Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1079). Services for accessing these data are described at the back of the journal.

## References

Balogh-Hergovich, É., Speier, G. \& Argay, G. (1991). J. Chem. Soc. Chem. Commun. pp. 551-552.
Pilloni, G., Bandoli, G., Tisato, F. \& Corain, B. (1996). J. Chem. Soc. Chem. Commun. pp. 433-434.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1990). SHELXTL-Plus. Release 4.11/V. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Speier, G., Fülöp, V. \& Párkányi, L. (1990). J. Chem. Soc. Chem. Commun. pp. 512-513.
Takamura, K. \& Ito, M. (1977). Chem. Pharm. Bull. 25, 3218-3225.
Utaka, M., Hojo, M., Fujii, Y. \& Takeda, A. (1984). Chem. Lett. pp. 635-638.
Utaka, M. \& Takeda, A. (1985). J. Chem. Soc. Chem. Commun. pp. 1824-1826.
Westlake, D. W. S., Talbot, G., Blakely, E. R. \& Simpson, F. J. (1959). Can. J. Microbiol. 5, 621-629.

Acta Cryst. (1997). C53, 1549-1551

# [ $N, N$-Bis(3,5-dimethylpyrazol-1-yl-methyl)-1-hydroxy-2-aminoethane](3,5-dimethylpyrazole)copper(II) Diperchlorate $\dagger$ 

Peter D. W. Boyd, ${ }^{a}$ Anthony K. Burrell ${ }^{b}$ and Clifton E. F. Rickard ${ }^{a}$<br>${ }^{a}$ Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand, and ${ }^{b}$ Department of Chemistry, Massey University, Palmerston North, New' Zealand. E-mail: pdw.boyd@auckland.ac.nz

(Received 10 February 1997; accepted 27 May 1997)


#### Abstract

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}\right)\right]$ $\left(\mathrm{ClO}_{4}\right)_{2}$, consists of a five-coordinate square-pyramidal copper(II) complex as its perchlorate salt. The copper(II) ion is coordinated in the basal plane by azole and amine N atoms of the $N, N$-bis[(3,5-dimethyl-1-pyra-zolyl)methyl]-1-hydroxy-2-aminoethane (bpmhe) ligand and 3,5-dimethylpyrazole, and in the apical position by an alcohol O atom.


[^0]
## Comment

Copper(II) complexes of the tripodal ligand bpmhe (Driessen, 1982) of the type $[\mathrm{Cu}(\mathrm{bpmhe}) L] X(L=\mathrm{Br}$, $\mathrm{Cl}, \mathrm{NO}_{3}, \mathrm{~N}_{3} ; X=\mathrm{Cl}, \mathrm{Br}, \mathrm{BF}_{4}$ ) have been reported as mononuclear five-coordinate complexes (Malachowski, Davidson \& Hoffman, 1989). The ligand bpmhe may act as a tetradentate ligand with two pyrazole nitrogen, one tertiary amine and one alcohol oxygen donor. We have been interested in the formation of such complexes with $L$ as a neutral donor ligand and have isolated the title compound $[\mathrm{Cu}(\mathrm{bpmhe}) L]\left(\mathrm{ClO}_{4}\right)_{2}$, where $L$ is $3,5-$ dimethylpyrazole.

(I)

The coordination geometry around the copper(II) ion consists of two pyrazole N atoms, an alcohol O atom and an amine N atom of the bpmhe ligand and one N atom of the 3,5 -dimethylpyrazole molecule in a squarepyramidal environment. The four N atoms form the base of the pyramid with the alcohol O atom at the apex. The $\mathrm{Cu}-\mathrm{N}$ bond distances and angles are similar to those found in other $N, N$-bis(pyrazol-1-ylmethyl)amine complexes of copper(II) (Blonk, Driessen \& Reedijk, 1985; Driessen, De Graaff \& Wiesmeijer, 1987). The


Fig. 1. The structure of the cation showing $50 \%$ probability displacement ellipsoids. H atoms have been omitted for clarity.

Acta Crystallographica Section C
ISSN 0108-2701 © 1997
copper(II) ion lies 0.354 (1) $\AA$ out of the plane defined by N5, N3, N2 and N6 toward Ol, with a $\mathrm{Cu}-\mathrm{O}$ distance of 2.273 (2) $\AA$. This distance is shorter than observed in other pyramidal complexes with coordinated alcohols (2.33-2.382 Å; Luneau, Oshio, Okawa, Koikawa \& Kida, 1990; Antolini \& Menabue, 1984; Antolini, Menabue, Sola, Battaglia \& Corradi, 1986) where the corresponding out-of-plane displacement of the copper(II) ion is smaller. In a related structure, the [ $N, N$-bis(pyrazol-1-ylmethyl)amine](pyrazole) bis(tetrafluoroborate) complex (Driessen, De Graaff \& Wiesmeijer, 1987), with only a weakly coordinated F atom of the tetrafluroborate ion ( $\mathrm{Cu}-\mathrm{F} 2.517 \AA$ ), the copper(II) ion is coplanar with the base of the pyramid.

## Experimental

The title compound was prepared by reaction of stoichiometric amounts of $N, N$-bis(3,5-dimethylpyrazol-1-ylmethyl)-1-hydro-xy-2-aminoethane (bpmhe) (Driessen, 1982), copper(II) perchlorate and 3,5 -dimethylpyrazole in methanol using a similar procedure to that reported by Malachowski et al. (1989). Blue crystals suitable for X-ray measurements were grown by slow evaporation of methanol solutions of the complex.

## Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}\right)\right]-$ $\left(\mathrm{ClO}_{4}\right)_{2}$
$M_{r}=635.95$
Triclinic
P $\overline{1}$
$a=11.4923$ (5) A
$b=14.3227$ (7) $\AA$
$c=8.1715(4) \AA$
$\alpha=95.655(1)^{\circ}$
$\beta=94.838(1)^{\circ}$
$\gamma=89.567(1)^{\circ}$
$V=1333.7(1) \AA^{3}$
$Z=2$
$D_{x}=1.584 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}$ not measured

## Data collection

Siemens SMART diffractometer
Area-detector scans
Absorption correction: empirical (Blessing, 1995)
$T_{\text {min }}=0.677, T_{\text {max }}=0.806$
13652 measured reflections
5426 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 5784 reflections
$\theta=1.4-26.0^{\circ}$
$\mu=1.080 \mathrm{~mm}^{-1}$
$T=203(2) \mathrm{K}$
Prism
$0.27 \times 0.27 \times 0.20 \mathrm{~mm}$
Blue

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.116$
$S=1.042$

5426 reflections

Scattering factors from International Tables for<br>Crystallography (Vol. C)

H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0625 P)^{2}\right.$
$+2.0217 \mathrm{P}]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected geometric parameters ( $\AA$, ${ }^{\circ}$ )

| Cul-N6 | 1.968 (2) | Cul - N 3 | 2.073 (2) |
| :---: | :---: | :---: | :---: |
| Cul-N5 | 1.977 (2) | $\mathrm{Cul}-\mathrm{OI}$ | 2.273 (2) |
| $\mathrm{CuI}-\mathrm{Nl}$ | 1.980 (2) |  |  |
| N6-Cul-N5 | 97.10 (9) | N -Cul-N3 | 81.97 (9) |
| $\mathrm{N} 6-\mathrm{Cul}$ - N | 94.62 (9) | N6-Cul-OI | 109.22 (9) |
| N5-Cul-N1 | 155.85 (9) | N5-Cul-OI | 92.55 (9) |
| N6-Cul-N3 | 169.23 (9) | $\mathrm{Ni}-\mathrm{Cul}-\mathrm{Ol}$ | 103.40 (9) |
| N5-Cul-N3 | 82.62 (9) | N3-Cul-OI | 81.53 (8) |

The data collection nominally covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different $\varphi$ angle for the crystal and each exposure covered $0.3^{\circ}$ in $\omega$. The crystal-to-detector distance was 5.02 cm . Coverage of the unique set is over $97 \%$ complete to at least $26^{\circ}$ in $\theta$. Crystal decay was monitored by repeating the initial frames at the end of data collection and analyzing the duplicate reflections. The H atom on the alcohol O atom, O , was located from a difference map and allowed to refine with a displacement parameter $20 \%$ greater than O1. The remaining H atoms were placed geometrically and refined with a riding model (including free rotation about $\mathrm{C}-\mathrm{C}$ bonds for methyl groups) and with $U_{\text {iso }}$ constrained to be 1.2 (1.5 for methyl groups) times $U_{\text {cq }}$ of the carrier atom.

Data collection: SMART (Siemens, 1995). Cell refinement: SMART. Data reduction: SAINT (Siemens, 1995). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL (Sheldrick, 1994). Software used to prepare material for publication: SHELXL93.

We acknowledge a grant by the Lottery Science Grants Board towards the purchase of the diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KH1152). Services for accessing these data are described at the back of the journal.

## References

Antolini, L. \& Menabue, L. (1984). Inorg. Chem. 23, 1418-1422.
Antolini, L., Menabue, L., Sola, M., Battaglia, L. P. \& Corradi, A. B. (1986). J. Chem. Soc. Dalton Trans. pp. 1367-1373.

Blessing, R. H. (1995). Acta Cnvst. A51, 33-38.
Blonk, H. L., Driessen, W. L. \& Reedijk, J. (1985). J. Chem. Soc. Dalton Trans. pp. 1699-1705.
Driessen, W. L. (1982). Rec. Trar. Chim. Pays-Bas, 101, 441-443.
Driessen, W. L., De Graaff, R. A. G. \& Wiesmeijer, W. G. R. (1987). Acta Crust. C43, 2319-2321.
Luneau, D., Oshio, H., Okawa. H.. Koikawa, M. \& Kida. S. (1990). Bull. Chem. Soc. Jpn, 63, 2212-2217.
Malachowski, M. R., Davidson, M. G. \& Hoffman, J. N. (1989). Inorg. Chim. Acta, 157, 91-94.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1994). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1995). SMART and SAINT. Area-Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 1551-1553

## Chlorobis( $N, N^{\prime}$-di-2-pyridyl ketone oximato)gold(III) Hydrate

Shaun O. Sommerer, ${ }^{a}$ Cora E. MacBeth, ${ }^{b}$ Alan J. Jircitano ${ }^{h}$ and Khalil A. Abboud ${ }^{c}$<br>${ }^{a}$ Department of Physical Sciences, Barry University, 11300 NE 2nd Ave, Miami Shores, Florida 33161-6695, USA, ${ }^{b}$ Division of Science, The Pennsylvania State University at Erie, The Behrend College, Station Road, Erie, Pennsylvania 16563-1200, USA, and 'Department of Chemistry, The University of Florida, Gainesville, Florida 32611-2046, USA. E-mail: sommerer@buaxpl.barry.edu

(Received 15 November 1996; accepted I6 June 1997)

## Abstract

Structural analysis of $\left[\mathrm{AuCl}\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ revealed the Au atom to be in a square-pyramidal coordination environment with the $\mathrm{Au}\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}\right)_{2} \mathrm{Cl}$ moieties linked by hydrogen bonds to water molecules to form centrosymmetric dimers. The Au atom achieves a coordination number of five with four N atoms nearly coplanar and the fifth position occupied by a Cl atom.

## Comment

The study of di-2-pyridyl ketone oxime (dpk-o) stems from its structural similarities to the di-2-pyridyl ketone (dpk) ligand (Sommerer, Westcott \& Abboud, 1994) and its potential to bridge metals to form dimers and infinite chains (Sommerer, Westcott, Jircitano \& Abboud, 1995).

(I)

The crystals of the title compound, (I), were found to consist of centrosymmetrically related $\mathrm{Au}(\mathrm{dpk}-\mathrm{o})_{2} \mathrm{Cl}$ (Fig. 1) moieties linked by hydrogen bonds to water molecules to form dimers (Fig. 2). The Au atom
achieves a coordination number of five with four $N$ atoms nearly coplanar and the fifth position occupied by a Cl atom. The maximum deviation from the mean plane of the $N$ atoms is 0.031 (2) $\AA$ and the Au atom is located 0.043 (2) $\AA$ below the plane. The geometry is clearly square pyramidal since there is no atom capable of coordination in a sixth position closer than $4.0 \AA$. The dimer is formed through hydrogen bonds between the chlorine and two separate water molecules, with $\mathrm{Cl} \cdots \mathrm{O}$ distances of 3.274 (6) and 3.461 (7) $\AA$, respectively, for $\mathrm{OW} \cdots \mathrm{Cl}$ and $\mathrm{OW} \cdots \mathrm{Cl}^{\mathrm{i}}$ [symmetry code: (i) $-x, 1-y,-z$ ]. Each dpk-o ligand is deprotonated at the oxime function which together with the single chloride results in a neutral complex. Two observations provide evidence for the deprotonation of the dpk-o ligand: first, no electron-density peak


Fig. 1. Displacement ellipsoid drawing of the title compound with ellipsoids drawn at the $50 \%$ probability level.


Fig. 2. Displacement ellipsoid drawing of the hydrogen-bonded dimer with the ellipsoids drawn at the $20 \%$ probability level.


[^0]:    $\dagger$ Alternative name: $\left\{2-\left\{N, N\right.\right.$-bis[(3,5-dimethylpyrazol-1-yl- $N^{2}$ )meth-yl]amino- $N$ \}ethanol- $O\}$ (3,5-dimethylpyrazole- $N^{2}$ )copper(II) diperchlorate.

