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Abstract

Despite provable unknowables in recursion theory, indeterminism and randomness in

physics is confined to conventions, subjective beliefs and preliminary evidence. The his-

tory of the issue is very briefly reviewed, and answers to five questions raised by Zenil are

presented.
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∗ Hector Zenil posed the following five questions: “Why were you initially drawn to the study of
computation and randomness?”, “What have we learned?”, “What don’t we know (yet)?”, “What are
the most important open problems in the field?”, “What are the prospects for progress?”, at URL
http://www.mathrix.org/experimentalAIT/RandomnessBook.htm, accessed on May 1st, 2009.
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Why should the universe we experience with our senses and brains be “(un)lawful?” Indeed,

the “unreasonable effectiveness of mathematics in the natural sciences” [1] appears mind-boggling

and tantamount to our (non)existence. Beyond belief, there do not seem to exist a priori answers

to such questions which would be forced upon us, say maybe by consistency constraints. But then,

why should consistency and logic be considered sacrosanct?

In view of the opaqueness of the issues, a fierce controversy between supporters and oppo-

nents of a “clockwork universe” versus “cosmic chaos” has developed from antiquity onwards

— cf., e.g., Aristotle’s comments on the Pythagoreans in Physics, as well as Epicurus’ Letter to

Menoeceus. Indeed, for the sake of purported truth, many varieties of conceivable mixtures of

determinism and chance have been claimed and repudiated.

The author has argued elsewhere [2] that there are many emotional reasons (not) to believe in

a(n) (in)deterministic universe: does it not appear frightening to be imprisoned by remorseless,

relentless predetermination; and, equally frightening, to accept one’s fate as being contingent on

total arbitrariness and chance? What merits and what efforts appear worthy at these extreme posi-

tions, which also unmask freedom, self-determination and human dignity as an idealistic illusion?

In order to disentangle the scientific discussion of topics such as (in)determinism, or realism

versus idealism, from emotional overtones and possible bias, it might not be totally unreasonable

to allow oneself the contemplative strategy of evenly-suspended attention outlined by Freud [3]:

Nature is thereby treated as a “client-patient,” and whatever comes up is accepted “as is,” without

any immediate emphasis or judgment1.

In more recent history, the European Enlightenment (illuminating also wide areas across the

oceans) has brought about the belief of total causality and almost unlimited predictability, control,

and manipulative capabilities. Subsequently, the principle of sufficient reason came under pressure

at two independent fronts: Poincare’s discovery of instabilities in classical many-body motion [4]

is now considered as a precursor to deterministic chaos, in which the information “held” in the

initial value “unfolds” through a deterministic process. Note that, with probability one, an arbitrary

real number (representing the initial value) “grabbed” from the “continuum urn” (facilitated by the

1 In Ref. [3], Freud admonishes analysts to be aware of the dangers caused by “. . . temptations to project, what [[the
analyst]] in dull self-perception recognizes as the peculiarities of his own personality, as generally valid theory into
science . . .” (In German: “Er wird leicht in die Versuchung geraten, was er in dumpfer Selbstwahrnehmung von den
Eigentümlichkeiten seiner eigenen Person erkennt, als allgemeingültige Theorie in die Wissenschaft hinauszupro-
jizieren . . . .”)
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axiom of choice) is random in the sense of algorithmic information theory [5–7]; i.e., in terms of

algorithmic incompressibility as well as of the equivalent statistical tests. Indeed, if one encodes

universal computation into a system on n bodies, then by reduction to the halting problem of

recursion theory [8–13], certain observables become provable unknowable [14].

A second attack against determinism erupted through the development of quantum theory. De-

spite fierce resistance of Einstein2, Schrödinger and De Brogli, Born expressed the new quantum

canon, repeated by the “mainstream” ever after [16], as follows (cf. Ref. [17, p. 866], English

translation in [18, p. 54])3:

“From the standpoint of our quantum mechanics, there is no quantity which in any

individual case causally fixes the consequence of the collision; but also experimen-

tally we have so far no reason to believe that there are some inner properties of the

atom which condition a definite outcome for the collision. Ought we to hope later to

discover such properties [[. . .]] and determine them in individual cases? Or ought we

to believe that the agreement of theory and experiment — as to the impossibility of

prescribing conditions for a causal evolution — is a pre-established harmony founded

on the nonexistence of such conditions? I myself am inclined to give up determinism

in the world of atoms.”

More specifically, Born offers a mixture of (in)determinism: while postulating a probabilistic

behavior of individual particles, he accepts a deterministic evolution of the wave function (cf. [19,

p. 804], English translation in [20, p. 302])4:

“The motion of particles conforms to the laws of probability, but the probability itself

2 In a letter to Born, dated December 12th, 1926 [15, p. 113], Einstein expressed his conviction, “In any case I
am convinced that he [[the Old One]] does not throw dice.” (In German: “Jedenfalls bin ich überzeugt, dass der
[[Alte]] nicht würfelt.”)

3 “Vom Standpunkt unserer Quantenmechanik gibt es keine Größe, die im Einzelfalle den Effekts eines Stoßes kausal
festlegt; aber auch in der Erfahrung haben wir keinen Anhaltspunkt dafür, daß es innere Eigenschaften der Atome
gibt, die einen bestimmten Stoßerfolg bedingen. Sollen wir hoffen, später solche Eigenschaften [[. . .]] zu entdecken
und im Einzelfalle zu bestimmen? Oder sollen wir glauben, dass die Übereinstimmung von Theorie und Erfahrung
in der Unfähigkeit, Bedingungen für den kausalen Ablauf anzugeben, eine prästabilisierte Harmonie ist, die auf
der Nichtexistenz solcher Bedingungen beruht? Ich selber neige dazu,die Determiniertheit in der atomaren Welt
aufzugeben.”

4 “Die Bewegung der Partikel folgt Wahrscheinlichkeitsgesetzen, die Wahrscheinlichkeit selbst aber breitet sich im
Einklang mit dem Kausalgesetz aus. [Das heißt, daß die Kenntnis des Zustandes in allen Punkten in einem Augen-
blick die Verteilung des Zustandes zu allen späteren Zeiten festlegt.]”
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is propagated in accordance with the law of causality. [This means that knowledge of

a state in all points in a given time determines the distribution of the state at all later

times.]”

In addition to the indeterminism associated with outcomes of the measurements of single

quanta, there appear to be at least two other types of quantum unknowables. One is complemen-

tarity, as first expressed by Pauli [21, p. 7]. A third type of quantum indeterminism was discov-

ered by studying quantum probabilities, in particular the consequences of Gleason’s theorem [22]:

whereas the classical probabilities can be constructed by the convex sum of all two-valued mea-

sures associated with classical truth tables, the elementary yes–no propositions in quantum me-

chanics associated with projectors in three- or higher-dimensional Hilbert spaces do not allow any

two-valued measures [23, 24]. One of the consequences thereof is the impossibility of a consistent

co-existence of the outcomes of all conceivable quantum observables (under the noncontextuality

assumption [25] that measurement outcomes are identical if they “overlap”).

Parallel to these developments in physics, Gödel [26] put an end to finitistic speculations in

mathematics about possibilities to encode all mathematical truth in a finite system of rules. The

recursion theoretic, formal unknowables exhibit a novel feature: they present provable unknow-

ables in the fixed axiomatic system in which they are derived. (Note that incompleteness and

undecidability exist always relative to the particular formal system or model of universal compu-

tation.) From ancient times onwards, individuals and societies have been confronted with a pan-

demonium of unpredictable behaviors and occurrences in their environments, sometimes resulting

in catastrophes. Often these phenomena were interpreted as “God’s Will.” In more rationalistic

times, one could pretend without presenting a formal proof that certain unpredictable behaviors

are in principle deterministic, although the phenomena cannot be predicted “for various practical

purposes.” Now provable unknowables make a difference by being immune to these kinds of spec-

ulation. The halting problem in particular demonstrates the impossibility to predict the behavior

of deterministic systems in general; it also solves the induction (rule inference) problem to the

negative.

In order to be able to fully appreciate the impact of recursion theoretic undecidability on

physics [27–29], let us sketch an algorithmic proof of the undecidability of the halting problem;

i.e., the decision problem of whether or not a program p (on a finite input) finishes running (or

will reach a particular halting state) or will run forever. The proof method will use a reductio ad

absurdum; i.e., we assume the existence of a halting algorithm h(p) deciding the halting problem
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of p, as well as some trivial manipulations; thereby being able to derive a complete contradiction,

the only consistent alternative being the nonexistence of any such halting algorithm. For the sake

of contradiction, consider an agent q(p) accepting as input an arbitrary program (code) p. Suppose

further that it is able to consult a halting algorithm h(p), thereby producing the opposite behavior

of p: whenever p halts, q “steers itself” into the halting mode; conversely, whenever p does not

halt, q forces itself to halt. A complete contradiction results from q’s behavior on itself, because

whenever q(q) detects (through h(q)) that it halts, it is supposed not to halt; conversely if q(q)

detects that it does not halt, it is supposed to halt. Finally, since all other steps in this “diagonal

argument” with the exception of h are trivial, in order to avoid inconsistencies, no program can

have the capacity to consult a halting algorithm for arbitrary programs.

In physics, analogous arguments embedding a universal computer into a physical substrate

yield provable undecidable observables via reduction to the halting problem [30]. Note that this

argument does not mean that predictions are provable impossible for certain special cases; that

would be clearly misleading and absurd! A more quantitative picture arises if we study the po-

tential growth of “complexity” of deterministic systems in terms of their maximal capability to

“grow” before reaching a halting state through the Busy Beaver function [31–34]. Another conse-

quence is the recursive unsolvability of the general induction (or rule inference [35–39]) problem

for deterministic systems. As an immediate consequence of these findings it follows that no gen-

eral algorithmic rule or operational method [40] exists which could “extract” some rather general

law from a (coded) sequence. (Note again that it still may be possible to extract laws from “low-

complex” sequences; possibly with some intuition and additional information.) Nor can there

be certainty that some sequence denominated “random” is not generated by a compression algo-

rithm which makes it formally nonrandom [6]; a fact well known in recursion theory but hardly

absorbed by the physics community. Thereby, to quote Shakespeare’s Prospero, any claims of

absolute (“ontological”) randomness decay into “thin air.” Of course, one could still vastly restrict

the domain of possible laws and define a source to be random if it “performs well” with respect to

the associated, very limited collection of statistical tests, a strategy adapted by the Swiss Federal

Office of Metrology5.

Despite the formal findings reviewed above, which suggest that claims of absolute indetermi-

5 Cf. the Certificate of Conformity No 151-04255, available from URL
http://www.idquantique.com/products/files/CC 151-04255.pdf, accessed on May 4th,
2009.
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nacy cannot be proven but represent subjective beliefs, their predominance in the physics commu-

nity can be understood, or rather motivated, by the obvious inability to predict physical events,

such as the outcomes of certain quantum measurements, deterministically. Why this effective in-

capacity to predict individual outcomes or time series of measurement data should be different

from other “classical” statistical sources of randomness — even when complementarity and value

indefiniteness is taken into account — remains an open question, at least from a formal point of

view.

For the sake of explicit demonstration, let us consider a particular method of generation of a

sequence from single quantum outcomes [41] by combination of source and beam splitter [42–

50]. Ideally (to employ quantum complementarity as well as quantum value indefiniteness), a

system allowing three or more outcomes is prepared to be in a particular pure state “contained”

in a certain context (maximal observable [51] or block [52, 53]), and then measured “along” a

different context not containing the observable corresponding to that pure state. All outcomes

except two are discarded [6, 54], and the two remaining outcomes are mapped onto the symbols

“0” and “1,” respectively. The concatenation and normalization [55–59] of subsequent recordings

of these encoded outcomes yield an “absolutely random sequence” relative to the unprovable ax-

iomatic assumption of quantum randomness. Since all such operational physical sequences are

finite, algorithmic information theory [6] applies to them in a limited, finite sense. Particular care

should be given to the difficulties in associating an algorithmic information measure to “nontrivial”

sequences of finite length.

In the author’s conviction, the postulate of quantum randomness as well as physical random-

ness emerging from the continuum will be maintained by the community of physicists at large

unless somebody comes up with evidence to the contrary. This opportunistic interpretation of

the phenomena appears reasonable if and only if researchers are aware of the tentativeness and

conventionality of their assumptions.
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