006).

Table 1.5. Known CYP2C19 substrates. Adapted from Desta et al (2002).

Table 1.6. Common genetic variants of CYP2C19 allele identified to date and the major SNPs/alterations responsible for the phenotype of the corresponding allele. Adapted from Sim (2008).

Table 1.7. The inter-ethnic variability in the incidence of CYP2C19*2 and CYP2C19*3 variant alleles. Adapted from Rosemary et al (2007). PNG = Papua New Guinea.

Table 1.8. Concordance between CYP2C19 genotype and phenotype in healthy populations.

Table 1.9. A summary of the clinical studies demonstrating the effect of inflammation on CYP450 drug metabolism in adults. Adapted from Vet et al (2011). a ↓ = decrease in CYP450 activity, ↔ = no change in CYP450 activity, b the relationship between inflammatory markers and CYP450, ND = not determined in the reported study.

Table 1.10. The inflammatory cytokine concentrations in healthy individuals versus cancer patients with various types of cancer. All units are pg/mL except for TGF-β (ng/mL) and CRP (mg/L). a reported as mean ± SE and b reported as mean ± SD. c The inflammatory cytokine concentrations were reported for gastrointestinal cancer patients who were non-cachectic and prostate cancer patients with bone metastases. NS = not significant due to small sample size.

Chapter 2

Table 2.1. The primer sequence of the CYP2C19 alleles studied in this thesis (CYP2C19*2, CYP2C19*3 and CYP2C19*17).

Table 2.2. The reported precision and accuracy of the quantification and analysis of omeprazole and 5’hydroxy omeprazole metabolite levels in plasma (Motevalian et al. 1999).
Table 2.3. The reported accuracy and precision of the quantification of cytokines in the commercial Milliplex kit. ... 41

Table 2.4. The reported accuracy and precision of the quantification of growth hormone in the commercial kit. ... 46

Table 2.5. The reported precision and accuracy of the quantification and analysis of omeprazole and 5’hydroxy omeprazole metabolite levels in plasma (Helsby 1991). .. 48

Table 2.6. The composition of the immunoblotting buffers used in this study. 56

Chapter 3

Table 3.1. The demographics of the patients with advanced incurable cancer. BMI = Body mass index. a metastases present: Y = Yes, N = No. b Liver metastases present: Y = Yes, N = No. NK = unknown.. 69

Table 3.2. Genotype totals and frequencies for CYP2C19*2 and CYP2C19*3 in patients with advanced incurable cancer. CYP2C19*2 was in agreement with Hardy-Weinberg equilibrium ($\chi^2 = 1.63$, $P = 0.443$), but CYP2C19*3 was not ($\chi^2 = 33$, $P < 0.0001$). .. 70

Table 3.3. The CYP2C19 genotype-phenotype discordance in individual advanced incurable cancer patients. EM = extensive metaboliser; PM = poor metaboliser. nd = not detectable; ND = not determined. Y = Yes; N = No. a Patient #425 was a homozygous variant poor metaboliser. .. 72

Table 3.4. Comparison of the inflammatory markers and growth hormone concentration between phenotypic extensive and poor metabolisers of advanced incurable cancer patients. P-values were calculated using Mann-Whitney rank-sum test. ... 79

Chapter 4

Table 4.1. The demographics of the cancer patients with stage IV or no-evaluable disease. NED = no-evaluable disease. BMI = Body mass index. ND = not determined.. 89

Table 4.2. The CYP2C19 genotype and phenotype of individual cancer patients with stage IV or no-evaluable disease. NED = no-evaluable disease. EM = extensive metaboliser, PM = poor metaboliser. Y = yes, N = no. ... 91

Table 4.3. Genotype totals and frequencies for CYP2C19*2, CYP2C19*3 and CYP2C19*17 in patients with stage IV or no-evaluable disease. All alleles were in agreement with Hardy-Weinberg equilibrium ($\chi^2 = 0.24$, $P = 0.8867$ for CYP2C19*2; $\chi^2 = 0.01$, $P = 0.9949$ for CYP2C19*3; $\chi^2 = 2.788$, $P = 0.2481$ for CYP2C19*17). ... 92

Table 4.4. The tumour burden of the patients with stage IV disease determined from CT scans or X-rays using RECIST. Dates are shown as DD/MM/YYYY. .. 98

Table 4.5. The chemotherapy regime of each patient with stage IV or no-evaluable disease. The patients with discordant CYP2C19 activity are highlighted in grey. a XELOX = capecitabine and oxaliplatin; 5FU = 5-fluorouracil; FOLFIRI = 5-fluorouracil, folinic acid and irinotecan; 5-FU/FA = 5-fluorouracil and folinic acid; ECX = epirubicin, cisplatin and capecitabine. Dates are shown as DD/MM/YYYY. .. 104

Table 4.6. The lack of association between the proportion of poor metabolisers with stage IV or no-evaluable disease in relation to their body mass index (BMI; kg/m²). P-values were calculated using Fisher’s exact test. 105
Table 4.7. A summary of the inflammatory markers concentrations in each patient group (stage IV or no-evaluable disease). Median concentrations (interquartile range) are reported. All units are in pg/mL, except for CRP (mg/L) and albumin (g/L). ND = not determined. P-values were calculated using Mann-Whitney rank-sum test.

Table 4.8. A summary of the inflammatory marker concentrations in extensive or poor metabolisers in each disease category. All units were in pg/mL, except for CRP (mg/L) and albumin (g/L). P-values were calculated using Mann-Whitney rank-sum test. ND = not determined.

Table 4.9. The relationship between body mass index and the inflammatory markers of patients in this study. The Spearman rank value (R) and P-values are reported.

Table 4.10. The CYP2C19 metabolic ratios of patients with stage IV and no-evaluable disease determined on three separate occasions.

Table 4.11. Changes in tumour burden in relation to the stage IV patient’s CYP2C19 metabolic ratio over the three test periods. EM = extensive metaboliser, PM = poor metaboliser.

Table 4.12. The variability in inflammatory mediators relative to changes in the patient’s CYP2C19 metabolic ratio with stage IV disease. All units in pg/mL except CRP mg/L. ND = not determined.

Table 4.13. The variability in inflammatory mediators relative to changes in the patient’s CYP2C19 metabolic ratio with no-evaluable disease. All units in pg/mL except CRP mg/L. ND = not determined.

Chapter 5

Table 5.1. The mean threshold cycle (Ct) of CYP2C19 and GAPDH mRNA expression in wild type or HCT116.CYP2C19 cell-line at 10⁶ cells. Mean ± SD of triplicate determinations are reported.

Table 5.2. CYP2C19 activity determined in the different in vitro systems used in this study. 10⁶ cells = 2.7 mg/mL protein following cell lysis.

Table 5.3. The IC₅₀ values of the nitric oxide donors in the inhibition of CYP2C19 activity. complete inhibition was only observed at 10 mM SP with IC₅₀ of 5688.5 µM (Figure 5.7). percentage inhibition observed at 500 µM.

Table 5.4. The IC₅₀ values of the nitric oxide released from the nitric oxide donors in the inhibition of CYP2C19 activity. complete inhibition was only observed at 10 mM SP with IC₅₀ of 2275.1 nmol. percentage inhibition observed at highest concentration.

Table 5.5. CYP2C19 mRNA expression in the presence or absence of nitric oxide donors (SNAP or NOC-18) or proteasome inhibitor (MG132) in HCT116.CYP2C19 cells. Mean and standard deviation range was reported.

Table 5.6. The relationship between total plasma nitrate concentrations and the inflammatory markers measured in the cancer patients of different disease categories. The Spearman rank value (R) and P-values are reported.
Chapter 6

Table 6.1. A list of 289 plasma (and serum) proteins documented in literature. Adapted from Anderson et al. 2002. ... 165

Table 6.2. The final concentration of each plasma protein used per triplicate incubation. The concentrations of albumin, AAG, CRP, LDL and HDL were based on typical values observed in healthy individuals. CRP concentration was based on the upper value observed previously in advanced incurable cancer patients (chapter 3). .. 168

Table 6.3. Measured versus predicted plasma protein binding of omeprazole in advanced incurable cancer patients following an oral dose of omeprazole (20 mg). ... 173

Table 6.4. Measured versus predicted plasma protein binding of proguanil in patients with stage IV disease following an oral dose of proguanil (200 mg). 181

Table 6.5. Measured versus predicted plasma protein binding of proguanil in patients with no-evaluable disease following an oral dose of proguanil (200 mg). 182

Table 6.6. The reported in vitro \(V_{\text{max}} \) and \(K_{\text{m}} \) and the calculated intrinsic clearance values of omeprazole and proguanil metabolism in human liver microsome. .. 193

Table 6.7. Inter-individual variability in hepatic clearance (\(\text{CL}_{\text{H}} \)) of omeprazole in patients with advanced incurable cancer. a Based on the measured \(f_{\text{u}} \) in each individual patient (Table 6.3) and calculated using equation 3. 195

Table 6.8. Inter-individual variability in hepatic clearance (\(\text{CL}_{\text{H}} \)) of proguanil in cancer patients with stage IV disease. a Based on the measured \(f_{\text{u}} \) in each individual patient (Table 6.4) and calculated using equation 3. 196

Table 6.9. Inter-individual variability in hepatic clearance (\(\text{CL}_{\text{H}} \)) of proguanil in cancer patients with no-evaluable disease. a Based on the measured \(f_{\text{u}} \) in each individual patient (Table 6.5) and calculated using equation 3. 197

Table 6.10. A summary of the results of chapter 6. ... 202

Chapter 7

Table 7.1. The reported concentrations of various cytokines and C-reactive protein of healthy individuals. All units are pg/mL except for TGF-β (ng/mL) and CRP (mg/L). a reported as mean ± SE, b reported as mean ± SD, c reported as median. .. 209
List of Abbreviations and Symbols

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>5'OH OMP</td>
<td>5'-hydroxy omeprazole</td>
</tr>
<tr>
<td>α-MEM</td>
<td>Alpha-minimal essential media</td>
</tr>
<tr>
<td>A</td>
<td>Adenine</td>
</tr>
<tr>
<td>AAG</td>
<td>Alpha₁-acid glycoprotein</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine transaminase</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate transaminase</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the time-concentration curve</td>
</tr>
<tr>
<td>bid</td>
<td>bis in die, twice a day</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>C</td>
<td>Cytosine</td>
</tr>
<tr>
<td>CG</td>
<td>Cycloguanil</td>
</tr>
<tr>
<td>CL</td>
<td>Clearance</td>
</tr>
<tr>
<td>CLₜₜ</td>
<td>Hepatic clearance</td>
</tr>
<tr>
<td>CLₘₙ</td>
<td>Intrinsic clearance</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CT scan</td>
<td>X-ray computed tomography scan</td>
</tr>
<tr>
<td>CYP450</td>
<td>Cytochrome P450</td>
</tr>
<tr>
<td>dL</td>
<td>Decilitre</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>E</td>
<td>Hepatic extraction ratio</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EM</td>
<td>Extensive metaboliser</td>
</tr>
<tr>
<td>fᵤ</td>
<td>Fraction unbound</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational acceleration</td>
</tr>
<tr>
<td>G</td>
<td>Guanine</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>HDL</td>
<td>High-density lipoprotein</td>
</tr>
<tr>
<td>HI</td>
<td>Hydroxylation index</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>Half maximal inhibitory concentration</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-gamma</td>
</tr>
<tr>
<td>IL-1α</td>
<td>Interleukin-1 alpha</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin-1 beta</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin-6</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Symbol</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>IQR</td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td></td>
</tr>
<tr>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>K_m</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>LDL</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td></td>
</tr>
<tr>
<td>mL</td>
<td></td>
</tr>
<tr>
<td>mM</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>mRNA</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>NADPH</td>
<td></td>
</tr>
<tr>
<td>NED</td>
<td></td>
</tr>
<tr>
<td>ng</td>
<td></td>
</tr>
<tr>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>NOC-18</td>
<td></td>
</tr>
<tr>
<td>OD</td>
<td></td>
</tr>
<tr>
<td>OMP</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td></td>
</tr>
<tr>
<td>pg</td>
<td></td>
</tr>
<tr>
<td>PG</td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td></td>
</tr>
<tr>
<td>po</td>
<td></td>
</tr>
<tr>
<td>PVDF</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>qPCR</td>
<td></td>
</tr>
<tr>
<td>R_b</td>
<td></td>
</tr>
<tr>
<td>RECIST</td>
<td></td>
</tr>
<tr>
<td>RFLP</td>
<td></td>
</tr>
<tr>
<td>R_s</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>SNAP</td>
<td>S-nitroso N-acetylpenicillamine</td>
</tr>
<tr>
<td>SNP</td>
<td>Single nucleotide polymorphism</td>
</tr>
<tr>
<td>SP</td>
<td>Sodium nitroprusside</td>
</tr>
<tr>
<td>T</td>
<td>Thymine</td>
</tr>
<tr>
<td>$t_{1/2}$</td>
<td>Half-life</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris-buffered saline</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor-beta</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour necrosis factor-alpha</td>
</tr>
<tr>
<td>U</td>
<td>Units</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume to volume</td>
</tr>
<tr>
<td>var</td>
<td>Variant allele</td>
</tr>
<tr>
<td>Vd</td>
<td>Volume of distribution</td>
</tr>
<tr>
<td>V_{max}</td>
<td>Maximum catalytic rate</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight to volume</td>
</tr>
<tr>
<td>wt</td>
<td>Wildtype allele</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
</tbody>
</table>