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Abstract 

Breast cancer is a leading cause of cancer mortality in women worldwide. Biophysical 

mathematical models of the breast have the potential to aid in the diagnosis and treatment of 

breast cancer. This thesis presents research on the development and validation of 

biomechanical models of the breast subject to gravity and compressive loads. The finite 

element method was used to implement the theory of finite elasticity coupled with contact 

mechanics in order to simulate the large non-linear deformations of the breast tissues.  

Initially, validation studies were conducted using a breast phantom, which was placed in 

different orientations with respect to the gravity loading and compressed using a custom 

made device. A novel application of a block matching image processing method was used to 

quantitatively assess the accuracy of the biomechanics predictions throughout the entire 

phantom. In this way, systematic changes to the assumptions, parameters, and boundary 

constraints of the breast models could be quantitatively assessed and compared.  

Using contact mechanics to model the interactions between the ribs and breasts can improve 

the accuracy of simulating prone to supine deformations due to the relative sliding of the 

tissues, as was observed using MRI studies on volunteers. In addition, an optimisation 

framework was used to estimate the heterogeneous mechanical parameters of the breast 

tissues, and the improvements to the models were quantified using the block matching 

comparison method.  

A novel multimodality framework was developed and validated using MR and X-ray images 

of the breast phantom before being applied to clinical breast images. Using this framework, it 
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was shown that the parameters of the model (boundary conditions, mechanical properties) 

could be estimated and the image alignment improved. The biomechanical modelling 

framework presented in this thesis was shown to reliably simulate both prone to supine 

reorientation, and prone to mammographic compression, deformations. This capability has 

the potential to help breast radiologists interpret information from MR and X-ray 

mammography imaging in a common visualisation environment. In future, ultrasound 

imaging could also be incorporated into this modelling framework to aid clinicians in the 

diagnosis and management of breast cancer.  
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Chapter 1: Introduction 

1.1 Motivation 

Breast cancer is the leading cause of cancer death for women, accounting for 14% of cancer 

mortalities in 2008 (Jemal et al., 2011). Early detection through X-ray mammography 

screening has been shown to reduce the mortality rate of this disease (Skaane, 2011). 

However, X-ray mammography imaging has its limitations, being unable to detect and 

distinguish with 100% accuracy the abnormalities in the breast (Baker, 1982, Berg et al., 

2004). Other imaging modalities, such as ultrasound and magnetic resonance imaging (MRI), 

are therefore used in conjunction with X-ray mammography to image the breasts (Berg et al., 

2004, Harms and Flamig, 2001).  

X-ray mammography relies on compressing the breasts between two plates along the cranial-

caudal (CC) and medio-lateral oblique (MLO) directions, and sending X-ray beams through 

the compressed breast tissues. In contrast, ultrasound and surgery are typically performed 

with patients lying in a supine position, and dynamic MRI is generally performed with an 

individual in the prone position. The challenge with interpreting and analysing these images 

together is that the breasts undergo large deformations between the modalities, and between 

images from the same modality.   

Biomechanical models of the breast have shown promising results in their ability to predict 

the deformation of the breast tissues under different compression and gravity loading 

conditions (detailed literature reviews are contained within the relevant chapters). Previous 

work focussed on the use of landmark-based methods to assess the accuracy of 

biomechanical models, however, due to the complexity of the breast deformations, it is 



P a g e  | 2 

 

important to assess the regional differences across the breast models. In this thesis, new 

image-based methods were developed to integrate image processing tools with modelling 

techniques to quantify the prediction accuracy of biomechanical models on a three 

dimensional, regional basis. These methods were used to quantify improvements to the 

biomechanical models, made by using more realistic boundary conditions and accounting for 

the heterogeneity of the breasts.  

These techniques were validated on large deformations of a soft breast phantom before being 

applied to the breasts. The methods were then used to integrate the information derived from 

prone MR images with that from X-ray mammographic images. In addition, the use of block 

matching techniques in analysing the ability of the biomechanical models in predicting large 

deformations instead of landmark-based measures was validated and applied to breast 

models. 

1.2 Thesis overview and contributions 

The overall goal of this thesis was to develop novel methods to quantify and improve the 

predictions of biophysically-based finite element (FE) models of the breasts. In order to 

quantitatively evaluate the improvements of the biomechanical models of the breasts, a block 

matching comparison method was proposed and validated for determining the deformation 

position error over the models. Clinically relevant simulations were considered, with studies 

on prone to supine reorientation (e.g. for applications in merging information from MRI and 

ultrasound (US) images) and prone to compression (e.g. for merging information from MRI 

and X-ray mammograms) of the breast. Systematic improvements were made to the models 

by updating the rib boundary conditions with contact constraints and incorporating 

mechanical heterogeneity. 

Chapter 2 provides a brief background on the anatomy and mechanical properties of breast 

tissues. Imaging techniques that are used in the diagnosis and management of breast cancer 

are described. The finite deformation and contact mechanics theory used in the simulation of 

the large deformations of the breasts are also described. 

Chapter 3 validates a novel application of a three dimensional block matching method to 

assess the accuracy of FE models in simulating large deformations of soft materials, on a 

regional basis, using a breast phantom. Studies were performed with the breast phantom 
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placed under various compressive loads in the magnetic resonance (MR) scanner. Finite 

element models were used to simulate the deformations of the breast phantom under gravity 

and compressive loads using finite elasticity theory coupled with contact mechanics. 

Comparisons using block matching and feature-based methods were used to analyse the 

overall error between the FE model warped images and the experimental images. Techniques 

were also developed to take into account the heterogeneity of the breast phantom; the block 

matching method was used to quantify their effects on the accuracy of the simulations.  

Chapter 4 uses the three dimensional block matching comparison method to assess the 

accuracy of physics-based models in predicting the deformations of the breasts for prone to 

supine reorientation. The block matching results indicated that improvements to the model 

could be made by changing the boundary conditions on the rib surface of the breast mesh to 

allow for tissue sliding. This was achieved using tied contact mechanic constraints. At that 

stage of the project, it was the first work on incorporating contact constraints on the rib 

surface of the breast models for prone to supine reorientation. Further improvements were 

then made to the models by incorporating information about the different mechanical 

properties of adipose and fibroglandular compartments of the breasts by using heterogeneous 

material parameters. The significant contribution of this chapter was the systematic analysis 

quantifying the importance of regional errors over the model. A novel application of the block 

matching method was used to define these regional errors, which were then used to estimate 

the material and contact stiffnesses of the breast models.  

Chapter 5 compares the physics-based biomechanical models that have been developed for 

the breast phantom, and the breasts of volunteers, with a conventional image-based non-rigid 

registration algorithm. In addition, a hybrid method, where the biomechanical model was 

coupled with the image-based method, was used to align prone and supine breast images, and 

uncompressed and compressed breast phantom images. The important contribution in this 

chapter was the objective quantification of the registration errors, using block matching, for 

the three methods.  

Chapter 6 describes studies using the breast phantom to validate techniques for a novel three 

dimensional MRI - two dimensional X-ray mammography multimodality image registration 

framework. The errors at each stage of the process were systematically quantified using the 

breast phantom studies. These methods were then demonstrated using a patient study, where 

MR and X-ray mammography images of the breasts were acquired. The information derived 
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from the images was used to improve the compression simulations of the biomechanical 

model by updating model parameters such as the boundary conditions and the material 

properties. The important contribution was the development of an optimisation framework, 

where the parameters of the FE model used to simulation compression were optimised based 

on the image similarity measure between a clinical X-ray mammogram and a pseudo X-ray 

mammogram generated from the FE warped MR prone image.  

Chapter 7 summarises the work presented in this thesis and discusses the limitations and 

future directions.  

1.3 List of publications 

The main contributions of this research have been presented in the following peer reviewed 

publications: 

 Rajagopal, V., Lee, A. W. C., Chung, J. H., Nielsen, P. M. F., and Nash, M. P., 2007. 

Computational biomechanics of the breast: The importance of the unloaded reference 

state. Proceedings of Computational Biomechanics for Medicine II (MICCAI2007 

Workshop), eds. Miller, K., Paulsen, K. D., Young, A. A., Nielsen, P. M. F., pp. 103-

112. 

 Rajagopal, V. Lee, A. W. C., Chung, J. H., Warren, R., Highnam, R. P., Nielsen, P. M. 

F., and Nash, M. P., 2007. Towards tracking breast cancer across medical images 

using subject-specific biomechanical models. Lecture Notes in Computer Science, 

4791: 651-658.  

 Rajagopal, V., Lee, A. W. C., Chung, J. H., Warren, R., Highnam, R. P., Nielsen, P. M. 

F., and Nash, M. P., 2008. Creating individual-specific biomechanical models of the 

breast for medical image analysis. Academic Radiology, 15(11): 1425-1436.  

 Lee, A. W. C., Rajagopal, V., Bier, P., Nielsen, P. M. F., and Nash, M. P., 2008. 

Biomechanical modelling for breast image registration. Proceedings of SPIE Medical 

Imaging, 6918(69180U).  

 Lee, A. W. C., Rajagopal, V., Bier, P., Nielsen, P. M. F., and Nash, M. P., 2009. 

Correlation of breast image alignment using biomechanical modelling. Proceedings of 
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deformations. Lecture Notes in Computer Science, 6136: 736-743. 

 Lee, A. W. C., Rajagopal, V., Chung, J. H., Nielsen, P. M. F., and Nash, M. P., 2010.  

Method for validating breast compression models using normalised cross-correlation. 

Chapter 7 in Computational Biomechanics for Medicine IV (MICCAI 2009 

Workshop), eds. Miller, K., Nielsen, P. M. F., Springer, pp. 63-71.  

 Lee, A. W. C., Rajagopal, V., Reynolds, H., Doyle, A., Nielsen, P. M. F., and Nash, M. 

P., 2011. Breast X-ray and MR image fusion using finite element modelling. 

Proceedings of Workshop on Breast Image Analysis (MICCAI 2011 Workshop), eds. 

Tanner, C., Schnabel, J., Karssemeijer, N., Nielsen, M., Giger, M., Hawkes, D., pp. 

129-136.  

The work in this thesis was also presented at the following conferences: 

 Lee, A. W. C., Rajagopal, V., Chung, J. H., Nielsen, P. M. F., and Nash, M. P., 2007. 

Biomechanical model for breast image registration, Proceedings of the Physiological 

Society of N.Z., p. 66, MedSciNZ Congress, Queenstown N.Z., November. 

 Lee, A. W. C., Rajagopal, V., Chung, J. H., Nielsen, P. M. F., and Nash, M. P., 2008.  

Registration of breast MR images using a biomechanical model. Asia-Oceania Top 

University League on Engineering Postgraduate Conference (AOTULE), Auckland 

N.Z., September.  

 Lee, A. W. C., Rajagopal, V., Chung, J. H., Nielsen, P. M. F., and Nash, M. P., 2008. 

Image registration for a biomechanical breast model. Proceedings of the Physiological 

Society of N.Z., p. 68, MedSciNZ Congress, Queenstown N.Z., November. 

 Lee, A. W. C., Rajagopal, V., Chung, J. H., Nielsen, P. M. F., and Nash, M. P., 2008. 

Breast image registration using biomechanical modelling. Australasian Physical & 

Engineering Sciences in Medicine, 31(4): 464-465. Engineering and Physical 

Sciences in Medicine & Australian Biomedical Engineering Conference (EPSM-

ABEC), Christchurch N.Z., November.  
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Chapter 2: Breast imaging, anatomy 

and modelling 
Here the background material relating to this thesis is presented. The imaging physics 

necessary for image fusion applications is described, followed by an introduction to the 

anatomy and finite element theory needed for breast modelling.  

2.1 Breast cancer imaging 

Breast cancer is the most common cause of cancer death for women (Jemal et al., 2011, 

Parkin et al., 2005). In order to increase the chance of survival by detecting breast cancer at 

its early stages, breast cancer screening programs have been set up worldwide (Jemal et al., 

2011). X-ray mammography is considered the ‘gold standard’ for breast cancer screening and 

allows clinicians to make diagnostic decisions based on the visualisation of internal breast 

tissues (Ikeda, 2011). It has been estimated that regular mammographic screening can reduce 

the mortality rate of breast cancer by 35% to 40% (Skaane, 2011). During X-ray 

mammography the breasts are compressed either in the cranial-caudal (CC) or the medio-

lateral-oblique (MLO) directions and a short burst of radiation is applied to the breast to form 

the two dimensional X-ray image (Bushberg et al., 2002). In order to more reliably interpret 

the images, mammograms are seldom considered independently, but are considered in the 

context of previous scans (temporal comparison) or between the left and right sides, as 

asymmetry in the structures can indicate abnormality (bilateral comparisons).  
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2.1.1 X-ray mammography physics 

One aim of this thesis was to merge information from MRI and X-ray using knowledge about 

the physics of soft tissue deformation (see Chapter 6). To do this pseudo X-rays were 

generated, which requires a basic understanding of the physics of the X-ray mammography 

system. X-rays are produced by an X-ray tube in mammographic systems, where a voltage is 

applied between two electrodes inside a vacuum tube. As the electrons travel from the 

negatively charged cathode to the positively charged anode, they accelerate, gaining kinetic 

energy due to the electrical potential difference. When the beam of electrons hit the anode, 

electron deceleration and electron ejection produces a polyenergetic X-ray beam, where the 

maximum energy of the X-ray beam is dependent on the potential difference between the 

anode and cathode. 

Electron deceleration occurs as electrons in the energetic beam are deflected by the 

electrostatic fields of the material’s atoms. When the electron is deflected it loses kinetic 

energy, which is emitted in the form of an X-ray photon. Electron ejection occurs when 

electrons from the electron beam collide with electrons orbiting the nucleus of the atom in the 

material with sufficient energy. When electrons from the inner electrons shells (e.g. K-shell) 

are ejected, electrons from the outer shells drop down to fill the vacant position, and in the 

process emit X-ray radiation. The energy associated with these X-rays is dependent on the 

differences in the binding energies of the electron shells, resulting in characteristic radiation 

wavelength profiles for different materials.  

A rhodium anode was used during the mammographic image acquisition for the breast 

phantom and the Patient study in the present thesis. The characteristic radiation for rhodium 

occurs at 20.2 keV and 22.7 keV, respectively, leading to peaks in the energy spectrum at 

these specific energy levels. Filtering (e.g. 25 μm rhodium filter, vacuum tube) was used to 

attenuate low and high energies in the energy spectrum resulting in the energy spectrum 

shown in Figure 2.1 (Bushberg et al., 2002). 
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Figure 2.1: Energy spectrum of a Rhodium anode with a 0.025 mm Rhodium filter with a 

peak tube voltage of 29 kV. 

This polyenergetic X-ray beam is attenuated as it passes through tissues due to interactions 

between the X-ray photons and the atoms in the tissues, resulting in a decrease in radiation 

intensity reaching the detector. The Beer-Lambert law gives the relationship between the 

transmitted (I) and incident (I0) X-rays as:  

      
        (2.1) 

where    is the thickness and    is the linear attenuation coefficient of attenuating material  .  

The linear attenuation coefficient is dependent on the density of the material that the X-ray 

beam travels through; therefore the mass attenuation coefficient,  
 

    is more widely 

reported (Bushberg et al., 2002, Hubbell and Seltzer, 2004). X-ray mass attenuation 

coefficients for different types of tissues are dependent on the combined effect of the 

photoelectric effect, the Compton effect and coherent scattering. These factors are dependent 

upon the energy of the X-ray, thus the mass attenuation coefficient is also dependent on the 

energy of the X-ray beam as shown in Figure 2.2 (Hubbell and Seltzer, 2004).  
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Figure 2.2: Mass attenuation coefficients for adipose, glandular and skeletal muscle tissues. 

The attenuation characteristics of different types of material for the polyenergetic beam can 

be approximated by an equivalent attenuation coefficient,      at an effective monoenergtic 

beam (Robinson and Scrimger, 1991): 

 

      
 

 
    

  
  

          

 

   

  (2.2) 

where Ii is the number of photons at the energy value i, I0 is the incident energy beam 

(approximated as a sum of the photons at each energy level i),    is the mass attenuation 

coefficient at energy i, and   is an arbitrary thickness of tissue that the beam passes through. 

The above calculations were used to give an approximation of the initial ‘for processing’ 

mammogram. However, the data that was acquired for the breast phantom and the Patient 

studies were the ‘for presentation’ images. This means that after the image was acquired, 

image processing was performed to allow the clinicians to interpret the information with 

greater ease. For the mammography system used to obtain the images in this thesis 

(Senographe DS, General Electric, Connecticut, USA), this involved unsharp masking, 

thickness equalisation and negative logarithmic transform, for which a higher intensity in the 

image corresponds to a greater amount of photons applied to the ‘for processing’ image.  

Unsharp masking is an image processing technique used to sharpen the image and can be 

expressed with the following equation (Bick and Diekmann, 2010):  
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where y’ and y are the processed and original images, respectively, s is the smoothed image 

and c is a constant determining the level of enhancement. The blurring was performed using 

Gaussian smoothing.   

Thickness correction or peripheral enhancement compensates for the lower image intensities 

at the edge of the compressed breast by the addition of an image representing the tissue 

thickness. A two dimensional image was generated by projecting through a three dimensional 

mask of the FE warped image. This image was normalised and inverted, then multiplied with 

a correction factor representing the image intensity of the adipose tissue (obtained from the 

mammogram image) to generate the thickness image.   

2.1.2 Breast cancer screening 

The sensitivity of X-ray mammography screening, where malignant tumours are identified as 

such, has been found to vary from 45% (for dense breasts) to 100% (for fatty breasts) (Berg 

et al., 2004). Early studies have also found that X-ray mammography has low specificity (less 

than 20% (Baker, 1982)), which can lead to unnecessary biopsies being performed. 

Therefore, as an adjunct to X-ray mammography, other imaging modalities, such as magnetic 

resonance imaging (MRI) and ultrasound are used (Berg et al., 2004, Harms and Flamig, 

2001, Sardanelli et al., 2004). It has been found that a combination of the information from 

multiple modalities leads to more reliable diagnosis and management of breast cancer 

compared to any individual test (Berg et al., 2004, Malur et al., 2001). 

Ultrasound works by the interaction of tissues with ultrasound waves, which are transmitted 

by a probe. When these waves hit an interface of materials with different mechanical 

impedance, they are either absorbed or reflected back to the probe. Different materials can be 

distinguished from each other by the different amplitudes of echoes. Breast ultrasound is 

performed on patient’s in order to further investigate suspicious lesions found with 

mammography, or from lumps felt in the breast by the patients self examination or during a 

physical exam (Ikeda, 2011). 

The other most common adjunct for breast imaging is contrast-enhanced MRI (CE-MRI). 

CE-MRI is used to differentiate between benign and malignant tumours found in the breast, 

thus reducing the need for surgical biopsies on benign tumours (Harms and Flamig, 2001). 

The enhancement of cancerous tissue tends to be greater and faster than the surrounding 

normal breast tissues due to the increased vascularisation in dynamic MR imaging (Warren 
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and Coulthard, 2002). Breast MRI is more sensitive than breast ultrasound and 

mammography, and can be used to detect tumours that are detected in a physical examination 

but are invisible in mammographic images (Warren and Coulthard, 2002). Unlike 

mammography, MRI and ultrasound are not limited by dense breasts (Berg et al., 2004). 

However, image artefacts due to patient movement (for example breathing) during image 

acquisition can complicate the interpretation of the images (Warren and Coulthard, 2002). 

2.1.3 Breast image registration 

In order to aid clinicians in interpreting inter- or intra-modality breast images, image 

registration techniques have been applied to breast images. The methods used for breast 

image registration have been discussed in detail by Guo et al. (2006), Rueckert et al. (1999), 

Sivaramakrishna (2005) and therefore only a brief introduction into breast image registration 

is given in this chapter. For greater detail on biophysically-based breast image registration 

refer to Section 4.2 for gravity loading deformations and Section 6.1 for previous work on 

breast compressions.  

Breast image registration is used to find the optimal transformation to apply to one image 

(source) to align it to another image (target). The general framework for a registration 

problem is a similarity measure, a transform, and an optimizer. The source image is 

transformed to align with the target image, and the similarity between the transformed source 

image and the target image is computed using a similarity measure. An optimiser is used to 

find the parameters of the transformation that best align the two images according to the 

similarity measure.  

Similarity measures can be classed as intensity-based or feature-based methods. Feature-

based measures typically require pre-processing of the images prior to the registration to 

identify the features such as contours, landmarks, or surfaces and the accuracy of these 

methods is dependent on the accurate extraction of the features. For intensity-based methods, 

an error measure is calculated directly from the images. There are a range of intensity-based 

similarity measures that can be used for image registration such as: sum of squares 

differences (SSD), normalised cross correlation (NCC), and normalised mutual information 

(NMI) (Eq.2.4, 2.5, 2.8). SSD is best used for images acquired using the same modality 

where the pixel intensities associated with the same region is unchanged in the source and 

target images. If there is linear scaling of the intensities, then NCC would be more 
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appropriate. In this thesis, NCC was used to assess the similarity of experimental and FE-

warped MR images. The SSD and NCC similarity measures are calculated as follows: 

                  
 

 

 (2.4) 

 
         

        

    
 

    
 

 

 
(2.5) 

NMI gives a measure of the mutual dependence of the images on one another and is 

appropriate when there are statistical dependencies between the intensities, and is suitable for 

multimodality image registration. This similarity measure computes the sum of the Shannon 

entropies (H) of the two images and then normalises it by the joint entropy (H(A,B)) of the 

two: 
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 (2.8) 

where p(a) is the probability of a pixel in image A having an intensity of a.  

2.2 Breast anatomy 

In order to accurately model breast biomechanics under different loading conditions, a basic 

understanding of the breasts and their internal structures is required. The classical definition 

of the female breast places it anterior to the pectoralis major muscle on the thoracic wall with 

the superior and inferior margins extending from the second to sixth ribs, respectively. The 

medial boundary extends to the sternum. Typically the breasts are tear drop shaped, with the 

tail extending up to the mid-axillary line.   

With reference to Figure 2.3, the breast (mammary gland) is composed of fibrous, adipose, 

and glandular tissue. Subcutaneous adipose lies beneath the skin, and the amount of adipose 

tissue inside the breast depends on the total body fat percentage, and as such can vary 

substantially between individuals (Sabel, 2009). Generally each mammary gland consists of 

15-20 glandular lobes that converge at the nipple and can secrete milk for the nourishment of 

babies. These glandular lobes are surrounded and separated from each other by dense fibrous 

connective tissue, known as Cooper’s ligaments (Cooper, 1840), while collectively these 
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structures are grouped together as the fibroglandular tissue. Cooper’s ligaments provide 

internal suspensory support to the breast tissues by extending antero-posteriorly throughout 

the breast tissues and attaching perpendicularly onto the overlying skin (Macéa and Fregnani, 

2006, Pandya and Moore, 2011).  

 
Figure 2.3: Lateral view of the breast. Adapted from Drake et al. (2008).  

The breast tissues are attached to the skin via Cooper’s ligaments and lie upon the deep 

investing fascia (dense connective tissue) surrounding the pectoralis major, serratus anterior 

muscles, and the anterior rectus sheath (Hall-Findlay and Evans, 2010, Sabel, 2009). The 

fascia surrounding the muscles allows them to slide against each other and over the ribs. 

These muscles then attach to the ribs, sternum, and clavicle as shown in Figure 2.4. 

Figure 1.2A “Lateral view and sagittal section of breast. 

From Drake RL, Vogl AW, Mitchell AWM, et al. Gray’s atlas 

of anatomy. Edinburgh: Churchill Livingstone; 2008.” Hall-

Findlay, E. J. and Evans, G. R. D. 2010. Aesthetic and 

reconstructive surgery of the breast. Edinburgh, Saunders  

Elsevier. 
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Figure 2.4: Bones of the Pectoral region and axilla showing attachments of muscles. 

Reproduced from Anderson (1983).  

Between the fibrous tissue surrounding the mammary gland and the deep fascia of the 

pectoralis major muscle, there is a space known as the retromammary bursa (Macéa and 

Fregnani, 2006), which is composed of loose connective tissue arranged almost horizontally 

(Pandya and Moore, 2011, Riggio et al., 2000). The mobility of the breast is dependent upon 

the retromammary bursa and the Cooper’s ligaments.  

2.3 Breast tissue mechanical properties 

Studies have been performed to identify the mechanical properties of normal and pathological 

breast tissues (O'Hagan and Samani, 2009, Samani et al., 2007). In the clinical arena, the 

stiffness of breast tissues is of interest, as tumours have been found to be substantially stiffer 

Figure 6-10 “Bones of the pectoral region and axilla 

showing attachments of muscles”. Anderson J. E. 

1983. Grant’s Atlas of Anatomy. Baltimore, Williams 

& Wilkins.  
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than normal breast tissue, with malignancy corresponding to an increase in stiffness (Egorov 

et al., 2009, Samani et al., 2007). Pathological breast tissues have been found to be two times 

to two orders of magnitude stiffer than normal breast tissues (O'Hagan and Samani, 2009).  

The composition of normal breast tissues depends on the hormonal and temporal influences. 

During the menstrual cycle the breast tissue can increase in volume from approximately 15 

cm
3
 to 30 cm

3
 due to the influence of hormones such as estrogen and progesterone (Sabel, 

2009). In addition, the elasticity of the fibroglandular tissue has been found to significantly 

change (up to 35%) during the menstrual cycle (Lorenzen et al., 2003).  On a larger time 

scale, when women go through menopause, the breast undergoes structural changes where the 

glandular tissue decreases in volume and is replaced with fatty tissue due to the loss of 

hormonal stimulation (Sabel, 2009).  

A large range of values have been reported for the mechanical properties of the adipose and 

glandular tissue mechanical properties based on ex-vivo mechanical testing of small tissue 

samples (Kerdok et al., 2005, Krouskop et al., 1998, Samani and Plewes, 2004, Samani et al., 

2007, Wellman, 1999). Within the literature the elastic moduli of the adipose and glandular 

tissue has been reported to range from 0.5 kPa to 25 kPa and from 2 kPa to 66 kPa, 

respectively (Gefen and Dilmoney, 2007). Krouskop et al. (1998) and Wellman (1999) found 

that the level of precompression has a significant effect on the elastic modulus of the 

glandular tissue, indicating the non-linear nature of its mechanical properties. Hyperelastic 

constitutive relations have therefore been used to describe the mechanical properties of 

normal breast tissues (Krouskop et al., 2003, O'Hagan and Samani, 2009, Samani and Plewes, 

2004, Samani et al., 2007). 

An inherent limitation of ex-vivo studies is that isolating small sections of breast tissue for 

testing removes the constraints from the surrounding structures that would influence the 

mechanical properties of the breast tissues. In addition, the mechanical properties of the 

breast tissues are highly variable across a population and also vary over time for any 

individual.  

In-vivo studies of breast tissues have been conducted by imaging the breast under different 

loading conditions. One method is MR elastography, where dynamic images are acquired of 

the breast while small perturbations (typically less than 500 μm) are applied at low 

frequencies (75 Hz - 300 Hz) (McKnight et al., 2002, Van Houten et al., 2003). These images 

are used to identify changes in strain in the breast tissues in order to calculate the shear 
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stiffness. A limitation of this method is that only small deformations are applied to the 

breasts, thus the derived properties are primarily related to the dynamic stiffness of the 

tissues.    

FE models have been used to model quasi-static deformations, due to gravity or compressive 

loads, to estimate the in-vivo mechanical properties of the breast tissues. For further details 

on previous biomechanical breast models used to simulate gravity loading or compression 

loading please refer to Chapter 4 and Chapter 6, respectively. Various material relations have 

been investigated such as: linear elastic (Carter et al., 2006, Schnabel et al., 2003, Shih et al., 

2010, Tanner et al., 2006, 2008), exponential (Ruiter et al., 2006, 2008), and neo-Hookean 

(Carter et al., 2009, Chung et al., 2008a, del Palomar et al., 2008, Rajagopal et al., 2008b, 

Ruiter et al., 2006, Samani et al., 2001, Tanner et al., 2006). It has been shown that the use of 

the neo-Hookean constitutive relation results in realistic predictions of the reorientation of the 

breast from prone to supine and compressions of up to 38% (Chung et al., 2008a, Rajagopal 

et al., 2008b).  

The mechanical behaviour of the breast tissues has been modelled as either homogeneous 

(Carter et al., 2008, Chung et al., 2008b, del Palomar et al., 2008, Rajagopal et al., 2008b) or 

with specific tissues such as the adipose, fibroglandular, skin, and muscle being considered 

independently (heterogeneous models) (Carter et al., 2006, Ruiter et al., 2006, Samani et al., 

2001, Schnabel et al., 2003, Shih et al., 2010, Tanner et al., 2006, 2009). The parameters of 

these material relations have typically been optimised based on distance measures of features 

such as the skin surface (Carter et al., 2009, Rajagopal et al., 2008b). 

Even though Cooper’s ligaments play an important role in the shape and structure of the 

breast, they have not been modelled explicitly in any published model to date. This is likely 

to be due to the image resolution and computational cost associated incorporating these 

structures into the FE models (Babarenda Gamage et al., 2011). However, it has been 

proposed that the effect of the Coopers ligaments can be modelled using anisotropic 

constitutive relations for the breast (Tanner et al., 2009, 2010, 2011).  

The skin tissue is also highly variable between individuals, with its thickness ranging from 

0.8mm to 3mm, typically decreasing proportionally with increasing breast size (Hall-Findlay 

and Evans, 2010). The mechanical properties of the skin have been modelled by assigning the 

top layer of elements in the three dimensional FE model as skin (Tanner et al., 2009) or by 

coupling a two dimensional layer of elements with the anterior surface of the FE mesh (del 
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Palomar et al., 2008, Ruiter et al., 2006). In this thesis, the effect of skin was ignored in 

favour of investigating the effects of boundary conditions on the rib surface, and 

homogeneous versus heterogeneous material properties. There are a number of factors that 

would need to be considered when incorporating skin into biomechanical models of the 

breast, such as the interface conditions between the skin and the underlying tissues, skin 

mechanical properties, and the state of the pre-stress of skin in the different loaded 

configurations of the breasts (Babarenda Gamage et al., 2011).  

2.4 Finite deformation elasticity mechanics 

In this chapter a brief introduction of the mechanical theory used to simulate the large 

deformations of the breast tissues and the breast phantom is given. For a more in-depth 

description of three dimensional finite elasticity theory please refer to Malvern (1969) and 

Atkin and Fox  (1980). 

2.4.1 Kinematic equations 

In this thesis the motion of the breast tissues and breast phantom due to the application of 

different loads is of interest. The motion of an object from an undeformed (reference) state 

(X) to a deformed configuration (x) can be represented using the deformation gradient tensor 

F:  

 
  

  

  
 (2.9) 

A measure of the strain in the system can be quantified using the Green-Lagrange strain 

tensor (E), which is related to the right Cauchy-Green deformation tensor (C) and the identity 

tensor (I) as:    

   
 

 
       (2.10) 

       (2.11) 

2.4.2 Stress equilibrium 

Conservation of mass requires that the mass before and after deformation of a body remains 

the same, resulting in the following equation:  

          (2.12) 

where           and    and   are densities of the body in the reference and deformed 

states, respectively. It can be seen that   also relates the volume of the reference mesh,   with 
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the volume in the deformed mesh,   by:       . 

Conservation of linear momentum for a quasi-static system results in the following equation: 

            (2.13) 

where   represents the Cauchy stress tensor and   is the body force per unit mass applied to 

the body.  

Other stress tensors for finite elasticity include the 1
st
 and 2

nd
 Piola Kirchhoff stress tensors 

given as P and S respectively:                   . Conservation of angular 

momentum results in a symmetry condition on the Cauchy stress tensor,   (and hence the 2
nd

 

Piola Kirchhoff stress tensor, S).  

The principle of virtual work is a weak form of the stress equilibrium equations and can be 

used as the governing equation for the finite deformation elasticity problem: 

 
       

 

 
     

  
     

 

               
 

   (2.14) 

where   is the surface traction vector and    is the virtual displacement field. 

Breast tissues are generally regarded as being incompressible; implying that      This 

constraint can be weakly enforced using:  

 
         

 

     (2.15) 

where    is a variation of the hydrostatic pressure. The hydrostatic pressure,    can be 

regarded as a physical stress, which needs to be determined in order to maintain zero volume 

change.   

2.4.3 Constitutive equations 

Constitutive equations describe the relationship between the stresses and strains of an object. 

A hyperelastic relationship is one that is path independent, where one only considers the 

reference and the final deformed state. A commonly used hyperelastic material relation for 

biological tissues is the neo-Hookean relationship, which assumes that the material is 

isotropic and incompressible: 

             (2.16) 
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where the strain energy function,   is a function of the invariant trace of C, I1=trace(C) and 

C1 is a scalar material coefficient.  

The stresses can be calculated by differentiating the strain energy function,   with respect to 

a measure of strain:  

 
  

     

  
 

     

  

  

  
  

     

  
 (2.17) 

2.5 Contact mechanics 

Contact mechanics was used to model the interactions of the breast phantom and breast 

tissues against compression plates (see Chapter 3 and Chapter 6, respectively) and the breast 

tissues against the ribs (see Chapter 4 and Chapter 6). A brief outline on the theory is 

presented here, for more details please refer to Bonet and Wood (1997), Laursen (2002) and 

Chung (2008). In order to model the contact interactions between two objects as a coupled 

problem, one object is designated the slave, and the other the master. As can be seen in Figure 

2.5, contact points are defined on the slave surface and are projected onto the master surface. 

At the projected point on the master surface, two tangent vectors,       are given as: 

 
   

     

   
       (2.18) 

The distance between the slave and master meshes is given by the gap function, gN : 

                   (2.19) 

where n is the unit outward normal vector on the master surface and is calculated as:  

 
  

     

       
 (2.20) 

With regard to Figure 2.5, when there is overlap between the two objects, the gap function is 

positive and, when there is no penetration, the gap function is negative.  
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Figure 2.5: Contact between two surfaces is modelled by projecting contact points, x

(1)
 from 

the slave surface (black) onto the master surface (blue). Reproduced from Chung (2008).   

The governing equation for a coupled contact problem can be obtained by combining the 

principle of virtual work associated with each body,       with the contact residual,     to 

obtain the total coupled virtual work,          :  

 

                  

 

   

     (2.21) 

 
          

  
   

                         
   

 (2.22) 

where     are the virtual displacements associated with each body,    and    
 (where 

     ) represent the normal and tangential components of the contact pressure, 

respectively. The integral is defined over the slave surface,   
   

 and   is the normal base 

vector at the projected point on the master surface [Figure 2.5]. While   , the contravariant 

basis vectors are given as:  

 
                    

  
  (2.23) 

where        . 

2.5.1 Frictionless contact 

The tangential and normal components of the contact traction are dependent on the type of 
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contact condition between the slave and master objects. The contact interactions between the 

slave object and master object can be modelled as frictionless, frictional, or tied. In Chapter 

3, experiments were conducted where a breast phantom was compressed with and without 

lubrications. The compression experiments where lubrication was applied were approximated 

as being frictionless. Frictionless contact can be described using the Kuhn-Tucker optimality 

conditions (Laursen, 2002): 

                                (2.24) 

where gN represents the gap function and tN represents the contact pressure. If there is no 

contact (    ), then there is no contact pressure (    ); however if there is contact 

(    ), then there is positive contact pressure (    ).  

The penalty method, as described by Chung et al. (2008a) and Laursen (2002), was used to 

implement these contact constraints, where a penalty parameter CN is introduced to 

approximate the Kuhn-Tucker conditions:  

 
    

              
                    

  (2.25) 

It can be seen in the schematic illustration in Figure 2.6, that the Kuhn-Tucker conditions are 

met only when     , otherwise there is some degree of penetration between the master 

and slave meshes.  

  
Figure 2.6: Frictionless contact: The bold line defines the admissible combinations of the 

contact gap (gN) and contact pressure as given by the Kuhn-Tucker conditions. The dotted 

line represents the penalty approximation of these conditions. See Laursen (2002) for further 

detail.   

2.5.2 Frictional contact 

In Chapter 3, the breast phantom was compressed with no lubrication applied between the 

compression plates and the phantom (frictional conditions). Instead of the Kuhn-Tucker 
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conditions described above, a Coulomb friction law can be used to describe the frictional 

behaviour between two objects, where the following conditions must be met, as illustrated in 

Figure 2.7:  

            (2.26) 

 
              

                
                

  (2.27) 

where no tangential slip (  ) occurs when the tangential stress (  ) is less than the frictional 

coefficient ( ) times the normal contact pressure (  ). When slip does occur, it is co-linear 

with the frictional stress given by    . 

Similar to the approach taken for the frictionless case, the frictional conditions above can be 

approximated by introducing a penalty parameter, namely the tangent stiffness,   , as 

illustrated in Figure 2.7. Instead of there being only slip or no slip as given by the conditions 

above, a new stick state is introduced:  

 

    

                               

   
   

        

  
      

                                       
  (2.28) 

The stick state can be considered as a recoverable elastic micro-deformation on the 

contacting surface. As before, the slip state occurs when the tangential stress exceeds the 

frictional coefficient ( ) times the normal contact pressure (  ). When slip does occur, it is 

co-linear with the frictional stress given by     and in the direction given by the tangential 

stress.   

 
Figure 2.7: Frictional contact: The bold line defines the admissible combinations of the 

tangential slip (gT) and tangential stress as given by Coulomb frictional laws. The dotted line 

represents the penalty approximation of these conditions. See Laursen (2002) for further 

detail. 
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2.5.3 Tied contact 

Neither frictionless nor frictional contact constraints are appropriate for modelling breast-rib 

interface interactions as the breasts do not slide freely over the chest wall, but have a 

restricted range of motion due to the suspensory ligaments and the retromammary bursa that 

attach it to the skin and chest wall. The tangential motion of the breast tissues is generally 

recoverable. Therefore, the interaction of the breast tissues with the chest wall was 

approximated by using tied contact (Chung et al., 2008b, Reynolds et al., 2011), where an 

elastically recoverable sliding condition was enforced (see Chapter 4 and Chapter 6). The 

tangential contact pressure, tT is dependent on the contact gap, gT and a penalty parameter, CT: 

         (2.29) 

It can be seen in Figure 2.8 that as the tied contact stiffness,     , the zero-displacement 

boundary conditions would be replicated.  

 
Figure 2.8: Tied contact: The dotted line replicates the tied contact relationship between the 

tangential motion, gT and the tangential contact pressure, tT. The zero-displacement boundary 

condition on the contact surface will be approximated as      (bold line). See Chung 

(2008) for further detail.     

2.6 Finite element implementation 

The finite element method (FEM) was used to model the large deformations of the breast 

shaped phantom and breast tissues under both gravity and compressive loads using an in-

house mathematical modelling framework, Continuum Mechanics, Image analysis, Signal 
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processing and System identification (CMISS
1
). In this section only brief overview of FEM is 

given; for a more in-depth explanation of FEM please refer to Zienkiewicz and Taylor (2005).  

The foundation of FEM is that complex problems can be approximated by discretising a 

continuous domain into sub-domains (elements), which can then be used to solve the 

governing equations for the coupled problem (Eq. 2.14, 2.21, 2.22). The elements are defined 

with basis functions, such as linear Lagrange or cubic Hermite shape functions, with a local 

material coordinate system ξ, that ranges from 0 to 1. 

Linear Lagrange meshes approximate the field (e.g. geometric) as a weighted sum of the 

boundaries of each element (node points). Linear Lagrange meshes only have C
0
 continuity 

(piecewise continuous), whereas cubic Hermite meshes have higher order continuity (C
1
 

slope). In this thesis, the geometry of the breast tissues and the breast phantom were 

represented with cubic Hermite basis functions.   

In order to numerically evaluate the volume and surface integrals (Eq. 2.15, 2.23), the Gauss-

Legendre quadrature method was used. Gaussian quadrature approximates an integral as a 

weighted sum of the function’s values at specific points. These points are termed Gauss 

points and for n Gauss points, a polynomial of order 2n-1 can be exactly integrated. For a 1D 

function, the integral can be approximated as:  

 
                

 

   

 

 

 (2.29) 

where    is the weight for each Gauss point    in an n Gauss point scheme.  

The coupled contact mechanics problem (Eq. 2.21) can be solved using the Newton-Raphson 

method by reformulating the system of nonlinear equations to:   

                                       (2.30) 

where    is the solution increment vector and the global tangent stiffness matrices (K) and 

the global residual vectors (R) are formed from contributions of each body (subscript 

coupled) and the contact between the bodies (subscript c). For full derivation details please 

refer to Chung (2008).  

An iterative process was used to determine the deformed configuration (u) until convergence 

                                                 

1
 www.cmiss.org 
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was achieved: 

             (2.31) 

where subscript n represents the increment index. 

2.7 Summary 

In this background chapter, the motivation for modelling breast biomechanics was outlined. 

The boundary conditions and material properties of the breast were described, and the finite 

deformation theory and contact mechanics methods were summarised. In the subsequent 

chapters in this thesis, large deformations of the breast phantom and breast tissues were 

simulated using FEM implementation (CMISS) of finite deformation theory and contact 

mechanics. In Chapter 3, the compressive deformations of a breast shaped phantom under 

frictionless and frictional conditions were investigated. In Chapter 4, the deformations of the 

breasts due to prone to supine reorientation were simulated. Breast deformations due to 

mammographic compressions were subsequently explored in Chapter 6. 
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Chapter 3: Non-rigid image 

registration using finite element 

methods 
Image registration techniques have been applied to help clinicians interpret breast images 

across different modalities. One method used to validate non-rigid registration algorithms 

makes use of customised finite element (FE) models to deform breast images. The warped 

and original images were registered with other non-rigid breast image registration algorithms, 

such as fluid registration, whose success or failure was determined by their ability to replicate 

the FE derived displacement fields (Tanner et al., 2009, Van de Sompel and Brady, 2008). In 

these studies the FE models were treated as a ‘gold standard’ and the accuracy of other 

methods were validated with respect to these models of the breasts.  

However, such FE models of the breasts have not been systematically validated, so how can 

one justify their use as a gold standard for the analysis of other non-rigid registration 

algorithms?  

In this chapter a three dimensional block matching method for validating FE-based non-rigid 

image registration techniques is presented. This block matching algorithm uses three 

dimensional imaging data to quantitatively assess model predictions on a localised basis over 

the entire three dimensional object. This comparison technique was validated using three 

dimensional imaging data of a breast shaped phantom subject to large compressions. 

In order to predict breast deformations using FE models, various assumptions need to be 
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made regarding the tissue properties and the boundary conditions. Studies have found that the 

errors associated with such assumptions of the FE models of the breasts remain unresolved 

(Tanner et al., 2006). Previous quantitative validation of non-rigid registration of breast 

images using finite element models has focussed on the registration error of a small number 

of manually defined landmarks, the skin surface, or the overall accuracy of the image 

registration (Carter et al., 2009, Chung et al., 2008b, Han et al., 2011, Rajagopal et al., 2008b, 

Ruiter et al., 2006, Tanner et al., 2011). The non-linear nature of the breast deformations 

means that the choice of landmarks can potentially bias the analysis of the model predictions. 

It is therefore advantageous to consider similarity measures on a regional basis across the 

entire breast.  

The accuracy of FE models on a localised basis was assessed using a three dimensional block 

matching approach as an error measure. The novelty of the method presented here is that, 

unlike previous applications of three dimensional block matching as an image registration 

algorithm, this is the first instance where the method is used as a localised accuracy measure. 

The resulting error vector field can then be used to infer how the FE model could be 

improved.  

3.1 Block matching image comparison measure 

3.1.1 Previous work 

The block matching technique was first applied to medical images as a two dimensional non-

rigid registration tiles method described by Periaswamy et al. (1999). In this work a multi-

scale approach was used, where spline-pyramids of the target image and source image were 

created. At the lowest level of the pyramid the images were represented at the coarsest scale 

and in the successive levels up the pyramid, finer scales were used until the highest level, 

where the image was defined with its initial resolution.  

An initial global rigid registration was performed on the lowest resolution representations of 

the target and source images using Fourier-based correlation (Reddy and Chatterji, 1996). 

The source image was then warped accordingly. An approximation of the Kaiser-Bessel 

function (Periaswamy et al., 1999) was used to window images to reduce wraparound errors 

in the frequency domain. The two dimensional target and source images were iteratively 

divided into four overlapping two dimensional region blocks (down to 8 pixel x 8 pixel 
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blocks). Corresponding two dimensional regions in the two images were rigidly registered 

with respect to each other, and a smooth molding map was generated by using thin-plate 

splines (Bookstein, 1989) with landmarks determined from the rigid transformation 

parameters. The registration at each of the iterations was performed by interpolating the 

molding map with cubic B-splines to warp the source image.      

Subsequent work by Periaswamy and Farid (2003a) focussed on using local affine 

transformations to match the target image with the source image. In this work a three 

dimensional non-rigid registration algorithm was developed, where local affine parameters 

for each region were determined by the summation of the results of registration at different 

levels of the image pyramid. These parameters were interpolated to produce a smooth 

molding map based on splines. This was a similar approach to that taken by Rueckert et al. 

(1999), where a hierarchical series of B-spline-based free form deformation meshes were 

created over the whole image and the nodal parameters of each mesh were altered to 

maximise an image similarity measure.   

3.1.2 Three dimensional block matching for analysis of finite element 

models   

The block matching technique presented here is an extension of the two dimensional tiles 

method to three dimensions. This technique was used to compare image data across the entire 

breast volume to quantitatively assess non-rigid registration simulations on a regional basis. 

First, a global image comparison is made by using the squared normalised cross correlation 

(NCC
2
) (see Chapter 2) to compare the FE-warped, resampled breast images with the clinical 

images of the different gravity-loaded configurations [Figure 3.1]. The practical meaning of 

this image similarity measure in context of breast image comparisons is briefly discussed in 

Section 4.4.2   
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Figure 3.1: Determining optimal rigid translation between two three dimensional images. 

The two input images were blurred and windowed before being transformed into the 

frequency domain to find the optimal NCC
2
 between the images. 

A more detailed, regional variation in the image alignment error was then calculated using 

localised NCC
2
. The source and target images were iteratively subdivided into 50% 

overlapping three dimensional sub-regions (to 5 mm × 5 mm × 5 mm volume) and the shift in 

the previous iteration that maximised the NCC
2
 was used as the initial translation for the 

subsequent steps. Each sub-region was compared to an equivalent sub-region in the clinical 

image to find the optimal rigid translation for the model-warped sub-image. The initial 

translation of each sub-window was taken from interpolating the translations required for the 

larger sub-regions from the previous iteration. The localized correlation within these sub-

windows was then used to find the local error vector of each sub-region [Figure 3.2].  
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Figure 3.2: The optimal rigid translations were found for the sub-regions at each iteration, 

and were used as the initial translations for each of the sub-regions for the subsequent 

iterations. 

Similar to the tiles method, the block matching algorithm is based on fast Fourier transforms 

(Lewis, 1995) of the images; therefore a cosine-tapered windowing function was applied to 

the images to reduce wraparound error in the frequency domain [Figure 3.1]. It was found 

that the high frequency noise present in the medical images had a detrimental effect on the 

accuracy of the comparison measure. A low pass filter was implemented to reduce the 

resolution of the images to deal with this issue. The coarsest resolution was used for the 

initial translation and the resolution was increased for each subsequent step. The un-blurred 

images were used for the final iteration.  

The output from the three dimensional block matching technique was an error vector field, 

which describes the deformation error of each of the three dimensional regions in the image. 

These individual vectors associated with each region can be analysed statistically to 

quantitatively assess the accuracy of the image registration algorithms, including the FE 

model warping method. When block matching was used to assess the predictions of the FE 

models of the breasts, the distributions of the resulting errors within the FE models was used 

to identify the assumptions that cause the largest errors. Subsequent revisions of the 

assumptions for the FE models can lead to improvements in the accuracy and reliability of 

the models in simulating large-scale deformations of soft tissue mechanics. 
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3.2 Breast phantom studies 

3.2.1 Breast phantom 

A series of controlled experiments were carried out on a breast shaped phantom (Triple 

Modality Biopsy Training Phantom, Model 051, Computerized Imaging Reference Systems, 

Virginia, USA) to validate the use of the block matching algorithm as a measure of error for 

image registration techniques. The breast phantom is made with Zerdine® and has physical 

density similar to that of an average 50% glandular breast. The phantom is 500cc in volume, 

with a length of 12 cm, height of 9 cm and width of 10 cm [Figure 3.3]. It contains twelve 

lesions which are viewable under MRI, mammography and ultrasound. Six inclusions are 

cyst-like masses with diameters ranging from 3 mm to 10 mm and the remaining six are 

dense masses with diameters ranging from 2 mm to 8 mm.  

(a) (b)  

Figure 3.3: A breast shaped phantom was used in the validation of block matching as an 

accuracy measure for FE simulations of large deformations. (a) ‘Anterior-posterior’ and (b) 

‘cranial-caudal’ directions were defined on the phantom as shown. 

3.2.2 Compression device 

A compression device was designed and, using Perspex plates, built which allowed the breast 

phantom to be compressed to five levels. The compression plates were made of thick (12 

mm) Perspex so they would not flex but rather remain completely rigid when compressing 

the breast phantom. The top compression plate rotated about a pivot point set at 280 mm from 

the front end of the device. Non-ferrous copper pins were used to hold the top compression 
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plate down during a scan. The top and bottom compression plates were milled so that plates 

of varying thicknesses (2 mm, 6 mm, 10 mm, 12 mm and 20mm) could be inserted, resulting 

in a range of separation distances: 44 mm, 52 mm, 54 mm, 58 mm and 62 mm [Figure 3.4]. 

These compression distances were chosen as they fall within the compression thickness range 

(12 mm to 90 mm) of X-ray mammograms of the breasts (Helvie et al., 1994, Klein et al., 

1997, Poulos et al., 2003). Experiments were performed with and without lubrication 

(mineral oil) between the compression plates and the phantom, which allowed the predictions 

of the phantom model to be tested across a wide range of strain distributions.  

(a) (b)  

Figure 3.4: (a) Perspex compression device with (b) insert plates of varying thicknesses to 

allow for five levels of compression. 

3.2.3 Compression experiments 

The phantom was compressed in the ‘anterior-posterior’ (AP) and ‘cranial-caudal’ (CC) 

directions. For ease of reference, the orientations of the phantom have been described in 

terms of the body coordinate system shown in Figure 3.3. For AP compressions, where the 

anterior-posterior direction was aligned with the direction of gravity, the phantom was 

imaged before and during 24%, 29%, 34%, 37% and 46% compressions [Figure 3.5a]. For 

CC compressions, where the CC direction was aligned with the gravity vector, the phantom 

was imaged before and during the following levels of compressions: 27%, 32%, 37%, 39% 

and 49% [Figure 3.5b].  

3.2.4 Image acquisition 

MR images, with a T1 weighted FL3D pulse sequence, were acquired of the breast phantom 

in the uncompressed state and under different states of compression, using a 1.5T MR 

scanner (MAGNETOM Avanto, Siemens, Munich, Germany). The MR image dimensions 
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were 512 pixel x 512 pixel with a 350 mm x 350 mm field of view with 176 slices with 0.75 

mm slice thickness [Figure 3.5]. 

a)     0%          24%          29%           34%             37%               46% 

 
b)      0%          27%           32%             37%              39%               49% 

Figure 3.5: Two dimensional MR slices of the breast phantom before and during different 

levels of compression in a) AP and b) CC directions.  

3.3 Homogeneous finite element simulations of the phantom 

3.3.1 Uncompressed mesh 

The surface of the phantom and the inclusions were automatically segmented from the MRI 

data using a simple intensity threshold method. The segmentations of the surface of the 

uncompressed breast phantom were used to create FE models of the uncompressed breast 

phantom in the AP and CC directions as shown in Figure 3.6 (see Appendix A for 

convergence analysis of the model). A brief introduction to using finite elements to 

implement finite elasticity was given in Chapter 2. In this section the specific details of the 

FE models used to describe the breast shaped phantom were provided.  
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(a) (b)  

Figure 3.6: The segmented surface of the breast phantom were used to create FE models of 

(a) the AP uncompressed phantom (RMS error=0.53 mm) and (b) CC uncompressed phantom 

(RMS error=0.58 mm).  

3.3.2 Unloaded reference mesh 

Throughout the imaging, the breast phantom was subjected to gravity loading. The models 

created from the uncompressed data therefore represent deformed states of the phantom. In 

order to accurately predict the non-linear deformations of the breast phantom under the large 

levels of compression, the stress-free unloaded state is required. Using the methods 

developed by Rajagopal et al. (2008a), the unloaded state was directly calculated from the 

known gravity deformed states of the phantom, and used as the reference state for subsequent 

simulations. 

The stress-free state should ideally be the same for both the AP and CC models when the 

gravity loads are removed. However, as the phantom was positioned on the bottom 

compression plate during image acquisition, there are contact forces in addition to the gravity 

load. Currently the software CMISS used to calculate the stress-free configuration is unable 

to account for contact constraints. Instead of calculating the true unloaded reference shape 

and then using contact mechanics to predict the shape of the phantom due to contact with the 

bottom plate, kinematic constraints on the nodal values and derivatives were used on the 

breast phantom’s contact surface to maintain the contact with the bottom plate and predict the 

gravity unloaded shape of the breast. As the area of contact between the breast phantom and 

the bottom compression plate is different for the AP and CC gravity loading cases, two 

gravity unloaded models were calculated [Figure 3.7].  
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(a) (b)  

Figure 3.7: The uncompressed mesh (brown) with the corresponding estimate of the unloaded 

reference state (green outline) for gravity loading (g) along the (a) AP and (b) CC directions. 

Nodes were fixed on the contact surface of the uncompressed phantom with the bottom 

compression plate (gray) during the calculation of the unloaded reference state. 

3.3.3 Compressed mesh 

At the start of the compression simulations, gravity loads were applied to the unloaded mesh 

before the top compression plate was rotated down onto the breast phantom, allowing the 

effect of gravity to be accounted for throughout the compression simulations [Figure 3.8].  

 
Figure 3.8: The AP and CC compressions were simulated by rotating the top compression 

plate down onto the breast phantom. The accuracy of the deformations was assessed by 

calculating the Euclidean distances of the projections of the experimental compressed data 

points (gold) to the surfaces of the compressed models.   

Contact mechanics constraints were applied in these compression simulations. The kinematic 

constraints previously applied to calculate the gravity unloaded configuration were removed 

and the deformed shape of the breast phantom was calculated using contact constraints with 

the top and bottom plates. The simulations were set up as coupled contact mechanics 
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problems, with the breast phantom chosen as the slave mesh and the rigid compression plates 

chosen as the master mesh (see Chapter 2).  

The CC experiments were carried out with lubrication, reducing the friction between the 

contact surfaces. Therefore, frictionless contact mechanics was used during simulations (see 

Section 2.5.1). Since the phantom was covered in mineral oil, it was able to slip as the 

compression was applied. During the experiments, the phantom was held in position to 

prevent it from moving off the compression device. Correspondingly during the FE 

simulations, realistic fixed displacement boundary conditions were applied to the model to 

prevent it from sliding off the compression plates during the simulation [Figure 3.9].  

(a) (b)   

Figure 3.9: (a) During simulation of the frictionless compression in the CC direction, fixed 

displacement boundary conditions were used to prevent the phantom from sliding off the 

compression device. Node 1 was fixed in the x (red) and z (blue) directions, and Nodes 2 and 

3 were fixed in the x (red) direction. (b) These boundary conditions correspond to what was 

observed during compression of the breast phantom in the CC direction.  

The AP experiments were carried out without lubrication; therefore frictional forces resisted 

slippage between the breast phantom and the compression device. Thus, in contrast to the CC 

simulations, nodal locations not fixed during the simulations. Frictional contact mechanics 

were used to model the interactions between the contact plates and the phantom (see Section 

2.5.2).  
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3.3.4 Parameter estimation 

Cranial-caudal frictionless homogeneous model optimisation 

The CC compression experiments, where the direction of the compression on the breast 

phantom aligned with its CC direction, were conducted using lubrication. Frictionless contact 

mechanics was used to simulate these deformations with the FE model (see Chapter2). To 

minimise the penetration between the master and slave meshes while still allowing for 

numerical convergence, the penalty parameter for contact stiffness, CN, was set as 50 MPa/m 

for the breast phantom simulations. 

The FE models were based on an isotropic, homogeneous, and incompressible mechanical 

response, as defined by the neo-Hookean constitutive relation: W=C1(I1-3), where I1 is the 

first principal invariant of the right Cauchy-Green deformation tensor and C1 is the stiffness 

parameter.  

The stiffness of the breast phantom was unknown; therefore the material stiffness parameter, 

C1, was estimated using the FE model. The optimisation was performed using a nonlinear 

least-squares algorithm (lsqnonlin) in the Matlab optimization toolbox. After each of the CC 

compression simulations, the deformed surfaces were compared against the segmentations of 

the phantom surfaces from the MR images of the corresponding compression level. The data 

points that represented the actual deformed surface of the breast phantom were projected onto 

the nearest point on the surface of the deformed biomechanical mesh. The Euclidean distance 

of the projection was then calculated and used to define the objective function used in 

optimization (Babarenda Gamage et al., 2011). The objective function, Ø, for the 

optimisation was defined by the combination of these distances as defined in Eq. 3.1: 

 

                

     

   

 

      

    (3.1) 

where ||Z i Comp||
2
 was the Euclidean distance between the data point and its projection on the 

surface, M was the number of compression models considered in the optimisation, and NComp 

was the number of data points segmented from the breast phantom surfaces for each of the 

compressed MR images.  

In this case, an initial estimate for the material stiffness was supplied to the mechanics 

models, C1
intial

=1 kPa. Upper and lower bounds for the material stiffness parameter were set 
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to be 0.5 kPa and 20 kPa, respectively. These values were determined by performing a 

parameter sweep for the highest level of compression in the CC direction (46%), and then 

comparing the FE simulation with the clinical images. A converged result was reached when 

the change in the parameter was less than the specified tolerance. The optimal material 

stiffness value, C1, for the CC simulations was found to be 1.21 kPa. 

Anterior-posterior frictional homogeneous model optimisation 

The AP compression experiments, where the direction of the compression on the breast 

phantom aligned with its AP direction, were conducted without any lubrication. Therefore, 

frictional contact mechanics was used to simulate these deformations with the FE model (see 

Section 2.5.2). For the AP frictional simulations, additional contact parameters, such as the 

penalty for slip in the tangential (frictional) direction and the frictional coefficient, needed to 

be defined. As for the CC simulations, the penalty parameter for contact stiffness, CN was set 

as 50 MPa/m. These parameters were properties of the problem and helped to determine 

whether the breast phantom sticks or slips on the contact surface with the compression plates 

during mechanics simulations.  

The dimensionless frictional coefficient ( ) was set to 0.95 throughout the simulations for AP 

compressions. A simple experiment was conducted to estimate the static frictional coefficient 

between the compression plates and the breast phantom. The frictional coefficient,   is 

defined as:  

 
  

 

 
 (3.2) 

where T is the tangential force magnitude and N is the normal force magnitude at the point at 

which there is slip.  

One of the compression plates was set at an incline and the breast phantom was placed on 

top. The level of inclination was increased until the phantom began to slip. The gravity force 

can be decomposed into the normal and tangential components with respect to the contact 

surface using the angle of inclination. Using trigonometry, the frictional coefficient,   could 

thus be calculated as the tangent of the angle of incline as illustrated in Figure 3.10:  
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Figure 3.10: Estimation of the frictional coefficient between the breast phantom and 

compression plates without lubrication. The incline of the compression plate was increased 

until the breast phantom began to slip. The angle of incline (a) was then used to calculate the 

frictional coefficient.   

During the simulations, the deformation of the breast phantom under frictional AP 

compression depends on both the material stiffness (C1) and the tangent stiffness (CT) 

parameters. During CC compression simulations, the contact constraints were modelled as 

frictionless and the tangential contact stiffness, CT, can be considered to be zero i.e. the model 

is always in the slip state. The same phantom was used for both the AP frictional and the CC 

frictionless experiments, thus the material stiffness, C1, applies to both sets of simulations. 

The homogeneous material stiffness, C1, needed to be re-determined with the addition of the 

frictional AP simulations. The tangent stiffness, CT, (using the frictional AP experiments) and 

the material stiffness, C1, (using both sets of experiments) were estimated using the 

optimisation framework shown in Figure 3.11. The initial estimate for the material stiffness 

was set as the previous optimised value from the CC frictionless simulations. The normal 

(frictionless) component of the contact traction, CN, was set to be 50 MPa, and the optimal 

value for the tangential (frictional) component of the contact traction, CT, was found to be 29 

kPa/m, while the homogeneous material stiffness, C1, was 1.07 kPa.  

µ=tan(a) 
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Figure 3.11: Framework for homogeneous material and contact stiffness optimisation 

3.3.5 Image warping 

In order to assess the predictions of the FE model, the simulated results needed to be 

compared against the experimental data. In the above optimisation, the error was measured as 

the distance between the surface of the model predictions and the surface of the breast 

phantom in the experiments. However, in addition to the surface, the MR images also contain 

information about the internal structures of the phantom. This extra information can be used 

to assess the accuracy of the model. However, first the MR images of the uncompressed 

states needed to be deformed in accordance with the model predictions.  

The voxels associated with the model were identified and their material point locations (in FE 

co-ordinates) with respect to the model were defined. These material point locations in the 

deformed model were mapped back into geometric space to identify the deformed locations 

of the voxels. When an image is deformed and the voxel locations are altered, the pixel 

locations may no longer be regular. In order to compare the model warped images directly 

with the experimental images, tri-linear interpolation was used to re-sample the voxel 

intensity values at regular grid locations. The AP uncompressed and CC uncompressed 

images were embedded and warped using the FE predictions for the various levels of 

compression using Matlab. The FE-warped images and the experimental images were then 

compared using the block matching comparison method (Section 3.1).   
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3.4 Heterogeneous finite element simulations of the phantom 

For the initial compression simulations described in the previous sections, it was assumed 

that the breast phantom was made of only one type of material. However, this was clearly not 

the case as the breast phantom contains twelve inclusions, of which six are cystic masses and 

the remaining six are solid masses with correspondingly lower or higher material stiffnesses, 

respectively, compared to the bulk material of the phantom. As there were no features in the 

homogeneous bulk material of the phantom, the areas with the largest error in the block 

matching analysis for the homogeneous FE breast phantom model corresponded with the 

surfaces of the breast phantom and the inclusions. In this section, the heterogeneous 

mechanical properties of the inclusions inside the phantom were investigated. As the bulk 

material composes more than 99% of the volume of the breast phantom, the material stiffness 

for this region and the tied contact parameter were fixed to the previous estimates from the 

homogeneous optimisation (C1=1.07 kPa, CT =29 kPa/m), during optimisation of the soft and 

stiff inclusion material properties. Since the largest changes in the shape of the 12 inclusions 

occur with the highest levels of compression in AP (46%) and CC (49%) directions, only 

these models were used in the optimisation. The methods used to extend the phantom model 

can also be applied to the breast, which contains structures such as adipose, fibro-glandular, 

muscle, and in some cases tumourous tissues, all of which have different mechanical 

properties.  

3.4.1 Segmentations 

The breast phantom was imaged under MRI in the AP and CC uncompressed positions. A 

simple intensity threshold method was sufficient to distinguish the inclusions from bulk 

material in the MR images. The inclusions were separated into cystic or solid groups based 

on the deformed shapes of the inclusions in the compressed images [Figure 3.12]. As the 

solid materials have a higher stiffness than the cystic masses and the bulk material, the six 

structures that maintained their shape were classed as solid inclusions, whereas the structures 

which changed from ellipsoid shapes to more disc-like structures were classed as cystic 

masses.  
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Figure 3.12: The breast phantom structures were classed as bulk (light blue), solid inclusions 

(red) and cystic inclusions (dark blue) by considering the actual deformations of the breast 

phantom inclusions before and after compression. Sagittal slices and axial slices are shown 

with the yellow lines indicating the location of the corresponding slice.  

For application to breast models, different imaging modalities can reveal information about 

the stiffness characteristics of abnormal breast tissues. Cystic masses, with lower stiffnesses 

in comparison to normal breast tissue, are typically confirmed using ultrasound (Ikeda, 2011). 

In contrast malignant breast cancers, which tend to be much stiffer than normal breast tissues, 

typically have an increased level of vascularisation, resulting in distinctive enhancement 

curves in contrast enhanced MR studies (Warren and Coulthard, 2002). 

3.4.2 Heterogeneous stiffness fields 

The FE mesh was made up of large elements (average volume: 3313 mm
3
) described with 

cubic Hermite shape functions, while the solid and cystic inclusions ranged from 2 mm to 10 

mm in diameter. In order to describe the material heterogeneity of the breast phantom, 

stiffness values were assigned to the Gauss points inside the elements. The material stiffness 

Uncompressed sagittal slice Compressed sagittal slice 

Uncompressed axial slice Compressed axial slice 
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for each of the Gauss points was calculated as a linear combination of the stiffnesses of each 

of the three materials, as: 

   
        

    
           

    
            

    
     

 (3.3) 

where      
          

    and       
   were the weightings of the bulk, solid and cystic materials, 

respectively, at each Gauss point.   

The weightings can be calculated using either a closest point Voronoi method or a field-based 

method [Figure 3.14]. In the Voronoi method, every voxel inside each element was assigned 

to the closest Gauss point inside that same element. The weightings were the proportion of 

the voxel labels for the various material types assigned to each Gauss point [Figure 3.13].  

 (a)  (b)  

Figure 3.13: Using the Voronoi method to account for the heterogeneous stiffness field. (a) 

The model was subdivided into elements (different colours represent the different elements). 

(b) The voxels in each element were then assigned to the closest Gauss point in that element 

(different colours represent the Gauss point assignment). Each voxel now has two labels: 

Gauss point and material type.  

In the field-based method, the segmentation was split up into three binary masks – one for 

each label (bulk, solid and cysts). These masks were used to set up three fields inside the FE 

mesh, where each field was assigned values of ones or zeros corresponding to the mask. 

These binary fields distributed across the mesh were approximated with tri-cubic Hermite 

basis functions. The fields were then interpolated at each individual Gauss point within each 

element, to determine the weightings of the different materials.  

This field approximation can result in negative weighting values at some of the Gauss points, 

which corresponds to a negative stiffness value, which cannot be simulated with the FEM 

software (CMISS). The upper limit of the material stiffness which is permissible for the 
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material (e.g. solid) was calculated by rearranging Eq. 3.3: 

        
   

           
   

            
   

     
 

  
      

      
   

           
   

     

      
  , where       

            
    

(3.4) 

The advantage of the field-based method is that the same interpolation scheme is used to 

define both the geometry and the mechanical properties of the breast phantom at the nodal 

locations. The ability of the model to deform depends on the stiffness field which is generated 

based on the interpolations of the segmentations.  

Cubic Hermite basis functions that were used to describe both the geometric and 

segmentation fields enforces C
1
 continuity, although the segmentation field is discontinuous. 

This interpolation of the discontinuous segmentation field with cubic Hermite shape 

functions has the effect of blurring the effective stiffness field as shown in Figure 3.14. 

Disallowing negative weightings resulted in a limited effective range of stiffness values that 

can be assigned to the Gauss points. This limitation could be dealt with by increasing the 

resolution of the mesh, however refining the mesh correspondingly increases the 

computational expense of solving the mechanics simulations.  

In contrast, the Voronoi method for assigning the weightings of the mechanical properties of 

the mesh lacks the compatibility with the geometric degrees of freedom of the mesh. 

However, it provides greater fidelity to the segmentations of the breast phantom images, and 

allows for a larger range of effective stiffness values that can be assigned to the Gauss points 

to represent the material types [Figure 3.14]. Therefore, the Voronoi method was used to 

assign the weighting values to calculate the stiffness values of each Gauss point.  

(a) (b)  

Figure 3.14: Distribution of stiffness values in an axial slice of the CC uncompressed model 

where the weightings were determined by using (a) the field-based method and (b) using the 

Voronoi method.  
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The methods discussed in this section approximated the heterogeneous nature of the breast 

phantom by varying the material stiffness across elements in the mesh at a Gauss point 

resolution. This had the effect of blurring the distinction between the structures as shown in 

Figure 3.12 and Figure 3.14. In addition, these methods neglect the interface conditions 

across the boundaries of the structures. However, the aim of this thesis centres on FE models 

of the breast, whereas the phantom studies were used to validate techniques, prior to 

application to breast models.  

Unlike the homogeneous C1 estimation, the block matching method was used as the metric 

for the optimisation of the solid and cystic inclusions in the breast phantom. It was found that 

the optimal values for the solid and cystic inclusions were 6.73 kPa and 0.04 kPa, 

respectively.  

3.5 Comparison of different biomechanical models of the 

breast phantom 

3.5.1. Modelling error quantification 

The FE model predictions were quantitatively assessed on a localised basis over the entire 

phantom by comparing the FEM-warped images against the experimental MR images of the 

compressed phantom using the block matching comparison method [Figure 3.15]. In the 

phantom there are twelve inclusions, which were distinct under MRI. The inclusions were 

tracked in order to assess the overall internal deformation in addition to the surface 

deformation of the breast phantom.  
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(a)  

(b)  

(c)  

Figure 3.15: (a) Ground truth images of the breast phantom under AP and CC compression 

loads were acquired in the MRI scanner. The deformations of (b) homogeneous and (c) 

heterogeneous FE models were used to warp the uncompressed MR images. The differences 

between the model warped images and the ground truth images are shown.   

Feature tracking error measures, which have typically been used to assess image registration 

algorithms (Carter et al., 2008, Chung et al., 2008b, Klein et al., 2009, Rajagopal et al., 2010, 

Ruiter et al., 2006, Tanner et al., 2011) were also analysed to assess the error of the breast 

phantom image registration using the FE models. The target registration errors of the centroid 

distance (CENT) of the inclusions between the model-warped images and the experimental 

images of the compressed phantom were calculated. The volume overlap (Dice coefficient, 

DICE) and surface distance (symmetric mean absolute distance, SMAD) were evaluated for 

each of the 12 inclusions: 

 
     

      

       
     (3.5) 

 

     
 

     
     

          
   

    

  (3.6) 

where A, B are the inclusions segmented from the target and warped images, respectively, 

  
   is the minimum distance between the i

th
 surface voxel on A and the surface voxels on B, 

and       are the number of surface voxels for the inclusions in A and B respectively. 
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In addition to the landmark-based methods, the block matching method was used to give an 

overall assessment of the accuracy of the model deformations. The errors for the inclusions 

can be identified by using masks with the block matching method. By comparing the results 

of the block matching approach with the feature tracking methods, the use of the block 

matching method to assess the deformations of the FE models was validated. 

Initially homogeneous FE models of the breast phantom were used to simulate compression 

in the AP and CC directions. Based on the results from the homogeneous model block 

matching error evaluations, the model was improved by adding varying stiffness fields to take 

into account the heterogeneous structures inside the breast phantom (Section 3.4). The 

stiffness values for the different structures were estimated by comparing the model 

predictions of the most compressed states in both AP and CC directions against the 

experimental data, using the block matching as the objective function.  

3.5.2. Statistical analysis 

Means and standard errors for the landmark and block matching measures of accuracies were 

calculated for the homogeneous and heterogeneous biomechanical models of the breast 

phantom. After confirming normality (Shapiro-Wilk test) and equal variance (Levene’s test) 

of the landmark data, the two models were assessed using paired t-tests for each of the 

landmark-based error measures (CENT, SMAD and DICE) using the statistical package R
2
. 

The p value to reject normality and/or equal variance was set at p≤0.05. Paired t-tests were 

used to assess the landmark-based methods as the same lesions were measured in both 

models. While an independent t-test was used to assess the block matching error measures for 

the two models.  

3.5.3. Results 

Paired t-tests between the homogeneous and heterogeneous FE models for the landmark-

based measures indicated that there were significant differences between them for two of the 

landmark-based measures (CENT: p<0.01; SMAD: p<0.01), while comparisons using the 

volume overlap measure indicated that there were no significant differences between the 

models (DICE: p=0.3). The independent t-test indicated that there were significant 

                                                 

2
 www.r-project.org 
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differences between the models when the block matching method was used for analysis 

(p<0.001). Comparisons between the homogeneous and heterogeneous models for the CENT, 

SMAD, and block matching error measures indicated that taking into account the 

heterogeneous nature of the breast phantom improved the prediction of the FE simulations as 

shown in Table 1. 

Table 1: A FE-based method was used to warp the three dimensional clinical images of the 

uncompressed breast phantom to match images of the breast phantom under 46% anterior-

posterior (AP) and 49% cranial-caudal (CC) compression loads. The 12 individual masses of 

the breast phantom were used to calculate the mean and standard errors (SE) of the centroid 

distance (CENT), surface distance (SMAD) and volume overlap (DICE) errors of the 

frictionless and frictional models (n=24). A block matching method was also used to assess 

the overall accuracy of the models. 
 CENT (mm) SMAD (mm) DICE (%) Block Matching 

(mm) 
Homogeneous simulations  

 

2.71 ± 0.20 1.20 ± 0.07 55.6 ± 3.7 2.85 ± 0.01 

(n=45134) 

Heterogeneous simulations 

 

1.84 ± 0.14 0.97 ± 0.06 58.2 ± 3.9 2.75 ± 0.01 

(n=45184) 

3.6 Remarks 

The purpose of this chapter was two-fold: firstly the block matching method was validated as 

an error measure for image registration of medical images of the breast phantom; and 

secondly methods for estimating heterogeneous material properties were developed. In Table 

1 it can be seen that using block matching as an error measure for non-rigid registration of 

large deformations of soft tissues was consistent with what was observed using landmark-

based methods. The main advantage of the block matching method for assessing error over 

feature tracking is that it can automatically determine the regional errors over the entire three 

dimensional volume (Lee et al., 2010a). For breast images, feature tracking error measures 

are typically based on manually defined landmarks, and are hence subjective (Carter et al., 

2008, Chung et al., 2008b, Rajagopal et al., 2008b, Ruiter et al., 2006, Tanner et al., 2011).  

Different measures were used to investigate the accuracy of the homogeneous and 

heterogeneous models in predicting the compressive deformations of the breast phantom. 

Statistical analysis of the homogeneous and heterogeneous models using the volume overlap 

(DICE) of the inclusions as an error measure indicated that there were no significant 

differences between the FE models (p=0.3). However, the other error measures (and visual 

inspection) indicated that the heterogeneous models were significantly more accurate than the 
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homogeneous models (p<0.01). This result reflects the insensitivity of the volume overlap 

measure to the difference between the models. This difference lies in the material stiffnesses 

of the inclusions, which make up a relatively small part of the breast phantom. The relative 

locations of the inclusions in the breast phantom remained the same across the two models, 

though the shape differed, with the heterogeneous model having greater fidelity to the actual 

compressions, as shown in Figure 3.15 and Table 1. 

The block matching method was used as a metric to estimate the heterogeneous material 

parameters. The block matching method presented in this chapter provides regional 

information about the accuracy of the simulated deformations over the whole breast. The FE 

models can thus be systematically improved by identifying the regions with the largest errors 

and adjusting the assumptions of the model accordingly. Statistical analysis was on both 

feature-based error measures and the block matching comparisons for the highest compressed 

models in the AP and CC directions and it was found the heterogeneous models performed 

significantly better than the homogeneous models in predicting the internal deformations of 

the breast phantom.  

In the rest of this work, the block matching non-rigid registration algorithm was used as an 

error measure where the deformation field between the FE-warped image and the target 

image was analysed to assess the accuracy of the FE-warping. Other image registration 

algorithms such as fluid registration (Crum et al., 2005) or the B-spline-based free-form 

deformation (FFD) method (Rueckert et al., 1999) can be used instead of the block matching 

approach described here, to assess localised error of the biomechanical model. However, as 

shown in the results above, the simpler block matching approach is sufficient to capture the 

regional inaccuracies of a FE model.  

In summary, methods for assessing the accuracy of the three dimensional model on a regional 

basis and estimating the heterogeneous material properties were validated. These techniques 

were then applied to FE models of the breast simulating prone to supine reorientation in 

Chapter 4.  
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Chapter 4: Finite element-based 

non-rigid registration of breast MR 

images 

4.1 Motivation 

Contrast-enhanced (CE) MRI (prone orientation), X-ray mammograms (CC or MLO 

compressed with patient in an upright posture), and ultrasound (supine orientation) can 

provide complementary information for the diagnosis of breast cancer. MR images of the 

breast are typically acquired with the patient lying in a prone position, with the breasts 

hanging pendulously within a MR breast coil to improve the signal-to-noise ratio by 

providing greater image contrast and minimising motion artefacts from breathing or other 

patient movements (Warren and Coulthard, 2002). However, surgery and ultrasound are 

usually performed with the patient lying in a supine orientation. Accurate collocation of 

tumours inside the breasts across different gravity loading conditions would therefore be a 

useful clinical tool. 

CE-MRI relies on the enhancement characteristics of normal and abnormal breast tissues to 

identify malignant tumours in the breasts. Invasive breast cancers are characterised by 

increased vascularisation, and therefore tend to enhance faster and to a greater degree than 

normal fibroglandular tissue. Due to the dynamic nature of the image acquisition, patient 

motion can be problematic in the interpretation of images. Different transformations have 

been applied to breast images to account for motion-based artefacts; early work on registering 
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dynamic breast MR images focussed on the global alignment on the images using affine or 

rigid transformations (Zuo et al., 1996). However, breast tissues are soft and thus undergo 

non-linear deformations that are generally not well represented by rigid or affine 

transformations. Studies have acknowledged this limitation and used non-rigid registration 

techniques such as free-form deformations (FFD) based on B-spline warping (Rohlfing et al., 

2003, Rueckert et al., 1999), thin-plate splines (TPS) (Wirth et al., 2002), and fluid 

registration (Crum et al., 2005) to capture the local deformations of the soft breast tissues.  

Rueckert et al. (1999) proposed a method for the non-rigid registration of prone breast MR 

images using free-form deformations. The global motion of the breast was captured using an 

affine transformation; this was then followed by FFD based on B-splines to model the local 

deformations of the breast tissues. A penalty term was used to maintain the smoothness of the 

transformation. They showed that this algorithm was much better at capturing the 

deformations of the breast tissues than simple rigid or affine transformation of the images. 

However, non-rigid registration techniques can alter the volume of the breast tissues and 

features that are highlighted by the contrast agent, such as tumours, often shrink substantially 

during the non-rigid registration process. Tanner et al. (2000) and Rohlfing et al. (2003) 

augmented the Rueckert approach to include a volume-preserving constraint to address this 

problem. This demonstrated the need for image registration algorithms to take into account 

the physical behaviour of the breast tissues. Finite element (FE) models have therefore been 

used to provide physically realistic constraints on aligning sequential breast imaging studies 

(Krol et al., 2006, Roose et al., 2008, Schnabel et al., 2003, Tanner et al., 2000, Unlu et al., 

2010). 

Finite element (FE) models have also been developed to simulate the deformations of the 

breasts for different gravity loading conditions. One of the main advantages of FE models 

over other non-rigid registration methods is that it restricts the motion to physically plausible 

deformations. It would be clinically beneficial to be able to track the internal deformations of 

the breast tissues between the prone, supine, and upright gravity loaded states, as well as the 

compressed state because different imaging modalities require the breasts to be subject to 

different loading conditions. In this chapter, the ability of the biomechanical model to predict 

the deformations of the breast tissues for prone to supine reorientation was validated using 

MR images of volunteers.  
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4.2 Previous finite element breast models for gravity loading 

simulations 

FE models have been developed to simulate larger deformations of the breast tissues: (i) 

under compression loads (Alonzo-Proulx et al., 2010, Azar et al., 2001, Chung et al., 2008b, 

Hipwell et al., 2007, Galea and Howe, 2003, Pathmanathan et al., 2008, Reynolds et al., 

2011, Ruiter et al., 2006, Samani et al., 2001, Schnabel et al., 2003, Shih et al., 2010, Tanner 

et al., 2011); or (ii) due to changes in the gravity loading state (Carter et al., 2009, del 

Palomar et al., 2008, Pathmanathan et al., 2008, Rajagopal, 2007, Yu-Neifert, 1995). In this 

chapter, a biomechanical modelling framework was tested using prone to supine reorientation 

studies. For further discussion on compression models, please refer to Chapter 6.  

Yu-Neifert (1995) developed one of the earliest FE models of the breasts, for which the 

geometry of the model was based on stereographic images of the breast surface. The supine 

orientation was used as the reference state, and gravity loads were applied to the mesh in the 

caudal and anterior bodily directions to simulate the upright and prone orientations, 

respectively. Since the composition of the fibroglandular and adipose tissues within the 

breasts were not captured, their model assumed that the breast tissues were composed entirely 

of adipose tissue, with a linearly elastic skin layer. A major limitation of the Yu-Niefert model 

was that only surface information was used to create and validate the model. Pathmanathan et 

al. (2008) developed an improved model that was created from prone three dimensional MR 

images. The images captured the internal structures of the breast, and this information was 

used to develop a heterogeneous (adipose, fibroglandular, and skin) model of the breast that 

was used to simulate the supine orientation and mammographic compressions from a prone 

orientation.    

Surgery and ultrasound are typically performed on breasts while the patient lies in a supine 

orientation. However, satisfactory outcomes for breast augmentation or reduction surgeries 

depend upon the morphology of the breast tissues in the upright position. Del Palomar et al. 

(2008) investigated the deformations of the breast tissues from supine to upright orientations. 

CT images were acquired of two patients lying in the supine orientation, and the tissues 

(adipose, fibroglandular, muscle, and bone) were segmented using a marching cubes 

algorithm. FE models of the breasts were then constructed from the segmentations of the 

adipose and fibroglandular tissues, and the global stiffness of the breast tissues was 
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determined based on the properties of the respective tissues within the model using the neo-

Hookean material relation.  

Limitations 

1. In a number of studies, either the prone or supine orientations were used as the 

biomechanical reference state (Yu-Neifert, 1995, del Palomar et al., 2008, Carter et 

al., 2008). One problem with this is that the material relations used in the analysis 

assume that the reference state is unloaded and stress-free, which is inappropriate as 

the breast tissues are subject to gravity loading in the prone and supine orientations. A 

well defined (e.g. stress-free) reference state is required in order to accurately predict 

the deformation of the breast due to applied loads. The importance of the 

biomechanical unloaded reference state was investigated in gravity loading 

simulations by Rajagopal et al. (2007a, 2008a). The unloaded reference state can be 

calculated using a ‘reverse method’, where the conventional finite elasticity equations 

are reformulated in terms of the known deformed (prone) configuration (Rajagopal et 

al., 2007a). This method was experimentally validated using a silicon gel beam under 

gravity loading (Rajagopal et al., 2007a), before being applied to breast FE models 

(Rajagopal et al., 2008a). In this chapter, this ‘reverse method’ was used to estimate 

the biomechanical unloaded reference state directly from the prone orientation, prior 

to supine simulations. This is in contrast to studies where gravity is applied twice, first 

in the direction opposite to the actual gravity vector, then in the direction 

corresponding to the subsequent deformation (upright or supine) (Carter et al., 2008, 

del Palomar et al., 2008).  

2. Major limitations of the work described above on breast deformations due to gravity 

are that either no quantitative validation was performed (Pathmanathan et al., 2004, 

2008) or that it was based only upon the skin surface deformations of the breast 

models (Yu-Neifert, 1995; del Palomar et al., 2008). Using the most anterior point on 

the skin surface for validation of the model is insufficient (Yu-Neifert, 1995), as 

simpler transformations (such as the affine transform) could give comparable results. 

However, it has been shown that affine transforms are unable to accurately represent 

the deformations of the breast in sequential prone imaging studies (Rueckert et al., 

1999). Del Palomar et al. (2008) validated their models with a greater number of 

points; although these points were all located at the skin surface.  

3. This limitation was addressed in other studies where the accuracy of the internal 
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deformations of the breast tissues in FE model simulations of gravity loading were 

assessed using MR images of the breast in different orientations with respect to the 

direction of  gravity (Carter et al., 2008, 2009, Han et al., 2011, Rajagopal et al., 

2007a, 2008b). In these studies, skin surface deformations, and manually tracked 

internal landmarks, were used to assess the accuracy of the FE model predictions. 

4. In this chapter, the block matching method (described in Section 3.1) was used to 

automatically assess the regional accuracy of the FE models throughout the entire 

breast. Based on the block matching results, the biomechanical breast models for 

simulating prone to supine reorientation were systematically improved by modifying 

the boundary conditions and assumptions about the breast model composition. This is 

an improvement over methods that have manually defined landmarks (Carter et al., 

2008, 2009, Han et al., 2011, Rajagopal et al., 2007a, 2008b), as the distribution of the 

error vectors varies over the volume of the breast. Moreover, the choice of landmarks 

presents a subjective (and potentially biased) view of the model accuracy.  

Boundary conditions 

Within the literature, boundary conditions at the posterior nodes of the breast mesh have 

traditionally been: fixed in one/all directions (Rajagopal et al., 2007, 2008a, 2008b, Shih et 

al., 2010, del Palomar et al., 2008); displaced according to non-rigid registration deformation 

fields (Tanner et al., 2006, Carter et al., 2006); displaced at a linear rate dependent on the 

distance from the sternum (Carter et al., 2008); or have used contact constraints with the rib 

surface (Chung et al., 2008, Reynolds et al., 2010, Han et al., 2011).   

In validation studies of biomechanical models of the breast, MR images were acquired before 

and during compression (Ruiter et al., 2006, 2008, Chung et al., 2008) or between different 

gravity loading states (Rajagopal et al., 2008, Carter et al., 2008, 2009, del Palomar et al., 

2008). Carter et al. (2008) estimated linear displacement of the nodes on the posterior 

surface, based on manual identification of corresponding features close to the pectoral muscle 

in MR images of the breast under prone and supine gravity loading. In other studies, non-

rigid image registration techniques, such as fluid registration (Carter et al., 2009) or FFD 

based on B-splines (Tanner et al., 2006), were used to align images of the breast under 

different loads. Subsequently FE models were used to simulate the deformations of the breast 

across the different loading conditions, while applying nodal constraints on the surfaces of 

the FE breast models, based on the non-rigid registration deformation fields. A limitation of 
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these methods is that they require a-priori three dimensional images of the deformed state 

(compressed or supine), which are typically not acquired in the clinical setting. This chapter 

focuses on the accuracy of biomechanical models in predicting prone to supine deformations 

without the use of supine images. The accuracy of the model predictions was quantitatively 

assessed to compare the use of fixed-displacement against contact boundary constraints. 

Contact constraints have previously been applied to FE breast models for both compression 

(Chung et al., 2008; Reynolds et al., 2010) and prone to supine reorientation (Han et al., 

2011) studies. A limitation of these studies was that the parameters describing the contact 

constraints were arbitrarily defined. In this chapter, methods for estimating the contact 

constraints on the rib surface of the breast model were developed.  

Mechanical properties 

As previously discussed in Chapter 2, a wide range of material stiffness values have been 

reported for adipose and fibroglandular tissues in the breasts, with the level of pre-

compression of the breast tissue having influence on the stress-strain relationship (Wellman, 

1999; Krouskop et al., 2003). However, this was likely a consequence of their use of linear 

models, which do not accurately represent the material properties of the breast tissues. 

Hyperelastic material relations, such as the neo-Hookean model, have therefore been used to 

approximate mechanical behaviour of the breast (Babarenda Gamage et al., 2011).  

The mechanical properties of the breast tissues have been represented as either homogeneous 

or heterogeneous fields in FE models. Isotropic and transversely-isotropic (with greater 

stiffness in the AP direction) material relations have also been considered for compression 

simulations (Tanner et al., 2011). However, these models used the prone gravity loaded 

configuration as the reference state in the simulations. Anisotropic material properties will 

need to be investigated for cases when an estimation of the biomechanical unloaded reference 

state is calculated using the ‘reverse method’.  

In this chapter, the validity of using more realistic boundary conditions on the rib surface and 

incorporating information about the heterogeneous nature of the breast into the FE models 

were investigated by examining the sensitivity of the model predictions. Initially, a 

homogenous model with zero-displacement boundary conditions on the rib surface was used 

to simulate the deformations of the breast tissues for prone to supine reorientation. 

Subsequently contact constraints were applied to the rib surface, before heterogeneity in the 

stiffness of the various tissues (adipose, fibroglandular, and muscle) was incorporated. The 
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accuracy of the biomechanical models of the breasts was assessed using a three dimensional 

block matching method (see Chapter 3).  

4.3 Breast MR imaging studies of volunteers 

To investigate the use of different boundary conditions and mechanical property assumptions 

on the FE model accuracy, MRI studies were performed on two healthy volunteers who were 

scanned using a 1.5T MR scanner (MAGNETOM Avanto, Siemens, Munich, Germany). 

Written informed consent was obtained from both volunteers prior to participation in the 

study, which was approved by the local ethics committee
3
. Volunteer 1 was a multiparous 

woman (who had given birth to two children) of 35 years with a body mass index (BMI) of 

22.1, who was lactating at the time of imaging. Volunteer 2 was a nulliparous woman (never 

having given birth) of 21 years with a BMI of 22.8. T2-weighted images of the breasts were 

acquired with the volunteers positioned both in prone and supine orientations [Figure 4.1]. 

Although the standard sequence for breast MR imaging is T1, the T2 imaging protocol used in 

these studies is more appropriate for studies investigating tissue heterogeneity in the breasts 

(Section 4.6), as it allows for greater distinction between the adipose and fibro-glandular 

tissues. The image dimensions were 512 pixel x 512 pixel spanning a 350 mm x 350 mm 

field of view with 52 and 60 slices of 2.5 mm thickness for Volunteers 1 and 2, respectively.  

 

 

 

 

 

 

                                                 

3
 The University of Auckland Human Participants Ethics Committee (reference: 2006/149) 
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(a) (b)

(c) (d)  

Figure 4.1: Clinical MR images of the prone breast were used to create personalised FE 

models for (a) Volunteer 1 and (b) Volunteer 2 using the skin (gold points) and rib (green 

points) segmentations. In order to validate the model deformations, clinical supine images 

were also obtained for (c) Volunteer 1 and (d) Volunteer 2.   

4.4 Biophysical breast models with fixed boundary 

conditions 

4.4.1 Model setup 

The skin and rib surfaces in the MRI data for the volunteers in the prone positions were 

manually segmented and used to create personalised models for FEM-based registration 

[Figure 4.2]. The model customisation was performed by fitting the anterior surface of a 

generic mesh to the skin data cloud and the posterior surface of the mesh to the rib data. 

The breast mesh extended from the mid-sagittal plane (sternum) around the front of the torso 

up to the mid-coronal plane (axilla) [Figure 4.2]. The axilla edge of the mesh was chosen to 

be relatively remote from the bulk of the breast tissues, so that any assumptions on the 

boundary conditions applied to the axilla edge of the breast mesh would not greatly influence 

the accuracy of the breast deformations.  

The FE models for the breasts were based on an isotropic, homogeneous, and incompressible 

mechanical response, described by the neo-Hookean constitutive equation: W=C1(I1-3), 

where I1 is the first principal invariant of the right Cauchy-Green deformation tensor and C1 

is the stiffness parameter. See Appendix A for convergence analysis of the models.  
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(a)  (b)  

Figure 4.2: A generic mesh was fitted to the skin (gold) and rib (green) segmentations of the 

prone data to customise the mesh to (a) Volunteer 1 (Skin RMSE=1.8 mm, Rib RMSE=0.9 

mm) and (b) Volunteer 2 (Skin RMSE=1.9 mm, Rib RMSE=1.5 mm).  

4.4.2 Boundary conditions 

The deformation of the breast tissues is of primary interest; therefore the breast tissues were 

isolated from the rest of the torso and shoulder during the creation of the FE mesh. Kinematic 

boundary conditions were enforced to account for the constraints that these structures 

normally place on the deformation of the breast tissues. 

The breast tissues and pectoral muscles were initially assumed to be firmly attached to the 

chest for simulating the prone to supine reorientation. Based on this assumption, zero-

displacement boundary conditions were applied to the nodes on the rib surfaces of the FE 

models. Kinematic boundary conditions were also applied to the medial, axial, cranial, and 

caudal surfaces of the breast mesh to ensure realistic deformations as described in Figure 4.3. 

In addition to fixing the nodes on the rib surface, some skin surface nodes on the cranial edge 

of the model were also fixed to account for the attachment of the breast tissues to the 

shoulder [Figure 4.3]. 

Unlike some previously published similar studies (Tanner et al., 2006, Carter et al., 2008), 

additional displacements were not prescribed on the skin surface of the FE-warped prone 

mesh to ensure that it matched the clinical supine data. Although this approach may provide a 

better match between the skin surface of the FE-warped and clinical images, this disregards 

the physics of the situation, as these displacements introduce unbalanced and unrealistic 

forces at the free (skin) surface of the FE mesh. By maintaining fidelity to the physical 

situation of the breast tissues, biomechanical breast models can be used to predict the 

deformations of breast tissues given known boundary conditions and where a-priori three 
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dimensional information of the breast deformations are unknown.  

 
Figure 4.3: During prone to supine reorientation simulations, kinematic boundary conditions 

were applied to the breast models to mimic the torso constraints. The nodes associated with 

the shoulder (red) and rib surface were fixed in all directions. The sternum and axilla 

surfaces were fixed in the x (red) and y (green) directions, respectively, while the cranial and 

caudal surfaces were fixed in the z (blue) direction. The nodal derivatives on these five 

surfaces were also fixed to prevent unrealistic bulging at the edges of the model. 

4.4.3 Mechanics simulations 

FE implementation of finite deformation elasticity was used to simulate the large 

deformations that the breast tissues underwent between imaging. In both the prone and supine 

orientations, the breasts are subject to gravity loading. In order to model the deformation of 

the breast tissues from one loading state (prone) to another (supine), the mechanics reference 

state needs to be determined. In many studies, the shape of the breasts under gravity loading 

was taken as the reference state (Yu-Neifert, 1995, Carter et al., 2006, 2008, del Palomar et 

al., 2008). However, the constitutive relations used in these models assume zero-stress and 

zero-strain in the reference state.  

In this thesis, the biomechanical reference state of the breast tissues was predicted by 

deforming the FE models of the prone breast in accordance with the large deformation 
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elasticity theory. The method used to estimate the unloaded state of the breast tissues from the 

loaded configuration (prone) was based on redefining the knowns (to be the loaded state) and 

unknowns (to be the unloaded reference state) in the finite elasticity equations (Rajagopal et 

al., 2007). The estimated biomechanical unloaded reference state was then deformed into the 

supine position through the application of gravity loading towards the posterior direction 

[Figure 4.4]. 

 
Figure 4.4: Estimation of the unloaded reference state from the prone orientation by 

removing the effect of gravity. The supine orientation was then simulated by applying gravity 

to the estimate of the unloaded state of the breasts.  

4.4.4 Stiffness estimation  

The breasts for the two volunteers were initially modelled using a homogeneous stiffness 

field. The stiffness of the breast tissues is dependent on several factors, including the ratio of 

adipose to fibroglandular tissues, which is different for each individual. Therefore, there is a 

need to customise not only the geometry of the FE model, but also the mechanical properties 

of the breast tissues to each individual. In Chapter 3, an optimisation framework was 

introduced to determine the unknown material stiffnesses for a breast phantom. A similar 

method was applied here to customise the mechanical properties of the breast tissues [Figure 

4.5].  

The prone FE models were first created from the segmentations of the skin and rib surfaces of 

the prone MR images. Breast deformations were then modelled using gravitational body 

forces to simulate the ‘unloading’ of the breast and then the reorientation from prone to 

supine. The shape of the anterior surface of the biomechanical model of the breast was 

compared to segmentations of the skin surface from the clinical supine images. In order to 

minimise the computational time required for the optimisation routine, a low resolution FE 

model (975 geometric solution degrees of freedom) was first used to determine initial 
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estimates of the stiffness values, which were subsequently used for a high resolution FE 

model (4606 geometric solution degrees of freedom) optimisation. The homogeneous 

material stiffnesses (C1) were found to be 75 Pa and 122 Pa for Volunteers 1 and 2, 

respectively, which is similar to previously reported material stiffness values of 80 Pa and 

130 Pa (where the shoulder nodes were not fixed) (Rajagopal et al., 2008).  

  
Figure 4.5: Framework for estimating the material stiffness, C1. 

4.5 Biophysical breast models using tied contact constraints 

4.5.1 Model setup 

In the previous section, the breast tissues were assumed to be fixed to the pectoral muscles 

and rib cage. However, this is a simplification of the physiological interactions between the 

breast tissues and the chest wall. It is known that the breast tissues are attached to the chest 

wall via Cooper’s ligaments and the retromammary bursa, which allow mobility of the breast 

across the chest wall during prone to supine reorientation (Sabel, 2009).  

To account for the sliding, contact constraints were used to represent the interaction between 

the breast and ribs. This allowed the biomechanical models to be used for predictions where 

the three dimensional deformations of the breast tissues are not known. To simulate the 

contact interactions between the breast (‘slave’ mesh) and the chest wall, for the supine 
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simulations, a new mesh representing the rib surface (‘master’ mesh) needed to be developed 

[Figure 4.6]. 

The FEM software, CMISS only allows contact mechanics constraints to be imposed in the 

forward simulation from the unloaded reference state to the supine orientation. Thus, for the 

prone to unloaded reference state simulations, the breast tissues were fixed to the rib surface. 

For the forward simulations from the unloaded reference state to the supine orientation, the 

kinematic constraints on the rib surface were removed to allow for the relative sliding. In 

addition, the nodes on the axilla edge were mapped to a single degree of freedom to maintain 

a uniform degree of sliding at this extremity, instead of being fixed [Figure 4.6].   

 
Figure 4.6: Inferior view of a new rigid rib (master) mesh (red) was developed for contact 

simulations between the unloaded reference and supine simulations. Constraints on the breast 

(slave) mesh (light brown) were imposed to allow sliding on the ribs. 

4.5.2 Stiffness estimation 

As discussed in Chapter 2, fixed displacement boundary conditions can be simulated with 

high tied contact stiffness, while lowering the tied contact stiffness results in behaviour that 

gradually approaches the frictionless sliding case. To minimise the penetration between the 

rib mesh and breast meshes, while still allowing for numerical convergence, the penalty 

parameter, CN, for the normal component of the contact traction was set as 2 MPa/m. The 
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tangential component of the contact pressure was determined from the tangential gap function 

and a tied contact penalty value, CT, estimation of which is discussed below.  

The deformation of the breast tissues depends on both the tangential contact penalty value, 

CT, and the material stiffness parameter, C1. The influences of these two parameters were 

investigated using block matching as the error measure (see Chapter 3). In the previous 

section, the homogeneous material stiffnesses of the breast models were estimated using an 

objective function based on the root-mean-square error (RMSE) of the skin surface 

projections. For this error measure, the segmented skin surface data points of the supine states 

were projected onto the nearest point on the surface of the deformed breast models. However, 

the internal deformations were also of interest. As this method does not even track the 

material points on the skin surface, its sensitivity is not sufficient for the estimation of C1 and 

CT. A hierarchical scheme was used for the block matching comparison, where the images 

were subdivided into successively smaller overlapping three dimensional blocks at each 

iteration, and the local translation required for each sub-region was identified using the NCC
2
 

image similarity measure. The practical meaning of the NCC
2
 value, as applied to the three 

dimensional breast MR images, was previously investigated using the following 

comparisons: autocorrelation (NCC
2
=1); prone MR vs. noise (NCC

2
=0.005); prone MR 

images acquired on different days (NCC
2
=0.86) (Lee et al., 2008).  

To simultaneously estimate both the material stiffness, C1, and contact stiffness, CT, the block 

matching method over the whole model was used as the objective function. However, it was 

found that a unique solution for the two parameters did not exist, as in the parameter space 

the block matching metric did not converge to a minimum point, but rather along a flat valley 

[Figure 4.7], indicating trade-off behaviour between the two parameters. When the material 

stiffness, C1, was reduced, the breast model deformed more due to its softer nature. There was 

also greater motion when the contact stiffness, CT, was reduced, as the breast model can slide 

more on the rib surface, resulting in a greater level of deformation, as shown in Figure 4.8. 

Thus these two parameter variations can result in similar effects, causing a trade-off of the 

parameters C1 and CT for a given target deformation.  
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Figure 4.7: The parameter space, using the block matching comparison measure over the 

whole model as the metric, was investigated. The minimum lies along a flat valley, indicating 

the trade-off behaviour between the C1 and CT parameters.   

(a) (b)   

Figure 4.8: Difference images between models, with sternal (St) and axillary (Ax) regions 

identified, where (a) the material stiffness parameter, C1, was reduced from 260 Pa to 120 Pa 

with a high tied contact value (10 MPa/m) and (b) where the contact stiffness parameter, CT, 

was reduced from 10,000 kPa/m to 11 kPa/m, with C1 set as 260 Pa. Two landmark points 

were identified in each model warped image and used to illustrate the difference in the model 

deformations.   

The contact stiffness parameter, CT, determines the level of sliding of the breast tissues on the 

rib surface, so the parts of the model most influenced by the CT value would be the ones that 

lie closest to the rib surface. The rib surfaces of the prone and supine MR images were 

masked with a layer of voxels above the rib face of the model for Volunteers 1 and 2, 

St St 

Ax Ax 
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respectively. The thickness of the mask from the rib face of the model was determined by the 

thickness of the torso at the cranial and caudal edges of the prone and supine images, which 

corresponds to 8 mm and 14 mm, respectively, for Volunteers 1 and 2. The rib region masked 

prone image was warped using the FE model deformations. This FE-warped image was 

compared with the rib region masked supine image using the block matching method to 

assess the accuracy of the model deformations on the rib surface. The optimal CT values were 

found to be 10 kPa/m and 15 kPa/m for Volunteers 1 and 2, respectively. In this two 

parameter optimisation, the C1 parameters were only optimal for the deformations of the 

tissues around the ribs regions, thus these values were disregarded. The tied parameter was 

then fixed and block matching over the entire model was used as the metric in order to 

estimate the homogeneous C1 parameter. 

Using the above approach, the optimal parameters for the combination of a homogeneous 

material stiffness (C1) model with tied contact constraints (CT) on the rib surface were:  

 CT=10 kPa/m and C1=125 Pa for Volunteer 1 

 CT=15 kPa/m and C1=300 Pa for Volunteer 2. 

4.6 Heterogeneous biophysical breast models 

In the breast models described above, the tissues were modelled as isotropic, homogeneous 

and incompressible materials. However, it is known that normal breast tissue is primarily 

made up of two distinct tissues types: adipose and fibroglandular tissues. The skin and rib 

surfaces of the breast tissues were segmented to create the FE models. The FE models were 

used to mask the MR images to identify the regions that were included within the 

biomechanical model. Within this mask the adipose, fibroglandular, and muscle structures 

were identified using an intensity threshold, followed by manual editing with Medical Image 

Display and Analysis Software (MIDAS) (Freeborough et al., 1997). This process was used 

to identify three binary masks for adipose, fibroglandular and muscle tissues [Figure 4.9].    
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Figure 4.9: The breast and muscle tissues for the two volunteers were isolated in the MR 

prone image using a mask generated from the FE model. The adipose (red), fibroglandular 

(green) and muscular (blue) tissues were segmented using an intensity threshold followed by 

manual editing using the MIDAS three dimensional image analysis software. The 

heterogeneous stiffness field was then described using the distribution of Gauss points over 

the three dimensional FE breast mesh, as shown on the right. 

In published models that take into account the heterogeneity of the breast tissues, elements 

were classed as a particular tissue type based on the majority tissue type in the particular 

element (Azar et al., 2001) or the tissue type associated with the centroid of the element 

(Tanner et al., 2009). This down-sampling interpolates the segmentations of the breast tissues 

to be at the level of the element sizes. Whether or not this is an acceptable resolution depends 

on the size of the elements. In the Tanner studies, for example, the average size of the 

elements was 15.2 mm
3
. 
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The breast FE models that were developed in this thesis used hexahedral elements with tri-

cubic Hermite basis functions, which enforce C
1
 continuity across element boundaries. This 

meant that a relatively small number of elements (120) were required to accurately describe 

the shape of the breast tissues, whilst the total number of geometric solution degrees of 

freedom was 4606 (see Appendix A for details regarding the convergence analysis of the 

models). The average size of the elements was 6923 mm
3
 and 9727 mm

3
 for Volunteers 1 and 

2, respectively [Figure 4.6]. To adequately represent the smaller tissue features, a different 

interpolation scheme was required to model the heterogeneity in the breast tissues (Section 

3.4.2: Voronoi method). The segmentations were divided up into elements and each voxel in 

the element segmentation was assigned to the closest Gauss point in that element. In the 

current implementation, there were 64 Gauss points (4 x 4 x 4) in each element. The material 

stiffness, C1, at each Gauss point was then calculated by linearly combining the weighted 

stiffnesses of each tissue type [Figure 4.9]:  

   
        

        
  

      
   (4.1) 

where          and     are the proportions of voxels associated with each Gauss point for 

the adipose, fibroglandular and muscle segmentations, respectively.  

The difference in the densities of the breast tissues was accounted for at each Gauss point 

using the weighting scheme described above, with the density values for adipose, muscle and 

fibroglandular set to be 950 kg/m
3
, 1,050 kg/m

3
 (Hubbell and Seltzer, 2004) and 1,040 kg/m

3
 

(Bushberg et al., 2002), respectively.  

In the heterogeneous model of the breasts, the material stiffnesses of the various tissues (C1
ad

, 

C1
fg

 and C1
mu

) and the tied contact stiffness were taken into consideration in a two stage 

process. Firstly, the material stiffness of the muscle and the tied contact stiffness were 

estimated. The segmentation of the prone breast images was split up into two compartments: 

breast tissues (adipose and fibroglandular); and muscle. Since the bulk of the model was 

composed of adipose and fibroglandular tissues, the stiffnesses of both these tissue groups 

were initially set as the previous estimate of the homogeneous C1 values: 75 Pa and 122 Pa 

for Volunteers 1 and 2, respectively.  

As in the previous section, the block matching metric was calculated only over the region of 

interest (muscle and rib), by using the segmentation of the muscle region with the previously 

defined rib mask (Section 4.5.1) to mask the prone image prior to FE warping. The masked 
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FE-warped images were compared to the clinical supine MR images using the block 

matching metric. It was found that the optimal C1 parameters for the muscle tissue stiffnesses 

for Volunteers 1 and 2 were 1.0 kPa and 0.5 kPa, respectively, whereas the estimated value of 

the tied contact stiffness parameters was 25 kPa/m for both volunteers. Once the muscle 

material stiffness and the tied contact parameter were estimated, they were fixed and the fat 

and fibroglandular were optimised simultaneously using the block matching comparison 

measure over the whole breast model.  

Using the optimisation framework described above with the heterogeneous FE models, the 

tied contact penalty stiffness (CT) and the material stiffnesses for the adipose (C1
ad

), 

fibroglandular (C1
fg

) and muscle tissues (C1
mu

) were estimated to be:  

 CT=25 kPa/m, C1
ad

=50 Pa, C1
fg

=60 Pa and C1
mu

=1.0 kPa for Volunteer 1 

 CT=25 kPa/m, C1
ad

=150 Pa, C1
fg

=300 Pa and C1
mu

=500 Pa for Volunteer 2.  

4.7 Comparison of different breast biomechanical models 

Biomechanical models of the breasts were used to simulate prone to supine reorientation of 

the breasts for two volunteers. The effects of modifying constraints on the rib surface and the 

stiffness fields in the biomechanical models were investigated. The block matching method 

was used to assess the accuracies of the different breast biomechanical model predictions.  

4.7.1. Statistical analysis 

The means and standard errors for the block matching measures of accuracies were calculated 

for the different biomechanical models of the breast. After confirming normality (Shapiro-

Wilk test) and equal variance (Levene’s test), the differences between the three models were 

assessed using a one way ANOVA design. The p value to reject normality and/or equal 

variance was set at p≤0.05. Where a significant difference (p≤0.05) between the models was 

detected, post-hoc comparisons were conducted using a Tukey’s test.  

4.7.2. Results 

The accuracy of the predictions from each type of model described in the previous sections 

were tested by comparing the model-warped images with clinical images of the breasts under 

supine gravity loading using the block matching method [Table 2]. One way ANOVA test 
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among the three models used to simulate the prone to supine reorientation for Volunteer 2 

indicated that there were significant differences between the models (p<0.001). Post-hoc 

comparisons revealed that, in comparison to using zero-displacement boundary conditions on 

the rib surface of the breast model, incorporating contact mechanics to allow for breast tissue 

sliding on the rib surface significantly improved the model predictions for Volunteer 2 

(p<0.001). The tied stiffness constraint on the rib surface of the model, was estimated to be 

15 kPa/m for Volunteer 2, which corresponds to sliding of the breast model on the rib surface 

of up to 23 mm. The additional relaxation of the model constraints by allowing the material 

stiffness to vary across the breast further improved the model predictions for Volunteer 2 

significantly (p<0.001). 

Table 2: The accuracy of the biomechanical model predictions were tested by calculating the 

mean (±SE) of the overall block matching measure for FE models with different assumptions: 

homogeneous mechanical properties with fixed boundary conditions (Homogeneous); 

homogeneous mechanical properties with tied contact constraints (Homogeneous + contact); 

heterogeneous mechanical properties with tied contact constraints (Heterogeneous + 

contact).  

 Volunteer 1 error (mm) Volunteer 2 error (mm) 

Homogeneous 
5.74 ± 0.02 

(n=44214) 

5.03 ± 0.01 

(n=45368) 

Homogeneous + contact 
5.71 ± 0.02 

(n=43241) 

4.63 ± 0.01 

(n=44981) 

Heterogeneous + contact 
5.47 ± 0.02 

(n=43591) 

4.14 ± 0.01 

(n=45966) 
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(a) Prone MR image warped using fixed rib constraints on a homogeneous FE model.  

 

(b) Prone MR image warped using tied rib constraints on a homogeneous FE model. 

 

(c) Prone MR image warped using tied rib constraints on a heterogeneous FE model.  

Figure 4.10: Registration error vectors using FE breast models to predict prone to supine 

reorientation overlaid on an axial slice with sternal (St) and axillary (Ax) regions identified 

(left column) and a sagittal slice with superior (Su) and inferior (In) regions identified (right 

column) of the FE-warped image for Volunteer 1. The magnitudes of the error vectors are 

colour coded.   
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(a) Prone MR image warped using fixed rib constraints on a homogeneous FE model. 

 
(b) Prone MR image warped using tied rib constraints on a homogeneous FE model. 

 
(c) Prone MR image warped using tied rib constraints on a heterogeneous FE model. 

Figure 4.11: Registration error vectors using FE breast models to predict prone to supine 

reorientation overlaid on an axial slice with sternal (St) and axillary (Ax) regions identified 

(left column) and a sagittal slice with superior (Su) and inferior (In) regions identified (right 

column) of the FE-warped image for Volunteer 2. The magnitude of the error vectors are 

colour coded.   
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For Volunteer 1, one way ANOVA revealed that there were significant differences between 

the models used to simulate prone to supine reorientation (p<0.001). Post-hoc comparisons 

revealed that the heterogeneous model with contact constraints on the rib surface was 

significantly (p<0.001) more accurate than the homogeneous models [Table 2]. The addition 

of contact constraints on the rib surface was considered independently by comparing two 

homogeneous models, one with zero-displacement boundary constraints on the rib surface 

and the other with sliding contact constraints. Post-hoc comparisons, using the block 

matching over the whole breast model as the error measure, indicated that there was no 

significant difference (p=0.60) between the models with zero-displacement and sliding 

boundary constraints [Table 2: Homogeneous vs. Homogeneous + contact].  

The error vectors from the block matching comparison method contain information about the 

regional nature of the errors in the models; however this information was not taken into 

account in the statistical analysis. Altering the constraints on the rib surface of the breast 

model would have the greatest effect in the regions that lie near to this boundary. Further 

investigation, using an independent t-test to analyse the block matching error vectors which 

were closer than 8 mm from the rib surface (approximate thickness of the torso at the cranial 

and caudal edges of the prone and supine images), revealed that incorporating contact 

constraints significantly improved the model predictions around the rib surface (mean ± SE:: 

6.90 mm ± 0.04 mm with fixed constraints and 5.96 mm ± 0.03 mm with sliding constraints, 

p<0.001). The sliding constraint, CT on the rib surface of the model for Volunteer 1, was 

estimated to be 10 kPa/m, which corresponds to up to 22 mm sliding of the breast model on 

the rib surface.  

As shown in Figure 4.10 and Figure 4.11, in addition to an overall quantitative measure of 

accuracy of using the FE models to predict the deformations of the breast tissues, the block 

matching approach gives regional error estimates. For Volunteer 1, the lower half of the FE 

model needs to move primarily along the CC direction (towards the head) to match the 

clinical supine data, as shown in the sagittal images in Figure 4.10. This error was reduced as 

tied constraints were used for the rib surface and further improvements were achieved when 

heterogeneous material properties were incorporated into the model.   

For Volunteer 2, it can be seen that the errors in the sagittal plane were similarly reduced as 

the rib constraints were changed from zero-displacement boundary conditions to using 
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contact constraints. Using fixed boundary constraints on the rib surface resulted in an 

underestimation of the material stiffness parameter, as shown in Figure 4.11a, where the error 

vectors indicate that the model needs to move in the anterior and medial directions to match 

the clinical supine data. Block matching analysis of the homogeneous and heterogeneous 

models with tied constraints on the rib surface revealed that the largest error vectors occurred 

in the interior of the breast models.  

4.8 Discussion 

In this chapter, the effects of constraints on FE breast models with respect to boundary 

conditions on the rib surface and homogeneous and heterogeneous material properties were 

investigated. The purpose of this chapter was to probe the importance of these modelling 

assumptions in predicting the three dimensional deformations of the breast from prone to 

supine gravity loading states using the block matching error measure described in Chapter 3.  

It was found that for these two volunteers, the addition of contact constraints on the rib 

surface and heterogeneous material properties, significantly improved the accuracy of 

predicting the deformations of the breast tissues from prone to supine gravity loading 

orientations. A limitation of this work was that only two volunteers were considered. Further 

studies would need to be investigated to validate the techniques used and conclusions drawn. 

The use of contact constraints on the rib surface of the homogeneous breast model, in contrast 

to having zero-displacement boundary conditions, significantly improved the accuracy of the 

model predictions for Volunteer 2. However, for Volunteer 1, it was found that there were 

insignificant differences when considering the block matching over the whole breast model. 

In analysing the overall accuracy of the model, only the magnitudes of the error vectors were 

considered, while the regional effects were ignored. As discussed previously, the tied contact 

constraint has the greatest effect on the model near the ribs region. Thus, only the block 

matching error vectors which were within 8 mm from the rib surface were investigated for 

Volunteer 1 (approximate thickness of torso at cranial and caudal edges of the breast images). 

It was found that using contact constraints, in contrast to using zero-displacement boundary 

conditions, on the rib surface significantly improved the accuracy of the model simulations. 

This is to be expected because the retromammary bursa sits between the breast tissues and the 

muscle tissue (as explained in Chapter 2), which allows for sliding between these two tissue 

groups. However, the breast model contains muscle tissue, in addition to the adipose and 
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fibroglandular tissues, which meant that the sliding constraint was not positioned at the 

breast-muscle interface, but closer to the muscle-rib or muscle-muscle interface. There are 

several muscle groups that lie under the breast tissues, which attach to the bones in the 

pectoral region as shown in Figure 2.4. Aside from those attachment points, these muscles 

can slide with respect to each other and over the rib surface due to the surrounding fascia.  

A limitation of the current models is that this combined sliding behaviour (breast-muscle, 

muscle-muscle, muscle-ribs) is modelled using a single tied contact parameter, with only the 

muscle attachments at the sternum modelled using zero-displacement boundary conditions, 

and the other points of the muscle attachments ignored. The MRI data that were used to 

develop the models did not have a high enough resolution to be able to distinguish between 

the muscle groups, let alone their respective attachment points on the ribs. In addition, 

separating the breast and muscle tissues into independent meshes would result in thin 

elements, which can cause numerical issues when solving the mechanics.  

In addition to allowing for sliding between the breast and the ribs, the model was further 

significantly improved by accounting for the material stiffnesses and densities of the adipose, 

fibroglandular, and muscular tissues in the model. A staged approach was used where the tied 

contact and muscle material stiffnesses were first identified by only considering the block 

matching error measures around the rib and muscle regions, while having the fat and 

fibroglandular stiffness values fixed. Secondly, the adipose and fibroglandular tissue 

stiffnesses were investigated simultaneously, with the muscle stiffness and tied contact 

stiffness parameters fixed.  

For Volunteer 1, the estimated adipose, fibroglandular, and muscle material stiffness were 50 

Pa, 60 Pa and 1.0 kPa, respectively. The fibroglandular material stiffness was at the lower 

bound of the permissible values for the fibroglandular tissues of the model, where decreasing 

the value of the C1
fg

 parameter leads to numerical errors in the simulation. These values are 

lower than the homogeneous estimations of the breast model stiffness (C1=75 Pa with zero-

displacement boundary conditions and C1=100 Pa with contact constraints on the rib surface), 

which highlights the importance of the choice of boundary constraints in estimating 

mechanical properties. This was due to the estimation of the stiffness of the muscle region of 

the breast model being much larger (C1
mu

=1.0 kPa) than the homogeneous estimations of the 

breast model stiffness. This increased stiffness in the muscle region resulted in a much lower 

estimate of the C1 stiffness parameters for the rest of the breast model (C1
ad

, C1
fg

) to match 
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the global deformation of the breast during reorientation from prone to supine for Volunteer 

1. However, as can be seen in Figure 4.12, this results in the breast model being too soft, as 

illustrated by the difference in the respective location of the nipple (red circle) between the 

clinical MR supine image and the FE model warped image. For Volunteer 2, the estimated 

stiffness parameters for the adipose and fibroglandular tissues were similarly too soft, causing 

over-rotation of the internal structures about the cranial-caudal axis in the model as 

highlighted (yellow circles) in Figure 4.13.  

(a)  (b)  

Figure 4.12: (a) FE model with heterogeneous material stiffness and tied contact constraints 

on the ribs and (b) the clinical supine MR data for Volunteer 1. The nipple location is 

highlighted (red) in both images, with the sternal (St) and axillary (Ax) regions identified. 

(a) (b)  

Figure 4.13: (a) FE model with heterogeneous material stiffness and tied contact constraints 

on the ribs and (b) the clinical supine MR data for Volunteer 2. A landmark highlighting the 

over-rotation of the internal structures in the FE model is indicated (yellow), with the sternal 

(St) and axillary (Ax) regions identified. 

There are several factors that may contribute to this rotation and underestimation of the 

material stiffness values in the two volunteers. In Figure 4.8, it can be seen that this rotation 

of the internal tissues was more sensitive to lowering the material stiffness value than 

lowering the tied stiffness value. In the current implementation of the FEM software 

St St 

Ax Ax 

Ax Ax 

St St 
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(CMISS), contact mechanics cannot be employed in the ‘reverse’ method, where the 

biomechanical unloaded reference state is determined from a known loaded configuration. 

Therefore, zero-displacement boundary constraints were instead applied on the nodes on the 

posterior surface of the breast model. As noted earlier, there is a trade-off between the tied 

contact stiffness parameter and the material stiffness parameter, where an increase in the 

contact stiffness would require a reduction in the material stiffness parameter to achieve a 

similar deformation. Fixing the posterior surface of the breast in the ‘reverse’ step (equivalent 

to a ‘high’ contact stiffness value), could thus contribute to the underestimation of the 

material stiffness value, resulting in an increase in the rotation of the highlighted region in 

Figure 4.13. In addition, only the sliding contact between the rib surface and muscles was 

accounted for, whereas the sliding contact between the muscle and the breast tissues was not 

considered, as the muscles and breast tissues were incorporated into the same mesh. This has 

the effect of fixing the posterior surface of the breast with the anterior surface of the muscles 

(equivalent to a ‘high’ contact stiffness value), which could similarly result in an 

underestimation of the material stiffness values for the adipose and fibroglandular tissues.  

Another possible cause of this rotation in the FE models was that the mechanical effects of 

the skin were not included in the model. Skin has been found to be highly nonlinear with a 

higher material stiffness than adipose or fibroglandular tissues (Gefen and Dilmoney, 2007). 

Accounting for these effects of skin in the biomechanical model would have a stiffening 

effect near the anterior surface of the breast model. Given sliding contact constraints on the 

rib surface, the addition of skin for prone to supine deformations could result in a shearing 

action, which would reduce the rotation observed in the current model. However, to model 

skin, aspects such as the attachment of the skin to the underlying tissue, the mechanical 

properties of the skin (Gefen and Dilmoney, 2007), the effect of the pre-tension (Langer, 

1978) of the skin in the prone and supine gravity loaded states would all need to be 

investigated. 

Another potential cause of this inaccuracy in the internal breast deformation could be due to 

the mechanical properties of the breast model. The constitutive behaviour for both the 

homogeneous and heterogeneous cases were modelled using the neo-Hookean material 

relation, which assumes that the tissue is isotropic and relatively linear. The effect of this 

assumption will need to be tested by the application of other material relations. In Tanner et 

al. (2011), FE models of the breast were used to simulate compression in the prone position, 
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and it was found that transversely isotropic material properties with an increased stiffness in 

the anterior-posterior (AP) direction were significantly more accurate than isotropic material 

properties, when considering the accuracy of the predicted locations of twelve manually 

selected landmarks. However, these models were based on a biomechanical reference model 

generated from prone MRI data, which due to the gravity loading, is pre-stretched in the AP 

direction. The application of transversely isotropic material properties will need to be 

investigated for the breast models described in this thesis to test whether the same 

improvements can be achieved.  

In the current model, the ribs and the shoulders were used to constrain the breast model 

during the prone to supine simulations. However, it was observed that the location of the 

shoulder changed between the prone and supine clinical image acquisition. When an 

individual is lying in a prone position, the shoulders naturally drop forward, while in the 

supine position they move in the posterior direction. When the shoulder changes position, the 

pectoral muscle also deforms, and this effect is currently not accounted for in the prone to 

supine simulations, giving rise to larger modelling errors in this region. In future studies, the 

effect of the motion of the shoulder on the deformation of the tissues in the breast model will 

need to be studied. 

The block matching results showed that the rib boundary conditions and the mechanical 

properties of the tissues in the breast model play an important role in the accuracy of the 

prone to supine deformation predictions. Further improvements can be made to the FE model 

and quantified using the block matching technique. In Chapter 5, these FE models were used 

as priors to an image-based non-rigid registration method. It was demonstrated that the 

image-based method can help to: (i) recover the local deformations; and (ii) identify the 

regions where the deformation predictions require improvement. 
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Chapter 5: Combining 

biomechanical models with free-

form deformations 
In this chapter the registration accuracy of large deformation FE-based approaches was 

compared with a conventional intensity-based non-rigid technique. In addition, the 

combination of the two methods, whereby the FE models are used as priors to the non-rigid 

registration, is investigated. The block matching algorithm (see Chapter 3) was used to 

quantify the regional errors of the different modelling methods. 

5.1 Introduction 

There has been considerable interest in applying image registration techniques to warp one 

medical image of the breast to match another. Image registration techniques can be classed 

into two broad categories: feature-based, where the alignment is between features such as 

points, contours, surfaces or volumes; and intensity-based, where the objective function is 

calculated directly from the voxel intensities. 

The majority of work in three dimensional breast image registration has focused on intensity-

based measures (Guo et al., 2006, Sivaramakrishna, 2005). This is because the breasts are 

soft tissues with no rigid structures, which means that only a few features such as the skin and 

rib boundaries and the nipple can be consistently identified for feature-based registration 

techniques. Different transformations have been applied to breast images with early work 

using affine or rigid transformations to warp the images (Zuo et al., 1996). However, breast 
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tissues undergo non-rigid deformations that can be poorly represented with rigid or affine 

transformations. Previous work has acknowledged this limitation and used non-rigid 

registration techniques such as thin-plate splines (Bookstein, 1989, Wirth et al., 2002), fluid 

registration (Crum et al., 2005), and free-form deformations (FFD) based on B-spline 

warping (Rohlfing et al., 2003, Rueckert et al., 1999) to capture the local deformations of the 

soft breast tissues.  

The FFD based on B-splines algorithm as defined by Rueckert et al. (1999), is an inherently 

multi-scale technique. For non-linear breast deformations between sequential prone MR 

imaging, it was found that multi-level FFD registration was less sensitive to large localised 

deformations than to single-level FFD registration for sequential breast MR imaging 

(Schnabel et al., 2003). In this thesis, the large deformations of the breast phantom under 

compression, and breast tissues under different gravity loading conditions should similarly be 

better represented with multi-scale registration techniques, such as fluid registration and FFD 

based on B-splines, compared to single-level techniques. In this chapter, the freely available 

FFD software Image Registration Toolkit (IRTK
4
) was used in combination with the FE 

models developed previously in Chapter 3 and Chapter 4. 

In previous studies, FE models have been used to simulate physically plausible deformations 

of the breast tissues for statistical deformation models (Tanner et al., 2008) or for the 

validation of other non-rigid registration algorithms such as fluid registration (Carter et al., 

2006, Hipwell et al., 2007) or FFD based on B-splines techniques (Schnabel et al., 2003). 

Alternatively some authors have suggested using the information from fluid or FFD 

registration to determine kinematic boundary conditions to apply to FE models (Carter et al., 

2009, Tanner et al., 2009). However, prescribing such displacement boundary conditions (for 

example, to match displacements at the skin surface) can introduce unrealistic reaction forces 

at the free surfaces of biomechanical models. In these studies, either the intensity-based non-

rigid registration framework or the biomechanical model deformations were regarded as the 

‘gold standard’. However, a fundamental flaw with empirical methods that align images 

based on voxel intensities is that the deformations may be physically implausible. On the 

other hand, while biomechanical models may constrain the deformations to be within 

physically plausible ranges, the accuracy of such deformations depends upon the assumptions 

                                                 

4
 http://www.doc.ic.ac.uk/~dr/software/ 
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of the FE models.  

Carter et al. (2006, 2008) investigated the combination of fluid registration with a 

biomechanical model for supine and prone three dimensional MR image registration. 

Heterogeneity of the breast tissues was accounted for by assigning different densities to the 

adipose and fibroglandular tissues, while maintaining the same material stiffness. An 

estimation of the reference state was determined by applying gravity in the anterior direction 

to supine models of the breast and then re-setting the stresses to be zero. The prone 

orientation was then simulated by applying gravity again in the anterior direction. The 

problem with this method is that, in the initial case, the supine orientation is treated as a zero-

stress zero-strain unloaded state. Deforming the supine mesh by applying gravity in the 

anterior direction does not negate the effect of gravity in the supine orientation. In contrast, in 

this thesis, the effect of gravity is accounted for by a reformulation of the governing 

equations for finite elasticity to correctly account for its effect (Rajagopal et al., 2007).  

In Carter et al. (2009), displacement boundary conditions were applied to the rib and skin 

surfaces of the prone-deformed mesh to allow for better alignment with the MR prone image. 

The model deformations were then used to warp the prone image to the supine configuration. 

Further alignment was then done by using a fluid registration algorithm as described by Crum 

et al. (2005). The accuracies of the fluid registration, FE-based registration, and the hybrid 

method were then assessed by calculating the target registration error of eight manually 

defined landmarks.  

The major differences between the published study by Carter et al. (2008) and the research in 

this chapter are in the model framework and the analysis of the error:  

a) The biomechanical models described in this thesis used an estimation of the unloaded 

reference state of the breast tissues based on a reformulation of the finite deformation 

equations to correctly account for the physics in the estimation of the unknown 

unloaded state from the known loaded configuration. This technique for calculating 

the unloaded reference state was validated in Rajagopal et al. (2007). 

b) The validation in Carter et al. (2008) was based on the target registration error of eight 

manually defined landmarks. In contrast the following analysis was based on the 

block matching approach as described in Chapter 3. This gives the regional error 

distribution over the entire breast, and thus a better understanding of the accuracy of 
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the biomechanical models.    

c) The boundary conditions were based on physical boundary constraints of the breast 

tissues (for particulars please refer to Chapter 4), in contrast to defining nodal 

displacements on the skin surface of the breast mesh, which give rise to non-physical 

reaction forces on the skin surface. 

d) The heterogeneity of the breast tissues were accounted for by setting material 

stiffnesses and density values for the adipose, fibroglandular, and muscular tissues 

(previously optimised in Chapter 4). In Carter et al. (2008), adipose and 

fibroglandular tissues were assumed to be of equal stiffness, while the densities were 

varied according to tissue type. 

e) FFD based on B-splines was used as the empirical non-rigid registration technique to 

recover the local deformations instead of the fluid registration algorithm used in 

Carter et al. (2008). These techniques were found to be comparable for the non-rigid 

registration of MR derived FE simulation of X-ray images (Hipwell et al., 2007). 

5.2 Methods 

5.2.1 Free form deformations  

In this chapter, the ability of the biomechanical models, developed in Chapter 3 and Chapter 

4 to predict the large deformations of the breast, were compared with a conventional 

technique used for three dimensional breast image registration. The IRTK framework 

(Rueckert et al., 1999) was used to align the uncompressed and compressed breast phantom 

images in addition to warping the prone breast images to match to the supine data for two 

volunteers (Section 4.3).  

The global motion between the images was modelled using rigid registration to align the 

global location of the images, followed by an affine transformation allowing for shearing and 

scaling of the images: 

 
                

         

         

         

  
 

 

 
   

   

   

   

  (5.1) 

The local motions in the images were modelled by altering the parameters of a FFD mesh,   
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with          control points,        distributed uniformly (δ spacing) over the image 

domain,                              . The local deformations were 

represented as a three dimensional tensor product of 1D cubic B-splines:  
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with    denoting the floor function and where Bl represents the l
th

 B-spline basis function:   

                

                    

                        

           

(5.3) 

The multi-scale capability of IRTK comes from being able to refine the control spacing of 

successive FFD meshes. Low resolution FFD meshes (larger control point spacing) allow for 

the modelling of large-scale non-rigid deformations, while finer resolution meshes (smaller 

control point spacing) allow for the alignment of the highly local deformations. The 

deformation of the images was calculated by combining the global transformation with the 

local deformations given at each FFD resolution level, l.  

  
                                

 

 

   

        (5.4) 

In the following analysis, rigid and affine transformations were used to align the global 

deformations in the images. The local motions between the source and target images were 

then modelled using an FFD mesh that was iteratively refined from 40 mm x 40 mm x 40 mm 

to a 10 mm isotropic mesh. The similarity measure was based on NCC, with linear 

interpolation of the warped images. 

5.2.2 Finite element models  

In Chapter 3, a heterogeneous FE model of a breast phantom was created and used to 

simulate the deformations of the breast phantom under AP and CC compressions with contact 

constraints. For validation purposes, three dimensional MR images were also obtained of the 

breast phantom under compression in the AP and CC directions. The ability of the FE model 

to simulate the compressed states was analysed using the block matching method (described 
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in Chapter 3), as well as feature-based methods.  

The breast phantom contained twelve landmarks, of which six were cystic masses and six 

were solid inclusions. The deformations of these internal features were used to assess the 

accuracy of the FE simulations by comparing the centroid error (CENT), surface distance 

(Eq. 3.6: SMAD), and volume overlap (Eq. 3.5: DICE) for each of the masses in the FE-

warped images with those from the experimental images. In addition, the block matching 

similarity measure was calculated across the whole image [Table 1].  

In Chapter 4, biomechanical models of the breast were developed and used to model the 

deformations of the breast tissues, due to gravity, for prone to supine reorientation. Unlike 

previous models simulating gravity loading, contact mechanics were used to model the 

interactions of the breasts against the chest wall. The influence of heterogeneity in the breast 

was also investigated for adipose, fibroglandular, and muscular tissues in the model.  

The errors of the FE model predictions were calculated using the block matching error 

measure as described in Chapter 3. It was found that accounting for both the sliding between 

the chest wall and the breast tissues, and the material heterogeneity in the breast, substantially 

improved the accuracy of the image alignment with ‘gold standard’ clinical images in 

comparison to a biomechanical model with zero-displacement boundary conditions on the rib 

surface [Table 2].   

In this chapter, three non-rigid image registration methods were tested: (i) the conventional 

B-spline-based FFD registration (FFD); (ii) the biomechanical models as described in 

Chapter 3 and Chapter 4 (FEM); and (iii) a hybrid method, where the FE models are used as 

priors to FFD registration of the images (FEM+FFD). The nodes that define the cubic B-

splines provide local support, where modifying the parameters of a node only affects the local 

neighbourhood of that node. This should help recover the local deformations that are not 

recovered by the FE models, due to the respective resolutions of the FFD and FEM meshes. 

As before, the error of the image alignment was assessed using the block matching method 

along with feature localisation measures for the breast phantom.  
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5.3 Comparison of different non-rigid image registration 

methods  

Landmark-based error measures (CENT, SMAD, and DICE, as defined previously in Section 

3.5.1) for each of the inclusions in the phantom were calculated for the three non-rigid 

registration methods. In addition, the block matching method was used to assess the accuracy 

of the alignment of the phantom and breast images by the methods. 

5.3.1. Statistical analysis 

The means and standard errors for the landmark-based and block matching error measures 

were calculated for the three registration methods. After confirming normality (Shapiro-Wilk 

test) and equal variance (Levene’s test), the differences between the three methods were 

assessed using one way ANOVA tests for each of the error measures. The p value to reject 

normality and/or equal variance was set at p≤0.05. Where a significant difference (p≤0.05) 

between the methods for any of the error measures was detected, post-hoc comparisons were 

conducted using a Tukey’s test 

5.3.2. Results 

One-way ANOVA tests on the target registration error of the inclusions in the breast phantom 

revealed that there were significant differences (p<0.001) between the three methods for all 

accuracy measures (CENT, SMAD, DICE and block matching) [Table 3]. Post-hoc 

comparisons indicated that the hybrid method was significantly more accurate than either 

method independently, and that FEM substantially outperformed FFD (p<0.001) for all 

measures of error [Table 3].  

The three image registration methods were also tested on prone to supine reorientation of 

breast tissues for the two volunteers. One way ANOVA tests revealed that there were 

significant differences between the three non-rigid registration methods for aligning prone 

and supine breast images for both volunteers. Post-hoc comparisons revealed that, the hybrid 

method was significantly more accurate (p<0.001) than either method independently, and that 

FEM substantially outperformed FFD [Table 4]. Furthermore, the hybrid FEM+FFD method 

substantially outperformed both individual methods.  
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Table 3: The highest compression experiments in the AP and CC directions were used to test 

the different image registration methods. The mean (±SE) of the centroid distances (CENT), 

surface distances (SMAD) and volume overlaps (DICE) of the 12 inclusions in the phantom 

for the two models (n=24) and the block matching method were used to assess the accuracy. 

 CENT (mm) SMAD (mm) DICE (%) 
Block Matching 

(mm) 

FFD 4.53 ± 0.45 2.27 ± 0.28 30.3 ± 4.7 
3.46 ± 0.01  

(n=48289) 

FEM 1.84 ± 0.14 0.97 ± 0.06 55.1 ± 3.5 
2.75 ± 0.01 

(n=45184) 

FEM+FFD 1.38 ± 0.12 0.76 ± 0.04 63.9 ± 3.7 
2.19 ± 0.01 

(n=48316) 

Table 4: The block matching error measure for prone to supine reorientation for three 

methods: free form deformation (FFD), biomechanical models (FEM) and a hybrid method, 

where FEM is used as a prior to FFD (FEM+FFD) as tested over two volunteers.  

 
Volunteer 1 error (mm) Volunteer 2 error (mm) 

FFD 
11.5 ± 0.02 

(n=42749) 

6.05 ± 0.03 

(n=46554) 

FEM 
5.47 ± 0.02 

(n=45488) 

4.14 ± 0.01 

(n=45966) 

FEM+FFD 
0.95 ± 0.01  

(n=50328) 

3.74 ± 0.004 

(n=48324) 

 

AP 

 

 
(a) FFD 

 

 
(b) FEM 

 

 
(c) FEM + FFD 

CC 

 

Figure 5.1: The compression of the breast phantom in the anterior-posterior (AP) and 

cranial-caudal (CC) directions were warped from the uncompressed images using a) the 

free-form deformation method (FFD), b) the biomechanical models (FEM) and c) a hybrid 

method where the FE-warped images were further warped using the FFD method 

(FEM+FFD). The experimental compressed images have been subtracted from the warped 

images to indicate the accuracy of the method. Brighter and darker regions highlight the 

where the images intensities differ.    
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Figure 5.2: The warped prone images were compared against the clinical supine images for 

the three methods for Volunteer 1 (left column) and Volunteer 2 (right column), with the 

sternal (St) and axillary (Ax) regions identified.  

5.4 Discussion 

The use of a biomechanical model as a prior to an intensity-based non-rigid registration 

algorithm was investigated in this chapter, in addition to the two methods being applied 

independently. Experimental MR images were used to assess the accuracies of the 

registration methods using the block matching method described in Chapter 3, in addition to 

MRI supine 
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feature-based methods for the breast phantom. Non-rigid registration techniques can give rise 

to unrealistic deformations, such as implausible changes in the volume of the tissues, since 

they do not account for the physics of large deformations. The FE models can be used to 

apply physically realistic constraints on breast deformations. Though FE simulations may be 

physically plausible, reasonable assumptions regarding the tissue properties and the loading 

conditions are required in order to predict realistic breast deformations.  

In a previous study (Lee et al., 2010b) earlier incarnations of the biomechanical models were 

used. It was found that the use of these FE models as a prior for FFD image alignment, 

significantly improved the accuracy of image alignment compared to either method applied 

independently. In contrast to the FE models of the breast phantom (Chapter 3) and breast 

(Chapter 4) in this thesis, the previous study did not account for the material stiffness 

heterogeneity. In addition, the boundary conditions were improved in this thesis by 

accounting for the frictional interactions between the compression plates and the phantom, 

where previously frictionless contact was applied, with kinematic constraints on nodes to 

prevent unrealistic deformations. Similarly, improvements were made to the breast models as 

described in Chapter 4, where tied contact constraints were used instead of fixed boundary 

conditions on the rib surface of the breast model. In this thesis, the alignment of the images 

for the volunteers differed from the alignment used in the previous study. In the current 

models, the alignment accounted for the rotation of the volunteers. This was achieved by 

digitising the respective rib surfaces on the prone and supine images, creating a surface mesh 

on the prone rib data, and aligning the supine data by minimising the RMSE of the Euclidean 

distances between each data point and the projected location on the prone rib surface. In the 

previous study, the rotation about the CC axis was assumed to be 180º (prone to supine) while 

the rotations about the other axes were assumed to be zero, and only the translation was 

optimised.  

The absolute values of the block matching error measures cannot be directly compared to the 

previous study (Lee et al., 2010b) due to the difference in the rigid alignment of the prone 

and supine images. However, the relative differences in the three methods can be studied. 

Consistent results were achieved for Volunteer 1. For Volunteer 2, there was insubstantial 

improvement with using the FEM method in comparison to the FFD method in the previous 

work (mean: 8.7 mm vs. 8.9 mm, respectively, corresponding to a 2% difference), while in 

this chapter, FEM substantially outperformed FFD (mean: 4.14 mm vs. 6.05 mm, 
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respectively, corresponding to a 32% difference).  

In this chapter, the deformations of the breasts from prone (required for MRI) to supine 

(required for ultrasound and surgery) gravity loading conditions were investigated. The 

accuracy of the biomechanical models in simulating these deformations was compared to two 

other image registration methods: FFD; and a hybrid FEM+FFD method. Statistical analysis 

of the block matching error measure revealed that FEM was substantially and significantly 

more accurate than the FFD method, while the hybrid method substantially outperformed 

both of the independent methods [Table 4]. The deformations of the breasts while under X-

ray mammographic compression are also of clinical interest. In Chapter 6, the deformations 

of the breast from the prone gravity loaded state to the cranial-caudal compressed state was 

investigated.  
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Chapter 6: Finite element model-

based multimodal image 

registration 

6.1 Motivation and previous work 

6.1.1 Motivation for multimodal image registration 

X-ray mammography is commonly used to image the breast to assist in the diagnosis and 

management of breast cancer. During X-ray mammography, the breasts are compressed in the 

CC or MLO directions to increase image contrast and minimise the radiation dose that is 

absorbed by the breast tissues. Mammograms are considered the gold-standard for breast 

screening and are useful for locating tumours and micro-calcifications, which can often 

indicate the presence of cancer in the breasts (Ikeda, 2011).  

In order to diagnose and manage breast cancer, clinicians often compare mammograms to 

help interpret the images. This comparison may be performed between images of the same 

breast over time to observe the temporal changes in the breast tissues. Alternatively, the 

asymmetry in the left and right breasts, or difference in the views of the same breast, taken at 

the same visit may be considered. Image registration algorithms have been proposed to align 

the information in the mammograms, either through feature-based methods (Kumar et al., 

2001, Marias et al., 2005, Marti et al., 2006, Sultana et al., 2010, van Engeland et al., 2003, 

Wirth et al., 2002), intensity-based measures (Dıez et al., 2010, Periaswamy and Farid, 
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2003b, van Engeland et al., 2003), or a combination of both (Richard and Maidment, 2003).   

A limitation of the two dimensional image registration applied for mammographic 

comparisons was that mammograms are two dimensional projections of the three dimensional 

breast tissues. Variations in the degree of compression, rotation of the breast, and angle of the 

compression plates can result in very different images. Thus it is generally impossible to 

recover the three dimensional deformation of the breast tissues using purely two dimensional 

transformations. Efforts to address this limitation include incorporating three dimensional 

information of the breast tissues derived from MRI of the breast (Behrenbruch et al., 2004, 

Kita et al., 2002).  

Studies have also shown that combining information from multiple modalities can aid in the 

diagnosis of breast cancer (Malur et al., 2001). MR images of the breast are generally 

acquired with the patient in a prone position, with the breast hanging pendulously under the 

effect of gravity. In contrast, mammograms are obtained with an individual in an upright 

position and the breast compressed between two plates in the MLO or CC directions. The 

large deformations of the breast tissues between the two imaging modalities can make it 

difficult to co-localise information in the breast tissues. Efforts to simulate mammographic 

compression of the breast tissues from the prone gravity loaded shape of the breast include 

scaling, rotation, and translation (Marti et al., 2004), geometric transforms (Kita et al., 2002, 

Behrenbruch et al., 2003) or volume-preserving affine transformation of the three 

dimensional breast image (Mertzanidou et al., 2010). Though these methods allow for fast 

calculations, they provide a poor representation of the deformation of the breast tissues from 

the prone to compressed states. Earlier studies have found that affine transformations were 

insufficient to recover the non-linear deformations of the breasts between dynamic contrast 

enhanced MRI studies (Rueckert et al., 1999). In Rueckert et al. (1999), the deformation of 

the breast was due to patient motion (e.g. breathing artefacts) in the prone MR breast coil. 

Thus, for the much larger deformations of the breast tissues due to mammographic 

compressions, it is highly likely that such simple transformations are unsuitable.   

6.1.2 Previous work on multimodal image registration 

The majority of studies combining three dimensional breast images with two dimensional X-

rays have focussed on four main areas: (i) to estimate the density of the breast tissues 

(Alonzo-Proulx et al., 2010, Hartman et al., 2008, Shih et al., 2010, van Engeland et al., 
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2006); (ii) to track points of interest between medical images (Chung et al., 2008b, Kita et al., 

2002, Qiu et al., 2004, Reynolds et al., 2011, Ruiter et al., 2006, Tanner et al., 2010, Zhang et 

al., 2007); (iii) to validate other registration algorithms for aligning X-ray images (Hipwell et 

al., 2007, Pinto Pereira et al., 2010, Van de Sompel and Brady, 2008); or (iv) to register the 

three dimensional MRI to two dimensional mammography images (Behrenbruch et al., 2004, 

Mertzanidou et al., 2010).  

6.1.3 Previous work with finite element models to simulate X-ray 

mammographic and MR compressions 

There is also a clinical need to be able to track features of interest (potential tumours) from 

the uncompressed contrast-enhanced MRI to the compressed breast state. For contrast 

enhanced MRI studies, a contrast agent is injected into a patient and dynamic images are 

acquired to follow the changes in the enhancement characteristics of the breast tissues over 

time. Malignant tumours tend to be well vascularised, having a faster and greater uptake of 

contrast agent in comparison to surrounding tissues (Warren and Coulthard, 2002). When 

lesions are identified in breast imaging, histological samples are typically taken out of the 

breast tissues for diagnostic purposes. Some lesions may be non-palpable and only 

identifiable using MR imaging. One technique used to obtain biopsies, or insert localisation 

wires, relies on compressing the breast tissues using a MR breast coil and inserting needles to 

an appropriate depth (Warren and Coulthard, 2002). However, accurate localisation of the 

region of interest in the breast tissues can be difficult as compression can cause changes in 

contrast enhancement of lesions (Heywang et al., 1989). Authors have proposed the use of FE 

models to simulate the compression of the breasts with the MR coil, for the accurate 

localisation of tumours (Azar et al., 2001, Chung, 2008, Chung et al., 2008a, Lee et al., 

2010a, Ruiter et al., 2006, Samani et al., 2001, Tanner et al., 2009, 2011). Quantitative 

validation studies of compression simulations using FE models found that the mean errors for 

internal and skin surface deformations were around 5 mm or less (Azar et al., 2001, Chung et 

al., 2008b, Lee et al., 2010a, Ruiter et al., 2006, Tanner et al., 2011). Different modelling 

frameworks have been explored for FE models, based on linear elasticity (Azar et al., 2001, 

Hipwell et al., 2007, Ruiter et al., 2006, Schnabel et al., 2003, Van de Sompel and Brady, 

2008) or finite elasticity (Carter et al., 2008, Chung et al., 2008a, Lee et al., 2010b, 

Pathmanathan et al., 2008, Rajagopal et al., 2007b, Reynolds et al., 2011, Ruiter et al., 2006, 

Samani et al., 2001). An oft-repeated criticism of using linear elasticity FE models is that 
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these methods are valid only for small deformations (<1%) and are therefore inaccurate for 

simulating large deformations, such as mammographic compressions of soft breast tissues 

where up to a 75% compression level has been reported (Reynolds et al., 2011).   

In a number of studies, the ability of FE models to constrain the deformations of the breast 

tissues to be within physically realistic limits has been applied to warp breast images. Such 

FE-warped images were then used in the validation of other non-rigid registration 

frameworks. The deformations from the FE models were regarded as the ‘gold standard’, and 

the other methods were compared to the FE model deformation fields (Hipwell et al., 2007, 

Pinto Pereira et al., 2010, Schnabel et al., 2003, Van de Sompel and Brady, 2008). However, a 

lack of rigorous validation of these FE models leads to questions about the applicability of 

their FE derived deformations.  

The deformation of the FE breast models due to compression has been modelled by either 

imposing displacement boundary conditions on the surface nodes or by including contact 

mechanics in the FE simulations. Nodal displacements on the outer surfaces of the breast 

model have alternatively been fixed (Tanner et al., 2006), prescribed based on compression 

plate displacement (Azar et al., 2001, Hipwell et al., 2007, Ruiter et al., 2006, Tanner et al., 

2008, 2010, Zhang et al., 2007), or explicitly prescribed using the deformation field from 

another non-rigid registration algorithm such as free form deformation based on B-splines or 

fluid registration (Tanner et al., 2006, 2009, 2011). In the Tanner et al. studies (2006, 2009, 

2011), non-rigid registration was performed on three dimensional images that were acquired 

before and during compression with a MR scanner. This non-rigid registration using FFD was 

used to provide kinematic information with which to prescribe the nodal displacements on the 

FE mesh. However, this three dimensional information of the breast deformations under 

compression is typically not collected in clinical practice, where X-ray mammograms 

represent the two dimensional projections of the compressed breast tissue.  

Ruiter et al. (2006) sought to overcome this limitation by enforcing nodal displacements on 

the skin surface of the FE model based on the two dimensional contours of the model 

compared to the contour on the mammograms. However, explicitly defining the nodal 

displacements imposes unrealistic forces upon the FE model. This approach is the physical 

equivalent of having tethering points in the breast and pulling upon them. There are clearly 

no such boundary conditions on the breast tissues in the clinical situation.   
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Boundary conditions 

In order to specify boundary conditions representing the compression pads, the location of the 

compression plates with respect to the breast is required. A patient may shift, resulting in 

breast tissue rotation about the roll (longitudinal) and yaw (vertical) axes. In addition, the 

amount of tissue that is compressed between the pads depends on the distance between the 

chest wall and the compression pads. In Tanner et al. (2008), statistical deformation models 

were created using FE models to investigate the variability of breast motion for 

mammographic compressions due to breast rolling, yawing, and translation with respect to 

the compression plates. Surface displacement boundary conditions were again used in these 

models, where the compression was simulated by displacing nodes on the skin surface of the 

breast model in the direction of the compression. Posterior surface nodes of the breast mesh 

were fixed in the direction of the surface normal, and the breast was further stabilised by 

fixing surface nodes along the mid-sagittal plane of the model so they did not deviate in the 

lateral direction. As noted previously, the limitation with this approach is that physically 

unrealistic forces are imposed on the skin surfaces of the FE models. In addition, the 

imposition of nodal displacement constraints instead of boundary conditions that reflect the 

physical constraints limits the ability of the FE models in predicting deformations.  

Appropriate boundary conditions are important for the accuracy of FE model predictions. In 

contrast to prescribing displacement boundary conditions on the surface nodes of FE meshes, 

a more physically realistic approach has been investigated by incorporating contact 

mechanics in the FE models (Chung, 2008, Chung et al., 2008a, Reynolds et al., 2011). 

Contact mechanics have been used to model the interaction of the breast tissues with the 

compression plates and the ribs. Efforts were made by Chung et al. (2008b) to validate using 

non-linear finite element models of the breast to simulate breast compression using contact 

constraints, where MR images were obtained of the uncompressed and 32% compressed 

breasts with a volunteer lying in a prone position. 

In this chapter, a novel framework for the multimodal three dimensional-two dimensional 

non-rigid registration of prone MRI to X-ray mammography using non-linear FE models is 

described. This method was systematically validated using uncompressed and (up to) 49% 

percentage compression MR and X-ray images of a breast phantom. The applicability of 

these techniques was then demonstrated using X-ray mammograms with the breast 

compressed to 52% from a breast cancer patient. The sensitivity of the material properties and 
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boundary conditions on X-ray mammographic compression simulations was assessed for this 

patient. An important contribution of this thesis was a novel automated method for defining 

the location and orientation of the compression plates based on the clinical images of the 

breasts. In previous work the boundary conditions and model parameters needed to be 

defined prior to the mechanics simulation (Hipwell et al., 2007, Pinto Pereira et al., 2010, 

Reynolds et al., 2011, Tanner et al., 2011). This optimisation framework was demonstrated on 

the parameters defining the location and orientation of the compression plates with respect to 

the breast, however it can likewise be used to estimate the other parameters of the FE model, 

such as stiffness values.  

6.2 Error quantification for multimodality image registration 

using a breast phantom 

In order to systematically validate the error at the stages of this modelling framework, MRI 

and X-ray images of a breast phantom were acquired. Using these ground truth clinical 

images, the repeatability of the compression experiments, X-ray simulation error and the 

error associated with the biomechanical model used to simulate the mammographic 

compression, were analysed. Various assumptions were made regarding the FE models of the 

breast phantom, including approximating the heterogeneous nature by varying the material 

stiffness across elements and neglecting the interface conditions between the boundaries of 

the inclusions and the bulk material. By establishing the error associated with the 

repeatability and reproducibility of the breast phantom compressions and the X-ray 

simulation code, the additional error due to the assumptions of the FE models could be 

investigated.  

6.2.1 X-ray imaging of the breast phantom 

To validate the techniques used for multimodal image registration, a breast phantom (Triple 

Modality Biopsy Training Phantom, Model 051, Computerized Imaging Reference Systems, 

Virginia, USA) was imaged before and during varying levels of compression in the 

equivalent AP and CC directions in a 1.5T MR scanner (MAGNETOM Avanto, Siemens, 

Munich, Germany) as described in Chapter 3. This breast phantom contains 12 distinct 

inclusions that are visible under both MR and X-ray imaging. The breast phantom was 

similarly imaged with a mammography system (Senographe DS, General Electric, 
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Connecticut, USA) under the following levels of compression: AP 24%, AP 29%, AP 34%, 

AP 37%, AP 46%, CC 27%, CC 32%, CC 37%, CC 39%, and CC 49% [Figure 6.1]. The 

mammogram dimensions were 1914 pixel x 2294 pixel with a 190 mm x 230 mm field of 

view.  

 
Figure 6.1: X-ray images of the breast phantom under various levels of compressions. AP: 

anterior-posterior and CC: cranial caudal compressions. 

Statistical analysis 

The repeatability and reproducibility of the breast phantom experiments were assessed using 

landmark-based methods (as described in Chapter 3). The centroid distances (CENT), surface 

distances (SMAD), and area overlaps (DICE) for the phantom and each of its twelve lesions 

were calculated between pairs of X-ray images. The means and standard errors of each of the 

landmark-based error measures for the two sets of data (repeatability and reproducibility 

experiments) were calculated. The differences between the repeatability and reproducibility 

experimental data give an indication of the error arising from recompressing the breast 

phantom in the compression device.  

In addition, both frictional (no lubrication) and frictionless (with lubrication) experiments 

were conducted. The difference between experiments conducted with similar frictional 

conditions was compared against the difference between experiments conducted where 

dissimilar frictional conditions were used. The means and standard errors of each of the 

landmark-based error measures for the two sets of data (similar and dissimilar frictional 

conditions) were also calculated.  



P a g e  | 97 

 

Normality was confirmed using the Shapiro-Wilk test, while equal variance was confirmed 

using the Levene test. The p value to reject normality and/or equal variance was set at p≤0.05. 

After confirming normality and equal variance of the data, the differences between the 

repeatability and reproducibility experiments were assessed using independent t-tests for each 

landmark-based error measure. Similarly, independent t-tests were used to assess the 

differences between experiments where similar frictional conditions were used in comparison 

to experiments where dissimilar frictional conditions were used.  

Testing the repeatability of the X-ray mammographic imaging experiments 

To test the repeatability of the X-ray mammographic experiments, the AP compression at 

46% was repeated 6 times (MG1 – MG6) as shown in Figure 6.2. Mammographic images 

were obtained of the breast phantom on two separate days. Five of the experiments (MG1-

MG5) were conducted on day one and one further experiment was conducted on day two 

(MG6). On the first day grid lines were etched into the compression plates. As the thickness 

of the compression plates were reduced at the grid line locations, fewer X-rays were 

deflected, resulting in higher mammographic intensity values at the grid line locations with 

respect to the rest of the plates [Figure 6.2]. For the imaging on day two, the compression 

plates were replaced with ones without grid lines [Figure 6.2]. In addition, no lubrication was 

used for the experiments conducted on day one (frictional experiments), while the plates and 

surface of the breast phantom were lubricated on day two (frictionless experiments).  
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Figure 6.2: Six mammograms (MG1 – MG6) were obtained with the breast phantom placed 

under 46% compression in the AP direction. The inclusions (blue) and the breast phantom 

surface (red) were segmented from these images.  

The inclusions and the outer contours of the breast phantom were segmented, as shown in 

Figure 6.2. The compression device was removed from, and replaced in the mammographic 

system, between each image acquisition; therefore the location of the breast phantom in each 

of the images is different for MG1 – MG6. Each of the six segmented images were rigidly 

registered to the remaining five segmented images, leading to 30 pairs of images for 

comparisons. Landmark-based error measures (CENT, SMAD, and DICE) were then 

calculated for each pair of images.  

The breast phantom was not taken out of the compression device between MG1 and MG2, or 

between MG4 and MG5, but it was taken out and recompressed prior to the acquisition of the 

images for MG3, MG4, and MG6. Analysis of the similarity between MG1:MG2, and 

between MG4:MG5 provides an indication of the repeatability of the image acquisition as 

quantified by the difference in the image comparison metrics [Table 5]. In these cases, it was 

found that there was little difference between the images, with mean CENT and SMAD of 

less than 0.5 mm. Since a rigid transformation was used to register the images, this neglects 
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the projection differences in generating the images. This was a source of error as the X-rays 

pass through the breast phantom volume from a point source. An estimation of this projective 

error was calculated by using what is known about the geometry of the mammography 

system set-up and the relative locations of the breast phantom in the repeatability image pairs. 

The bounding boxes for the outer contours of the breast phantom were used to find the 

difference in the projections for the image pairs MG1:MG2 and MG4:MG5. The maximum 

surface distances between the image pairs were 0.46 mm for MG1:MG2 and 0.73 mm 

MG4:MG5. In addition, there will be errors associated with the manual segmentation and 

registration processes, as the rigid registration biases the result towards matching the outer 

contours of the breast phantom, where the area overlap for the bulk of the phantom was 

greater than 99%. 

Table 5: Repeatability of the X-ray mammography experiments was tested by removing and 

then replacing the compression device on the mammography system (MG1:MG2 and 

MG4:MG5). The segmentations of the 12 individual masses and the outer contours of the 

breast phantom were used to calculate the means (±SE) of the centroid distances (CENT), 

surface distances (SMAD) and area overlaps (DICE).  
  

 
CENT (mm) SMAD (mm) DICE (%) 

Mean ± SE (n=26) 0.49 ± 0.04 0.45 ± 0.03 92.0 ± 0.6 

Testing the reproducibility of the mammographic compressions 

Secondly, the reproducibility of the compression of the breast phantom was assessed using 

the comparison metrics. As noted in Section 6.2.1, during the experiments, the breast 

phantom was uncompressed and recompressed prior to the acquisition of MG3, MG4 and 

MG6. To investigate the reproducibility of the mammographic comparisons, the similarity 

between the experiments where the breast phantom was recompressed were assessed.  

Independent t-tests indicated that there were significant differences when the breast phantom 

was uncompressed and then recompressed, compared with simply shifting the breast phantom 

on the mammography system for all the landmark-based measures of error (p<0.005). 

Comparisons revealed that the physical differences, with regard to the mean of the feature-

based error measures for experiments where the phantom was recompressed and experiments 

where the phantom was not recompressed, were small (<0.3mm) [Table 6].  

 



P a g e  | 100 

 

Table 6: The reproducibility of the compression was tested by uncompressing and 

recompressing the breast phantom. The segmentations of the 12 individual masses and the 

outer contours of the breast phantom for 26 image pairs were used to calculate the mean 

(±SE) of the centroid distances (CENT), surface distances (SMAD) and area overlaps 

(DICE).  
 

 
CENT (mm) SMAD (mm) DICE (%) 

Mean ± SE (n=338) 0.75 ± 0.03 0.64 ± 0.02 89.5 ± 0.3 

The X-ray image MG6 was acquired on a separate day as part of the frictionless experiments, 

in contrast to the frictional experiments (MG1 - MG5). Independent t-tests found that there 

were statistically significant differences (p<0.005, n=65) between recompressing with the 

same frictional conditions (no lubrication) and recompressing with different frictional 

conditions (no lubrication for MG1 - MG5 and with lubrication on the compression plates for 

MG6) for all three landmark-based measures of error. Comparisons revealed that the 

differences between recompressing with the same frictional conditions versus dissimilar 

frictional conditions were small with respect to the mean (±SE) for the centroid distances 

(CENT): 0.64 mm (±0.03 mm) vs. 0.91 mm (±0.05 mm), respectively, surface distances 

(SMAD): 0.51 mm (±0.02 mm) vs. 0.85mm (±0.05 mm), respectively, and area overlaps 

(DICE): 91.1% (±0.3%) vs. 87.0% (±0.6%), respectively. In Section 6.2.2, MR images of the 

breast phantom under compression with and without lubrication were compared with X-ray 

images where lubrication was used on the compression plates. The above errors are small in 

comparison to the MR image voxels size of 0.68 mm x 0.68 mm x 0.75 mm.  

6.2.2 Generating pseudo X-rays from MR images 

In addition to acquiring X-ray images of the breast phantom under compression, MR images 

were obtained of the breast phantom under various compression loads using a T1 weighted 

FL3D pulse sequence in a 1.5T MR scanner (MAGNETOM Avanto, Siemens, Munich, 

Germany), as described Chapter 3. The image dimensions were 512 pixel x 512 pixel with a 

350 mm x 350 mm field of view for 176 slices with 0.75 mm slice thickness.  

There are two main methods for simulating X-ray images from a three dimensional image. A 

Monte Carlo approach has been used to simulate X-ray mammographic systems (Ay et al., 

2004, Boone, 2002, Ng et al., 2000, Nigapruke et al., 2009, Peplow and Verghese, 2000, 

Sechopoulos et al., 2008). This is a stochastic method that tracks the progression of the X-ray 

photons as they progress through the tissue volume, allowing for the X-ray dosage to the 

breast tissues to be accurately calculated. This is of interest due to the increased risk of cancer 
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associated with high X-ray dosages. However, this method is computationally intensive and 

excessive for the purposes of simulating X-ray images of the compressed breasts to compare 

with experimental and clinical X-ray mammograms. An alternative is to use a ray-casting 

algorithm and X-ray attenuation coefficients to simulate X-ray images (Hipwell et al., 2007, 

Pinto Pereira et al., 2010).  

X-rays from a point source in the mammography system were passed through the breast 

phantom. To simulate this process, Insight Segmentation and Registration Toolkit
5
 (ITK) 

code using a perspective ray casting algorithm (DigitallyReconstructedRadiograph1 example) 

was employed to generate the digitally reconstructed radiographs from the three dimensional 

MR image (Hipwell et al., 2007). To simulate an X-ray image from the three dimensional MR 

image, parameters describing the set-up of the mammographic experiments were required 

[Figure 6.3]. The pseudo X-ray image changes with the location of the three dimensional 

image in the ray casting algorithm as the projection is from a point source.  

 
Figure 6.3: The projection of the three dimensional breast phantom image was set up to 

match the physical set-up of the mammography system. The x and y positions and rotation 

about the z-axis were optimised using rigid image registration. 

The compression of the breast phantom was achieved with an independent compression 

device (see Chapter 3). This allowed the compression to be reliably repeated for both X-ray 

mammography and MR imaging experiments. The deformation of the breast phantom does 

not depend on the relative location of the breast phantom with respect to the X-ray 

mammography system. The location of the compressed three dimensional breast phantom 

                                                 

5
 http://www.itk.org/ 
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with respect to the two dimensional X-ray image in the x-y plane was unknown. Therefore, 

the location of the three dimensional image was initially assumed to be in the centre of the 

output image for the ray casting algorithm [Figure 6.3]. The location of the three dimensional 

image was then varied to minimise the difference between the images, by combining the ray 

casting code with the Beer Lambert law (Section 2.1.1) to generate a combined pseudo X-ray 

and a rigid registration routine.  

The process for determining the pseudo X-ray images is as follows: first the exterior surfaces 

of the breast phantom and the inclusions were segmented from the three dimensional MR 

images to create masks. The ray casting algorithm was used to generate projections through 

the MR masks. The pixel intensities on the projected images represented the distance that the 

X-ray beam travelled through each of the tissues. A ‘raw’ image was calculated using the 

Beer Lambert law (Section 2.1.1) with the calculated distances and the effective attenuation 

coefficients for this case. The ‘raw’ images were then processed to generate pseudo X-ray 

images [Figure 6.4], which were then rigidly registered to the actual X-ray images [Figure 

6.1]. If the rigid registration transformation was less than a specified tolerance, then the 

optimisation was converged. Otherwise, the gradients of the translations in x and y and the 

rotation about the z axis from the resulting rigid transformation were used to perturb the 

location of the three dimensional image in the ray casting algorithm using ITK functionality.  

MRI and mammography are fundamentally different imaging modalities, MR images are 

generated based on the spin of hydrogen nuclei in the breast tissues, while X-ray images are 

based on the interaction of X-ray photons with the breast tissues. Due to this difference, the 

image intensities between the two modalities cannot be directly mapped. The three 

dimensional MR images were segmented into the different tissues types and the effective 

attenuation coefficients were assigned to each of the segmented tissue types.  

An effective attenuation coefficient can be calculated from the energy spectrum that is 

emitted by the mammography machine and the attenuation coefficient (see Section 2.1.1). 

The bulk of the breast phantom is made of material that radiographically simulates a 50% 

glandular 50% adipose breast (Bushberg et al., 2002). The cystic and solid masses were 

assumed to have similar radiographic characteristics as water and ductal infiltrating 

carcinoma, respectively (Hubbell and Seltzer, 2004). Based on the polyenergetic X-ray 

spectrum for a rhodium anode and rhodium filtering at 31 kV peak (Bushberg et al., 2002), 

the effective linear attenuation characteristics for the bulk, solid and cystic masses for the 
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breast phantom were estimated to be 79 m
-1

, 104 m
-1 

and 99 m
-1

, respectively.    

 
Figure 6.4: Pseudo X-rays derived from MRI of the phantom physically subjected to different 

levels of physical compression (indicated) in the anterior-posterior (AP) and cranial caudal 

(CC) directions. 

6.2.3 Multimodality image registration using finite element modelling 

In Section 6.2.2, a method for generating pseudo X-rays directly from three dimensional MR 

images was presented. Similar compression loads were applied during the experimental MR 

and X-ray studies for the above analysis of the breast phantom. In contrast, X-ray 

mammography and MR images of the breast are acquired with very different boundary and 

loading conditions. MR images of the breast are typically acquired with an individual lying in 

a prone position with the breasts subject to gravity loading. On the other hand, X-ray 

mammograms are obtained with the patient standing upright with the breast tissues highly 

compressed between two plates. As breasts are soft tissues, there were large deformations of 

the tissues between these two imaging modalities. In order to account for this difference in 

breast shape, a modelling framework was proposed, where biophysically-based FE models 

were used to simulate large mammographic compressions and the model deformations were 

used to warp the MR images accordingly.  
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Figure 6.5: Pseudo X-rays derived from FE model-warped MRI, where the uncompressed 

images are subject to transformations derived from associated FE models for different levels 

of compression (indicated) in the anterior-posterior (AP) and cranial caudal (CC) directions. 

See text for details. 

First, the FE modelling framework for multimodality registration requires validation. In 

addition to the compressed X-ray images described previously, the breast phantom was also 

imaged before compression in a MRI system (MAGNETOM Avanto 1.5T, Siemens, Munich, 

Germany) with its AP and CC axes aligned with gravity. In Chapter 3, finite element models 

of the breast phantom were developed and used to simulate different levels of AP and CC 

compression from the uncompressed MR images. The contact between the breast phantom 

and the compression plates was modelled using frictional and frictionless contact mechanics 

for the AP and CC simulations, respectively. The dimensionless static frictional coefficient 

for the contact between the breast phantom and the compression plates was determined 

experimentally to be µ=0.95 (see Section 3.3.4). As described in Chapter 3, a heterogeneous 

model was developed, whereby the inclusions within the phantom were assigned different 

neo-Hookean values, since they were composed of stiffer (solid inclusions) and softer (cystic 

masses) materials compared with the bulk material of the phantom: C1
bulk 

=1.07 kPa, 

C1
solid

=6.73 kPa, and C1
cysts

=0.04 kPa.   

The breast phantom was compressed and imaged using both a 1.5T MR scanner 

(MAGNETOM Avanto, Siemens, Munich, Germany) and a mammography system 

(Senographe DS, General Electric, Connecticut, USA) under varying levels of compression 

with the AP and CC axes of the phantom aligned with gravity. The MR images of the 

compressed phantom were used to generate pseudo X-rays as described in Section 6.2.2, 
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which could then be directly compared with the experimental X-rays [Table 7: MRI-MG]. 

The MR images of the uncompressed breast phantom were warped based on the deformations 

of the biomechanical models and pseudo X-rays were then generated from these warped 

images [Figure 6.5]. The error between the images can be given as the overall image 

similarity or by feature tracking. The masses inside the breast phantom were segmented in the 

three dimensional compressed and uncompressed MR images. The uncompressed images 

were warped using the FE models to simulated compressed images. The perspective ray 

casting algorithm was used to generate the two dimensional projections of the individual 

masses from the actual and simulated compressed images which were then compared with 

those from the experimental X-ray images [Table 7].  

Table 7: The centroid distance (CENT), surface distance (SMAD) and area overlap (DICE) of 

the 12 masses and the outer contours of the breast phantom for 10 MR images (MRI-MG) 

and two FE models (MRI-FEM-MG) were used to assess the accuracy of the techniques used 

in the multimodality image registration. 
 

 

CENT (mm) SMAD (mm) DICE (%) 

MRI-MG (n=130) 0.97 ± 0.06 0.96 ± 0.05 83.8 ± 0.7 

MRI-FEM-MG 

heterogeneous (n=26) 

2.46 ± 0.28 1.73 ± 0.13 65.3 ± 4.0 

6.2.4 Quantification of errors of the multimodality image registration 

framework components 

In this section, the errors associated with the different components of a pseudo X-ray 

generation algorithm were assessed. Specifically, the repeatability and reproducibility of the 

compression of the breast phantom [Table 6], the ray casting process used to project 3D MRI 

data into 2D pseudo X-rays registration [Table 7: MRI-MG], and the use of a biomechanical 

model to simulate the compression of the breast phantom from an uncompressed state model 

[Table 7: MRI-FEM-MG] were assessed.  

Statistical analysis 

The means and standard errors for the landmark-based measures of accuracies were 

calculated for the different stages of the multimodality framework. After confirming 

normality (Shapiro-Wilk test) and equal variance (Levene’s test), the differences between the 

different stages of the framework were assessed using a one way ANOVA design. The p value 

to reject normality and/or equal variance was set at p≤0.05. Where a significant difference 
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(p≤0.05) between the models was detected, post-hoc comparisons were conducted using a 

Tukey’s test.  

Results 

One-way ANOVA tests on the landmark-based measures of error (CENT, SMAD and DICE) 

revealed that there were significant differences (p<0.05) between the different stages of the 

multimodality framework. Post-hoc comparisons indicated that there was significantly less 

error in the mean (±SE) for the recompression [Table 6] vs. MRI-MG experiments [Table 7] 

(p <0.005) for all the landmark-based error measurements. However, this increase in error for 

the MRI-MG vs. recompression experiments was insubstantial and can be attributed to the 

difference in resolution in the MR and X-ray images (0.68 mm x 0.68 mm x 0.75 mm voxels 

vs. 0.1 mm x 0.1 mm pixels) and errors due to the ray casting code used to generate the 

pseudo X-rays. Post-hoc comparisons also found that there was significantly lower error 

(p<0.05) for the MRI-MG vs. MRI-FEM-MG experiments for the mean (±SE) feature-based 

measures [Table 7]. These differences in the errors between these two data sets can be 

attributed to the inaccuracy of the FE model simulations.  

To date, this is the first systematic analysis and validation of the different components of a 

modelling framework for multimodal image registration of MR and mammographic X-ray 

images. The mean error was quantified at each stage against ground truth X-ray images using 

feature-based measures: centroid error (CENT), surface distance (SMAD) and the area 

overlap (DICE) between the corresponding inclusions. The analysis focussed on the 

repeatability of the experimental image acquisition from an X-ray mammography system 

[Table 5], the repeatability of the compression of the breast phantom [Table 6], the simulation 

of X-ray images from three dimensional MR images [Table 7: MRI-MG], and lastly FE 

modelling of the large compression of soft bodies [Table 7: MRI-FEM-MG]. The errors 

associated with the experimental and the X-ray simulation code can be used to determine a 

baseline error, providing context for the errors associated with the FE models. This baseline 

error indicates the point at which further improvements to the FE model will no longer be 

effectual. 

6.3 Application to breast MR and X-ray images  

A modelling framework for three dimensional - two dimensional multimodality image 



P a g e  | 107 

 

registration has now been analysed using the breast phantom and the localisation errors in the 

procedures have been quantified. In this section, the elements of the modelling framework for 

multimodality image registration for the optimisation of the FE model parameters were 

assembled, and the application of this method is demonstrated using clinical images from a 

breast cancer patient. This framework was then used to further improve the biomechanical 

model prediction of the breast shape during X-ray mammography.  

6.3.1 Clinical data 

Imaging data was acquired from a 57 year old patient where breast cancer was identified in 

both the MR and X-ray mammography images of the left breast. Written informed consent 

for use of this data was obtained from this patient, approved by the local ethics committee
6
. 

Axial T1-weighted FL3D pulse sequences were used for MR image acquisition on a MR 

scanner (MAGNETOM Avanto 1.5T, Siemens, Munich, Germany). The image dimensions 

were 512 pixel x 512 pixel with a 360 mm x 360 mm field of view and with 208 slices with 

0.75 mm slice thickness [Figure 6.6]. A mammography system (Senographe DS, General 

Electric, Connecticut, USA) was used to acquire X-ray mammograms [Figure 6.10]. An 

expert radiologist identified the locations of two small tumours for the patient. Based on this 

guidance, the tumour locations were segmented as shown in Figure 6.6. 

 
Figure 6.6: Prone MR images of a breast cancer patient with tumour locations outlined in 

yellow.  

                                                 

6
 Central Regional Ethics Committee (reference: CEN/09/09/EXP) 
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The prone breast MR images were used to construct pseudo X-ray mammograms. The prone 

MR image was masked using FE-model defined borders to isolate the breast tissues from the 

background and the rest of the torso. The masked MR breast images were then segmented 

into four tissue compartments (adipose, fibroglandular, muscle, and tumour) using an 

intensity threshold supplemented by manual editing of the segmentations in MIDAS to 

account for the spatial relationship between the structures as done previously in Chapter 4 

(Freeborough et al., 1997).  

The adipose, fibroglandular, muscle, and tumour masks were then warped based on the FE 

model compression deformations. A ray-casting algorithm was applied to the mask images to 

obtain two dimensional projections of the various components that make up the breast tissues, 

representing the length of tissue that the X-ray beam travelled through (Section 6.2). The 

Beer Lambert law was then used to determine the transmitted ray intensities by taking an 

exponential transform of the weighted sum of the path lengths, where the weights were the 

respective monoenergetic equivalent attenuation coefficients (see Section 2.1.1).  

Based on the tables for the mass attenuation coefficients and densities and the X-ray spectrum 

that is generated at 29 kV peak with the rhodium anode and attenuated by the rhodium filter 

(Bushberg et al., 2002), monoenergetic equivalent attenuation coefficients for the adipose, 

glandular, skeletal muscle, infiltrating ductal carcinoma were set as: 73 m
-1

, 92 m
-1

, 110 m
-1

 

and 109 m
-1

, respectively. 

The image representing the transmitted rays was then further processed by taking the 

negative natural logarithmic transform and then performing unsharp masking and thickness 

equalisation (Section 6.2) to simulate a ‘for presentation’ image that could be directly 

compared against the actual ‘for presentation’ mammogram images acquired for this patient.  

6.3.2 Finite element models for mammographic compression of the breast 

The skin and breast-rib boundaries were segmented from the three dimensional prone MR 

images using CMGUI
7
 software and customised FE meshes were created by fitting a generic 

mesh to the segmented skin and rib data (Rajagopal, 2007). The breast tissues were modelled 

as isotropic and incompressible as defined by the neo-Hookean constitutive relation (Chung 

                                                 

7
 http://www.cmiss.org/cmgui 
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et al., 2008a). The initial homogeneous stiffness value for the breast tissues was set as 

C1=400 Pa, which was determined previously from a manual parameter search (Reynolds et 

al., 2011).  

Rajagopal et al. (2008b) demonstrated the importance of accurately defining the 

biomechanical unloaded reference state for large deformations of soft breast tissues under 

gravity loading. For mammographic compressions, the patient is orientated in an upright 

position, as opposed to the prone position required for MRI acquisition. Using the methods 

developed by Rajagopal (2007) the unloaded reference state was directly calculated from the 

known gravity deformed states of the breast for the patient. Currently the methods used for 

estimating the unloaded reference state of the breasts are unable to account for contact 

constraints between the breast tissues and the rib surface; thus the nodal displacements at the 

posterior surface of the breast mesh were fixed for this calculation.  

For these simulations the breast tissues were modelled as an isolated body, although adjacent 

structures provide constraints on the in-vivo deformations. In a previous formulation of this 

model, the axilla edge of the breast model terminated at the shoulder region and to minimise 

unrealistic movement of the breast tissues from the shoulder region the elements associated 

with the axilla edge of the breast mesh were set to be two times stiffer than the rest of the 

mesh (Reynolds et al., 2011). This ad-hoc approach was formulated based on the effect of the 

constraint on the modelling, rather than through careful consideration of the actual physical 

constraints on the breasts. In the current formulation of the model, this ad-hoc approach was 

improved by assigning more realistic kinematic boundary conditions at the axilla, sternum, 

cranial, and caudal surfaces of the mesh to account for the restrictions imposed by the rest of 

the torso. The methods used here were based on those used previously for the prone to supine 

simulations described in Chapter 4. 

FE implementation of finite deformation elasticity was used to simulate mammographic 

compressions in the CC direction. Gravity was not accounted for during the compression 

simulations. In earlier work on breast compressions it was found that including gravity in the 

simulations resulted in only minor differences in the model predictions (Chung, 2008). This 

indicates that for large compression simulations, the boundary forces play a greater role in the 

model deformations than the gravity force.  

In contrast to the simulations used to define the unloaded reference state, contact mechanics 



P a g e  | 110 

 

were used for the forward compression simulations, thus the nodal constraints on the rib 

surface of the breast mesh were removed, and tied contact constraints were imposed. In 

Chapter 4, tied contact mechanics was used to simulate the attachment of the breast tissues on 

the chest wall for both the prone to supine reorientation studies and the compression 

simulations. 

Frictionless contact boundary conditions (see Chapter 2) were used to model the interaction 

between the breast tissues and the compression pads, whilst tied contact constraints (Chapter 

4) were used to represent the breast-to-rib interface. The breast model used in this section was 

based on previous work (Reynolds et al., 2011), where the contact stiffness was set as 2 

kPa/m, to ensure numerical convergence, and the tied stiffness value was set to be 10 kPa/m . 

The final distances between the compression plates were recorded as 64 mm, corresponding 

to 52% compression for this patient. 

6.3.3 Improvements to the finite element model 

The accuracy of the boundary conditions has a significant impact on the accuracy of the 

model simulations (Tanner et al., 2006). The boundary conditions for the breast tissues 

against the chest wall and the rest of the torso were investigated in Chapter 4 for prone to 

supine simulations and similar boundary conditions were imposed in the compression 

simulations. The amount of tissue that is compressed directly depends on the location of the 

compression plates with respect to the patient; however the location of the compression plates 

with respect to the uncompressed breast tissues is unknown.  
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Figure 6.7: Framework for three dimensional-two dimensional multimodal image 

registration to estimate FE-model parameters such as mechanical properties and boundary 

conditions 

The angle of the compression plates with respect to the patient can vary depending on how 

the patient positions her body during an X-ray mammogram. During the X-ray 

mammography procedure a patient can rotate about the yaw (vertical) axis, so that more/less 

axilla tissue is captured in the X-ray image [Figure 6.8]. In the initial model, this yaw angle 

of rotation was assumed to be 25º towards the axilla edge for the patient, based on a visual 

assessment comparing the shape of the unloaded reference mesh with the outline of the breast 

on the CC mammogram (Reynolds et al., 2011). This approach is highly subjective, 

depending on the modeller’s judgement. An individual can also lean to the side resulting in 

breast rolling (rotation about central anterior-posterior axis) and in the initial model this roll 

angle was set to 0º. This rotational information is not captured (and would be hard to record) 

during mammographic image acquisition. Novel methods were developed to automate the 

plate alignment based on the mammographic images, and hence remove the subjective 

choices [Figure 6.7].  

The nipple is one of the few consistent landmarks in the breast; therefore the nipple location 

in the pseudo mammogram and the clinical mammogram was used to determine the 
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translation of the compression plates. In this study, the yaw angle was then determined with a 

rigid rotation image registration algorithm in the axial plane centered about the nipple 

location, with normalised cross correlation as the similarity measure. The relative location of 

the compression plates was then updated and the FE simulation was repeated until the yaw 

rotation angle and translation parameters were converged as shown in Figure 6.8. Updating 

the yaw angle (to 41º towards the axilla) and translation substantially improved the accuracy 

of the tumour alignment, with the surface distance measure (SMAD) of the tumour reducing 

from 16.4 mm to 8.4 mm [Figure 6.8].   

 
Figure 6.8: The location of the compression plates was altered by updating the yaw and roll 

angles and by translating the images to align the nipple landmark, based on image similarity. 

Once the yaw and translational parameters were optimised, the effects of breast rolling and 

varying the material stiffness of the breast tissues were considered. The feature that is of most 

interest is the breast tumour (previously identified by an expert in both the MR and 

mammographic images). Therefore, the sensitivity of the breast rolling was assessed at 10º 

intervals from -40º to 20º using the SMAD of the tumour as an accuracy measure [Figure 

6.9]. In a previous study by Tanner et al. (2008), the roll was assumed to deviate by ±30º. 

Negative roll corresponds to the patient rotating her body slightly to allow for more of the 

tissue in the shoulder region to be compressed between the plates as shown in Figure 6.8. It 

can be seen in Figure 6.9, that the error remains relatively constant between roll angles of -

30º to -10º, with the minimum at a roll angle of -20º. The corresponding SMAD values were -
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30º: 3.6 mm; -20º: 3.1 mm; and -10º: 4.7 mm. This indicates that the roll needs to be 

accounted for in simulating mammographic compressions; however it is sufficient to be 

accurate to within ± 10º.  

 
Figure 6.9: Sensitivity of the FE model deformations with respect to the rolling angle 

(squares) of the compression plates and the mechanical stiffness (diamonds) of the breast 

model.  

In Figure 6.10, it can be seen how improving the location of the compression plates with 

respect to the breast substantially improves the accuracy of the alignment of the breast 

tumour. It should be noted however, that only a single case study was considered here, where 

the tumour used to measure the accuracy of the model was located near the sternum and close 

to the skin. The sensitivity of the localisation accuracy with respect to the roll angle is likely 

to be greater in this case compared to the case where a tumour resides closer to the centre of 

the breast.  
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Figure 6.10: Mammogram (MG) and pseudo-mammograms (pMG) for a breast cancer 

patient with the segmented tumours outlined in yellow and the nipple location highlighted in 

pink. Initially the plates were positioned based on a visual alignment (pMG 1). Automatically 

updating the translation, yaw and roll of the compression pad with respect to the breast 

tissues substantially improved the alignment (pMG 2).  

The sensitivity of the material stiffness was also investigated using the tumour as a landmark 

measure. In Chapter 4, the material stiffnesses for Volunteers 1 and 2 were found to be 125 Pa 

and 300 Pa, respectively, for the homogeneous model with tied contact constraints applied to 

the rib surface. The neo-Hookean stiffness values that were investigated for the compression 

simulations for the patient ranged from 90 Pa to 500 Pa. With reference to Figure 6.9, the 

SMAD for the tumour was approximately constant between 300 Pa and 500 Pa, with the error 

ranging from 3.1 mm to 3.3 mm. This indicates that the kinematics of the compression 

deformation mode has a greater effect on the accuracy of the FE model deformations in 

comparison to the mechanical properties of the breast tissues. It is thus likely that individual 

specific estimation of the mechanical properties may not be required for reliable compression 

simulations, although this needs to be verified using additional patient data.  
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6.4 Limitations and future work 

In this chapter, a novel modelling framework for three dimensional-two dimensional non-

rigid image registration using FE modelling has been presented and its accuracy was 

quantified using ground truth clinical images. The sensitivity of the material properties and 

boundary conditions on mammographic compression simulations was assessed for a breast 

cancer patient using this framework.  

6.4.1 Boundary conditions 

The majority of studies using FE models to simulate large breast compressions prescribe 

nodal displacement on the outer (skin) surface of the model, which introduces unrealistic 

forces into the models (Hipwell et al., 2007, Ruiter et al., 2006, Schnabel et al., 2003, Tanner 

et al., 2006, 2010, 2011). In contrast, the patient model presented in this chapter accounts for 

the interactions between compression plates and the breast using contact mechanics coupled 

with finite elasticity to predict the deformations of the breast under compression. In this 

chapter, a novel automated method for defining the location of the compression plates based 

on the multi-modal imaging of the breasts has been proposed and demonstrated.  

In Figure 6.10 it can be seen that even though the tumour and nipple locations for the pseudo 

mammogram generated from the updated model (pMG 2) match well with the clinical 

mammogram, the alignment of the axilla region (upper section of the image) did not align as 

well. The FE model of the breast excludes the shoulder and arm region as well as the rest of 

the torso. The movement of the shoulder and arm, and their subsequent effects on the model, 

were not accounted for during these simulations despite the belief that arm motion is likely to 

have a substantial influence on the breast deformations. Kinematic boundary conditions were 

applied at the edges of the breast mesh to account for these structures, with selected nodes on 

the skin-cranial edge fixed to account for the effect of the shoulder. During the MR image 

acquisition, the patient pressed her arms against her body. If the patient had lifted her arm 

during the mammogram acquisition, this could have the effect of increasing the skin tension 

around the shoulder region leading to decreased deformation in this region.  

6.4.2 Skin-plate interactions 

The interaction between the compression plates and the breast tissues has been modelled 
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using frictionless contact mechanics. However, observations in the clinical environment 

indicate that a slip-stick condition of frictional contact may be a more suitable representation 

of these interactions. Frictional contact requires the static frictional coefficient to be 

specified. In earlier studies, the (dimensionless) frictional coefficient was given as 0.2, 

although the method for determining this value was not described (Shih et al., 2010, Yin et 

al., 2004). This appears to be a rather low frictional coefficient for the contact between the 

compression plates and the breast skin, in the context of earlier studies on the frictional 

properties of the skin.  

Naylor (1955) found that the frictional coefficient between polythene and skin on the anterior 

surface of the tibia was 0.5. Later studies have found that different locations on the body can 

result in different frictional properties (Cua et al., 1990, Zhang and Mak, 1999). Cua et al., 

(1990) investigated a range of anatomical regions: forehead, postauricular upper arm, 

abdomen, thigh, ankle, lower back, and upper back against Teflon. The closest anatomical 

region to the breast would be the abdomen or upper back, which were found to have frictional 

coefficients against Teflon of 0.12 and 0.25, respectively. However, Teflon typically has much 

lower friction against human skin compared to the plastic compression plates. Zhang and 

Mak (1999) investigated the frictional properties of human skin in six anatomical regions 

(palm and dorsam of the hand; and the anterior and posterior sides of the forearm and leg) 

against a larger range of materials (aluminium, nylon, silicone, cotton sock and Pelite). In this 

study, the closest material to the plastic compression plates was silicone, which against skin, 

was found to have mean frictional coefficients ranging from 0.47 to 0.93 across the different 

anatomical regions for 10 subjects.  

The frictional coefficient of skin for each individual is dependent on the underlying structure, 

the amount of oil or sweat, and its suppleness or smoothness. Physically measuring the 

frictional coefficient for each patient when they get a mammogram is unrealistic. However, 

using the modelling framework developed in this chapter, this property can be determined for 

each individual.  

6.4.3 Mechanical properties 

The biomechanical model for this patient assumed that the breast tissues were isotropic, 

homogeneous, and incompressible. In Chapter 4, the importance of accounting for the 

stiffnesses of adipose, fibroglandular, and muscular tissue was explored. It was found that 
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incorporating information about the heterogeneity of the breast tissues significantly improved 

the accuracy of prone to supine reorientation FE simulations (Section 4.6). Studies have 

found that fibroglandular tissues have a 5-fold to 50-fold greater stiffness compared to the 

adipose tissues (Gefen and Dilmoney, 2007). Moreover, the elastic modulus of the muscles 

underlying the breasts is reported to range from 0.75 kPa to 30 kPa  (Gefen and Dilmoney, 

2007). Incorporating the mechanical properties of the different tissue types may improve the 

alignment of the axilla region of the breast model. Further work is required to investigate the 

effects of incorporating heterogeneity and altering the position of the arm during the 

compression simulations.  

Tumourous tissues have an even greater difference in stiffness, with studies reporting up to 

100-fold greater stiffness in comparison to normal breast tissues (O'Hagan and Samani, 

2009). It has also been postulated that tumours have a stiffening effect on the surrounding 

normal tissues, due to spiculations extending out from the tumour (Wessel et al., 2010). 

Therefore, accounting for these effects of the tumours (particularly large tumours) in the 

patient’s breast is likely to improve the accuracy of the compression simulations. 

6.4.4 Summary 

In this chapter, a novel modelling framework to determine FE model parameters from MR 

and X-ray clinical images has been demonstrated on a single case study. Promising results 

have been acquired for this patient study, where it was shown that the kinematics of the FE 

model simulations had a substantial impact on the accuracy of the simulations. A novel 

method was developed to determine the yaw and translation of the compression plates in the 

FE model simulations from the multi-modal medical images. The sensitivity to breast roll and 

material stiffness of the breast tissues was also investigated by considering the tumour 

localisation accuracy. Best results were found with a roll between -10º and -30º, whereas the 

localisation error was relatively insensitive to mechanical stiffness. However, only a single 

case study with one feature (tumour) for the error measure was considered. In order to be 

clinically useful, this framework would need to be tested on more patient studies with 

tumours in different locations. In addition, the accuracy of more landmarks or regions would 

need to be considered for each study. 

The advantage of the biomechanical models of the breast used in this thesis is that they are 

capable of predicting the deformations of breast tissues under different loading conditions. In 
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contrast to the majority of studies using FE models to simulate large deformations of the 

breasts, where displacement of nodes on the skin surface are explicitly prescribed, the 

boundary conditions used in this thesis are more physically realistic. In this way, a 

biomechanical model can be customised for each patient and different deformations can be 

predicted by altering the loading conditions or boundary conditions to simulate the physical 

environment. For example, a biomechanical model of the breast that can accurately simulate 

the deformations of the breast from the prone to compressed states, could also be used to 

predict the breast shape in the supine orientation (for example, for application to ultrasound 

imaging or surgery). A biophysical tool that can co-localise features of interest across 

modalities will help clinicians in the diagnosis and management of breast cancer.  
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Chapter 7: Conclusions and future 

work 

7.1. Summary 

The overall goal of this research is to develop a modelling framework that can aid clinicians 

in the interpretation of breast images from multiple views and imaging modalities. To that 

end, biophysically-based models of the breast have been developed and used to simulate the 

deformations of the breast under gravity and compressive loads. In this thesis, techniques for 

integrating FE modelling and image processing methods were developed and validated using 

a breast phantom. A novel application of a block matching method was used to inform the 

modelling and improve the reliability of the physically-based FE models of the breasts.   

7.2. Breast phantom studies 

Modelling large deformations of the breast is a complex problem, due to the various 

structures that make up and surround the breast, such as adipose, fibroglandular, muscle, and 

skin tissues. In addition, the breast is not an isolated organ and the surrounding structures 

provide physical constraints on the problem. A breast phantom was therefore used to 

investigate aspects of the modelling framework because it allows greater control over its 

deformations and boundary conditions (for example, by imaging the breast phantom under 

varying degrees of compression (see Chapter 3)). 

Compression was simulated using finite elasticity coupled with contact constraints for both 

frictional and frictionless cases. The structures inside the breast phantom were alternatively 
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modelled as homogeneous and heterogeneous, and the accuracy of the models were assessed 

using conventional landmark-based methods and the block matching approach. 

Evaluation of the results between the model simulations and the experimental images led to 

the following conclusions: 

1. Statistical analysis indicated that the block matching comparison measure is a suitable 

unbiased alternative to landmark-based methods in assessing the accuracy of the internal 

deformations of the breast phantom. The block matching method is preferable to the 

landmark-based measure as it allows the FE model predictions to be automatically 

evaluated on a three dimensional regional basis over the whole breast.   

2. Techniques were developed to take into account the heterogeneous structures of the breast 

phantom. Statistical analysis of the results between the homogeneous versus the 

heterogeneous FE models revealed that the latter provided significantly more accurate 

compressive deformations.  

7.3. Clinical studies  

Two types of breast deformations were considered in this thesis: prone to supine reorientation 

(Chapter 4 and Chapter 5); and prone to CC mammographic compression (Chapter 6). 

Simulating prone to supine deformations is of clinical importance, as MR images of the 

breast are typically acquired with a patient in a prone position, whereas ultrasound imaging, 

biopsy and surgery are generally performed while the patient lies in a supine orientation.  

Mammographic compression was also simulated using the experience from modelling the 

breast deformations from prone to supine gravity loading states. Clinical images of a breast 

cancer patient were acquired with the breast under prone gravity loading in the MRI scanner, 

and under CC compression using an X-ray mammography system. The novel framework for 

fusing information from three dimensional MR and two dimensional X-ray images was 

validated using breast phantom images and then applied to the clinical breast images. Using 

an iterative process, the parameters of the model were updated and the image alignment 

between the three dimensional MR images and the X-ray mammogram was improved.  

Evaluation of the block matching comparison between the biomechanical model predictions 

and the clinical images led to the following conclusions: 
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1. In contrast to applying zero-displacement boundary conditions on the rib surface of the 

breast model, a more realistic sliding contact constraint was implemented. Accounting for 

the sliding of the breast tissues over the chest wall significantly improved the accuracy of 

the model predictions. 

2. In earlier work, the breast tissues were modelled as homogeneous tissue. However, the 

breasts are composed of adipose and fibroglandular tissues and in addition, muscle was 

incorporated into the breast models. These tissue groups have distinct mechanical 

properties and accounting for the different stiffnesses of these tissues significantly 

improved the accuracy of the image alignment.  

3. The FE method was significantly more accurate than FFD-based method in registering 

prone with breast supine images. However, there is still room for further improvement of 

the FE models of the breast. In the meantime a hybrid method where FFD method is 

applied following the FE method allows for better alignment between prone and supine 

breast images.  

4. Biomechanical models were used to align three dimensional MR and two dimensional X-

ray images. An iterative process was used to estimate the unknown relative location of the 

compression plates and the mechanical properties of the breast tissues. Initial results 

indicated that kinematic constraints play a greater role in the accuracy of the model 

predictions than the mechanical properties of the breast tissues.  

7.4. Future work 

In order to improve the robustness and reliability of the modelling framework a number of 

areas require further work. Various assumptions were made about the breast tissues and their 

boundary conditions to simulate the large deformations between the different loading 

conditions. These assumptions will need to be investigated to assess their effect on the 

accuracy of the model predictions.  

1. The neo-Hookean material relation models the breast tissues as an isotropic 

incompressible material. In recent work by Tanner et al. (2011), it was found that 

simulating the breast tissues as anisotropic (where the antero-posterior direction was 

stiffest) significantly improved the accuracy of compression simulations. The models 

used in the Tanner studies, assumed that the prone gravity loaded orientation was the 

biomechanical reference state. The justification for using anisotropic material laws was 
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that the prone gravity loaded state imposes stretching in the AP direction already. In 

addition, it was postulated that the effects of the Cooper’s ligaments, which lie 

preferentially in the AP direction, were accounted for with anisotropy. It will need to be 

investigated as to whether or not this finding still holds true when the loads on the breast 

in the prone orientation are taken into account, as was done in this thesis.  

2. Cooper’s ligaments and the retromammary bursa allow the breast tissues to slide on the 

muscle tissues that make up the chest wall. In the forward simulations, the interactions of 

the posterior surface of the breast models and the rib surface were modelled using contact 

constraints. However, to determine the unloaded reference state from the gravity loaded 

state (using the ‘reverse method’), software limitations required that zero-displacement 

boundary conditions be applied on the nodes that were in contact with the compression 

plate or the rib surface for the breast phantom and breast model simulations, respectively. 

Contact mechanics still remains to be implemented in CMISS for the ‘reverse method’. In 

addition, the boundary conditions of the breast tissues are an approximation to the actual 

constraints on the breast. Currently the models of the breasts extend in the antero-

posterior axis from the skin to the ribs. However, as discussed in Chapter 2, the 

conventional description of the breast tissues places it on top of the pectoral muscles. 

Sliding contact constraints need to be implemented between the pectoral muscle surface 

and the breast tissues.  

3. In Chapter 6, the interactions between the breast tissues and the compression plates were 

modelled using frictionless contact constraints. However, no lubrication was used 

between the compression plates and the breast, so frictional contact would be more 

appropriate. To model frictional interactions between surfaces, additional parameters need 

to be defined: the tied stiffness penalty; and the frictional coefficient (see Chapter 2). As 

shown in Chapter 6, a framework has now been developed where the image similarity 

between the FE model warped image and the clinical image can be used to estimate 

parameters (such as the frictional parameters) in the model. It will need to be investigated 

to see whether the use of frictional, instead of frictionless contact constraints will lead to a 

significant improvement on the accuracy of the model simulations.  

4. In this thesis, the modelling framework was used to fuse the information from MR and X-

ray mammography modalities. In addition to MR imaging, ultrasound is also used as a 

common adjunct to mammography for the diagnosis and management of breast cancer. 

The modelling framework presented here can be extended to take into account the images 
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acquired from ultrasound, with further work required to align two dimensional ultrasound 

images with the FE-warped MR images.  

5. Finally, only a limited number of human studies have been presented. The prone to supine 

studies were carried out on two volunteers, whereas the breast compression study was 

demonstrated on a single breast cancer patient. These studies were intended to 

demonstrate the clinical applicability of the modelling framework. However, there is a 

risk that the conclusions drawn from these limited studies may not be applicable to all 

situations. There is a wide variety of breast shapes and sizes, and to demonstrate that the 

methods presented in this thesis can be a useful tool in the clinical environment, a greater 

number of patient cases, with tumour locations in different regions, will need to be 

studied to validate this modelling framework across a range of women.   

In this thesis, breast models simulating deformations due to gravity and compressive loads 

were investigated. MR images of the breast in the prone gravity loaded orientation were 

warped, according to the model deformations, to simulate the compressed state (required for 

X-ray mammography) and the supine gravity loaded state (required for ultrasound). A 

framework for multimodality image registration, combining FE modelling techniques with 

image processing methods, was demonstrated in this thesis. The use of a biophysically-based 

modelling tool that can co-localise features across breast imaging modalities, including X-ray 

mammography, MRI and ultrasound, will potentially aid clinicians in the diagnosis and 

management of breast cancer.  
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Appendix A: Convergence analysis 

of the models 
Mesh convergence analysis was carried out for the breast phantom (Chapter 3 and Chapter 5) 

and the breast models used for the two volunteers (Chapter 4 and Chapter 5) to minimise the 

effect of the discretisation error during the mechanics simulations. The models were used to 

simulate mechanics (compression for the phantom and prone to supine reorientation for the 

volunteers). As there is no analytic solution for the deformation of the breast phantom and 

breasts, the highest refinement in each of the directions was used as the ‘gold standard’. To 

test for convergence of the models, the FE-warped images of the unrefined and refined 

models were compared using the NCC metric (Eq. 2.1).  

For the breast phantom, the unrefined model (2043 geometric solution degrees of freedom 

(DOF)) was refined once in each of the xi directions, where xi 1 was defined along the 

circumference of the phantom, xi 2 was defined as from the skin to the center of the phantom, 

and xi 3 was defined as from the apex to base of the phantom. The homogeneous 45% CC 

compression model, with C1 set to be 1 kPa, was used to warp the uncompressed images. The 

NCC values (a measure of the image similarity) ranged from 99.5% to 99.9% [Table 8].  

For the volunteers, the unrefined model (4606 geometric solution degrees of freedom) was 

refined once in each xi direction. The xi directions were defined as follows: xi 1 was defined 

as right side of the body to left side of the body; xi 2 was defined as from head to toe; and xi 

3 was defined as from skin to rib. The homogeneous models with fixed boundary conditions 

on the rib surface, with C1 set as 80 Pa and 122 Pa for Volunteers 1 and 2, respectively, were 

used to warp the prone images. For Volunteer 1, the image similarity, given as NCC, was 
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found to range from 99.3% to 99.7% [Table 9]. For Volunteer 2, the NCC value was found to 

range from 99.5% to 99.7% [Table 10].  

Due to the need to maintain computational efficiency and the relatively small differences in 

the images it was concluded that the original (unrefined) models were sufficiently converged 

for both volunteers and the phantom.   

Table 8: Phantom convergence analysis. The unrefined model was refined once in each xi 

direction. The NCC values were calculated for each refinement.  
 Refine in xi 1 Refine in xi 2 Refine in xi 3 

Model 

   
Geometric 

solution DOF 
3891 4045 3891 

NCC value 0.997 0.999 0.995 

Table 9: Volunteer 1 model convergence analysis. The unrefined model was refined once in 

each xi direction. The NCC values were calculated for each refinement.  
 Refine in xi 1 Refine in xi 2 Refine in xi 3 

Model 

   
Geometric 

solution DOF 
8343 7507 7735 

NCC value 0.994 0.997 0.993 

Table 10: Volunteer 2 model convergence analysis. The unrefined model was refined once in 

each xi direction. The NCC values were calculated for each refinement.  
 Refine in xi 1 Refine in xi 2 Refine in xi 3 

Model 

   
Geometric 

Solution DOF 

8343 

 
7507 7735 

NCC value 0.997 0.996 0.995 
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