

RESEARCHSPACE@AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the <u>Library Thesis Consent Form</u> and <u>Deposit Licence</u>.

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain alterations requested by the supervisor.

Computational Statistical Inference for Molecular Evolution and Population Genetics

A thesis submitted in partial fulfilment of the requirements for the Degree of

Doctorate of Philosophy in Biological Sciences,

The University of Auckland,

New Zealand

June 2002

0.1 Abstract

This research aims to develop new methods and software for evolutionary inference. The focus will be on two challenges that analysis of molecular data in the genomic age provides: (i) measurably evolving populations and (ii) evolution of RNA secondary structure. Molecular sequence data is increasing in length, and also acquiring a depth in the time dimension (for example, HIV-1, human influenza A, and ancient mtDNA). This has provided an innovative research direction, for which explicit evolutionary inference methods are required. The first aim of this research is to provide new statistical methods and new bioinformatic tools (software packages) to assist in tackling this new problem in evolutionary biology. Both maximum likelihood and Bayesian inference methods are developed for the purpose of estimating substitution rates and concerted changes in the substitution rate. In addition, with the rapid succession of newly sequenced full genomes, researchers can no longer use simple molecular sequence similarity to infer homology. Knowledge of molecular structure needs to be incorporated into evolutionary inference methods. The evolutionary relationship between sequence and structure is still poorly understood and the new wealth of data provides an exciting opportunity to guide theoretical developments. The second major objective of this research is to use the wealth of sequence data available to explore the role and impact of RNA secondary structure on evolution. To this end, empirical studies and simulations are undertaken to explore the role of RNA secondary structure in the evolution of 16S-like rRNA-encoding genes. Finally the inference of spatially resolved populations from gene sequences is briefly investigated.

This research project has both computational and conceptual objectives. In both cases, the concrete result of these objectives will be new statistical models and computer software for evolutionary inference and a better understanding of the action of molecular and population processes during evolution.

0.2 Acknowledgements

Firstly I thank my supervisors, Dr Allen Rodrigo, Dr David Saul and Associate Professor Peter Wills. Without their guidance I would have doubtless got lost on some fruitless path, and without their support of my curiosity I would have strayed too little from the grip of Dogma.

For erudite exposition on the powers and pitfalls of sample-based Bayesian inference and Metropolis-Hastings Markov chain Monte Carlo, and for forthright criticism I am indebted to Dr Geoff Nicholls.

For letting me poke my nose into the world of ancient DNA, and learning something about scientific collaboration, I thank Professor David Lambert, Dr Craig Millar and Dr Peter Ritchie.

For providing the brown bear sequence data and valuable commentary I thank Dr Alan Cooper.

For lively discussion and being great people I thank Roald and Mette.

For hanging out in retro clubs and comedy bars in between writing papers I thank Roman Biek.

I thank all my fellow students at the Santa Fe Institute Complex Systems Summer School 2000 for a great voyage into the world of complexity theory.

For making me feel welcome during my visit to Oxford and making me feel like one of the guys, I thank Andrew Rambaut, Oliver Pybus, Korbinian Strimmer and Mike Charleston.

For helping me relax with games of hacky during my writeup, I thank Josh Guilbert, Charlotte Hardy and David Clarke and for Starcraft sessions I thank Revel Drummond, Peter Mclaren and Athena Ferreira.

For just being my friends and supporting me, I thank all the people I hang out with whenever I am not writing a thesis:-) you know who you are.

For helping debug my thesis at the going away party I thank Caroline Holliss, Ellen Campbell, Jeremy, Joline, Jim Mooney, Jo Simons, Lee Moss and Phil Sneddon.

For tireless effort during final proofing I thank Caroline Holliss, Revel Drummond and Athena Ferreira.

For loving me unconditionally I thank my Mum and Dad, and my grandparents Yo & Grant Drummond and Jean & James Babson. For pointing out to me that section 9.2.2 is wrong, but may still be useful, I thank Dad. For excellent editorial comments on Chapter 1 and 7, I thank Y.F.D.

For help and support, and the cutest smile, (and for reminding me to blink, breath and focus) I thank my sweetheart, Athena Ferreira.

0.3 Table of Contents

	0.1	ABSTRACT	II	
	0.2	ACKNOWLEDGEMENTS	III	
	0.3	TABLE OF CONTENTS	V	
	0.4 I	ist of Abbreviations	IX	
	0.5 I	JST OF SYMBOLS AND FUNCTIONS	X	
	0.6 I	JST OF TABLES	XI	
	0.7 I	JIST OF FIGURES	XII	
1	INTE	RODUCTION	1	
	1.1	Overview	2	
	1.2	THEORETICAL POPULATION GENETICS	2	
	1.2.1	Fisher-Wright-Haldane population genetics	2 3	
	1.2.2	Kimura and the neutral theory	4	
	1.2.3	Kingman and the coalescent	5	
	1.2.4	Computational population genetics	6	
	1.2.5	Complexity theory and population genetics	8	
	1.3 I	PHYLOGENETIC SYSTEMATICS	9	
	1.3.1	Models of molecular evolution	10	
	1.3.2	Distance-based estimation of evolutionary trees	14	
	1.3.3	1 ,	15	
	1.3.4	, and the state of	16	
		Uncertainty in phylogenetic reconstruction	19	
	1.3.6	Bayesian inference in phylogenetics	20	
		THE INFORMATION AGE OF BIOLOGY	20	
	1.4.1	Sequence databases	21	
		Parallelisation of computer power	21	
	1.4.3	Open source development	22	
		STATISTICAL INFERENCE IN EVOLUTIONARY BIOLOGY	22	
		Maximum likelihood	23	
		Bayesian statistical inference	23	
	1.5.3 1.6 (Computational Techniques CONCLUSION	25 26	
2		SURABLY EVOLVING POPULATIONS	20 29	
4				
	2.1 I 2.1.1	NTRODUCTION Rapidly evolving pathogens	30 30	
		Fossil and Pre-fossil DNA	30	
		CONCEPTS	32	
	2.2.1	Non-independence of temporally spaced sequences	32	
	2.2.2	Estimating mutation rates using temporally spaced sequences	33	
	2.2.3	Estimating generation length using temporally spaced sequences	35	
	2.2.4	Estimating population size dynamics using temporally spaced sequences	35	
	2.2.5	Estimating divergence times using temporally spaced sequences	38	
	2.2.6	Phylogenetic inference using temporally spaced sequence data	39	
	2.2.7	MEPs and the neutral theory of evolution	39	
	2.2.8	Hypothesis testing and experimental design	40	
	2.3	CONCLUSION	40	
3	REC	ONSTRUCTING GENEALOGIES OF SERIAL SAMPLES USING		
S	SERIAL-SAMPLE UPGMA (SUPGMA). 43			

3.	Overview	44
3.	Introduction	44
3.	SERIAL SAMPLE UPGMA	45
	.1 Estimation of δ s.	47
	.2 Correction of pairwise distances	49
	.3 Cluster using UPGMA.	49
	.4 Trim back branches.	49
3.	ESTIMATING POPULATION PARAMETERS AND MUTATION RATE	50
3.	Efficiency of Tree Reconstruction	51
3.	EFFICIENCY OF PARAMETER ESTIMATION	54
3.	An Example Dataset	57
3.	DISCUSSION	59
3.	ACKNOWLEDGEMENTS	61
4	FERENCE OF STEP-WISE CHANGES IN HIV-1 <i>ENV</i> MUTATION OF STEP-WISE	ON
RA'	USING MAXIMUM LIKELIHOOD	62
4.	Overview	63
4.	INTRODUCTION	63
4.	LIKELIHOOD MODEL	65
4.	LEAST-SQUARES MODEL	68
4.	Example	69
4.	DISCUSSION	74
4.	ACKNOWLEDGEMENTS	77
5 EV(YESIAN EVOLUTIONARY INFERENCE OF MEASURABLY VING POPULATIONS	78
5.	Overview	79
5.	Introduction	79
	.1 Kingman coalescent with temporally offset leaves	80
	.2 DNA Substitution Model	82
_	.3 Bayesian Inference for scale parameters	84
5.	MARKOV CHAIN MONTE CARLO FOR EVOLUTIONARY PARAMETERS	85
	.1 Proposal mechanisms	88
_	.2 Implementation, convergence checking and debugging	91
5.	EXPONENTIAL GROWTH AND RELATIVE RATES OF SUBSTITUTION	93
5.	EXAMPLES .1 HIV-1 env data	94
	.2 Simulated sequence data	94 102
5.	DISCUSSION	104
_		107
6 Ex	TENDING BAYESIAN EVOLUTIONARY INFERENCE BY	405
EX/	PLE	107
6.	Overview	108
6.	Ancient DNA of Beringian Brown Bears: A case study	108
	.1 Data	108
	.2 Results	109
	.3 Discussion	116
6.	MOLECULAR DATING OF UNDATED AND OLD SUB-FOSSIL BONES	119
	.1 Methods and materials	120
	.2 Priors	120
	.3 Results	121

	6.3.4 Discussion	122
	6.4 HEPATITIS C IN EGYPT: A NON-MEP ANALYSIS	123
	6.4.1 The piecewise logistic demographic model	123
	6.4.2 Codon position rate heterogeneity	125
	6.4.3 Data	126
	6.4.4 Results	127
	6.4.5 Conclusion	129
	6.5 Discussion	130
7	EVOLUTION OF RNA SECONDARY STRUCTURE	132
	7.1 Introduction	133
	7.2 SECONDARY STRUCTURE PREDICTION	133
	7.2.1 Thermodynamic structure prediction	135
	7.2.2 Kinetic structure prediction	137
	7.2.3 Phylogenetic (or comparative) structure prediction	138
	7.2.4 Hybrid techniques	139
	7.3 PROPERTIES OF RNA SEQUENCE-STRUCTURE MAPS	139
	7.3.1 Structural Discontinuity and Punctuated Equilibrium	141
	7.4 PROKARYOTIC SYSTEMATICS	142
	7.5 DISCUSSION	143
3	RNA-BASED EVOLUTIONARY INFERENCE	145
	8.1 Introduction	146
	8.2 STRUCTURALLY-SPECIFIC RNA SUBSTITUTION MODELS	146
	8.2.1 Methods	147
	8.2.2 Models for structural environment assignment	148
	8.2.3 Empirically-derived substitution models constructed from a large seq	-
	alignment	149
	8.2.4 Simulations of RNA substitution models	153
	8.2.5 A maximum-likelihood comparison on a small dataset 8.2.6 Conclusions	155 15 <i>6</i>
	8.3 MULTIPLE SEQUENCE ALIGNMENT OF RNA	158
	8.3.1 Pair-wise alignments	158
	8.3.2 Multiple sequence alignments	159
	8.3.3 Statistical alignment	159
	8.3.4 Sequence alignment of RNA sequences	160
	8.3.5 Combining RNA secondary structure and sequence information	161
	8.3.6 Conclusions	166
	8.4 BAYESIAN INFERENCE OF SUBSTITUTION PARAMETERS AND PHYLOGEN	Y FROM
	SEQUENCE-STRUCTURE DATA	167
	8.4.1 Bayesian inference of combined sequence-structure characters	167
	8.4.2 Data	168
	8.4.3 Results	168
	8.5 Discussion	170
)	A TANGENT: SPATIAL POPULATION GENETICS	172
	9.1 Overview	173
	9.2 A SIMPLE MODEL OF MOVEMENT FOR INFERENCE	173
	9.2.1 Bayesian estimation of diffusion in <i>n</i> -dimensions on a tree	173
	9.2.2 Ecological data and spherical geometry	176
	9.3 SIMPLE MODELS OF MOVEMENT FOR SIMULATION	178
	9.3.1 Lattice models	178

9.	.3.2	The box neighbourhood	178
9.	.3.3	The Gaussian neighbourhood	181
9.	.3.4	Restrictions of "constant-organisation" models	182
9.4	D	ISCUSSION	182
10 N	1EPI		183
10.1	In	TRODUCTION	184
10.2		ROGRAMS	184
	0.2.1	mepi	185
	0.2.2	mepix	185
	0.2.3	tracer	187
10.3	0.2.4	treesummary	188
	0.3.1	HE MEPIX FILE FORMAT Example file: hivl.mepix	190 191
	0.3.1	mepix elements	191
	0.3.3	The alignment element	193
	0.3.4	The data element	194
	0.3.5	The demographicmodel element	195
	0.3.6	The evolutionmodel element	196
	0.3.7	The frequencies element	197
	0.3.8	The mcmc element	197
	0.3.9	The mutationratemodel element	198
10	0.3.10		199
10	0.3.11	The operator element	200
10	0.3.12	·	201
10	0.3.13	•	202
10	0.3.14		204
10	0.3.15	The ratematrix element	205
10	0.3.16	The sequence element	206
10	0.3.17	The simulatedata element	207
10	0.3.18	The simulatetree element	208
10	0.3.19	The sitemodel element	209
10	0.3.20	The time element	210
10	0.3.21	The timedata element	211
10	0.3.22	The tree element	212
10.4	- Co	ONCLUSION	212
11 P	ERSO	ONAL CONCLUSION	213
11.1	O	PEN PROBLEMS	213
1	1.1.1	1	214
11.2		JTURE DIRECTIONS	216
11.3		ONCLUSION	217
12 R	EFE	RENCES	218
13 A	DDE	NDIX: ADDITIONAL PUBLISHED PAPERS	229

0.4 List of Abbreviations

3D three-dimensional

AIDS acquired immunodeficiency syndrome

bp base pairs
BP before present

BSC biological species concept CPU central processing unit DNA deoxyribonucleic acid

EM expectation-maximization algorithm

ESS effective sample size

F81 Felsenstein 1981 (model of substitution)

GPL GNU public licence

GTR general time-reversible (model of substitution)

HCV Hepatitis C virus

HIMDU hairpin, internal bulge, multi-stem loop, downstream-paired and

upstream-paired (model of structure)

HIV-1 human immunodeficiency virus, subtype 1

HKY Hasegawa, Kishino and Yano (model of substitution) HOM homogeneous model of structure (i.e. no structure)

HPD highest posterior density

HVR1 hyper-variable region 1 (of the mitochondrial control region)

IACT integrated autocorrelation time indels insertion-deletion events

JC Jukes-Cantor (model of substitution)

LGPL lesser GPL LS least-squares

MCMC Markov chain Monte Carlo MEP measurably evolving population

ML maximum likelihood

MRCA most recent common ancestor

MRDT multiple rate dated-tips (model of mutation rate)

mtDNA mitochondrial DNA

NIH National Institutes of Health

NJ neighbour joining (method of phylogenetic reconstruction)
NNI nearest neighbour interchange (method of branch swapping)

PAL Phylogenetics Analysis Library

RNA ribonucleic acid rRNA ribosomal RNA

SDI symmetric difference index

SPR subtree-prune and reattachment (method of branch swapping)

SR single rate (model of mutation rate)

SRDT single rate dated tips (model of mutation rate)

sUPGMA serial-sample UPGMA

tRNA transfer RNA

UP unpaired/paired model of structure

UPGMA unweighted pair-group method using arithmetic means WPGMA weighted pair-group method using arithmetic means

0.5 List of symbols and functions

Unless defined otherwise in the text, these symbols are defined as in the table below.

~ distributed as

∧ logical 'and' operation∨ logical 'or' operation

 α the shape parameter of the gamma distribution of rate heterogeneity

among sites.

 δ divergence (measured in substitutions/site) E_g a set of edges defining a bifurcating tree Exp(x) exponentially distribution with a mean of x

g a genealogy = (E_g, t_Y)

 κ kappa, the ratio between the instantaneous rate of a particular transition

and the instaneous rate of a particular transversion.

 μ mutation rate

 N_A ancestral effective population size N_C current effective population size

 N_e effective population size equilibrium base frequencies

Q the instantaneous substitution rate matrix

 Θ intra-specific diversity: $2N_e\mu$ for haploid, $4N_e\mu$ for diploid

r exponential growth rateR relative rate matrix

 t_I the set of times/ages of the leaves of a genealogy.

 t_{MRCA} time to the most recent common ancestor

 t_{root} synonym for t_{MRCA}

 t_Y the set of times/ages of the ancestral nodes of a genealogy.

Unif(x, y) uniform distribution with a lower limit of x and an upper limit of y

 ω mutation rate (in mutations per site per calendar unit)

Z normalizing constant

0.6 List of Tables

Table 2.1 Mutation rates of various genetic regions in different organisms.	32
Table 2.2 Historical and current uses of MEP methods.	33
Table 3.1 Sampling stategies under which phylogenetic reconstruction was tested.	52
Table 3.2 Threshold values of total divergence over which sUPGMA outperforms	
UPGMA.	53
Table 3.3 Parameter estimates under the δ -parameterisation for 1000 simulated datase	ts of
four samples of five sequences.	55
Table 3.4 Parameter estimates under the ω-parameterisation for 1000 simulated dataset	ets of
four samples of five sequences.	55
Table 3.5 Estimated parameters for example dataset.	58
Table 4.1 ML and LS estimates of substitution rates under the SR, SRDT and MRD	ΣT
models.	71
Table 5.1 Parameter estimates for ten independent analyses of the pre-treatment da	taset
with a simple model.	98
Table 5.2 Parameter estimates for ten independent analyses of the pre-treatment da	
with a complex model.	100
Table 5.3 Simulation studies to assess the performance of Bayesian inference.	104
Table 6.1 Experiment 1: Analysis of 30 ancient sequences.	110
Table 6.2 Experiment 2: Analysis of 30 ancient sequences and 17 modern sequence	
Table 6.3 Experiment 3: Analysis of 30 ancient sequences and 17 modern sequence	
gamma-distributed rate heterogeneity among sites.	115
Table 6.4 The maximum time frame over which different rate categories can provide	
phylogenetic and molecular rate information.	116
Table 6.5 Estimates of bone ages based on sequence comparison to known ages us	_
MCMC.	121
Table 6.6 Parameter estimates for two datasets of partial E1 genes.	129
Table 8.1 Log-likehood values of HOM and UP models of RNA evolution.	156

0.7 List of Figures

Figure 2.1 The genealogies of two unlinked genes.	36
Figure 2.2 Genealogy-based population genetics.	38
Figure 3.1 An outline of the sUPGMA procedure.	46
Figure 3.2 Phylogenetic reconstruction performances of sUPGMA and UPGMA.	53
Figure 3.3 Θ estimates for four samples of five sequences for 1000 simulated trees.	54
Figure 3.4 δ_1 , δ_2 and δ_3 estimates for four samples of five sequences.	56
Figure 3.5 Estimated mutation rate, ω , from 1000 simulations of four samples of five	
sequences.	57
Figure 3.6 Two sUPGMA trees constructed from an example dataset.	58
Figure 4.1 Three different models of substitution rates through time.	65
Figure 4.2 Maximum-likelihood solutions for the full example dataset.	72
Figure 4.3 The likelihood surface of μ parameters.	73
Figure 5.1 Diagrams of two proposal mechanisms used to modify tree topology during	ıg
an MCMC analysis.	86
Figure 5.2 Marginal posterior densities for the pre-treatment dataset.	97
Figure 5.3 Marginal posterior density for the pre-treatment dataset assuming exponen	ıtial
growth rate and a GTR model of substitution.	99
Figure 5.4 Marginal posterior densities for the post-treatment dataset.	101
Figure 5.5 Marginal posterior density for the post-treatment mutation rate assuming a	l
upper limit on t_{root} .	102
Figure 6.1 Sample tree from Experiment 1.	112
Figure 6.2 Sample tree from Experiment 2.	118
Figure 6.3 Two proposal mechanisms for estimating the relative contributions of cod	
positions 1, 2, and 3 to the overall rate of substitution.	125
Figure 6.4 Demography of the Egypt HCV epidemic.	128
Figure 7.1 A transfer RNA (tRNA) secondary structure.	135
Figure 7.2 The concept of common secondary structures.	141
Figure 8.1 Annotation of rRNA-encoding sequences with structure category information	
	149
Figure 8.2 The collection of substitution statistics from a pair of sequences.	150
Figure 8.3 Empirical base frequency histograms of the UP and HIMDU models.	152
Figure 8.4 A comparison of the structural stability of the HOM and UP models.	154
Figure 8.5 Comparison of different <i>evaluation schemes</i> where only sequence information was considered.	162
Figure 8.6 Comparison of different <i>evaluation schemes</i> where both sequence and structu information was considered.	163
Figure 8.7 Comparison of different alignment generation schemes.	165
Figure 8.8 Comparison of currectift alignments versus sequence-structure alignments	
Figure 8.9 Estimated relative rate matrix (R_{comb}) for combined characters.	169
Figure 8.10 Sample tree of life established using sequence and structure information.	
Figure 9.1 The neighbourhood model.	179
Figure 9.2 Three different populations evolving spatially under the neighbourhood	117
model.	180
Figure 9.3 The effect of mutation rate on spatial patterns of a single nucleotide site up	
the neighbourhood model.	181
Figure 9.4 The Gaussian neighbour model on a lattice.	182

Figure 10.1 "Enter times" dialog.	186
Figure 10.2 "Parameters" tab of the "MCMC Analysis settings" dialog.	187
Figure 10.3 A screenshot of tracer program.	188
Figure 10.4 A screenshot of treesummary program.	189
Figure 10.5 An example tree file.	189