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Abstract

It has been shown (see [10]), that there are strongly MARTIN-LÖF-
ε-random ω-words that behave in terms of complexity like random ω-
words. That is, in particular, the a priori complexity of these ε-random
ω-words is bounded from below and above by linear functions with
the same slope ε. In this paper we will study the set of these ω-words
in terms of HAUSDORFF measure and dimension.

Additionally we find upper bounds on a priori complexity, mono-
tone and simple complexity for a certain class of ω-power languages.
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1 Introduction

The present paper is a continuation of [10] where it has been shown that
oscillation-free ε-random sequences exist, for every computable ε, 0 < ε <
1. To this end two methods were developed. The first one, by diluting ran-
dom sequences, led to a method for a general “construction” of ε-random
sequences from random sequences whereas the second one exhibited ε-
random sequences as maximally complex sequences in certain computably
definable sets of sequences (ω-languages).

Here we address mainly two questions. The first one is about the Haus-
dorff dimension and the Hausdorff measure of the set of oscillation-free
ε-random sequences. As every random sequence is also ε-random the set
of ε-random sequences has Hausdorff dimension 1. We prove a result anal-
ogous to Ryabko’s estimate of the dimension of the set of sequences of a
certain asymptotic relative complexity (cf. [6, 9]). We show that the set of
oscillation-free ε-random sequences has Hausdorff dimension ε and infinite
ε-dimensional Hausdorff measure.

The second problem we address is the one of obtaining oscillation-free
ε-random sequences in so-called ω-power languages. Here we generalise
the results for ω-powers of regular languages obtained in [10] to more
general classes of ω-powers of computably enumerable languages.

2 Notation and Preliminary Results

In this section we briefly recall the concepts of HAUSDORFF measure and
complexity of finite and infinite words used in this paper. For more detailed
information the reader is referred to the textbooks [2] and [4]. In the
following X is a finite alphabet with cardinality |X| = r. By X∗ we denote
the set (monoid) of words on X, including the empty word e, and Xω is
the set of infinite words (ω-words) over X. For w ∈ X∗ and η ∈ X∗ ∪
Xω let w · η be their concatenation. We extend this concatenation in the
obvious way to subsets W ⊆ X∗ and B ⊆ X∗ ∪ Xω. For a language W let
W∗ :=

⋃
n∈IN Wn be the submonoid of X∗ generated by W, and by Wω :=

{w1 · · ·wn · · · | wn ∈ W \ {e}} we denote the subset of Xω formed by
concatenating words of W. We call V/w := {v | w · v ∈ V} the left
derivative of V by w. Furthermore |w| is the length of the word w ∈ X∗

and l(V) := min{|v| | v ∈ V} denotes the length of the shortest word
contained in V. For a set B ⊆ X∗ ∪ Xω the set of all finite prefixes of
strings in B is pref(B), we abbreviate w ∈ pref({η}) by w v η. By ξ[0..n]
we denote the prefix of ξ ∈ X∗ ∪ Xω of length n.
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A real number α is right-computable (left-computable) if and only if
there is a computable sequence αi, i ∈ IN, of rational numbers with αi ≥
αi+1 (αi ≤ αi+1) for all i ∈ IN and limi→∞ αi = α. A number α is called
computable if and only if α is left- and right-computable. A function f :
X∗ → IR is called right-computable (left-computable) if and only if there is
a computable function h : X∗ × IN → IR such that limt→∞ h(w, t) = f (w),
for every w ∈ X∗, and h is decreasing (increasing) with respect to t.

A language V ⊆ X∗ is called a code provided every w ∈ V∗ has a unique
factorisation w = v1 . . . vn with vi ∈ V (1 ≤ i ≤ n). If e /∈ V and for all
v, w ∈ V the relation v v w implies v = w then V is called prefix code.

It is useful to consider the set Xω as a metric space (Cantor space)
(Xω, $) of all ω-words over the alphabet X where the metric is $ is defined
as follows

$(ξ, η) := inf{r−|w| | w v ξ ∧ w v η}
The open (and simultaneously closed) balls in (Xω, $) are the sets of the
form w · Xω, where w ∈ X∗. The diameter of these balls is d(w · Xω) =
r−|w|. The closure of a set F ⊆ Xω in (Xω, $) is the set C(F) := {ξ |
pref(ξ) ⊆ pref(F)}.

We define HAUSDORFF measure and HAUSDORFF dimension for subsets
of (Xω, $). For every language F ⊆ Xω and every 0 ≤ ε ≤ 1 the equation

Lε(F) := lim
n→∞

inf

{
∑

v∈V
r−ε·|v| | F ⊆ V · Xω ∧ l(V) ≥ n

}
defines the ε-dimensional HAUSDORFF measure of F. The measure L1 is
the usual LEBESGUE measure. The following property of the HAUSDORFF

measure is well-known.

Corollary 2.1 Let F ⊆ Xω. If Lε(F) < ∞ then for every δ > 0 it holds
Lε+δ(F) = 0 and if 0 < Lε(F) then for every δ > 0 it holds Lε−δ(F) = ∞.

The HAUSDORFF dimension of F is defined as follows

dim F = sup{ε | Lε(F) = ∞ ∨ ε = 0} = inf{ε | Lε(F) = 0}

Next we introduce the complexities used in this paper. Consider a semi-
measure m on X∗, that is, a function m : X∗ → IR which satisfies m(ε) ≤
1 and m(w) ≥ ∑x∈X m(wx), for w ∈ X∗. If m(w) = ∑x∈X m(wx) the
function m is called a measure. In [13] Levin proved the existence of a
universal left-computable semi-measure M, that is, a left-computable semi-
measure which satisfies

∃cm ∀w ∈ X∗ m(w) ≤ cm ·M(w), (1)
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for all left-computable semi-measures m. Then the a priori complexity is
defined as KA(w) = b− logr M(w)c (cf. [4, 11]).

For the definition of the monotone complexity Km we refer the reader to
[4, 12]. Here we need only the following property.

Corollary 2.2 ([4]) Let µ be a computable measure on X∗. Then there is a
constant cµ such that

Km(w) ≤ − log µ(w) + cµ

holds for all w ∈ X∗.

Plain (cf. [4]) or simple (cf. [11]) program size complexity defines the
complexity of a finite string to be the length of a shortest program which
prints the string. Let ϕ : X∗ → X∗ be a partial computable function. The
complexity of a word w ∈ X∗ with respect to ϕ is defined as

Kϕ(w) := inf{|π| | π ∈ X∗ ∧ ϕ(π) = w} . (2)

It is well-known that there is an optimal partial computable function U, that
is, a function satisfying

∃cϕ∀w(w ∈ X∗ → KU(w) ≤ Kϕ(w) + cϕ) (3)

for every partial computable function ϕ. In the sequel we fix an optimal
function U and denote the complexity with respect to this function by KS.

The complexity of an infinite word ξ is a function mapping natural num-
bers n to the complexity of the n-length prefix of ξ.

Definition 2.3 Let ξ ∈ Xω.

1. The function KS(ξ[·]) : IN→ IN is called plain or simple complexity of
ξ.

2. The function Km(ξ[·]) : IN→ IN is called monotone complexity of ξ.

3. The function KA(ξ[·]) : IN→ IN is called a priori complexity of ξ.

We follow here, except for the monotone complexity, the notation of Us-
pensky and Shen in [11]. In [1] strongly MARTIN-LÖF-ε-random ω-words
were introduced as follows.
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Definition 2.4 A computably enumerable set V ⊆ X∗× IN is referred to as
a strong MARTIN-LÖF-ε-test provided

1. ∀i(Vi+1 · Xω ⊆ Vi · Xω), where Vi := {v | (v, i) ∈ V} and

2. ∀i ∀C(C ⊆ Vi ∧ C is prefix code → ∑v∈C r−ε·|v| < r−i) .

An ω-word ξ ∈ Xω is called strongly MARTIN-LÖF-ε-random if and only if
ξ /∈ ⋂i∈IN Vi · Xω for all strong MARTIN-LÖF-ε-tests.

We mention the following equivalence between strong MARTIN-LÖF-ε-tests
and a priori complexity.

Lemma 2.5 ([1]) Let 0 < ε ≤ 1 be a computable number. Then an ω-word
ξ ∈ Xω is strongly MARTIN-LÖF-ε-random if and only if

KA(ξ[0..n]) ≥a.e. ε · n−O(1).

Ryabko showed in [6] the following result on the set of ω-words having a
bounded asymptotic lower complexity (see also [7]).

Theorem 2.6 ([6])

dim
{

ξ | ξ ∈ Xω ∧ lim infn→∞
KA(ξ[0..n])

n ≤ ε
}

= ε

Depending on the ε-dimensional measure of an ω-language we obtain a
lower bound on the complexity of the most complex ω-words in that ω-
language.

Theorem 2.7 ([5]) Let F ⊆ Xω and Lε(F) > 0. Then for all c > − log Lε(F)
there is a ξc ∈ F such that KA(ξc[0..n]) ≥a.e. ε · n− c.

ω-words which, analogously to random ω-words, satisfy also a linear upper
bound for a priori complexity are referred to as oscillation-free.

Definition 2.8 ([10]) An ω-word ξ is called oscillation-free strongly MARTIN-
LÖF-ε-random if and only if ξ is strongly MARTIN-LÖF-ε-random and there
is a constant c such that KA(ξ[0..n]) ≤ ε · n + c holds.
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3 The Measure of the Set of ε-random Sequences

We start with mappings that preserve some properties of the measure of a
language and the behaviour of the complexity-function of an ω-word.

Definition 3.1 A computable function ϕ : X∗ → X∗ is called dilution func-
tion provided ϕ is prefix-monotone, one-to-one and |ϕ(w)| = |ϕ(w′)| for
all w, w′ ∈ Xn. A function g : IN → IN is called modulus-function for ϕ

provided |ϕ(w)| = g(|w|) for every w ∈ X∗.

Every dilution function ϕ defines a mapping ϕ : Xω → Xω in the following
way: pref(ϕ(ξ)) = pref(ϕ(pref(ξ))). The following is an example of a
dilution function.

Example 3.2 Dilution functions can be defined inductively by inserting a
fixed string in front of every letter. Let X = {0, 1}. Then ϕ(e) := e and
ϕ(wx) := ϕ(w)0x for every w ∈ X∗ and x ∈ X defines a dilution function
with 1

2 -modulus.

In this paper we are interested in the following dilution functions.

Definition 3.3 Let ε with 0 < ε < 1 be a computable real. A computable
function g is called ε-modulus if and only if there is a constant c such that
|ε · g(n)− n| ≤ c, for all n ∈ IN.

The mapping g(n) := dn
ε e is an example for an ε-modulus. If ϕ is a dilution

function with ε-modulus then for every w ∈ X∗ holds

−c ≤ ε · |ϕ(w)| − |w| ≤ c .

We obtain our first result on the relation of the measure of a language and
its image.

Lemma 3.4 Let F ⊆ Xω, 0 < ε < 1 computable and ϕ : X∗ → X∗ a dilution
function with ε-modulus g : IN → IN. There are constants c1, c2 > 0, such
that

c1 ·L(F) ≤ Lε(ϕ(F)) ≤ c2 ·L(F) .

Proof. The first inequality is shown as follows. Let W ⊆ X∗ cover ϕ(F),
that is, ϕ(F) ⊆W · Xω and let l(W) ≥ n. For every w ∈W we define vw as
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the unique word with ϕ(vw) v w @ ϕ(vwx), for some x ∈ X. Since ϕ has
an ε-modulus, we have the following:

|vw| − c ≤ ε · |w| ≤ |vwx|+ c = |vw|+ 1 + c

Then the set V = {vw | w ∈ W} covers F. Now we obtain a bound of the
ε-dimensional measure of ϕ(F) by the 1-dimensional measure of F:

∑
w∈W

r−ε·|w| ≥ ∑
w∈W

r−|vw|−1−c ≥ r−1−c ∑
v∈V

r−|v|

≥ r−1−c · inf

{
∑

v∈V
r−|v| | F ⊆ V · Xω ∧ l(V) ≥ ε · n− c− 1

}
Taking the limit n → ∞ we get our intended inequality Lε(ϕ(F)) ≥ c1 ·
L(F).

To prove the second inequality we consider a set V with minimum
length l(V) ≥ n that covers F. Now the set W = {ϕ(v) | v ∈ V} cov-
ers ϕ(F) and we can estimate

∑
v∈V

r−|v| ≥ r−c · ∑
w∈W

r−ε·|w|

≥ r−c · inf

{
∑

w∈W
r−ε·|w| | ϕ(F) ⊆W · Xω ∧ l(W) ≥ g(n)− c

}
Again, the limit n→ ∞ yields the announced inequality. o

Since the constants c1 and c2 in Lemma 3.4 are positive, the following
equivalence of the 1-dimensional measure of F and the ε-dimensional mea-
sure of ϕ(F) holds true.

Corollary 3.5 Let F ⊆ Xω, 0 < ε < 1 computable and ϕ : X∗ → X∗

a dilution function with ε-modulus g : IN → IN. The measures L(F) and
Lε(ϕ(F)) are simultaneously zero, positive or infinite, respectively.

To derive our main theorem we still need the following result from [10].
It states that the a priori complexity of the ε · n-length prefix of an ω-word
and the n-length prefix of its image differ not too much.

Corollary 3.6 ([10]) Let ε, 0 < ε < 1, be a computable number. Then there
is a dilution function ϕ : X∗ → X∗ with strictly increasing ε-modulus g such
that
|KA(ϕ(ξ)[0..n])−KA(ξ[0..ε · n])| ≤ O(1) for all ξ ∈ Xω and all n ∈ IN .
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If the ω-word ξ is chosen to be random then ϕ(ξ) is an oscillation-free
MARTIN-LÖF-ε-random ω-word.

As every (1-)random ω-word is also strongly ML-ε-random the HAUS-
DORFF dimension of the set of all strongly ML-ε-random ω-words is 1. The-
orem 2.6 shows that the HAUSDORFF dimension of the set of all oscillation-
free strongly MARTIN-LÖF-ε-random ω-words is bounded from above by ε.
The next theorem calculates its HAUSDORFF dimension and the correspond-
ing measure.

Theorem 3.7 Let 0 < ε < 1 computable. The set Fε of all oscillation-free
strongly MARTIN-LÖF-ε-random sequences has HAUSDORFF dimension ε and
infinite ε-dimensional measure.

Proof. Theorem 2.6 implies dim Fε ≤ ε, since KA(ξ[0..n]) ≤ ε · n + c for
every ξ ∈ Fε. On the other hand, let ϕ be a dilution function with ε-modulus
and F1 the set of all (1-)random sequences. Then, according to Corol-
lary 3.6, ϕ(F1) ⊆ Fε. Since F1 has positive, finite 1-dimensional measure,
ϕ(F1) has positive, finite ε-dimensional measure. Thus ε = dim ϕ(F1) ≤
dim Fε.

To show that the ε-dimensional measure of Fε is infinite, we find an
infinite family of pairwise disjoint subsets of Fε for which the ε-dimensional
measure of every set of the family is bounded from below by the same
positive constant. Let a, b ∈ X, a 6= b and k : IN → IN. For every w ∈ X∗

and x ∈ X the function ϕi is defined as follows: ϕi(e) = e and

ϕi(wx) =
{

ϕi(w)ak(|w|)x , if |w| 6= i
ϕi(w)bk(|w|)x , if |w| = i

Here the function k is to be defined in a way that all ϕi become computable
functions with ε-modulus. Since ε < 1, the set K := {i | k(i) > 0} is
infinite. Moreover for all i, j ∈ K, i 6= j, the sets ϕi(Xω) and ϕj(Xω)
are disjoint. Lemma 3.4 shows that there is a constant c > 0 such that
Lε(ϕi(F1)) > c for every i ∈ IN. Now we obtain

Lε(Fε) ≥ Lε(
⋃
i∈K

ϕi(F1)) = ∑
i∈K

Lε(ϕi(F1)) = ∞ .

o

4 Complexity Bounds for ω-power Languages

In [8] for certain ω-power languages a necessary and sufficient condition
to be of non-null α-dimensional Hausdorff measure was derived. In this
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respect, for a language V ⊆ X∗, the α-residue of V derived by w, the value
∑v∈V/w r−α|v|, plays a special rôle.

Theorem 4.1 ([8]) Let V ⊆ X∗ be a prefix code and ∑v∈V r−α|v| = 1. Then
α = dim Vω, and, moreover ILα(Vω) > 0 if and only if the α-residues of V
are bounded from above.

Thus in view of Theorem 2.7 such Vω contain sequences ξ having a linear
lower complexity bound α · n − c. It is interesting now to observe that
bounding the α-residues of V from below yields a linear upper bound of
slope α on the complexity of ω-words in the closure C(Vω).

Lemma 4.2 Let V ⊆ X∗ be a computably enumerable prefix code. Let α be
right-computable such that ∑v∈V r−α·|v| = a ≤ 1 and the α-residues of V
derived by w ∈ pref(V) are bounded from below. Then there is a constant c
such that for every ξ ∈ C(Vω)

KA(ξ[0..n]) ≤ α · n + c .

Proof. In the same way as in the proof of Lemma 3.9 of [10] we
construct a left-computable semi-measure µ such that µ(w) ≥ c · r−α·|w|

and use Eq. (1). We have only to ensure that the construction works also
in the case a < 1. The construction is as follows.

µ(w) =


0 , if w /∈ pref(V∗)
r−α·|w| , if w ∈ V∗

∑wv∈V r−α|wv| , if w ∈ pref(V)

µ(u) · µ(v) , if w = u · v
with u ∈ V ·V∗ ∧ v ∈ pref(V) \V

(4)

Since V is a prefix code, the decomposition in the last line of the con-
struction is unique. The equation µ(w) = ∑x∈X µ(wx) for every w ∈
pref(V) \ V follows directly from the third case of the construction. For
w ∈ V we have the inequality

∑x∈X µ(wx) = µ(w) ·∑x∈X ∑xv∈V r−α|xv|

= µ(w) ·∑v∈V r−α|v| = µ(w) · a ≤ µ(w)
(5)

The inductive construction in the last line yields the inequality in the re-
maining cases. To show that µ is left-computable we successively approx-
imate the value µ(w) from below. Let Vi be the set of the first i elements
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in the enumeration of V and αi the ith approximation of α from the right.
We start with µ(0)(w) := 0 and µ(j)(e) = 1 for j > 0. Suppose that the
jth approximation µ(j) for all words shorter than w is already computed. If
there is a v ∈ Vj with w = v · w′, w′ 6= e, then µ(j)(w) = µ(j)(v) · µ(j)(w′).
Otherwise µ(j)(w) = ∑v∈Vj∧wvv r−αj·|v|.

Let cinf := inf
{

∑v∈V/w r−α·|v| | w ∈ pref(V)
}

. Since µ is a left-comput-
able semi-measure, the following inequality holds true.

M(w) · cµ ≥ µ(w) = r−α|w| · ∑
v∈V/w

r−α|v| ≥ r−α|w| · cinf

Taking the negative logarithm on both sides of the inequality we obtain
KA(w) ≤ α · |w|+ log cµ

cinf
for every w ∈ pref(V∗). o

The following example shows, that in Lemma 4.2 we cannot omit the
condition that the α-residues are bounded from below. To this end we use
a computable prefix code constructed in Example (6.4) of [7].

Example 4.3 Let X={0,1} and consider W :=
⋃

i∈IN 0i+1 · 1 · Xi+1 · 04·i+3.
The language W is a prefix code. Its ω-power, Wω, satisfies α = dim Wω =
dim C(Wω) = 1

3 and Lα(Wω) = Lα(C(Wω)). For every w ∈ ⋃i∈IN 0i+1 ·
1 · Xi+1 we have W/w = {04·i+3}. Thus ∑v∈W/w r−α·|v| = r−α·(4·i+3) and,
consequently, inf{∑v∈W/w r−α·|v| | w ∈ pref(W)} = 0.
Now, in Eq. (6.13) and Proposition 6.15 of [7] it is shown that
supξ∈Wω lim supn→∞

KA(ξ[0..n])
n ≥ 1

2 > 1
3 = dim Wω.

In connection with Theorem 4.1 our Lemma 4.2 yields a sufficient condition
for ω-powers to contain oscillation-free α-random ω-words.

Corollary 4.4 Let V ⊆ X∗ be a computably enumerable prefix code and α

right-computable such that ∑v∈V r−α·|v| = 1 and the α-residues of V de-
rived by w ∈ pref(V) are bounded from above and below. Then there is
an oscillation-free ML-α-random ω-word in Vω.

The results of Section 3.2 of [10] show that Corollary 4.4 is valid for pre-
fix codes which are regular languages. The subsequent example verifies
that there are also non-regular prefix codes which satisfy the hypotheses of
Corollary 4.4.
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Example 4.5 Let X = {0, 1} and consider the Łukasiewicz language L de-
fined by the identity L = 0 ∪ 1 · L2. This language is a prefix code and
Kuich [3] showed that ∑w∈L 2−|w| = 1. Thus the language V defined by
V = 00 ∪ 11 ·V2 is also a prefix code and satisfies ∑v∈V 2−

1
2 ·|w| = 1. By in-

duction one shows that for v ∈ pref(V) we have V/v = w′ ·Vk for suitable
k ∈ IN and |w′| ≤ 1. Therefore the α-residues of V derived by v ∈ pref(V)
are bounded from above and below.

For the monotone complexity Km a result similar to Lemma 4.2 can be
obtained for a smaller class of ω-languages. We start with an auxiliary
result.

Proposition 4.6 1. If V is computably enumerable and ∑v∈V r−α|v| = 1
then α is left-computable.

2. If V is computably enumerable, α is right-computable and ∑v∈V r−α|v| =
1 then V is computable.

Proof. The proof of part 1 is obvious. To prove part 2 we present an
algorithm to decide whether a word w is in V or not.

Let Vj be the set of the first j elements in the enumeration of V and αj
the jth approximation of α from the right.

Input w
j := 0

repeat

j := j + 1
if w ∈ Vj then accept and exit

until r−αj|w| + ∑v∈Vj
r−αj|v| > 1

reject

If w /∈ V then the repeat until loop terminates as soon as ∑v∈Vj
r−αj|v| >

1− r−αj|w| ≥ 1− r−α|w| because ∑v∈Vj
r−αj|v| → 1 for j→ ∞. o

Now we can prove our result on monotone complexity.

Lemma 4.7 Let V ⊆ X∗ be a computably enumerable prefix code. If α is
right-computable such that ∑v∈V r−α·|v| = 1 and the α-residues of V derived
by w ∈ pref(V) are bounded from below then there is a constant c such that
for every ξ ∈ C(Vω)

Km(ξ[0..n]) ≤ α · n + c .
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Proof. Because of Proposition 4.6 we can assume that α is a computable
real number and V is computable. We use Eq. (4) to construct µ as in the
proof of Lemma 4.2. Since a = 1, equality holds in Eq. (5). Thus µ is a
measure and for every v ∈ V∗ the number µ(v) is computable. Since V is
a computable prefix code, for every w ∈ X∗ we can compute the unique
decomposition w = v · w′ with v ∈ V∗ and w′ /∈ V · X∗. Now

µ(w) = µ(v) ·
(

1− ∑
v′∈V∧w 6vvv′

r−α|v′|
)

shows that µ is right-computable. If w′ /∈ pref(V) then the last factor is
zero.

Again let cinf := inf
{

∑v∈V/w r−α·|v| | w ∈ pref(V)
}

. In view of Corol-
lary 2.2 we get the bound

Km(w) ≤ − log µ(w) + cµ ≤ α · |w|+ cµ − log cinf

for every w ∈ pref(V∗). o

5 Plain Complexity

In this section we prove results analogous to Lemma 4.2 for the complexity
KS. First we derive a preparatory result. A similar lemma, for length-
conditional plain description complexity, is known from [7, 13].

Lemma 5.1 Let W ⊆ X∗ be computably enumerable, ε, 0 < ε < 1, be a
computable real number and let |W ∩ Xl| ≤ c · rε·l for some constant c > 0
and all l ∈ IN. Then

∃C
(
C ∈ IN∧ ∀w(w ∈W → KS(w) ≤ ε · |w|+ C)

)
Proof. Let X = {0, 1, . . . , r − 1} consist of r letters. Since ε is com-

putable, g(n) := dn
ε e is a computable function. Define a partial computable

function ϕ : X∗ → X∗ as follows.

ϕ(0k1v) := the vth word of length g(|v|)− k in the enumeration of W .
(6)

Here we interpret a word v ∈ Xn as a number between 0 and rn − 1.
As W has at most rε·(lo+l) words of length l, this enumeration process

yields {ϕ(0k1v) : v ∈ Xn} ⊇ W ∩ Xl as soon as n ≥ ε · (l0 + g(n)− k) =
ε · g(n)− ε · (k− l0).
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Hence, KS(w) ≤ ε · |w|+ O(1) for all w ∈W. o

In order to apply Lemma 5.1 to languages V satisfying the conditions of
Lemma 4.2 we show that a positive lower bound to the α-residues of V
implies the upper bound |pref(V∗) ∩ Xl| ≤ c · rα·l for some constant c > 0
and all l ∈ IN.

Lemma 5.2 Let V ⊆ X∗ be a code, ∑v∈V r−α|v| ≤ 1 and ∑v∈V/w r−α|v| ≥
c′ > 0 for all w ∈ pref(V). Then |pref(V∗)∩Xl| ≤ c · rα·l for some constant
c > 0 and all l ∈ IN.

Proof. First observe that w ∈ V∗ if and only if w ∈ V l for some l ≤ |w|.
Thus pref(V∗) ∩ Xl = pref(V l) ∩ Xl.

Let a := ∑v∈V r−α|v|. Since V is a code, we have al = ∑v∈Vl r−α|v| =
∑|w|=l,w∈pref(V∗)

(
r−α·l ·∑v∈Vl/w r−α|v|).

Now, V l/w ⊇ V l−iw+1/w′ ⊇ (V/w′ ·V l−iw) where w = v1 · · · viw−1 ·w′
with vj ∈ V and w′ ∈ pref(V).

Thus, ∑v∈Vl/w r−α|v| ≥ ∑v∈V/w′ r−α|v| · al−iw ≥ c′ · al−iw ≥ c′ · al and we
obtain al ≥ r−α·l · |pref(V∗) ∩ Xl| · c′ · al what proves our assertion. o

Now, the fact that pref(V∗) is computably enumerable if only V is com-
putably enumerable yields our result.

Lemma 5.3 Let V ⊆ X∗ be a computably enumerable code, α be right-
computable and ∑v∈V r−α·|v| = a ≤ 1.

If inf
{

∑v∈V/w r−α·|v| | w ∈ pref(V)
}

> 0 then there is a constant c such
that

KS(ξ[0..n]) ≤ α · n + c for every ξ ∈ C(Vω) .
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