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CONTINUITY IN SEPARABLE METRIZABLE

AND LINDELÖF SPACES
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(Communicated by Jane M. Hawkins)

Abstract. Given a map T : X → X on a set X we examine under what con-
ditions there is a separable metrizable or an hereditarily Lindelöf or a Lindelöf
topology on X with respect to which T is a continuous map. For separable
metrizable and hereditarily Lindelöf, it turns out that there is such a topology
precisely when the cardinality of X is no greater than c, the cardinality of the

continuum. We go on to prove that there is a Lindelöf topology on X with re-

spect to which T is continuous if either T c
+
(X) = T c

++1(X) �= ∅ or Tα(X) =
∅ for some α < c+, where Tα+1(X) = T

(
Tα(X)

)
and Tλ(X) =

⋂
α<λ Tα(X)

for any ordinal α and limit ordinal λ.

1. Introduction

If T : X → X is a function on a non-empty set X and P is some topological
property, then a fundamental and natural question asks whether one can endow X
with a topology that satisfies P and with respect to which T is continuous.

This question can be traced back to Ellis [1], who asks whether there is a non-
discrete topology on X with respect to which T is continuous. De Groot and
de Vries [4] provide a complete answer showing that, if X is infinite, there is always
a non-discrete metrizable topology on X with respect to which T is continuous.
They go on to prove that, provided X has at most c many elements (where c

denotes the cardinality of the continuum), X may be identified with a subset of the
Cantor set. Moreover, in this last case, if T is one-to-one, then T may be taken to
be a homeomorphism. They mention that, even assuming appropriate cardinality
restrictions, it is impossible in general to make X a compact metric space, though
de Vries [11] proves that, if T is a bijection, the Continuum Hypothesis is equivalent
to the statement that there is a compact, metric topology on X with respect to
which T is a homeomorphism provided X has cardinality c.

The Banach Fixed Point Theorem implies that if X is a compact metric space
and T : X → X is a contraction, then

⋂
n∈N

Tn(X) = {x} for some unique fixed
point x of T . In a question related to Ellis’s, de Groot asked whether there is a
converse to Banach’s theorem in the following sense: if T : X → X, |X| = c and⋂

n∈N
Tn(X) = {x} for some x, is there a compact, metric topology on X with
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respect to which T is continuous? In general, for the compact metric case there is
not; however, Janos [8] proves that there is a totally bounded metric topology on
X with respect to which T is a contraction mapping and Iwanik, Janos and Smith
[7] prove that there is a compact, Hausdorff topology on X with respect to which
T is continuous, even without the restriction on the cardinality of X.

In [3], the continuity of arbitrary maps in compact Hausdorff spaces (see The-
orem 1.3 below) and the continuity of bijections in compact metric spaces (Theo-
rem 1.4 below) are characterized in terms of the orbit structures of the maps (see
Definition 1.1 for the terminology). Iwanik [6] had earlier characterized continuity
of bijections in compact Hausdorff spaces.

To state our theorems, we make the following definition.

Definition 1.1. Let T : X → X. The relation ∼ on X, defined by x ∼ y if and
only if there exist m,n ∈ N with Tm(x) = Tn(y), is an equivalence relation, whose
equivalence classes are the orbits of T .

If O is an orbit of T , then we say that:

(1) O is an n-cycle, for some n ∈ N, if there are distinct points x0, . . . , xn−1 in
O such that T (xj−1) = xj , where j is taken modulo n;

(2) O is a Z-orbit if there are distinct points {xj : j ∈ Z} ⊆ O such that
T (xj−1) = xj for all j ∈ Z;

(3) O is an N-orbit if it is neither an n-cycle for some n ∈ N nor a Z-orbit.

Note that O is an N-orbit if and only if it is not a Z-orbit and there are distinct
points {xj : j ∈ N} ⊆ O such that T (xj) = xj+1 for all j ∈ N. If the set
S = {xj : j ∈ M} witnesses that O is an n-cycle, Z-orbit or N-orbit, where M is an
appropriate indexing set, then we say that S is a spine for O. Of course, the spine
of an n-cycle is unique, but spines of N- and Z-orbits need not be unique.

Example 1.2. Consider the set

Z = {xn : 0 ≤ n ∈ Z} ∪ {xn,i : 0 > n ∈ Z, i = 0, 1} ∪ {y−n,k : 1 ≤ n ≤ k ∈ N},
and the map T : Z → Z defined by

T (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xn+1, x = xn, 0 ≤ n;

xn+1,i, x = xn,i, n < −1, i = 0, 1;

x0, x = x−1,i, i = 0, 1;

y−n+1,k, x = y−n,k, 1 < n ≤ k ∈ N;

x0, x = y−1,k, k ∈ N.

The action of T on Z consists of a single Z-orbit with two possible spines, S0 and
S1, where Si = {xn : 0 ≤ n ∈ Z} ∪ {xn,i : 0 > n ∈ Z}. The rank of x0 (see
Definition 3.1) under T in Z is ∞.

The subset N = {xn : 0 ≤ n ∈ Z} ∪ {y−n,k : 1 ≤ n ≤ k ∈ N} of Z is closed
under the action of T and the action of T �N on N consists of a single N-orbit
with infinitely many possible spines, S′

k for each k ∈ N, where S′
k = {xn : 0 ≤ n ∈

Z} ∪ {y−m,k : 1 ≤ m ≤ k}. The rank of x0 in N under T �N is ω.

Theorem 1.3 ([3]). Let T : X → X. There is a compact, Hausdorff topology on
X with respect to which T is continuous if and only if

T
( ⋂
m∈N

Tm(X)
)
=

⋂
m∈N

Tm(X) �= ∅
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and either:

(1) T has, in total, at least continuum many Z-orbits or cycles; or
(2) T has both a Z-orbit and a cycle; or
(3) there are ni ∈ N, i ≤ k < ∞, such that T has an ni-cycle for each i and,

whenever T has an n-cycle, n is divisible by ni, for some i ≤ k; or
(4) the restriction of T to

⋂
m∈N

Tm(X) is not one-to-one.

Theorem 1.4 ([3]). Let T : X → X be a bijection. There is a compact metrizable
topology on X with respect to which T is a homeomorphism if and only if one of
the following hold:

(1) X is finite.
(2) X is countably infinite and either:

(a) T has both a Z-orbit and a cycle or
(b) there are ni ∈ N, i ≤ k < ∞, such that T has an ni-cycle for each i

and, whenever T has an n-cycle, n is divisible by ni, for some i ≤ k.
(3) X has the cardinality of the continuum and each of the number of Z-orbits

and the number of n-cycles, for n ∈ N, is finite, countably infinite, or has
the cardinality of the continuum.

In this paper, we address this question of continuity in Tychonoff, Lindelöf or
hereditarily Lindelöf spaces. To state these results we need a further definition.

Definition 1.5. Let T : X → X be a function. For any A ⊆ X, any ordinal α and
any limit ordinal λ, define Tα+1(A) = T

(
Tα(A)

)
and Tλ(A) =

⋂
α∈λ T

α(A).

We prove the following.

Theorem 1.6. Let T : X → X be a function. There is a (zero-dimensional)
Tychonoff, Lindelöf topology on X with respect to which T is continuous provided
either

(1) T c
+

(X) = T c
++1(X) �= ∅ or

(2) Tα(X) = ∅ for some α < c+.

Corollary 1.7. Let T : X → X be a function. There is a (zero-dimensional)
Tychonoff Lindelöf topology on X with respect to which T is continuous provided
any of the following holds:

(1) T is a surjection,
(2) T is an injection,
(3) T is a < c-to-one function,
(4) T is a ≤ c-to-one function with at least one Z-orbit or n-cycle.

Theorem 1.8. Let T : X → X. The following are equivalent:

(1) |X| ≤ c.
(2) X can be identified with a subset of the Cantor set in such a way that the

action of T is continuous.
(3) There is a (zero-dimensional) Hausdorff, hereditarily Lindelöf topology on

X with respect to which T is continuous.
(4) There is a (zero-dimensional) first countable, Hausdorff, Lindelöf topology

on X with respect to which T is continuous.
(5) There is a (zero-dimensional) first countable, Hausdorff, separable topology

on X with respect to which T is continuous.
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(6) There is a (zero-dimensional) separable metrizable topology on X with re-
spect to which T is continuous.

(7) There is a continuous function t from the Hilbert cube [0, 1]N to itself and
an identification of X with a (zero-dimensional) subset of [0, 1]N such that
T is the restriction of t to X.

We are left with the question:

Question 1. Is there a map T on a set X that is not continuous with respect to
any Lindelöf topology on X?

We conjecture that the answer is yes. In light of Theorem 1.6, we are really
asking the following.

Question 2. Suppose that T c
+

(X) �= T c
++1(X). Is there a Tychonoff, Lindelöf

topology on X with respect to which T is continuous?

Question 3. Suppose that ||p|| = c+ (see Definition 3.1). Is there a Lindelöf
topology on T−k(p), for each k > 0, such that the restriction of T from T−(k+1)(p)
to T−k(p) is continuous?

Question 4. Suppose that T c
+

(X) = ∅ but that Tα(X) �= ∅ for any α ∈ c+. Is
there a Lindelöf topology on X with respect to which T is continuous?

Our notation and terminology are standard as found in [2] and [10]. The paper
is organized as follows. In Section 2 we prove Theorem 1.8. The proof that Theo-
rem 1.8 (1) implies Theorem 1.8 (7) does in fact follow from a careful reading of the
construction of the Lindelöf topology in the proof of Theorem 1.6, but the argument
given in this section is far more direct and geometric. The proof of Theorem 1.6 is
somewhat involved, although we have taken some pains to simplify the exposition
as far as possible. In Section 3 we discuss a natural tree structure on

⋃
0≤k T

−k(x),
for each x ∈ X, and an associated notion of rank. In Section 4, we use this tree
structure and the rank of points of X to put as appropriate topology on each orbit.
We know that, for Lindelöf X and continuous T , the set T−k(x) is Lindelöf for
any x ∈ X and 0 ≤ k. So, in constructing the topology on T−(k+1)(x) from the
topology on T−k(x), we use our notion of rank to keep track of which points should
act as limit points, ensuring both continuity and the Lindelöf property. In the final
section, we topologize X by considering the various combinations of orbits, thus
completing the proof of Theorem 1.6.

2. Continuity in separable metrizable and

hereditarily Lindelöf spaces

De Groot (see [5]) proved that every hereditarily Lindelöf space has cardinality
at most c. It turns out that this is the only condition required for there to be
a hereditarily Lindelöf topology making a given self-map on a set continuous. A
version of the proof of (1) implies (5) in Theorem 1.8 essentially follows from the
proof of case (1) of Theorem 1.6, but the following argument is more natural.

Proof of Theorem 1.8. Clearly (7) implies (6) and (6) implies each of (3), (4), and
(5). Arhangel’skii proved that first countable, Hausdorff Lindelöf spaces have cardi-
nality at most c, Posṕı̌sil proved that every first countable, separable (indeed density
≤ c) Hausdorff space has cardinality at most c, and de Groot proved that Hausdorff
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hereditarily Lindelöf spaces also have cardinality at most c (see [5]). Hence (3), (4)
and (5) all imply (1). That (2) is equivalent to (1) is due to de Groot and de Vries
[4]. It remains to show that (1) implies (7).

We will show that, if |X| ≤ c, then there is a continuous map t on the Hilbert
cube and an identification of X with a zero-dimensional subset of the Hilbert cube
so that T corresponds to the restriction of t to X.

Assume, then, that T : X → X and that |X| ≤ c. Let I = [0, 1], let H denote
the Hilbert cube [0, 1]N, and let S1 denote the unit circle in the plane. Since we
are only trying to embed X as a subspace of H, we may assume that, for each
x ∈ X, T−1(x) has cardinality c (otherwise we can consider the restriction of T to
a subset). In particular, this means that, without loss of generality, there are no
N-orbits in T . It therefore suffices to construct a continuous function t : H → H

which has c many Z-orbits and c many n-cycles, for each n ∈ N, with the property
that T−1(x) has cardinality c for each point x in each of these orbits. One can then
easily choose a zero-dimensional subset on which the restriction of the action of t
corresponds to the action of T .

Let φ be the homeomorphism from the cylinder S1 × [0, 1] to itself defined by
φ(θ, x) = (θ + 2πx, x). It is a standard fact that the orbit of the point (θ, x) is a
Z-orbit precisely when x is an irrational number and is an n-cycle when x = m/n,
expressed in lowest terms. Let H′ = S1 × I × H and let t′ : H′ → H′ be the map
defined by

t′(θ, x, r1, r2, r3, . . . ) = (θ + 2πx, x, r2, r3, . . . ).

Given the continuity of φ and the shift map (r1, r2, r3, . . . ) 
→ (r2, r3, . . . ) on H, t′

is easily seen to be a continuous map on H
′. For any x ∈ [0, 1], consider the subset

Hx = S1 × {x} ×
{
(0, 0, 0, . . . )

}
∪

⋃
1≤m

S1 × {x} × Im ×
{
(0, 0, 0, . . . )

}
.

Hx is invariant under the action of t′. For each point p of Hx, T
−1(p) has cardinality

c and p is eventually mapped to a point of the form (θ, x, 0, 0, . . . ), so the orbit of p
is a Z-orbit, if x is irrational, or a cycle, if x is rational. Moreover, there are c many
such orbits in Tx. It follows that (for example) the subset H′′ = H√

2 ∪
⋃

1≤n H1/n

of H′ is closed under t′, consists of c many Z-orbits and c many n-cycles, for each
n ∈ N, and has the property that t′−1(p) has cardinality c for each p ∈ H

′′. Since
H′′ is a subspace of H′, which is homeomorphic to H, we are done. �

3. Self-maps and well-founded trees

In this section, we describe a natural ordinal invariant, the rank of x ∈ X under
T , for points under the action of T . This rank corresponds to the rank of well-
founded trees from descriptive set theory (see, for example, [9]), and we use it in
Section 4 to index our construction of a Lindelöf topology. Our idea is, roughly,
that we will only declare a point x, say, to be a limit point of a set of points A
if the rank of each y ∈ A is no greater than the rank of x. This will ensure, via
Lemma 3.2, that there are ‘enough’ points in T−1(x) to act as limit points for
T−1(A).

For notational convenience, we let T 0(p) = p or {p} depending on the context.
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Definition 3.1. Suppose that T : X → X is a function. The rank of x ∈ X under
T is

||x|| =
{
α if x ∈ Tα(X)� Tα+1(X),

∞ if x ∈
⋂

α∈On T
α(X).

For each x ∈ X, and each y, z ∈
⋃

0≤k T
−k(x), define y �x z if and only if

T j(z) = y for some j > 0.

For each x ∈ X,
(⋃

0≤k T
−k(x),�x

)
forms a well-founded tree of height ||x|| if

and only if ||x|| < ∞ (see [9, 25.5] for more on well-founded trees). For our purposes
it is sufficient to see that, if ||x|| < ||y||, then there is an order-preserving map from⋃

0≤k T
−k(x) to

⋃
0≤k T

−k(y).

Lemma 3.2. Let T : X → X and let x ∈ X.

(1) ||x|| = ∞ if and only if there exists a sequence xn, n = 0, 1, 2, . . . , such that
x0 = x and T (xn+1) = xn. In particular, if x is a point on the spine of a
Z-orbit or of an n-cycle, then ||x|| = ∞, and if ||x|| = ∞, then x is not in
an N-orbit.

(2) If ||x|| ≤ ||y||, then there is an order-preserving map

fxy :

( ⋃
0≤k

T−k(x),�x

)
→

( ⋃
0≤k

T−k(y),�y

)

such that fxy
(
T−k(x)

)
⊆ T−k(y) for all k ∈ N.

Proof. Clearly, if there is a sequence of points xn, n ∈ N, such that x0 = x and
T (xn+1) = xn, then x0 ∈ Tα(X) for all ordinals α, and so ||x|| = ∞. Suppose,
then, that ||x|| = ∞, i.e. that x ∈ Tα(X) for all ordinals α. If ||y|| < ∞ for
each y ∈ T−1(x), then ||x|| = sup{||y|| + 1 : y ∈ T−1(y)} < ∞, so there is some
x1 ∈ T−1(x) with ||x1|| = ∞. It follows that there is an infinite sequence xn with
x0 = x, and xn = T (xn+1). Hence (1) follows.

For (2), following [9, 25.6]: If ||y|| = ∞, then by (1), there is some sequence of
points yk, k = 0, 1, 2, . . . , such that y0 = y and T (yk+1) = yk. In this case, define
fxy(z) = yk if and only if z ∈ T−k(x). If ||y|| < ∞, then we argue by induction.
If z ∈ T−1(x), then ||z|| < ||x|| ≤ ||y||, so that there is some yz ∈ T−1(y) such
that ||z|| ≤ ||yz ||. Let fz be an order-preserving map from

(⋃
0≤k T

−k(z),�z

)
to(⋃

0≤k T
−k(yz),�yz

)
such that fz

(
T−k(z)

)
⊆ T−k(yz) for all k ∈ N. Define

fxy(w) =

{
y if w = x,

fz(w) if w ∈
⋃

0≤k T
−k(z), for some z ∈ T−1(x).

Since
⋃

0≤k T
−k(z) ∩

⋃
0≤k T

−k(z′) = ∅ for any distinct z and z′ in T−1(x), fxy is
well-defined and we are done. �

The following rather technical looking lemma collects together a number of facts
we will need later. The proof follows fairly directly from the definitions.

Lemma 3.3. Suppose that T : X → X is a function.

(1) The following are equivalent:

(a) T c
+

(X) = T c
++1(X);

(b) for all x ∈ X, either ||x|| < c+ or ||x|| = ∞;
(c) for all x ∈ X, there is a subset Dx ⊆ T−1(x) such that
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(i) |Dx| ≤ c and
(ii) for each z ∈ T−1(x) there is some yz ∈ Dx such that ||z|| ≤

||yz ||.
(2) Let T c

+

(X) = T c
++1(X). Let x ∈ X and let Dx be a subset of T−1(x)

satisfying (1c). Suppose that y ∈ Dx and that Dx − {y} does not satisfy
(1c). Then either
(a) ||y|| = ∞, so that ||x|| = ∞, or
(b) there is a subset D′

x of T−1(x), which does not contain y but does
satisfy (1c).

(3) If T c
+

(X) = T c
++1(X) �= ∅, then X has a Z-orbit or an n-cycle for some

n ∈ N.
(4) If Tα(X) = ∅ for any ordinal α, then X consists solely of N-orbits.

Proof. For (1): To see that (a) implies (b), suppose that T c
+

(X) = T c
++1(X)

but that some x ∈ X has c+ ≤ ||x|| < ∞. Then, without loss of generality,
||x|| = c+ (if not, then some point of

⋃
0≤n T

−n(x) has rank c+). But then x ∈
T c

+

(X)− T c
++1(X), which is a contradiction.

Suppose that (b) holds. If ||x|| = ∞, then there is some y ∈ T−1(x) such that
||y|| = ∞, so that we can let Dx = {y}. On the other hand, ||x|| < c+. Then the
set of ordinals

{
||y|| : y ∈ T−1(x)

}
has cardinality ≤ c, and we see that (c) holds

by Lemma 3.2.

To see that (a) follows from (c), suppose that T c
+

(X) �= T c
++1(X), so that there

is a point x such that ||x|| = c+, in which case sup
{
||y|| : y ∈ T−1(x)

}
= c+. Since

c+ has cofinality strictly greater than c, no such subset Dx can exist.
For (2): Suppose that Dx and y are as stated and suppose that ||y|| �= ∞, so that

||y|| < c+. Note that T−1(x) �= {y}, since otherwiseDx−{y} = ∅ vacuously satisfies
(1c). Let Z be the set of all z ∈ T−1(x) for which ||z|| > ||z′|| for all z′ ∈ Dx−{y}.
Z is non-empty, since otherwise Dx − {y} would satisfy (1c), and

(
Dx − {y}

)
∪ Z

satisfies (1c) (ii). Clearly, for each z ∈ Z, ||z|| ≤ ||y||. Since ||y|| < c+, ||y|| has
cofinality at most c. But then there is a subset Z ′ of Z of cardinality at most c with
the property that for all z ∈ Z there is some z′ ∈ Z ′ such that ||z|| ≤ ||z′|| ≤ ||y||.
Setting D′

x = (Dx ∪ Z ′)− {y}, we are done.

(3) and (4) follow from (1) of Lemma 3.2, since if T c
+

(X) = T c
++1(X) �= ∅,

||x|| = ∞ for every x ∈ T c
+

(X). �

4. Putting a topology on

⋃
k∈N

T−k(p)

Let C denote a Cantor set in [0, 1], and for this section let us say that (τ,≺) is
an augmented graph provided:

(1) τ has a unique top element tτ ;
(2) mτ = max{m : there is a branch in τ of length m} < ∞;
(3) there are nτ ∈ N and n(t) ∈ N, for each t ∈ τ , such that:

(a) 0 < n(t) ≤ nτ ;
(b) if s ≺ t, then n(t) ≤ n(s);
(c) for each s ≺ t, there are surjective projections πst : Cn(s) → Cn(t)

satisfying πrt = πst ◦ πrs, whenever r ≺ s ≺ t.

For any F ⊆ τ , let ↓ F = {s ∈ τ : s � t for some t ∈ F}.
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Let Zτ =
⋃

t∈τ C
n(t)×{t}. For each s ∈ τ , let Bs =

⋃
t�s C

n(t)×{t}. For r ∈ Cn

and j ∈ N, let Bj(r) denote the 1/2j-ball about r. For any (r, t) ∈ C
n(t) × {t},

j ∈ N and finite F ⊆ {s ∈ τ : s ≺ t}, let

B(r, t, j, F ) =

((
Bj(r)× {t}

)
∪
⋃
s≺t

π−1
st

(
Bj(r)

)
× {s}

)
\
( ⋃

s∈F

Bs

)
.

Let Tτ be the topology on Zτ that is generated by the collection of all such sets
B(r, t, j, F ).

Lemma 4.1. (Zτ , Tτ ) is a compact, zero-dimensional space. Moreover, if Y is a
subset of Zτ with the property that for every (r, s) ∈ Y and s ≺ t, πst(r, s) ∈ Y ,
then Y is Lindelöf.

Proof. Zero-dimensionality follows from the fact that each Bj(r) is a clopen set.
For each t ∈ τ , let ρ(t) denote the length of the longest branch below t, so

that ρ(t) ≤ ρ(tτ ) = mτ . To see that Zτ is compact, note first that each subspace
Cn(t) × {t} is homeomorphic to the usual Euclidean space Cn(t). In particular, for
any open cover of Zτ by basic open subsets, there is a finite subcover of Cn(tτ )×{tτ},
{B(ri, tτ , j, Fi) : i ≤ m}. This cover must cover all of Zτ except for, possibly, the
sets Bs, s ∈ Fi for some i ≤ m. Since each Cn(s)×{s} is compact and ρ(s) < ρ(tτ ),
we may repeat this argument a finite number of times to obtain a finite subcover
of Zτ .

Suppose then that Y is a subspace of Zτ with the property that whenever (r, s) ∈
Y and s ≺ t, then (πst(r), t) ∈ Y . Note that each subset Cn(t) × {t} of Zτ is
hereditarily Lindelöf. Let U be a cover of Y and let Yt = Y ∩

(
Cn(t) ×{t}

)
for each

t ∈ τ .
Since Ytτ is Lindelöf, it has a countable cover {Utτ ,i : i ∈ N} ⊆ U . Since

(πstτ (r), tτ ) is in Ytτ whenever (r, s) ∈ Y , {Utτ ,i : i ∈ N} covers all but countably
many of the sets Yt. Let T0 = {tτ} and define T1 by letting t ∈ T1 if and only if Yt

is not covered by {Ui : i ∈ N}. By the definition of the topology on Zτ , if t ∈ T1,
then t ≺ tτ .

As for Ytτ , for each t ∈ T1, there is a countable cover {Ut,i : i ∈ N} ⊆ U of Yt.
Since (πst(r), t) ∈ Y , whenever (r, s) ∈ Y and s ≺ t, {Ut,i : i ∈ N} covers all but
countably many Ys for which s ≺ t. Define T2 by letting s ∈ T2 if and only if Ys

is not covered by the countable collection of open sets {Ut,i, i ∈ N, t ∈ T0 ∪ T1}, so
that T2 is a countable set.

Repeating this argument, we obtain a series of countable sets Tj and countable
collections {Ut,i : i ∈ N} ⊆ U , for each t ∈ Tj such that {Ut,i : i ∈ N, t ∈ T0∪· · ·∪Tj}
covers all of Y except for, possibly,

⋃
s∈Tj+1

Ys. By construction, if s ∈ Tj+1, then

s ≺ t for some t ∈ Tj . Since the maximum length of each path through τ is mτ ,
Tmτ

is empty and, therefore,
{
Ut,i : i ∈ N, t ∈

⋃
j≤mτ

Tj

}
is a countable subcover

of U . �

Now suppose that p ∈ X is a non-spine point p such that T (p) is on a spine. We
will identify T−k(p) with a Lindelöf subset of Zτ , for some augmented graph τ , so
that the action of T from T−k(p) to T−k+1(p) is continuous. This, then, provides
a topology on

⋃
0≤n T

−n(p) for each such non-spine point p. In Section 5, we use
these topologies to put a Lindelöf topology on the whole of X.
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Lemma 4.2. Let T : X → X and let O be an orbit of T with spine S. Let s ∈ S
and let p ∈ T−1(s)− S. Suppose that for every x ∈

⋃
0≤k T

−k(p) there is a subset

Dx ⊆ T−1(x) such that

(1) |Dx| ≤ c and
(2) for each z ∈ T−1(x), there is some yxz ∈ Dx such that ||z|| ≤ ||yxz||.

Then for each k ≥ 0 there is a (zero-dimensional) Tychonoff Lindelöf topology
Tk on T−k(p) with respect to which the action of T from T−k−1(p) to T−k(p) is
continuous.

Proof. For each k ≥ 0, we will embed T−k(p) as a subset of Zτk for some augmented
graph (τk,≺k). To simplify the notation, once it has been embedded, we will
often refer to T−k(p) as a subset of Zτk , referring to points of T−k(p) as points
of Zτk . We will further ensure that for any x = (r, s) ∈ T−k(p) and s ≺k t,
(πst(r), t) ∈ T−k(p) (so that Lemma 4.1 is satisfied) and ||(r, s)|| ≤ ||(πst(r), t)|| (so
that the construction can continue).

For any finite sequences r = (r1, . . . , rn) and s = (s1, . . . , sm), let r �s be the
concatenation (r1, . . . , rn, s1, . . . , sm)). If s = (s1), we may write r �s1 instead of
r �(s1).

Let κ = |X|. Let {p} = Z0, where 0 here denotes the one-point graph which is
trivially augmented. Now consider T−1(p). Let τ1 = {tα : α ∈ κ} be the augmented
graph with order tα ≺1 tβ if and only if α �= 0 = β (so that tτ1 = t0), n(t) = 1 for
all t ∈ τ1, and πst is the identity on C. We identify T−1(p) with a subset of Zτ1

as follows. Let Dp be the set furnished by the statement of the lemma with the
property that for each z ∈ T−1(p), there is some ypz ∈ Dp such that ||z|| ≤ ||ypz||.
For each z ∈ T−1(p)−Dp, fix such a ypz. By Lemma 3.2, there is an order-preserving
map opz from

⋃
0≤k T

−k(z) to
⋃

0≤k T
−k(ypz). Identify each y ∈ Dp uniquely with

a point (ry, t0) ∈ Zτ1 , where ry ∈ C, and identify each z ∈ T−1(p) −Dp uniquely
with (rypz

, tα) for some 0 < α ∈ κ. By Lemma 4.1, T−1(p), regarded as a subspace

of Zτ1 , is Lindelöf, since for each z = (r, tα) ∈ T−1(p), (πtαt0(r), t0) = (r, t0) is in
T−1(p). Notice also that ||z|| ≤ ||(πtα,t0(r), t0)||. Clearly the restriction of the map
T from T−1(p) to {p} is continuous. Moreover mτ1 = 2.

Suppose now that, for k > 1, we have embedded T−k(p) as a subset of Zτk for
some augmented graph τk with mτk = k+1 in such a way that for any s ≺k t ∈ τk
and any point (r, s) ∈ T−k(p), (πst(r), t) ∈ T−k(p), ||(r, s)|| ≤ ||(πst(r), t)|| and the
restriction of T to T−k(p) is a continuous function to T−k+1(p).

We define a new augmented graph τk+1 from τk. Let τk+1 = τk × κ and define
(s, α) ≺k+1 (t, β) if and only if either s ≺k t and β = 0 or s = t, α �= 0 = β.
(Diagrammatically, to obtain τk+1 from τk, relabel each node s ∈ τ as (s, 0) and
then add new nodes (s, α), α ∈ κ, below the node (s, 0).) Then tτk+1

= (tτ , 0) is the
top element of τk+1 and every branch of τk+1 has length at mostmτk+1 = k+2. For
each (s, α) ∈ τk+1, let #(s, α) denote the number of elements of {(t, β) : (s, α) �k

(t, β)} for which β = 0 and define n(s, α) = n(s)+#(s, α). Clearly #(s, α) ≤ mτk+1
,

so that n(tτk+1
) ≤ n(tτk)+mτk+1

and n(t, β) ≤ n(s, α), whenever (s, α) ≺k+1 (t, β).
Notice also that if (s, α) ≺ (t, β) is the immediate ≺k+1-predecessor of (t, β),

then either

(1) s = t and α �= 0 = β, in which case n(s, β) = n(t, α), or
(2) s is the immediate ≺k-predecessor of t and α = β = 0, in which case

#(s, α) = #(t, β) + 1 and n(s, α) = n(t, β) + 1 = n(t) + #(t, β) + 1.
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In Case (1), define π(s,α)(t,β) to be the identity from Cn(s,α) = Cn(t,β) to itself. In

Case (2), define π(s,α)(t,β) : C
n(s,α) → Cn(t,β) by

π(s,α)(t,β)

(
r1, . . . , rn(s), rn(s)+1, . . . , rn(s)+#(s,α)

)
=πst(r1, . . . , rn(s))

�(rn(s)+1, . . . , rn(s)+#(t,β)

)
.

So the image of a point r ∈ Cn(sα) under π(s,α)(t,β) consists of the image of the first
n(s) coordinates under the map πst followed by the first #(s, α)− 1 = #(t, β) co-
ordinates of the remaining #(s, α) coordinates of r. Since there is a finite sequence
of immediate predecessors between any (s, α) ≺k+1 (t, β), we can define π(s,α)(t,β)

by composing a finite number of such maps.

Claim. The map

Π :Zτk+1
→ Zτk(

(r1, . . . , rn(t,α)), (t, α)
)

→

(
(r1, . . . , rn(t)), t

)
is continuous

Proof. Recall that for s ∈ τk, Bs =
⋃

t�ks
C

n(t) × {t} and that for r ∈ C
n and

j ∈ N, Bj(r) is the 1/2j-ball about r. For any (r, t) ∈ Zτk , j ∈ N and finite
F ⊆ {s ∈ τk : s ≺k t},

B(r, t, j, F ) =

((
Bj(r)× {t}

)
∪

⋃
s≺kt

π−1
st

(
Bj(r)

)
× {s}

)
\
( ⋃

s∈F

Bs

)

is a basic open set in Zτk . Note from (1) above that n(s, α) = n(s, 0) for all s ≺k t.
Now Π−1(Bj(r) × {t}) =

⋃
α∈κ Bj(r) × Cn(t,0)−n(t) × {(t, α)}. Moreover, if

s ≺k t, then πst(Bj(r)) = Bj(r) × C
n(s)−n(t) so that Π−1

(
π−1
st

(
Bj(r)

)
× {s}

)
=⋃

α∈κ Bj(r) × Cn(s,0)−n(t) × {(s, α)}. By the definition of ≺k+1, though, {(t, α) :
α ∈ κ} ∪ {(s, α) : α ∈ κ, s ≺k t} = {(t, 0)} ∪ {(s, β) : (s, β) ≺k+1 (t, 0)}. It follows
that

Π−1

((
Bj(r)× {t}

)
∪

⋃
s≺kt

π−1
st

(
Bj(r)

)
× {s}

)

=
(
Bj(r)× C

n(t,0)−n(t) × {(t, 0)}
)

∪
⋃

(s,α)≺k+1(t,0)

π−1
(s,α)(t,0)

(
Bj(r)× C

n(t,0)−n(t)
)
× {(s, α)}.

Also

Π−1(Bs) =
⋃

u�ks

Π−1(Cn(u) × {u})

=
⋃

u�ks

⋃
α∈κ

C
n(u,α) × {(u, α)}

=
⋃

(u,α)�k+1(s,0)

C
n(u,α) × {(u, α)},

which implies that Π−1

(⋃
s∈F Bs

)
=

⋃
(s,0)∈F×{0} B(s,0). It follows that the set

Π−1
(
B(r, t, j, F )

)
is open in Zτk+1

. �
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It remains to embed T−(k+1)(p) into Zτk+1
. Consider first a point x = (r, tτk) ∈

T−k(p). Let Dx be the set furnished by the statement of the lemma with the
property that for each z ∈ T−1(x) there is some yxz ∈ Dx such that ||z|| ≤ ||yxz||.
For each z ∈ T−1(x) − Dx, fix such a yxz. For each y ∈ Dx, pick a unique
ry ∈ C and identify y with the point (r �ry, (tτk , 0)) = (r �ry, ττk+1

). Identify each

z ∈ T−1(x)−Dx uniquely with (r �ryxz
, (tτk , α)) for some α ∈ κ.

Now suppose that xi = (ri, ti) is a sequence of points from T−k(p), for each
0 ≤ i ≤ m, such that

(1) t0 = tτk ,
(2) ti+1 is the immediate ≺k-predecessor of ti,
(3) πti+1ti(ri+1) = ri,

(4) the set T−1(xi) has been embedded into Zτk+1
for each i < m,

(5) for each i < m, the set Dxi
has been identified with a subset of Cn(ti,0) ×

{ti, 0} in Zτk+1
.

We know that ||xm|| ≤ ||xm−1||, which implies that there is an order-preserving
map o from

⋃
j≥0 T

j(xm) to
⋃

j≥0 T
j(xm−1) that, in particular, maps T−1(xm)

to T−1(xm−1). For any y ∈ Dxm
, then, o(y) = (r, (tm−1, α)) ∈ T−1(xm−1). By

construction (as π(tm−1,α)(tm−1,0) is the identity), (π(tm−1,α)(tm−1,0)(r), (tm−1, 0)) =
(r, (tm−1, 0)) ∈ Dxm−1

and ||(r, (tm−1, α))|| ≤ ||(r, (tm−1, 0))||, so that ||y|| ≤
||(r, (tm−1, 0))||. Hence for each y ∈ Dxm

, we can fix some wy = (ry, (tm−1, 0)y) ∈
Dxm−1

such that ||y|| ≤ ||wy||. Since |Dxm
| ≤ c, we can associate a unique

rwy ∈ C to each y and w for which wy = w. Given y ∈ Dxm
and wy =

(ry, (tm−1, 0)y) ∈ Dxm−1
, identify y with the point (ry

�rwy, (tm, 0)). Now for
each z ∈ T−1(xm) − Dxm

, fix some yxmz = (rxmz, (tm, 0)) ∈ Dxm
such that

||z|| ≤ ||yxm
|| and associate z uniquely with (rxmz, (tm, α)) for some α ∈ κ. This

embedding ensures that for any s ≺k+1 t ∈ τk+1 and any point (r, s) ∈ T−k−1(p),
(πst(r), t) ∈ T−k−1(p), ||(r, s)|| ≤ ||(πst(r), t)||. Moreover, by construction, for any
(r, t) ∈ Zτk+1

, T (r, t) = Π(r, t) so that T �T−k−1(p) is continuous as required. �

Exactly the same argument can be used to prove the following lemma dealing
with N-orbits. We recall that T−0(x) = {x} and note that the index α is introduced
here purely for notational consistency in Section 5.

Lemma 4.3. Let T : X → X and let Nα be an N-orbit of T with spine {xα,n : 0≤n}
chosen so that T−1(xα,0) = ∅. Let Sα,0,0 = {xα,0} and Sα,0,k = ∅ for all 0 < k,
and let

Sα,n,k =

{
{xα,n} k = 0,

T−k(xα,n)� T−(k−1)(xα,n−1) 0 < k,

for all 0 < n. Suppose that, for every x ∈ Nα, there is a subset Dx ⊆ T−1(x) such
that

(1) |Dx| ≤ c and
(2) for each z ∈ T−1(x), there is some yxz ∈ Dx such that ||z|| ≤ ||yxz||.

Then for each n and k in N, there is a (zero-dimensional) Tychonoff Lindelöf
topology Tα,n,k on Sα,n,k with respect to which the action of T from Sα,n,k+1 to
Sα,n,k is continuous.

Proof. Note that Nα =
⋃

n,k∈N
Sα,n,k. Since Nα is an N-orbit, by Lemma 3.3,

||x|| < c+ for every x ∈ Nα and, moreover, for each 0 < n, we can choose Dxα,n
so
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that it does not contain xα,n−1. We can, therefore, apply the proof of Lemma 4.2
to the restriction of T to

(⋃
0<k T

−k(xα,n)
)
�
(⋃

0<k T
−k(xα,n−1)

)
=

⋃
0<k Sα,n,k

with p = xα,n. �

5. Combining orbits

In this section we complete the proof of (1) of Theorem 1.6. Given the con-
structions of Section 4, we show that there is a Lindelöf topology on X provided

T c
+

(X) = T c
++1(X) �= ∅. In this situation, (3) of Lemma 3.3 ensures that there

are Z-orbits or n-cycles. We prove the second statement of Theorem 1.6 that there
is a zero-dimensional, Lindelöf topology on X if Tα(X) = ∅ for some α ∈ c+,
which implies that X consists solely of N-orbits, using a modification of the proof
of Lemma 4.2.

Proof of Theorem 1.6 (1). By Lemma 3.3 (3), we know that X has some combi-
nation of Z-orbits and n-cycles. Since a free union of countably many Lindelöf
spaces is again Lindelöf, we may assume, without loss of generality, that either (a)
X consists exclusively of Z-orbits and N-orbits or (b) X consists of m-cycles, for
some fixed m ∈ N, and N-orbits. In fact it is sufficient to consider the following
four cases:

(ai) X consists entirely of Z-orbits,
(aii) X has one Z-orbit and all other orbits are N-orbits,
(bi) X consists entirely of m-cycles for some fixed m ∈ N,
(bii) X has one m-cycle and all other orbits are N-orbits.

Case (a): Let us assume that we have chosen appropriate spines for each orbit.
Index the Z-orbits of T as {Zα : α ∈ ζ} and denote the spine points of Zα by
{zα,n : n ∈ Z, α ∈ ζ} so that T (zα,n+1) = zα,n. Index the N-orbits of T by
{Nα : α ∈ ν} and denote the spine points of Nα by {xα,n : n ∈ N, α ∈ ν} so that
T (xα,n+1) = xα,n and T−1(x0) = ∅.

By Lemmas 3.3 and 4.2, for each non-spine point p ∈ T−1(zα,n) and for each
k ≥ 0 there is a (zero-dimensional) Lindelöf topology Tp,k on T−k(p) with respect
to which the action of T from T−k−1(p) to T−k(p) is continuous. Recall that
we let T−0(x) = {x} and Tx,0 =

{
∅, {x}

}
. Define Sα,l,k = {xα,l} if k = 0, and

Sα,l,k = T−k(xα,l)�T−(k−1)(xα,l−1) if 0 < k. Since every x ∈ X with ||x|| < ∞ has
rank ||x|| < c+, Lemmas 3.3 and 4.3 imply that, for each α ∈ ν and each k and l in N,
there is a zero-dimensional, Lindelöf topology Tα,l,k on Sα,l,k with respect to which
the action of T from Sα,l,k+1 to Sα,l,k is continuous. Again T−0(xα,l) = {xα,l} and
Tα,l,0 =

{
∅, {xα,l}

}
.

Case (ai): X consists entirely of Z-orbits. For each α ∈ λ and n ∈ Z, index the
non-spine points of T−1(zα,n+1)− {zα,n} by {pα,n,β : β ∈ µα,n+1}. Notice that for

any n ∈ Z, any k > 0 and any q ∈ T−(k−1)(pα,n+k,β), we have T (pα,n,β) = zα,n+1

and zα,n+k = T k(zα,n) = T k(q). For each α ∈ ζ and n ∈ Z, let

Lα,n =
⋃
0≤k

T−k
(
T k(zα,n)

)
= {zα,n} ∪

⋃{
T−(k−1)(pα,n+k,β) : 0 < k β ∈ µα,n+k

}
.

Notice that Zα =
⋃

n∈Z
Lα,n and that, for all n ∈ Z, T−1(Lα,n) = Lα,n−1 and

T (Lα,n) ⊂ Lα,n+1 (and Lα,n+1 − T (Lα,n) is exactly the set of points p ∈ Lα,n+1

for which T−1(p) = ∅). Moreover, if Ln =
⋃

α∈ζ Lα,n, then X =
⋃

n∈Z Ln.
Topologize X as follows:
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(1) for each α ∈ ζ, n ∈ Z, β ∈ µα,n and k ≥ 0, let T−k(pα,n,β) be a clopen set
with relative topology Tpα,n,β ,k so that each point p ∈ T−1(zn)− {zn−1} is
isolated;

(2) for each α > 0 and n ∈ Z, let basic open neighbourhoods about the point
zα,n take the form

Lα,n −
⋃

{T−(k−1)(pα,n+k,β) : (k, β) ∈ F},

for some finite set F ;
(3) for each n ∈ Z, let basic neighbourhoods of z0,n take the form(
L0,n −

⋃{
T−(k−1)(p0,n+k,β) : (k, β) ∈ F

})
∪
⋃

{Lα,n : 0 < α ∈ ζ, α /∈ G},

for finite sets F and G.

Clearly every point ofX has a clopen neighbourhood in this topology so thatX is
zero-dimensional and Tychonoff. To see thatX is Lindelöf, it is enough to note that,
for each n ∈ Z, Ln is Lindelöf. But if U is any open cover of Ln and z0,n ∈ U ∈ U ,
then Ln � U is a subset of

⋃
α∈G Lα,n ∪

⋃
{T−(k−1)(p0,n+k,β) : (k, β) ∈ F

}
for

some finite F and G. If zα,n ∈ Uα ∈ U for any α ∈ G, then Lα,n � Uα is a subset

of
⋃
{T−(k−1)(pα,n+k,β) : (k, β) ∈ Fα}. Hence Ln − (U ∪

⋃
α∈G Uα) is covered by

finitely many sets of the form T j(p), all of which are clopen and Lindelöf.
Continuity of T follows directly, since the inverse image of a basic open set under

T is again a basic open set.
Case (aii): X consists of exactly one Z-orbit and N-orbits. Let the Z-orbit be Z0,

and as in case (ai) let {p0,n,β : β ∈ µα,n} denote the points of T−1(z0,n+1)−{zo,n}
and let L0,n =

⋃
0≤k T

−k
(
T k(z0,n)

)
. Let X have the topology generated by the

following sets:

(1) for each α ∈ ν, k and l in N, let Sα,l,k be a clopen set with relative topology
Tα,l,k;

(2) for each n ∈ Z, let basic open neighbourhoods of z0,n take the form(
L0,n−

⋃{
T−(k−1)(p0,n+k,β) : (k, β) ∈ F

})

∪
⋃

{Sα,l,k : α ∈ ν, k, l ∈ N, l − k = n, (α, l, k) /∈ G},

for finite sets F and G.

Again it is clear that this topology on X is zero-dimensional and Tychonoff.
For each n ∈ Z, let Ln = Ln,0 ∪

⋃
{Sα,l,k : α ∈ ν, k, l ∈ N, l − k = n} so that

X =
⋃

n∈Z
Ln. Each Ln is Lindelöf, since each Sα,l,k is Lindelöf. Hence X is

Lindelöf. Continuity again follows from the definition of the topology.
In Case (bi), X consists solely of m-cycles for some m ∈ N; in Case (bii), X

consists of a single m-cycle and N-orbits. In both cases the proof is identical to
that of Cases (ai) and (aii) except that the indexing number n ∈ Z is taken modulo
m, so that, for example, zα,n = zα,n+m. �

Proof of Theorem 1.6 (2). By Lemma 3.3 (4), X consists entirely of N-orbits. Let
{Nα : α ∈ ν} list the N-orbits and let {xα,n : 0 ≤ n} index the spine of Nα so that
T (xn) = xn+1 and T−1(x0) = ∅. Since ||x|| < c+, for all x ∈ X, 3.3 (1) implies
that for each x ∈ X there is a subset Dx ⊆ T−1(x) such that |Dx| ≤ c and, for
each z ∈ T−1(x), there is some yz ∈ Dx such that ||z|| ≤ ||yz||. Moreover, by
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Lemma 3.3 (2), we may assume that for all α ∈ ν and all n ∈ N, xα,n /∈ Dxα,n+1
.

Now, since the cardinality of the set
{
||xα,n|| : α ∈ ν, n ∈ N

}
is at most c, there is

a subset D ⊆ ν such that

(1) |D| ≤ c and
(2) for all α ∈ ν, there is some η ∈ D such that ||xα,n|| ≤ ||xη,n|| for all n ∈ N.

As before, let Sα,0,0 = {x0} and Sα,0,k = ∅ for all 0 < k, and let

Sα,n,k =

{
{xα,n} k = 0,

T−k(xα,n)� T−(k−1)(xα,n−1) 0 < k,

for all 0 < n.
Let X∗ = X∪{pn,i : i = 0, 1, n ∈ N}, where pn,i /∈ X for any n ∈ N and i = 0, 1.

We shall define a map T ∗ : X∗ → X∗ and a topology on X∗ with respect to which
T ∗ is continuous from which we define a Lindelöf topology on X with respect to
which T is continuous. For all n ∈ N and α ∈ ν define

T ∗(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
pn,0 if x = pn,0,

pn,0 if x = pn,1,

pn,1 if x = xα,n,

T (x) if x ∈
⋃

0<k Sα,n,k.

Note that T ∗ is a function with countably many 1-cycles, namely
⋃

0≤n T
∗−1(pn,0),

for each n ∈ N, each with spine point pn,0 such that T ∗−1(pn,0) = {pn,0, pn,1} and
T ∗−1(pn,1) = {xα,n : α ∈ ν}. For each non-spine point x of each 1-cycle let

D∗
x =

{
Dx if pn,1 �= x ∈ X,

{xη,n : η ∈ D} if x = pn,1.

It follows that the action of T ∗ on
⋃

k∈N
T ∗−k(pn,1) satisfies the conditions of

Lemma 4.2, so that for each n and k in N there is a zero-dimensional Lindelöf
topology Tn,k on T ∗−k(pn,1) with respect to which the action of T ∗ is continuous.

Now that X =
⋃

n∈N

⋃
0<k T

∗−k(pn,1) and since T ∗−k(pn,1) is zero-dimensional
and Lindelöf, there is a zero-dimensional, Lindelöf T on X defined by declaring each
T ∗−k(pn,1) to be clopen with relative topology Tn,k. It remains to ensure that the
action of T with respect to this topology is continuous. So let U be an open subset
of some clopen set T ∗−k(pn,1). If 1 < k, then T ∗−1(U) = T−1(U), so that T−1(U)
is open. If k = 1, then T−1(U) = T ∗−1(U) ∪ {xα,n−1 : xα,n ∈ U}, which is open
provided {xα,n−1 : xα,n ∈ U} is open in T ∗−1(pn−1,1). But this is easily arranged.
Associate T ∗−1(p0,1) with a subset of Zτ1 as in the proof of Lemma 4.2 so that xα,0

is identified with the point (rα, tα) ∈ Zτ1 . By the choice of the set D, for all α ∈ ν
there is η ∈ D such that ||xα,n|| ≤ ||xη,n||, for all n ∈ N. Since T (xα,n) = xα,n+1 for
all α ∈ ν and n ∈ N, D∗

pn+1,1
= T (Dpn,1

). Therefore, we can embed each T ∗−1(pn,1)

as a subspace of the space Zτ1 simply by identifying xα,n with the point (rα, tα).
The construction of Lemma 4.2 is unaffected and we are done, as, for each n ∈ N,
T is a homeomorphism from {xα,n : α ∈ ν} to {xα,n+1 : α ∈ ν}. �

Proof of Corollary 1.7. For (1), if T is a surjection, then (1) of Theorem 1.6 obvi-
ously holds. For (2) and (3), if T is an injection, then certainly it is < c-to-1, and
if it is < c-to-one, then, for each x ∈ X, either ||x|| = ∞ or ||x|| < c, so that either
(1) or (2) of Theorem 1.6 holds. For (4), if T is ≤ c-to-one, then, for each x ∈ X,
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either ||x|| = ∞ or ||x|| < c+, which implies that T c
+

(X) = T c
++1(X). Since T

has at least one orbit that is not an N-orbit, T c
+

(X) �= ∅, and we can apply (1) of
Theorem 1.6. �
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