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0.1 Abstract

This research aims to develop new methods and software for evolutionary inference. The
focus will be on two challenges that analysis of molecular data in the genomic age
provides: (i) measurably evolving populations and (ii) evolution of RNA secondary structure.
Molecular sequence data is increasing in length, and also acquiring a depth in the time
dimension (for example, HIV-1, human influenza A, and ancient mtDNA). This has
provided an innovative research direction, for which explicit evolutionary inference
methods are required. The first aim of this research is to provide new statistical methods
and new bioinformatic tools (software packages) to assist in tackling this new problem in
evolutionary biology. Both maximum likelihood and Bayesian inference methods are
developed for the purpose of estimating substitution rates and concerted changes in the
substitution rate. In addition, with the rapid succession of newly sequenced full genomes,
researchers can no longer use simple molecular sequence similarity to infer homology.
Knowledge of molecular structure needs to be incorporated into evolutionary inference
methods. The evolutionary relationship between sequence and structure is still poorly
understood and the new wealth of data provides an exciting opportunity to guide
theoretical developments. The second major objective of this research is to use the
wealth of sequence data available to explore the role and impact of RNA secondary
structure on evolution. To this end, empirical studies and simulations are undertaken to
explore the role of RNA secondary structure in the evolution of 16S-like rRNA-encoding
genes. Finally the inference of spatially resolved populations from gene sequences is

briefly investigated.

This research project has both computational and conceptual objectives. In both cases,
the concrete result of these objectives will be new statistical models and computer
software for evolutionary inference and a better understanding of the action of molecular

and population processes during evolution.
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1 Introduction

“Nearly every great advance in science arises from a crisis in the old theory, through an endeavor to find a
way out of the difficulties created.”
(Albert Einstein, 1938)



1.1 Overview

What processes have produced the wonder of life we see around us? Since Darwin’s The
Origin of Species (DARWIN 1859), evolution has been central to understanding the diversity
of life; it is a fundamental aspect of biology, from humans to bacteria to viruses.
However, the detailed mechanisms of the evolutionary process are still poorly
understood. In this thesis I will describe the development of novel statistical models and
techniques for understanding some of the details of molecular evolution and population
dynamics. The work I have undertaken is computationally based and brings together
both theoretical and empirical aspects of population genetics and evolutionary inference.
To understand the direction taken in this research, it is important first to consider the
historical development of population genetics and evolutionary inference. What follows
is a short history of these fields, written to establish the context and the relevance of the

research described in the subsequent chapters.

1.2 'Theoretical population genetics

The field of theoretical population genetics was born from the reconciliation of
Mendelian genetics and Darwinian evolution. The particulate nature of Mendelian
genetics had, in some eyes, threatened the action of Darwin’s natural selection as a
mechanism of evolution. However, a seminal paper written by Ronald A. Fisher in 1918
showed that Mendelian genetics and Darwinian evolution were actually quite
complementary (FISHER 1918). It had previously been thought that the discrete nature of
Mendelian characters and their assortment by sexual reproduction precluded the gradual
change that dominated Darwinian evolutionary theory. The reconciliation of these ideas
provided the foundation for the discipline of population genetics, which under the
influence of Fisher, Wright and Haldane quickly took shape in the following decades.
Each of these researchers had a distinctive focus, but the research of all three stemmed
from an interest in the quantitative consequences of stochasticity and natural selection in

populations with Mendelian inheritance.

It is interesting to ponder the fact that their ideas were developed at a time when almost
nothing was known about the empirical reality of genetics in natural populations.
Therefore most of this initial work was carried out with very little concrete knowledge of
(i) selection strengths and differentials, (ii) genetic variation or (iii) gene flows, population

structure and population subdivision. Surprisingly, much of the debate in theoretical



population genetics remains because of the continued lack of discriminating empirical
evidence. In this computational and data-rich age, many of the shortfalls can be resolved,

but first let us consider the founders of population genetics.

1.2.1 Fisher-Wright-Haldane population genetics

“The investigation of natural selection may be compared to the analytic treatment of the Theory of Gases,
in which it is possible to mafke the most varied assumptions as to the accidental circumstances, and even
the essential nature of the individual molecules, and yet to develop the natural laws as to the behaviour of
gases, leaving but a few fundamental constants to be determined by the experiment.”

(Ronald A. Fisher, 1922)
Fisher's views, collected in his book, The Genetical Theory of Natural Selection (FISHER 1930)
were dominated by the notion that deterministic selection in large populations is the
most important factor in evolutionary change. The primacy that Fisher gave to selection
seems to have come almost entirely from his assumption that natural populations had
large effective populations and selection effects were small, finely graded, independent
and additive between genes. This assumption appears to have come, at least in part, from
his view that the analytical treatment of natural populations could be compared to the
thermodynamic Theory of Gases: also a statistical theory describing the properties of

large populations (FISHER 1922a). In this setting of large panmictic populations, even

very small selection pressures would overcome stochastic effects.

In contrast, Sewall Wright’s Shifting Balance Theory (WRIGHT 1931), was based on the
assumption that natural populations were fragmented rather than panmictic, having sub-
divided populations with limited gene flow and complex genetic interactions that were
not necessarily additive. In this situation, genetic drift and selection both play an
important role in evolutionary change. Wright’s assumptions of local populations
required that non-adaptive genetic drift played a significant role in evolution, quite
contrary to Fisher’s view. This difference of opinion resulted in a scientific debate that
played itself out over three decades. While the validity of Wright’s specific model is still
debated, in hindsight it seems that his view of population genetic reality was more

accurate.

Along with Haldane, these two theoreticians are known as the founders of population
genetics. These three researchers largely shaped the view of evolutionary theory in the
1920's and 1930's and laid the foundations of the modern synthesis of evolution. Despite
their various differences, each researcher worked with very similar mathematical

frameworks and the statistical methods they developed are still used today.



1.2.2 Kimura and the neutral theory

“...we believe that definitely advantageons mutant substitutions are a minority when compared with a
relatively large number of “non-Darwinian” type mutant substitutions, that is, fixations of mutant alleles
in the population through the process of random drift of gene frequency.”

(Motoo Kimura, 1974, p2851)
Motoo Kimura, a student of Hitoshi Kihara and Jim Crow, first introduced the nextral
theory of molecular evolution in 1968 (KKIMURA 1968). The idea behind the neutral theory is
simply that the vast majority of substitutions that drive molecular evolution are not
selectively advantageous. The neutral theory hypothesizes that genetic drift, not positive
Darwinian selection, is the primary force behind molecular evolution and variation. The
neutral theory does not preclude natural selection, but rather states that positive natural
selection plays a minor role compared to genetic drift in producing evolutionary changes
in molecules (KIMURA 1983; KIMURA and OHTA 1971; KIMURA and OHTA 1974). This
assertion is at odds with the predominantly selectionist evolutionary theory of the early
population geneticists, Fisher, Wright and Haldane, for which positive natural selection

was the central force of change.

Kimura was developing his theory at a time when the molecular structure of DNA had
already been discovered (WATSON and CRICK 1953) and molecular diversity data was
becoming available (for example, LEWONTIN and HUBBY 1966). Although there was still
only limited empirical data, it was becoming clear to some that selectionist models could
not account for the similarities in the molecular heterozygosity of diverse species, and for
the large amount of molecular variation found within individual populations. Although
subsequent refinements of the neutral theory such as the nearly neutral theory (OHTA and
KIMURA 1971) focused attention on negative (or purifying) selection to account for the
conservation of protein structure and function, positive Darwinian selection remained
absent. Testable hypotheses can easily be formulated for the neutral theory and its
variants. Unfortunately many expectations of neutralist and selectionist theories overlap,
especially in scenarios with fluctuating environment-mediated selection (GILLESPIE
1989). Another difficulty in testing the neutral theory (or any other theory) is that it
cannot be separated from the underlying mathematical models used to express it. The
assumptions of the model are chosen at least partially for mathematical tractability, not
realism, and are invariably only approximations of the researcher’s actual

beliefs/assumptions about the process of evolution.



Despite some difficulties, the neutral theory has gained strong support. This is not only
because of its attractive simplicity, but also because of its exceptional power to describe
many of the observed patterns (for example, divergence, polymorphism and clock-like
evolution) of molecular change without any recourse to positive Darwinian selection.
This raises serious questions about the understanding of the role of natural selection in

molecular evolution.

1.2.3 Kingman and the coalescent

One of the most significant recent developments in population genetics modelling was
the introduction of coalescent or genealogical methods (IKKINGMAN 1982a; KINGMAN
1982b). The coalescent is a stochastic process that provides good approximations to the
distribution of ancestral histories that arise from classical forward-time models such as
the Fisher-Wright (FISHER 1930; WRIGHT 1931) and Moran population models (MORAN
1958). In this way, the coalescent links genealogies with the effective population size
(No)'. The coalescent inherits the assumption of neutral evolution from the population
models it is based on. The coalescent was an important step in its explicit use of
genealogies” to estimate population parameters. This allowed the non-independence of
ancestral relationships between genetic samples to be taken into account. Like the
founders of population genetics before him, Kingman dealt predominantly with closed-
form mathematical models that could be solved with pencil and paper. Simple population
models such as Fisher-Wright-Moran can easily be simulated exactly in a computer,
however an exact mathematical solution would be tedious: hence the coalescent
approximations. Slightly more complex population models, while still trivial to simulate,
can be very difficult to solve analytically. In part, this thesis is an argument for a move to
computational methods that allow more realism by sacrificing exact pencil and paper

solutions.

1 The effective population size (Ng) is the number of individuals that will produce offspring and thus
contribute genes to the next generation (Wright, 1931). It is equal to the census population size (N) in an
idealized randomly mating population. In real populations, Ne will differ from N because of factors such as
overlapping generations, population structure, fluctuating population sizes, non-random mating and
unequal sex ratios. In a fluctuating population, Ne is dominated by the smallest census sizes and Ne will be
equal to the harmonic mean of N, all else being equal.

2'Genealogy' and 'tree’ are used interchangeably throughout. A haploid genealogy is a collection of edges,
nodes and node times that together completely specify an acyclic rooted history of evolutionary
relationships.

3 But for the Moran model it should be noted that the exact distribution of coalescence times is almost as
accessible as the coalescent.



1.2.4 Computational population genetics

This section will outline some of the recent developments in computational population
genetics. The integration of likelihood-based phylogenetic methods and population
genetics through the coalescent has provided fertile ground for new developments. Many
coalescent-based estimation methods focus on a single genealogy (FELSENSTEIN 1992b;
FU 1994; NEE e/ al. 1995; PYBUS ez al. 2000) that is typically obtained using standard
phylogenetic reconstruction methods. For example a maximum likelihood tree (under

clock constraints) can be obtained and then used to obtain a maximum likelihood

estimate of @ =2N_ 4/ (where //is mutation rate) using coalescent theory*. However,

there is often considerable uncertainty in the reconstructed genealogy. In order to allow
for this uncertainty it is necessary to compute the average likelihood of the population
parameters of interest. The calculation involves integrating over genealogies distributed
according to the coalescent (FELSENSTEIN 1988; FELSENSTEIN 1992a; GRIFFITHS 1989;
GRIFFITHS and TAVARE 1994; KUHNER e7 a/. 1995). Integration for some models of
interest can be carried out using Monte Carlo methods. Importance-sampling algorithms
have been developed to estimate the population parameter © (GRIFFITHS and TAVARE
1994; STEPHENS and DONNELLY 2000), migration rates (BAHLO and GRIFFITHS 2000)
and recombination (FEARNHEAD and DONNELLY 2001; GRIFFITHS and MARJORAM
1996). Metropolis-Hastings Markov chain Monte Carlo (MCMC) (HASTINGS 1970;
METROPOLIS ¢ al. 1953) has been used to obtain sample-based estimates of © (KUHNER
et al. 1995), exponential growth rate (KUHNER e7 2/. 1998), migration rates (BEERLI and
FELSENSTEIN 1999; BEERLI and FELSENSTEIN 2001; KUHNER e/ a/. 1998) and

recombination rate (KUHNER e7 a/. 2000).

In addition to developments in coalescent-based population genetic inference, sequence
data sampled at different times are now available from both rapidly evolving viruses such
as HIV-1 (HOLMES ¢7 a/. 1992; RODRIGO ¢t al. 1999; SHANKARAPPA ¢ al. 1999;
WOLINSKY ez al. 1996), and from ancient DNA sources (BARNES ¢ a/. 2002; HANNI e/ al.
1994; LAMBERT et al. 2002; LEONARD e# a/. 2000; LOREILLE ¢7 a/. 2001). Temporally

spaced data provides the potential to observe the accumulation of mutations over time,

4 Although O is defined here simply as two times the product of Ne and 4 the factor of 2 is used only in
haploid (asexual) populations, such as viruses. In a diploid population such as humans, a factor of 4 is used
instead. The reason that Ng and 4/ must be estimated as a product is that divergence times in molecular
genealogies are expressed in mutations rather than generations. In most cases the mutation rate per
generation must be independently obtained to yield coalescent estimates of Ne directly from molecular
genealogies. However, in Chapters 2, 3, 4 and 5 situations in which molecular genealogies can be used to
obtain joint estimates of Ng and f/are discussed. Joint estimation of Ne and f/is a major topic of this thesis.



thus allowing the estimation of mutation rate (DRUMMOND and RODRIGO 2000;
RAMBAUT 2000). In fact it is even possible to estimate variation in the mutation rate over
time (DRUMMOND e¢7 a/. 2001). This leads naturally to the more general problem of
simultaneous estimation of population parameters and mutation parameters from
temporally spaced sequence data (DRUMMOND e/ @/. 2001; DRUMMOND and RODRIGO

2000; RODRIGO and FELSENSTEIN 1999; RODRIGO ¢7 al. 1999).

Chapter 5 is concerned with sample-based Bayesian inference of population and
mutation parameters, dates of divergence and tree topology from sequence data. The
important novelties in this kind of inference are the data type (for example, temporally
sampled sequences and secondary structure information), the relatively large number of
unknown model parameters, and the MCMC sampling procedures. The coalescent gives
the approximate expected frequency with which any particular genealogy arises under the
Fisher-Wright-Moran population model. The coalescent may then be treated, either as
part of the observation process defining the likelihood of the population parameters, or
as the prior distribution for the unknown true genealogy. In either case the likelihood
must be integrated over the state space of the coalescent. Both Bayesian and purely
likelihood-based population genetic inference use the same reasoning, and algorithms, up
to the point where prior distributions are given for the parameters of the coalescent and

mutation processes. Bayesian methods permit priors while likelihood analyses do not.

Bayesian reasoning has recently been applied to both phylogenetic inference
(HUELSENBECK ef al. 2000; MAU e# al. 1999; THORNE e¢7 al. 1998; YANG and RANNALA

1997) and population genetic inference (WILSON and BALDING 1998).

The current, empirically-derived beliefs of most evolutionary biologists are not accurately
represented by theoretical population genetic models. This is largely because of the
simplifying assumptions required to make the models mathematically tractable. Thus the
hypotheses generated from a rigorous mathematical model (that we know to be a
simplification) only allow us to say that either the evolutionary theory, or the
simplifications of the model, should be rejected. The increasingly complex hypotheses of
evolutionary biologists can’t be adequately captured by the simplifying mathematical

assumptions of most current population genetic models.

One example of this shortcoming is that the formulation of the neutral theory as a
mathematical model involved a notable assumption. The neutral models of Kimura

(KIMURA 1983; KIMURA and OHTA 1971) recognize only two types of mutation - those



that are neutral and those that are definitely deleterious. Neutral (or nearly neutral)
mutations can lead to substitutions in the model and deleterious mutations are removed
by negative selection. Thus although it is clear that Kimura (KIMURA 1983; KIMURA and
OHTA 1974) believed that positive Darwinian evolution must occur sometimes, his
models completely disallow the possibility of advantageous mutants being fixed. Perhaps
more importantly, the choice of mathematical model used to formalize population
genetics theories can have pronounced quantitative and qualitative effects on predictions.
This was well illustrated by John Gillespie who showed that the predictions of shift models
and house-of-cards models of the nearly neutral theory were qualitatively different (GILLESPIE
1995). In light of this, it seems extremely important that models are chosen for realism

rather than mathematical tractability!

Recent work on lineage-specific mutation rate models (HUELSENBECK e7 a/. 2000;
THORNE e7 al. 1998) suggests that the future of computational population genetics will
hold increasingly complex statistical models of molecular evolution that have no tractable
closed-form solutions. Thus computational population genetics will, to a large extent,
break from the long-standing tradition of pencil and paper analysis. The large array of
complex mechanisms involved in molecular evolutionary processes and the increasing
gap between empirical knowledge and simplifying mathematical assumptions will speed
this transition. Chapter 5 develops a general framework for Bayesian inference of
molecular evolution and population dynamics from molecular sequences that attempts to

answer some of these difficulties.

1.2.5 Complexity theory and population genetics

Complexity theory is the study of systems of interacting agents that give rise to self-
organising phenomena. A frequently used concept to describe complex systems is that of
emergent phenomena; “‘the whole is more than the sum of its parts”. The formalization of
complexity theory is still in its infancy. There are a large number of seemingly disjoint
phenomena that have been claimed to have primacy in the mechanistic underpinning of
complexity. Nevertheless, from a physicist’s point of view complexity most often comes
from non-linear dynamics in a many-agent system. With this view in mind, it seems likely
that a large class of models in evolution and ecology should display emergent phenomena
characteristic of complex systems. For example, reaction-diffusion systems are the
prototype for a host of spatially distributed systems that occur in nature, and form the

basis of many spatial models of ecology and evolution.



1.2.5.1 Ecological and spatial population genetics

Since the predator-prey Lotka-Volterra equation was solved independently by Lotka
(1925) and Volterra (1920), theoretical models of ecology with complex dynamics have
been widely demonstrated. A classic demonstration of this was Robert May’s
investigation of the logistic growth equation (MAY 1976). In conjunction with spatial
diffusion, many ecological models are examples of reaction-diffusion equations. Models
of this kind are in general non-linear and often exhibit self-organising properties (for
example, HASSELL e a/. 1994). Hassell, Comins & May showed by simulation that
parasite-host dynamics could generate stable spatial patterns, qualitatively similar to
niche-adaptation, in completely homogeneous environments. Results of this kind

challenge the strictly adaptive interpretations of biological distributions in nature.

In addition, non-linear population models have been used to uncover chaotic behaviour
in experimental systems. For example, a system of three stochastic difference equations
were used to model flour beetle (T7ibolinn sp.) population dynamics, demonstrating

extensive chaotic behaviour (CONSTANTINO ef a/. 1997).

Recently, even some very simple models that population geneticists have regarded as
‘solved” have been shown to behave in surprising ways when spatial properties are
considered. These results suggest that the genetic distribution of spatially structured
populations is not simply interpreted. Some preliminary work in this direction is

described in Chapter 9.

1.3 Phylogenetic systematics

Phylogenetic systematics is the study of the evolutionary relationships between different
populations, species and higher-level taxonomic groups. Modern systematics evolved
from the synthesis of taxonomic classification and evolutionary theory. Building on the
development of theoretical population genetics, many evolutionary biologists became
involved in a movement now known as the modern synthesis of evolution, or alternatively,
Neo-Darwinism. One of the chief figures in this synthesis was Ernst Mayr, who in 1942
published Systematics and the Origin of Species. In it, Mayr developed the biological species concept
(BSC). The modern synthesis began a conceptual overhaul of the field of systematics
(taxonomy) that is still occurring today. Systematics has almost completed the
transformation from an essentialist philosophy of cassification (following the tradition of
Plato through to Linnaeus) to an enterprise predominantly involved in understanding and

inferring the evolutionary relationships between living and extinct populations, species and



higher taxonomic groups. This reflects the transition from a static rationalist view of

biological diversity based on a notion of &znds or archetypes to a dynamic empiricist view.

With this revolution came a surge of methodological developments in the inference of
evolutionary trees. Some of these methods arose from taxonomic and classification
problems. In an attempt to automate and systematise the practice of classification the
field of numerical taxonomy was born (SNEATH and SOKAL 1973; SOKAL 1961; SOKAL
and MICHENER 1958). The methods were empirical and distance-based and were most
often applied to morphological characters. As the availability of molecular sequence data
has increased it has arguably become the data type of choice because of its ubiquitous
nature and relative ease of modelling. As early as 1967, a least-squares technique for
phylogenetic reconstruction from protein sequences was described (FITCH and
MARGOLIASH 1967). In this section I give a brief overview of three classes of
phylogenetic reconstruction techniques: distance-based, maximum parsimony and
maximum likelihood. I am primarily interested in molecular sequences and will largely
restrict myself to molecular sequence data for the following discussion. A precursor to
understanding these methods is some knowledge of explicit models of molecular

evolution.

1.3.1 Models of molecular evolution

The simplest measure of distance between a pair of molecular sequences is the number
of sites at which they differ. This is known as the Hamming distance (H). This raw score
can be normalised for the length of a sequence (L) to get the proportion of sites that
differ between the two sequences, p = H / L. Consider two hypothetical nucleotide

fragments of length L = 20:

1 20
ACGTCGTAAGCGTACTCAGC
ACGTAGCTAGCTTACTCAGC

* k% *

In these sequences H =4 and p =4/20=0.2. The proportion of sites that are different,

P, is an estimate of the evolutionary distance between these two sequences. A single
nucleotide site can, given enough time, undergo multiple substitution events. Because the

alphabet of nucleotide sequences is small, multiple substitutions can rapidly be hidden by

10



reversals and parallelisms. If this is the case, some substitutions will not be observed.
Therefore the estimate of 0.2 substitutions/site in this example could be an
underestimate. This is easily recognised if one considers two hypothetical sequences
separated by a very large evolutionary distance — for example 10 substitutions per site.
Even though the two sequences will be essentially random with respect to each other
they will still, by chance alone, have matches at about 25% of the sites. This would give
them an uncorrected distance, P, of 0.75 substitutions/site, despite being actually

sepatated by 10 substitutions/site.

To compensate for this tendency to underestimate large evolutionary distances, a
technique called distance correction is used. Distance correction requires an explicit model of
molecular evolution. The simplest of these models is the Jukes-Cantor (JC) model (JUKES
and CANTOR 1969). Under the JC model the evolutionary distance between two

nucleotide sequences is:
3 4
d=—In1—-—
4 ( 3 p)

This model assumes that all substitutions are equally likely and that the frequencies of all
nucleotides are equal and at equilibrium. All the models considered in this section are
simple time-reversible Poisson jump processes, independent and identical across sites.
The nucleotide character at site S mutates in forward time according to a Poisson jump
process with 4x 4 instantancous rate matrix Q. Here, Q ; 1s the instantaneous rate for
the transition from state i to state j, and A « 1,C « 2,G « 3T « 4. Let

7T= (1T, 7T, 715, 7T; ) be a 1x 4 vector of base frequencies, corresponding to the
stationary distribution of the mutation process 7Q = (0,0,0,0) . These are termed the

equilibrium base frequencies.

The time units of the rate Q, ; can be chosen so that the mean number of mutations per

unit time occurring at a site is equal to one. The JC model is then:

-1 1/3 1/3 1/3

|3 -1 13 13 aol111
1/3 1/3 -1 1/3] 4'4°4" 4
1/3 1/3 1/3 -1

11



1.3.1.1 Unequal base frequencies
The JC model is quite unrealistic once empirical data is considered. One obvious
departure from this model is the observation of unequal base frequencies. Felsenstein

(1981) suggested a model (FF81) that allows unequal base frequencies:

T T T Th 7T 7L 4
7, =TT, =715 — 7L 7T, T,
oo A AT lle T/ G T
7Ty 7T TN T T, 4
7Ty 7T 7L TN T T T

Where 77 = (7T,, 7T, 77, 7% ) . All subsequent models considered will assume unequal base

frequencies.

1.3.1.2 'Transition/transversion bias
In addition to unequal base frequencies, there is often a bias in transitions (A - G,

Co T) over transversions (A - C, A« T, Co G, G T). Hasegawa, Kishino and Yano
(1985) suggested a model (HKY) that allowed for unequal base frequencies and a

transition/transversion bias K:

— 1T, = KT, = TT; T, KTT, 7T
oo M, — 1T, — 7Ty — KTT; 1 KT,
KTT, T, —KTT, =TT, — TT; 4
, KT 1T — 1T, —KTT, =TT,

1.3.1.3 General time-reversible model
The general time-reversible model (RODRIGUEZ e¢f a/. 1990) allows both unequal base
frequencies and individual rates for each pair of nucleotides. Pairs (A - C,A « G, A T,

Co G, CoT) have rates (a, b, ¢, d, €) relative to G T. This model is the most general

time-reversible model.
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—am. —bm, —cr ar. b7, CIT;

ar, —am, —dm, —ert drz, err,
QO
b, drz. -bm, -dm. - 1T
CTT, ert. 7T, —CJT, — eI, — Tt

1.3.1.4 Rate heterogeneity among sites

In the simplest case, the models of molecular evolution discussed above are assumed to
act independently and identically at all sites in a molecule. In this situation each site can
be regarded as an independent sample of the substitution process. However rate
heterogeneity among sites has become an unavoidable conclusion drawn from empirical
data. In reality, rates of evolution often vary across sites, for example due to structural
constraints (negative/purifying selection), sequence-specific mechanisms of replication,
and/or positive selection. The unjustified assumption of identical rates across sites can
lead to errors in phylogenetic reconstruction (YANG 1993). One of the most widely used
models developed to account for rate heterogeneity among sites is the gamma

distribution model of rate heterogeneity (YANG 1993). The gamma distribution shape

parameter (@) can be used to define a continuum of rate distributions from a single

uniform rate across sites (& — ©) to a distribution in which most sites have low rates

but a few sites have extremely high rates (@ — 0). As @ increases the gamma

distribution becomes more symmetrical and peaked around the central rate.

1.3.1.5 The molecular clock and rate heterogeneity among lineages

The molecular clock hypothesis states that the rate of molecular evolution is uniform
across different lineages and that therefore a pair of taxa sharing a common ancestor
should have equal molecular divergences from that ancestor. Evidence for the existence
of a molecular clock is one of the main arguments in support of the neutral theory of

evolution (KIMURA 1968).

While it is widely accepted, and in fact obvious, that there must be a correlation between
time and molecular divergence, there is argument over the degree and applicability of this
correlation. In rapidly evolving organisms, such as some RNA viruses, there is good
evidence for the existence of a molecular clock in at least some cases (GOJOBORI et .
1990; LEITNER and ALBERT 1999). However, even among viruses there is some
departure from the strictest interpretation of the molecular clock hypothesis (JENKINS ez

al. 2002). Despite these problems, the molecular clock hypothesis has been very
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successful as a null hypothesis of molecular evolution. It has also led to a healthy
scientific industry of inferring dates of evolutionary events from molecular phylogenies

(for example, KORBER e7 a/. 2000).

Recently, modifications of the molecular clock hypothesis, known informally as ‘relaxed
molecular clocks’ have been described (HUELSENBECK e7 a/. 2000; THORNE ef al. 1998).
These modifications to the molecular clock attempt to model lineage-specific substitution
rates by assuming that the rate of evolution itself is subject to evolution over time. There
are a number of reasons why one might expect lineage-specific substitution rates, even
under the neutral theory. One of the primary reasons may be that body temperature and
body mass, by affecting metabolic rate, affect the underlying mutation rate. According to
the neutral theory the substitution rate is equal to the mutation rate, and thus large
changes in body temperature and body mass would be expected to result in changes in

the substitution rate (GILLOOLY e/ a/. 2001).

For large divergences, across diverse taxa, the strict molecular clock hypothesis is often
rejected in favour of models that allow for lineage-specific rates. This suggests that there
is a growing need for explicit statistical models of rate heterogeneity among lineages,
such as the ‘relaxed molecular clock’ models, for molecular phylogenies to continue to be

useful for dating evolutionary events of the past.

The molecular clock hypothesis is an explicit assumption of the methods developed in
Chapters 3, 4, 5 and 6. The molecular clock hypothesis is a useful starting point, and a
fairly accurate assumption for the organisms considered in those chapters, but in light of

the above discussion, it should also be regarded as a limitation of the methods presented.

1.3.2  Distance-based estimation of evolutionary trees

Phylogenetic reconstruction methods can be grouped by the data type that they use and
by whether they use an optimality criterion. Distance-based methods are a class of
heuristic (or so-called ‘algorithmic’) phylogenetic estimation methods that use pair-wise
distances between sequences as input. Most of these methods do not involve an
optimality criterion (however least-squares methods do). These methods discard
sequence character information, such as the distribution of character states across taxa at
a particular nucleotide site in the sequence alignment. Their benefit lies entirely in being

computationally efficient.

It is possible to construct an estimate of the phylogenetic tree of a group of sequences

using a simple clustering algorithm on pair-wise distances. The ‘Unweighted Pair-Group
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Method using Arithmetic averaging’ (UPGMA) is one of the eatliest such pair-grouping
algorithms (SOKAL and MICHENER 1958). UPGMA is best described as an ad hoc
heuristic procedure. Roughly speaking, the algorithm proceeds by selecting the closest
matching pair at each step and amalgamating them into a single cluster. When all
sequences/clusters have been amalgamated into a single cluster the algorithm halts.
UPGMA has the property that two clusters amalgamated during this procedure will be
sister clades in the resulting tree. UPGMA can be shown to have a statistical justification,
under a molecular clock. It is consistent in that it will reconstruct the correct tree at the

limit of infinite sequence length.

The related and widely used method Neighbour Joining (NJ: SATTOU and NEI 1987) uses
essentially the same algorithm, but has an additional re-weighting step after each
amalgamation that accounts for rate heterogeneity among lineages. This method is much
more widely used than UPGMA because it doesn’t assume a strict molecular clock.
Recently, two improvements have been described for the NJ method. One improvement
involves a fast method to calculate multiple low-cost tree topologies (PEARSON ef al.
1999). The second method takes advantage of statistical models of molecular evolution
to agglomerate by a minimum variance technique, thereby improving topological
reconstruction accuracy (BIONJ: GASCUEL 1997). Although some of these sophisticated
agglomeration methods are impressively accurate for the amount of computer time used,

they suffer from a lack of power.

1.3.3 Maximum parsimony estimation of evolutionary trees

The maximum parsimony criterion is an optimality criterion for evolutionary trees, and
has been widely used for evolutionary inference and classification. Under maximum
parsimony, a candidate tree is evaluated by considering the minimum number of
evolutionary events it requires to explain the observed data. The most parsimonious tree
is the tree that requires the minimum number of evolutionary events to explain the
observed data. In the case of molecular sequence data, the maximum parsimony criterion
selects the tree that requires the least substitutions to have occurred to explain the
observed sequences. If the number of characters in the dataset is small or the number of
taxa is large, there may be many equally parsimonious trees. Typically, more data must be

collected to distinguish between equally parsimonious trees.

Maximum parsimony has a long, and at times acrimonious, history in phylogenetics. The

field of cladistics serves as the philosophical underpinning of the maximum parsimony
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criterion. Proponents of cladistic philosophy have argued that one of the advantages of
parsimony is its lack of an explicit evolutionary model, because they say that any
particular model is bound to be wrong (FARRIS 1973). Another argument in support of
maximum parsimony is that simpler hypotheses are better. Superficially this second
argument may hold some appeal to the scientifically minded. However, it has been
shown (FELSENSTEIN 1978) that maximum parsimony is inconsistent (i.e. increasing data
does not increase accuracy of estimation) for almost all reasonable models of evolution.
This becomes apparent when one realises that maximum parsimony makes the implicit
assumption that evolutionary events are extremely rare. This is simply not true over long
periods of evolutionary time, and in the case of rapidly evolving pathogens such as
human immunodeficiency virus type 1 (HIV-1) it is not even true over short periods of
time (for example a few years). Neither of these arguments in support of parsimony will

be credited with any more discussion.

One of the possible advantages of maximum parsimony is that as an optimality criterion
it can be calculated rapidly. For example, using branch and bound techniques, exact
results can be obtained for quite large trees. The branch and bound algorithm eliminates
regions of ‘tree space’ during a depth-first search, without evaluating them, based on
knowledge of the best solution so far. It was first applied to phylogenetic trees by Hendy
and Penny (1982).

It has also been shown that various modifications of maximum parsimony, such as
weighting rare evolutionary events more than frequent evolutionary events, can make
parsimony more consistent and more accurate at phylogenetic estimation (HILLIS e a/.
1994). However, the focus of this thesis is on explicit statistical modelling of evolution,
which being philosophically remote to the maximum parsimony criterion will preclude its

further discussion.

1.3.4 Maximum likelihood estimation of evolutionary trees

If a technique to calculate the likelihood P(D |T) of a tree is available, then the
maximum likelihood (ML) optimality criterion can be used to choose a tree that makes
the data most probable. The earliest systematic attempt to use maximum likelihood in
estimation of evolutionary trees was by Edwards & Cavalli-Sforza (CAVALLI-SFORZA and
EDWARDS 1967; EDWARDS and CAVALLI-SFORZA 1964). These papers were seminal in
attempting to apply standard statistical inference methods to the problem of estimating

the branching history of genetically related populations. The difficulties that these
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authors found with maximum likelihood phylogenetic reconstruction were due in part to
the ambitious nature of their models. In their treatment, gene frequencies were
transformed into a Euclidean space and then treated as if undergoing Brownian motion
on a branching tree. The Yule process (YULE 1924) was used as a prior on tree
topologies, and both the time of each branching event and its position in the Euclidean
genetic space were objects of inference. In this framework, the authors found that the
likelihood surface had singularities and short of describing the entire likelihood surface, a
pure maximum likelihood treatment seemed doomed. In light of the current work of this
thesis it is noted with some satisfaction that the authors suggested the use of Monte
Carlo methods to alleviate these problems. However, in this intellectually stimulating

early work they restricted themselves to a hybrid method of maximum likelihood.

In 1973 Joseph Felsenstein published two papers describing general techniques for
calculating the likelihood P(D |T) of a tree for discrete (FELSENSTEIN 19732) and

continuous characters (FELSENSTEIN 1973b). He avoided the problems of earlier workers
by ignoring the population dynamic aspects of the evolutionary process and by collapsing
mutation rate and divergence times together. In 1981 he followed this work up with a
paper describing a technique for calculating the maximum likelihood tree from molecular
sequence data under the assumption of unequal base frequencies (FELSENSTEIN 1981).
One of the key strengths of ML is the use of explicit statistical models (such as Poisson
process models of mutation at a site) to describe evolutionary processes. This means
that is it relatively simple to modify the underlying statistical model and assumptions.
Ironically, as mentioned previously, early detractors saw this as a disadvantage (FARRIS
1973). Farris argued that any particular model was bound to be wrong in the vast
majority of cases and advocated the principle of maximum parsimony as an alternative. I

will not investigate this line of reasoning further for reasons stated in section 1.3.3.

The flexibility that ML provides can be seen in the complexity of models studied within
the ML framework. Models of secondary structure for proteins (GOLDMAN e a/. 1998,
THORNE e/ al. 1996), models of secondary structure for RNA molecules (SAVILL ¢f .
2001; TILLIER and COLLINS 1995; TILLIER and COLLINS 1998), empirical models of
protein evolution (for example, WHELAN and GOLDMAN 2001) and models of codon
evolution (GOLDMAN and YANG 1994; YANG e¢f a/. 2000) have all been developed and
investigated in a likelihood framework. Models with gamma-distributed rate variation
among sites (YANG 1993; YANG 1994) and models with correlated rates among sites

(FELSENSTEIN and CHURCHILL 1996) have been described. Recently models that include
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selection in the form of unequal rates of synonymous and non-synonymous substitutions

have also been developed (NIELSEN and YANG 1998; YANG 1998).

1.3.4.1 Tree searching algorithms

Maximum likelihood is far more computationally intensive than the distance-based
methods described in the previous section. Exhaustive evaluation of the likelihood for all
trees of a given size is not feasible for large numbers of taxa (>>10). This has led to the
development of a number of heuristic techniques. In his 1981 paper Felsenstein
suggested a greedy algorithm of stepwise addition to generate a starting tree, followed by
a number of branch-swapping operations in an attempt to find a near-maximum
likelihood tree without searching all of tree space. Heuristic algorithms of this sort still
dominate today in ML phylogenetic construction, despite the lack of a guarantee that the
ML tree will in fact have been found by algorithms of this sort. Most of the techniques
employed use some kind of #ree operation to iteratively refine a starting estimate of the
phylogenetic tree. A #ree operation defines the set of neighbours, in ‘tree space’, of a given
tree. For the purpose of traversal, repeated stochastic applications of a tree operator
should eventually lead to all possible trees. The nearest-neighbour interchange (NNI) and
subtree-pruning and regrafting (SPR) are two examples of tree operators implemented in

PAUP* (SWOFFORD 1999) to carry out heuristic searches of ‘tree space’.

1.3.4.2 Hypothesis testing

One of the strengths of the maximum likelihood method of phylogenetic reconstruction
is the ability to objectively select between two models using the likelihood ratio test. The
simplest form of the likelihood ratio test occurs when the models are nested. In this case,
the test statistic is twice the difference in the log likelihood of the two models. This test
statistic is asymptotically )(2 distributed with degrees of freedom equal to the difference in
number of parameters of the two models [but see (OTA ¢/ a/. 2000) for an example where
the nested model represents a boundary value and the resulting test statistic is not X
distributed]. Thus, while a complex model will always have a likelihood score greater than
ot equal to a simpler nested model, the difference in likelihood may not be great enough
to justify the extra parameters. The p-values obtained in this kind of test can be

interpreted in the standard way with regard to type 1 and type 2 errors.

In the case of selecting between alternative tree topologies there is no obvious nesting of
the two models. This precludes standard use of the likelihood ratio test. Both parametric

and non-parametric statistical tests have been employed for selecting between tree
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topologies. One of the eatliest tests of this variety was the Kishino-Hasegawa (KH) test
(K1sHINO and HASEGAWA 1989). The KH test was widely used to compare the
maximum likelihood tree to a tree representing some a priori hypothesis. However it has
recently been pointed out that this usage is incorrect as both tree topologies must be @
priori specified (GOLDMAN et /. 2000). More recent tests for topology include the
Shimodaira-Hasegawa (SH) test (SHIMODAIRA and HASEGAWA 1999), which takes into
account multiple test scenarios. This area of phylogenetic inference still seems to be
under scrutiny, as subsequent tests such as the SH test have been shown to contain
biases and are still unsatisfactory (SHIMODAIRA and HASEGAWA 2001; STRIMMER and

RAMBAUT 2002).

Despite some difficulties and computational burden, parameter estimation and model
comparison in a likelthood framework have a number of attractive statistical properties
that are not shared by other methods such as heuristic distance-based methods and

maximum parsimony.

1.3.5 Uncertainty in phylogenetic reconstruction

Phylogenetic reconstruction is a statistical enterprise, subject to all of the problems
inherent in statistical estimation in general, such as sampling error. In most cases, the
amount of data analysed will be insufficient for a single estimate of the evolutionary
relationships to be an honest description of our knowledge. One way of assessing the
strength of support for an estimated phylogeny is non-parametric bootstrapping
(FELSENSTEIN 1985). Bootstrapping involves the generation of pseudoreplicates of the
original data matrix (the sequence alighment) by sampling with replacement. In this way,
each pseudoreplicate will resemble the original dataset in the sites it contains and differ in
the frequency. Each site in the original dataset may appear 0, 1 or many times in a
pseudoreplicate. Each pseudoreplicate is used to estimate a phylogeny and the set of
phylogenies obtained from repeated generation of pseudoreplicates will provide
information about the sampling error associated with the original dataset. Strongly
informative datasets will show little variation in estimates of phylogenies between
pseudoreplicates. The result of bootstrapping is a set of trees. The “bootstrap support”
for a clade is the proportion of trees in a bootstrap analysis that contain that clade. A
single consensus tree that contains the clades with the highest bootstrap support is

usually used to summarize the bootstrap trees. Bootstrapping can be used with many
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phylogenetic reconstruction methods, including distance-based, maximum parsimony

and maximum likelihood methods.

A related method is jackknifing. Jackknifing is an alternative method for generating
pseudoreplicates that subsamples the original data matrix without replacement. A
jackknife pseudoreplicate is thus a copy of the original dataset with some sites deleted.
Each site in the original dataset may appear O or 1 times. Jackknifing was suggested in a
phylogenetic setting (PENNY and HENDY 1985) about the same time as bootstrapping,

however it has received far less attention despite being potentially more efficient.

1.3.6 Bayesian inference in phylogenetics

Bayesian inference is a methodology that naturally lends itself to quantifying uncertainty.
Bayesian phylogenetic inference is a recent phenomenon and coincides with a growth of
Bayesian statistical methods in all areas of science. The aim of a Bayesian phylogenetic
inference is not necessarily to establish the ‘true’ tree, but instead to provide information
about all plausible trees given a data set. Bayesian inference allows analyses to proceed
without exact knowledge of the tree topology. In many instances evolutionary
hypotheses can be explored in a Bayesian setting by weighting a set of plausible trees by
their relative probabilities. The tree topology is then effectively treated as a nuisance
parameter that is taken account of but then discarded. This avoids the potential bias of
assuming a particular tree topology, or even worse assuming no evolutionary correlations
in the observed data. The concept of likelihood is still fundamental to Bayesian inference
and the relationship between these two inferential frameworks will be elaborated in

section 1.5 and again in Chapter 5.

Bayesian inference in phylogenetics is a rapidly growing area (HUELSENBECK e a/. 2001;
LEWIS 2001) and will become increasingly important in evolutionary inference. Although
it has many advantages, they do not come without a price. Demonstrating that a
particular Bayesian analysis is correct is notoriously difficult and often dependent on the
input data. A large part of this thesis will deal with some novel applications of this

methodology to answer fundamental questions in evolutionary biology.

1.4 'The Information Age of Biology

The fields of computational biology and bioinformatics have in recent years become
almost as central to biology as evolution. The recent elucidation of the complete human

genomic sequence by two independent parties (LANDER ¢/ a/. 2001; VENTER ez al. 2001)
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was heralded as one of humankind’s greatest achievements in biology. This endeavour
was fundamentally one of computational biology and bioinformatics. The human
genomic sequence constructed was in both cases pure information. They are idealized
virtual genomes consisting of 23 sentences written in a 4-letter alphabet (A, C, G, T) and
have no physical reality. The power of this ‘discovery’ is in its information content — that
is, in the patterns that computers will find in it. Without computers the human genome

sequence would be almost useless.

In the case of the private effort (VENTER e# o/ 2001) the assembly of the entire sequence
was achieved by an automated computational method. Modern molecular biology is
increasingly focused on sequence analysis of whole genomes. This world is fundamentally

a computational one.

1.4.1 Sequence databases

GenBank is the National Institutes of Health (NIH) genetic sequence database and is an
annotated collection of all publicly available DNA sequence. As of the 30" of May 2002,
GenBank accommodated 2.971 x 10" nucleotides and more than doubles in size every
year (ROOS 2001). Along with the databases of the European Molecular Biology
Laboratory (EMBL) and the National Institute of Genetics, Japan (DNA Data Bank of
Japan: DDBYJ), which both exchange entries with it, is the largest public sequence
database. In the face of this vast sea of sequence data, specialist databases are becoming

important filters allowing researchers to focus on areas of interest.

Molecular sequence databases are growing faster than computational power is increasing.
Therefore the number of CPU cycles per nucleotide is actually decreasing at a worrying
rate. This situation suggests that more focus on development of sequence analysis
techniques is necessary to manage the available information. In addition, parallelisation

of computer power will also become increasingly important.

1.4.2 Parallelisation of computer power

In the face of large increases in molecular sequence data and increasing complexity of
computational analyses, parallelisation of computer power is becoming essential.
Parallelisation allows an analysis that might otherwise be impossible on a single desktop
computer to be conducted relatively cheaply on ‘farms’ of desktop computers.
Consequently algorithms that lend themselves to parallelisation will be attractive to
researchers in the field of bioinformatics. Some results presented in this thesis would not

have been possible without access to medium-sized arrays (25-50) of desktop computers.
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1.4.3 Open source development

In a research environment in which software development is becoming an increasingly
important aspect of basic research, the software source code itself becomes a valuable
asset of the scientific community. Open source licences such as the GNU Public Licence
(GPL) and the Lesser GNU Public Licence (LGPL) are important benchmarks in
scientific programming. The use of these licence structures or similar ones such as

Apache-style (http://www.apache.org/LICENSE.txt) increase the rapidity of verification

and development that are essential to science. A large part of the software development
during this thesis has been made available as open source and the remaining has been

made freely available as Java class libraries and executables.

1.5 Statistical Inference in Evolutionary Biology

How do we begin to understand the patterns and complexity of molecular sequence
data? There are a number of computational inference techniques that can be employed to
investigate statistical models of evolution. The kinds of algorithms that are employed are
often determined by the kind of statistical inference and models that are being used.
Broadly speaking statistics can be separated into “frequentist” and Bayesian schools of
thought’. These two approaches are philosophically separated by their interpretations of
truth and probability. This separation translates into a bias in the way investigators in
each group describe evolutionary processes. This section describes the similarities and

differences in these two approaches.

Before investigating these two inferential strategies it is constructive to define some
terms. Both maximum likelithood and Bayesian inference provide inference through the
concepts of a (statistical) zode/ and a (statistical) hypothesis. The model is the part of the
description of the observed data that is taken as known: for example, a tree topology, an
alignment, or the Markovian nature of a substitution model. The hypothesis is the focus of
uncertainty: for example, the branch lengths of the tree or the relative rates of different
substitution rates in the Markov jump process. From this description it should be
obvious that the boundary between model and hypothesis is blurry at best. In one
situation the tree topology or alignment may be given, and therefore part of the model,
and in another situation one or the other may be an object of inference and therefore

part of the hypothesis.

> Some may regard this as an abuse of terminology. ‘Likelihoodists’ are really a separate philosophical
branch of statistical theorists in their own right, apart from both traditional frequentists and ‘subjective’
Bayesians.
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Estimation finds the ‘best’ parameter values of a given statistical model for some observed
data. The difference between maximum likelihood and Bayesian inference is in the
criterion by which we select the ‘best” hypothesis (i.e. the ‘best’ parameter values of the
model) given the data. Analogously, #zodel comparison allows us to choose between
alternative statistical models (model comparison is sometimes referred to, somewhat
confusingly, as hypothesis testing), and again the criterion we use will depend on the

inferential framework.

1.5.1 Maximum likelihood

The maximum likelihood criterion was introduced to statistics as an optimality criterion
that gives evidentiary support precedence (EDWARDS 1972; FISHER 1922b; FISHER 1925).
Likelihood is a unifying principle of statistical inference that focuses on making
statements about relative support rather than absolute belief. This is reflected in the
focus on log-likelihood ratios, known as support (EDWARDS 1972). The likelihood axiom
states that for a given statistical model, all the information about the relative merit of two
hypotheses is contained in the likelihood ratio of the hypotheses on the data. The
likelihood ratio is the degree of support for one hypothesis over the other. The likelihood
axiom is only concerned with weighing the two hypotheses and decision theory is not
within its scope. The decision to select one hypothesis over another (for instance selecting
one tree topology over another as discussed in section 1.3.4 above) must involve

additional concepts, such as repeated sampling theory or information theory.

Maximum likelihood has been widely accepted in phylogenetics as a method of
phylogenetic reconstruction and in population genetics as a method of estimating
population parameters using coalescent theory. In relatively simple settings (such as
branch length estimation) maximum likelihood lends itself to numerical optimisation
techniques. One of the most attractive properties of maximum likelihood is the
invariance of likelihood ratios under a transformation of variables (EDWARDS 1972;

FISHER 1921).

1.5.2 Bayesian statistical inference

Bayesian inference is a methodology that focuses on quantifying uncertainty. The focus
of a Bayesian inference is not to establish an estimate of a parameter of interest, but
instead to provide information about the uncertainty of the parameter. An example of
the interpretation that can be made of a Bayesian analysis is the relative probability of the

parameter lying in one of two intervals.
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Technically, Bayesian statistical inference is closely related to likelihood-based methods,
in that the likelihood function plays a central role. Bayesian statistical inference generally
involves the same statistical models and in some cases, even the same sampling
machinery. However, philosophically Bayesian inference is almost the antithesis of
maximum likelihood. Bayesian inference treats parameters of interest as random
variables, requiring all aspects of the hypothesis to have prior probability densities — in
some sense this denies that a parameter has a true value. It also requires that the
investigator describe probability densities for all parameters of interest, even when no
repeatable experiment exists. However, in practise this paradox can be difficult to grasp,
especially when Bayesian inference is used with so-called non-informative priors.
Probability calculus tells us that Posterior probability U Likelihood X Prior probability. Thus the
mathematical relationship between the two methods is striking, especially when the prior
probability is uniform. In this situation it is often the case that Bayesian inference is
simply sampling the likelihood surface, and the difference between the methods boils
down to how the sampled distribution is summarized. Nevertheless, there is an active

debate about the relative merits of the two methodologies.

Detractors of the Bayesian approach argue that Bayesian inference is subjective because a
necessary step in a Bayesian analysis, prior elicitation, is subjective. For example, even
when using so-called ‘non-informative’ priors, the posterior density may still be sensitive
to boundary conditions applied to the prior. In general, the posterior density can be
arbitrarily transformed by selection of an appropriate prior. Also, transformation of a
parameter can render uninformative priors informative. Uninformative-ness is not

invariant under transformations.

On the other hand, proponents of Bayesian inference would argue that prior elicitation
allows a researcher to investigate different systems of assumptions. In this sense,
Bayesian inference is a powerful exploratory tool and offers the researcher tools that are
completely lacking in a maximum likelihood analysis. While it is true that the prior can
modify posterior beliefs, it is also true that the prior should be scrutinized as a visible

part of any Bayesian analysis.

One of the most flexible computational techniques for inference in a Bayesian
framework is the sample-based inference technique described by Metropolis ef a/ (1953)
and Hastings (1970). Chapter 5 describes a Metropolis Hastings Markov chain Monte

Carlo sampler developed for population genetic inference.
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1.5.3 Computational Techniques

The following section describes computation methods for optimisation and integration.
1.5.3.1 Numerical optimisation

The term numerical optimisation describes a host of computational methods that aim to find

maxima of an arbitrary function of interest, h:

max h(6)

600

The function h may have no closed form but must be able to be evaluated for a given set
of parameter values, € Traditionally the optimisation problem has been approached by
using deterministic methods that make use of analytical properties of the target function,
such as convexity and smoothness. However, these properties are not always easy to
guarantee for functions of interest in evolutionary inference. It has recently been shown
that these analytical properties are generally less important in Monte Carlo optimisation

techniques whete h has a probabilistic interpretation.

The initial description of maximum likelihood analysis of molecular sequences in the
context of evolutionary trees (FELSENSTEIN 1981) was accompanied with an application
of the expectation-maximisation (EM) algorithm (DEMPSTER e/ a/. 1977) for branch
length estimation. In its original form the EM algorithm is not a stochastic algorithm,
and deterministic algorithms of this type have been frequently employed in maximum
likelihood settings. Each branch length is taken in turn and optimised, conditional on the
current values of the other branches. This reduces the problem to a series of univariate
maximization problems that are individually trivial under the above assumptions of
convexity and smoothness. The EM algorithm causes an increase of the likelihood at
each step that ensures convergence to the maximum likelithood estimator for a unimodal
likelihood function. However, in a multi-modal function, initial conditions will determine
which local maximum is reached. In an unconstrained model, such as an unrooted tree
with no molecular clock, the likelihood surface will often be uni-modal. It was assumed
by some that the branch length likelihood surface was uni-modal for all phylogenetic
trees of interest. However, Rogers and Swofford recently showed that data simulated on
realistic trees could contain multiple local maxima in tree space (ROGERS and SWOFFORD
1999). Although computationally intensive, this can be overcome by multiple starting
points. Additionally it has been shown that multiple globa/ maxima, especially in the form

of ridges in the likelihood surface, are also possible in branch length space (CHOR et .
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2000; STEEL 1994). Both of these sets of results are of practical importance because
most software programs that implement maximum likelihood phylogenetic inference use
simple hill-climbing techniques from a single starting point. As a result, maximum
likelihood implementations can fail to return the correct maximum likelihood value
during branch length estimation, and tree topology searches, and will typically do so

without the user realising it.

1.5.3.2 Monte Carlo optimisation

Monte Carlo methods may be attractive when the function of interest is not uni-modal,
as has been shown in a number of phylogenetic settings (CHOR e7 a/. 2000; ROGERS and
SWOFFORD 1999; STEEL 1994). Monte Carlo methods are stochastic and therefore rarely
guarantee an exact solution. However, some trade-offs between deterministic and
stochastic search strategies may be of interest in this context. The first and most obvious
is hill-climbing from multiple starting points. Another possibility is the use of szzulated
annealing, in which the search begins in a stochastic mode, jumping randomly in space,
and slowly becomes more deterministic in its hill-climbing through the gradual decrease
in a ‘temperature’ parameter. Both of these methods will still suffer shortcomings if the

number of maxima is large or the basins of attraction are small.

1.5.3.3 Metropolis-Hastings Markov chain Monte Carlo

Markov chain Monte Carlo is a general method of generating samples from a density of
interest when the normalizing constant is unknown (HASTINGS 1970; METROPOLIS e al.
1953). It is a sampling method rather than a method of optimisation, and the Markov
chain generated is expected to visit all volumes of parameter space in proportional to
their probability density in the function of interest. This method is heavily utilised in
Chapters 5, 6 and 8 to solve phylogenetic inference problems. Chapters 5 and 6 describe
the estimation of mutation rate from temporally spaced sequences. This problem has
been shown to have multiple local likelthood maxima for real data sets (Rodrigo e7 a/, in

preparation).

1.6 Conclusion

This chapter has briefly explored the developments of the last century of research in
theoretical and empirical evolutionary biology, with specific attention to population
genetics and phylogenetics. Recent advances in molecular sequencing and computer
power has ushered a new information age into biology. This has important implications

for the study of evolution, and this introduction has covered the major areas of impact.
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The following chapters detail progress I have made in this interdisciplinary area of

research.

This thesis concentrates on two emerging problems in evolutionary inference: (i)
measurably evolving populations and (1i) the role and impact of molecular structure in

molecular evolution.

Chapter 2 introduces the concept of measurably evolving populations, especially in light of
recent technological advances, such as rapid molecular sequencing and ancient DNA
sequencing, and methodological advances, many of which are a direct result of work

described in this thesis.

Chapter 3 describes the first method I developed to analyse mweasurably evolving populations.
This method is based on pair-wise distance data and sacrifices sophistication for speed.
This chapter has been published in the international peer-reviewed journal, Molecular

Biology and Evolution.

Chapter 4 describes a new method of maximum-likelihood estimation of mutation rate
trom measurably evolving populations that allows for multiple rates. This method has
implications for the analysis of rapidly evolving pathogens interacting with the immune
system, and drug therapy. This chapter has been published in the international peer-

reviewed journal, Molecular Biology and Evolution.

Chapter 5 describes a new Bayesian inference method for the joint estimation of
mutation rate, population history and genealogical relationships from measurably evolving
populations. This chapter has been accepted for publication in the international peer-

reviewed journal, Genetics.

Chapter 6 explores some extensions to the Bayesian framework outlined in Chapter 5.
To illustrate the flexibility and power of computational intensive statistically explicit
modelling strategies, three case studies are undertaken. The effect of rate heterogeneity
among sites is analysed, and estimation of the age of fossils from genetic material is

undertaken.

Chapter 7 introduces the subject of RNA evolution and Chapter 8 investigates a number
of problems motivated by the development in Chapter 7. The focus is on RNA
secondary structure and its role in the molecular evolution of tRNA-encoding genes. The

estimation of structure-specific substitution models is undertaken, and the inclusion of
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structural information in both sequence alignment and phylogenetic reconstruction is

evaluated.

Chapter 9 outlines a brief excursion into the inference of spatial patterns from genetic
data and Chapter 10 outlines the use of the MEPI software and the XML language
MEPIX used to describe MCMC analyses for phylogenetics and population genetics.

Chapter 11 discusses the open problems in evolutionary inference and discusses possible
directions that future research in computational evolutionary inference might take, in the

hope that this lineage of scientific endeavour survives a while longer.

It will become apparent to the reader that the research program followed herein is
philosophically aligned with those workers that strive for explicit and realistic statistical

models to describe the process of evolution.
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2 Measurably Evolving Populations

“Our genetic reasoning will be almost entirely confined to the analysis of gene frequencies among present-
day populations, though it is clearly possible to extend it to other cases. In particular once methods have
been set up for estimating the course of evolution from present-day data, they can be extended without
difficulty to include data from the past.”

(Cavalli-Sforza & Edwards, 1967)

This chapter is based on a leading-author manuscript in preparation for submission

entitled “Measurably Evolving Populations” by A.J. Drummond and A.G. Rodrigo.
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2.1 Introduction

Population genetic and phylogenetic studies that utilize molecular sequences typically rely
on samples that have been obtained contemporaneously. However, there has been
increasing interest in the analysis of samples that are temporally spaced’. If (i) the
mutation rate is fast, (i) the time frame is sufficiently long and/or (iii) the sequences are
sufficiently long, then temporally spaced sequence data can provide the opportunity to
measure evolutionary rates. Populations for which we can collect datasets of this type are
called measurably evolving populations (MEPs). Measurably evolving populations allow us to
separate intra-specific diversity into contributions from population size and contributions
from mutation rate. Temporally spaced sequences have begun to revolutionize the study
of viral evolution and ancient DNA based population genetics. They provide the
opportunity for detailed analysis of temporal patterns of population size and mutation
rates, and a new means of estimating divergence times and mutation rates that is
independent of external calibrations. The concept of measurably evolving populations
promises to further illuminate our understanding of evolutionary processes from viruses

to vertebrates.

2.1.1 Rapidly evolving pathogens

One source of temporally spaced sequence data and measurably evolving populations is
obtained from intra- and inter-host samples of rapidly evolving viruses such as HIV-1
and human influenza A. These viruses evolve at such high rates (~1% per year in the
case of the HIV-1 envelope (en2) gene) that measurable differences in a virus population
are often readily apparent from one year to the next (LETTNER and ALBERT 1999; LI e/ a/.

1988; SHANKARAPPA e¢f al. 1999).

2.1.2 Fossil and Pre-fossil DNA

Another source of temporally spaced sequence data is ancient DNA. With increasing
regularity short DNA sequence fragments (100-1000bp) are being recovered from pre-
fossil material of considerable age (BARNES e a/. 2002; HANNI e al. 1994; LAMBERT et al.
2002; LOREILLE e7 a/. 2001). Especially successful has been the recovery of mitochondrial
DNA (mtDNA) (which has a high copy number) from permafrost remains at least
60,000 years old (BARNES ez a/. 2002). Even in the absence of relatively cold and dry

¢ “Temporally spaced” will be the canonical term used to refer to a set of sequences that are not all of the
same age. Synonyms for “temporally spaced” that are used are “serially sampled” and “longitudinally
sampled” in the case of many virus evolution studies and alternatively “time-stamped” or “dated-tips”.
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conditions some researchers have claimed recovery of mtDNA hyper-variable region 1
(HVR1) sequences from remains as old as 60,000 years (ADCOCK e7 a/. 2001). With the
widespread success of mtDNA recovery from recent (<100,000 years) fossil material,

researchers are starting to embark on the recovery of DNA sequence from nuclear loci

such as microsatellites (David M. Lambert, personal communication).

This growing wealth of ancient DNA sequences brings with it the opportunity to treat
organisms with much lower mutation rates than viruses as measurably evolving
populations. Recently a study of 5669 genes in mammals found an average substitution
rate of 2.2 x 10”7 (KUMAR and SUBRAMANIAN 2002). This is 5 million times slower than
HIV-1 env substitution rates of up to 1% per year. In contrast early phylogenetic
estimates of mtDNA in birds suggested an overall rate of 2 mutations per 100 million
years (SHIELDS and WILSON 1987), ten times faster than that of nuclear genes in
mammals. The HVR1 region, located in the contro/ region of the mitochondrial genome,
exhibits the fastest rates of evolution in vertebrates, and the use of temporally spaced
sequence data has already had an impact here. Previous estimates of HVR-1 evolution in
birds were about 0.2 mutations per site per million years. However, a recent analysis of
ancient DNA in Adelie penguins using MCMC methods to compare the temporally
spaced ancient sequences with modern sequences suggested that the mutation rate in this
region is probably 2-7 times faster (0.4-1.4 mutations per site per million years)
(LAMBERT ef al. 2002). Table 2.1 provides a comparison of rate estimates from various

taxa and methods.
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Table 2.1 Mutation rates of various genetic regions in different organisms.

Both MEP and non-MEP estimation methods are shown.

Genetic region Rate Method Reference

(substitutions per

site per year)
Mammalian nuclear 22x10° (KUMAR and SUBRAMANIAN
genes 2002)
Avian whole 2x 108 Phylogenetic method (SHIELDS and WILSON 1987)
mitochondrial genome
Adelie penguin 4-14x107 MEP Bayesian (LAMBERT ¢ al. 2002)
hypervariable region 1 method (ancient
(326 bp) DNA)
human mitochondrial *7.7x 107 Pedigtee/familial (HEYER ez al. 2001)
control region (673 bp) direct method
Inter-host influenza A 23x 103 MEP linear regression | (FITCH ef al. 1991)
non-structural gene
Inter-host influenza A 57-6.7x103 MEP linear regression | (FTTCH et al. 1997; FITCH et al.
hemagglutinin gene 1991)
Inter-host HIV-1 env 6.2x 103 Triplet based distance | (LI ef a/. 1988)
gene method
Inter-host HIV-1 env 6.7 x 103 MEP linear regression | (LEITNER and ALBERT 1999)
gene
Intra-host HIV-1 env 9.2x 103 MEDP linear regression | (SHANKARAPPA ¢ al. 1999)
gene

* Assuming a generation length in humans of 20 years.

2.2 Concepts

The concept of a measurably evolving population (MEP) becomes useful when
describing populations where the mutation rate, time frame or sequence length is
substantial enough that the accumulation of substitutions can be detected over the
sampling period. Intuitively, a population is measurably evolving if one can feasibly
construct a sampling scheme that shows a (statistically) significant accumulation of
substitutions in a gene or gene fragment when two or more temporally distinct samples
are obtained from the population. The relevance of this concept is demonstrated by the

large number of studies that have explicitly, or implicitly, used it (see Table 2.2).

2.2.1 Non-independence of temporally spaced sequences

Many evolutionary methods assume that substitutions follow a strict molecular clock (i.e.
all sequences that are of the same age have the same expected evolutionary distance from
the root of the tree). This assumption is made in ultrametric tree-building methods such
as UPGMA (SOKAL and MICHENER 1958), tests of the molecular clock based on trees
(FELSENSTEIN 1981) and most coalescent methods in population genetics (HUDSON
1990; KINGMAN 1982a; KUHNER e¢f /. 1995). However, when sequences are temporally
spaced it may be necessary to explicitly model this time structure to avoid biases in an

analysis. If a population sample consists of data of different ages and a substantial
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number of substitutions occur over the sampling time frame, then the use of models that

do not incorporate this information will produce unpredictable biases in inference and

hypothesis-testing procedures. One plausible solution would be to treat each sample as

an independent replicate, and derive estimates (or make inferences) from sequences of

each sampling occasion separately. However, this approach is flawed, since the

genealogies of the samples may overlap extensively. For example, the correlation across

samples will bias the variance of the derived estimates. Treating serially sampled

sequences as independent replicates is analogous to treating moving averages as

independent. The non-independence caused by shared ancestry is a familiar problem in

evolutionary inference. However, in this setting this potential problem can be exploited

in a number of novel ways.

Table 2.2 Historical and current uses of MEP methods.

Problem

MEP-based solution

References

Estimate mutation rate
per unit time

“Simple counting”

(HAYASHIDA e7 al. 1985; KRYSTAL ¢/ al. 1983,
MARTINEZ ¢/ al. 1983)

Distance method of Li
Tanimura & Sharp (LI ¢/ al.
1988)

(GOJOBORI ¢7 al. 1990; LI ¢f al. 1988; LUKASHOV et
al. 1995)

Least-squares regression (on
pairwise distances or on a
single reconstructed tree)

(BUONAGURIO ¢f al. 1986; DRUMMOND and
RODRIGO 2000; FITCH ef al. 1997; FITCH et al.
1991; GOJOBORI ¢t al. 1990; LEITNER and ALBERT
1999; PAGEL 1999; SHANKARAPPA ¢ al. 1999)

ML methods

(DRUMMOND ¢t al. 2001; RAMBAUT 2000; SEO e#
al. 2002b)

Pseudo-likelihood coalescent
method

(SEO et al. 2002a)

Bayesian coalescent method

(DRUMMOND et al. 2002)

RNA virus meta-study

(JENKINS e al. 2002)

Ancient mtDNA study

(LAMBERT et a/. 2002)

Estimate generation

length

Coalescent-based method

(RODRIGO et al. 1999)

Distanced-based method

(FU 2001)

Estimate population
size dynamics

Coalescent theory

(RODRIGO and FELSENSTEIN 1999)

Pseudo-likelihood coalescent
method

(SEO ez al. 2002a)

Bayesian coalescent method

(DRUMMOND e/ a/. 2002)

Estimate divergence
times

MIL. method

(RAMBAUT 2000)

Bayesian coalescent method

(DRUMMOND et al. 2002)

Ancient mtDNA study

(LAMBERT et a/. 2002)

Inferring phylogeny

Distance-based method

(DRUMMOND and RODRIGO 2000)

Bayesian coalescent method

(DRUMMOND et al. 2002)

Experimental design

Likelihood method

(SEO et al. 2002b)

2.2.2 Estimating mutation rates using temporally spaced sequences

Some of the first attempts to estimate mutation rates using temporally spaced sequences

were made by comparing sequences of human influenza A strains isolated at different

33




times (KRYSTAL e# a/. 1983; MARTINEZ ¢/ al. 1983). This early work was later expanded by
the analysis of more genes and the comparison of synonymous and non-synonymous
evolutionary rates (HAYASHIDA e/ a/. 1985). All of the early work done in human
influenza A involved comparing the genetic distance with the time interval between pairs
of sequences. This kind of analysis is based on the assumption that the population
diversity at any one time is negligible, and thus two sequences isolated at different times
differ only by the accumulation of substitutions over the time interval. It is now known
that this simplification is not valid, and that there is significant genetic diversity in human
influenza A and many other measurably evolving populations. Methods to account for
substantial population polymorphism were developed for studying both human influenza
A (BUONAGURIO ¢ al. 1986; SAITOU and NEI 1986) and human immunodeficiency virus
type 1 (HIV-1) (LI ez al. 1988). Least-squares linear regression on a reconstructed tree was
used by two of these methods (BUONAGURIO ez /. 1986; SATTOU and NEI 1986). The
method of Li, Tanimura & Sharp (LI ez a/. 1988) took a different approach and compared
each sister pair of isolates of different ages, with a closely related outgroup to account for

any divergence pre-dating the time interval between the sister pair.

More recently Leitner and Albert (1999) estimated the rate of molecular evolution in
HIV-1 using a linear regression technique from a known transmission history. In the
same year Shankarappa ef a/ (1999) used a similar least-squares regression method to
study the long-term intra-host rate of HIV-1 evolution in 9 infected patients. All of these
studies suggest very high mutation rates in both HIV-1 and human influenza A viruses

(see Table 2.1).

Since these initial attempts, a number of researchers have developed and validated
methods that accommodate the time structure of temporally spaced data both in
phylogenetic and population genetic frameworks. With these developments, accurate
estimation of mutation rate (DRUMMOND e/ a/. 2002; RAMBAUT 2000) and its variation
over time (DRUMMOND ¢/ a/. 2001; DRUMMOND and RODRIGO 2000) has become
possible using temporally spaced data. These advances have included Bayesian inference
frameworks that allow for uncertainty in the tree topology (DRUMMOND e7 a/. 2002). This
development has made it possible to re-assess mutation rates of mtDNA in birds, using

ancient DNA where the tree topology is unknown (LAMBERT et a/. 2002).

In some cases, the evolutionary rate per se may not be the primary focus of interest, but

may instead be used as an indicator of other biological processes. For example, in intra-
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patient studies of evolution in HIV-1 patients undergoing drug therapy, the accumulation
of substitutions per unit time can be used as a proxy for the rate of viral replication. A
measure of viral replication rates could be useful in assessing the efficiency of a drug

regime (DRUMMOND e/ a/. 2001).

2.2.3 Estimating generation length using temporally spaced sequences

If the ages of sequences are known in calendar units (for example, days or years) then it
is possible to estimate the mutation rate per site per calendar unit. However, population
genetic theory tells us that in a haploid population the expected genetic diversity, ©, is
two times the product of population size and mutation rate per generation. Hence in order
to estimate population size we need to know the conversion factor 0, the number of

calendar units per generation (i.e. the generation length).

This problem can be turned on its head if the mutation rate is already known from some
external source. In this case, one can estimate the generation length from serially sampled
genetic data, given the mutation rate. A number of methods have been described to do
this (FU 2001; RODRIGO ef a/. 1999; SEO ef al. 2002a) and all agree closely with methods
based on viral load dynamics. This congruence between genetic methods and viral load
dynamics is encouraging because they arrive at the same result, despite completely
different sources of data and methodology. The most recent of these methods, a pseudo-
likelihood method (SEO ez a/. 2002a), was used to estimate the generation length of 9
intra-patient data sets. Assuming a single underlying mutation rate, they estimated that
generation length in HIV-1 varied from 0.73 to 2.43 days among the 9 patients, again

showing close congruence with eatly work.

2.2.4 Estimating population size dynamics using temporally spaced sequences
A pair of contemporary homologous sequences drawn randomly from a haploid
population with effective population size Ng, are expected to have a common ancestor on
average Ne generations in the past (WRIGHT 1931). If the mutation rate, /4, is constant,
the pair of sequences will accumulate an average of Ngl/ mutations each, so that between
them one expects to see 2Nel differences. These statements about common ancestry and
mutation rates provide us with a way of working backwards from sequence data to derive
estimates of effective population size, rates of growth or decline, migration, and

selection. These expectations are illustrated in Figure 2.1 and Figure 2.2.
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If the sequences are not contemporary but each has a separate age, then the expected
number of mutations that sepatate the two is no longer a function of Ne alone — rather
the total number of mutations separating them will become a function of both Ne and
the time interval separating them. For example, consider two ancient sequences and two
modern sequences from the same population. The expected number of mutations
between the pair of ancient sequences will not be the same as that expected between an
ancient and a modern sequence. In fact, the expected difference between an “ancient-
modern” pair and an “ancient-ancient” pair will be equal to the product of the mutation
rate and the time interval separating the ancient and modern samples (Figure 2.2B), as

has been demonstrated previously (DRUMMOND and RODRIGO 2000; Fu 2001).

Figure 2.1 The genealogies of two unlinked genes.

Gene 1 and Gene 2 are two unlinked genes from the same ten individuals sampled from an idealized
haploid population of size Ne. This diagram shows that two random individuals (such as A and B) are
expected to share a common ancestor, on average, Ne generations ago. Although this is the expectation, a
particular pair of sequences may be more closely or more distantly related. In general, a sample of N
individuals is expected to shate a common ancestor, on average, 2Ne(1-1/n) generations ago.
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2.2.4.1 'The coalescent and temporally spaced sequences
The historical population processes that shape the genetic diversity of a population can
be illuminated by genealogical methods such as the coalescent (IKINGMAN 1982a). The

coalescent is the most appropriate framework for studying the evolutionary genetics of a
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large population from which a sample of sequences is drawn. A description of the
coalescent for serially sampled sequences has recently been given (RODRIGO and
FELSENSTEIN 1999). Consider a genealogy with N terminal nodes (individuals or
sequences) and N—1 ancestral nodes. For node I, let tj denote the age of the node in
generations from the present. The class of all “legal” trees is the set of all rooted binary
trees with N leaves fixed at ages tj and N —1 ancestral nodes assigned ages {j in such a way
that all ancestral nodes are at least as old as their children. The coalescent is a probability
density for a tree, f(G|N,), and is computed as follows. First, order the nodes of the
tree by increasing age. Then, fori=1,2...2n-1, t <t,<...t <...<t, ;. Let ki denote the

number of lineages present in the interval of time between the node i —1 and the node i.

The coalescent density is:

2n-1

f(GIN,) =(N—1)n-1|j exp(—ki (k -1 "HJ (2)

2N,

This formulation of the coalescent has been used to develop methods that estimate
population sizes from serially sampled sequences (DRUMMOND ef a/. 2002; SEO ef al.
2002a). We have used this theory to describe a method for jointly estimating population
size, population growth rate and mutation rates while taking into account the uncertainty
of the tree topology and mutation model using MCMC (DRUMMOND ¢f a/. 2002). Others
have used the coalescent to described a pseudo-maximum likelihood method when the
tree is known (SEO e /. 2002a). Together, these methods will assist in analyses aimed at

elucidating population size dynamics in measurably evolving populations.
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Figure 2.2 Genealogy-based
population genetics.
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2.2.5 Estimating divergence times using temporally spaced sequences

One important use of measurably evolving populations is the independent estimation of
divergence times in phylogenetic and population genetic studies. Traditionally,
independent information (such as fossil evidence) has been used to determine the
divergence time of an anchor node and then, by assuming a molecular clock, to estimate
the ages of other divergences in the tree (SHIELDS and WILSON 1987). Often a particular
class of substitutions (for example, transversions in Adh gene) are chosen as a molecular
clock. This selection will depend on the time-scale and sequence fragment in question.
The molecular clock calibration method suffers when there is rate heterogeneity across

lineages and when substitution rates over long time-scales are used to calibrate
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divergences over short time-scales. Recent advances have addressed rate heterogeneity
across lineages by explicitly incorporating it into the analysis (HUELSENBECK e7 /. 2000;

THORNE ez al. 1998).

MEDPs provide the unique opportunity to estimate substitution rates over relatively short
time scales (~5,000 years in mtDNA) and consequently to estimate divergence times in
individual populations where ancient DNA is available (LAMBERT e7 a/. 2002). Effectively,
the ages of the sequences themselves are used as calibration points (DRUMMOND e a/.
2002). This is a powerful alternative in situations where ancient DNA is available, as it
allows for an independent assessment of molecular evolutionary rates at the population
level. In the future this method should also allow species differences in the rate of
evolution of homologous DNA sequences to be directly compared. As a result, this will
provide a test of methods that incorporate lineage specific rate heterogeneity.

The use of methods based on temporally spaced samples to estimate divergence times,
has led to the suggestion that molecular evolutionary rates appear to be faster over short
time frames than over longer time frames (LAMBERT ez 2/ 2002). This raises questions
about our understanding of molecular evolution, especially in relation to Motoo Kimura’s
neutral theory. The neutral theory implies invariance of rates at different time-scales,

which is contradicted by recent findings.

2.2.6 Phylogenetic inference using temporally spaced sequence data

When mutation rates are fast or time-scales are long, ignoring the correlation between
genetic distance and isolation time will result in biases in tree reconstruction methods
that assume contemporaneous sequences. We have been involved in the development of
two methods that allow for phylogenetic reconstruction in the face of temporally spaced
samples. The first is a variant of UPGMA (DRUMMOND and RODRIGO 2000) and the
second is a Bayesian inference method that assumes a coalescent prior on trees
(DRUMMOND ez al. 2002). These methods have not yet been widely used, however in later
chapters I will show the utility of our Bayesian coalescent method. We are not aware of
any other methods available to perform phylogenetic reconstruction for measurably

evolving populations.

2.2.7 MEDPs and the neutral theory of evolution

The clock-like nature of many rapidly evolving viruses has been used to support both the
molecular clock hypothesis (LEITNER and ALBERT 1999) and Kimura’s neutral theory of

evolution (GOJOBORI ¢f al. 1990). Although there is now fairly strong evidence of
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positive selection in HIV-1 (NIELSEN and YANG 1998) it still appears to be a relatively

minor contribution to the evolution of the HIV-1 genome as a whole.

Recent preliminary evidence of a negative correlation between population size and
mutation rate suggests that negative selection imposed by functional constraints is more
important and ubiquitous in HIV-1 evolution than positive selection (SEO ez a/. 2002a).
This observation provides supportt for the nearly neuntral theory (discussed in GILLESPIE

1995; OHTA and KIMURA 1971).

2.2.8 Hypothesis testing and experimental design

Recent maximum likelihood and Bayesian methods of analysis have filled an important
gap in the study of measurably evolving populations. These methods both provide a
wealth of options for hypothesis testing and model comparison. Of first and foremost
concern is the extent to which the molecular clock hypothesis survives careful scrutiny.
For example, only 7 out of 50 RNA viruses fit a strict molecular clock when tested in one
recent comprehensive study (JENKINS ¢z 2/ 2002). However, the researchers went on to
show by simulation that even for the viruses that did not obey a strict molecular clock,
the substitution rates estimated could still be regarded as an accurate reflection of the

average substitution rate.

Most previous tests of the constancy of evolutionary rate only tested the uniformity of
rates across lineages. A concerted change in evolutionary rate over time would not be
detectable using only contemporaneous sequence data. However, with temporally spaced
sequence data it is possible to both estimate (DRUMMOND e7 /. 2001; DRUMMOND and

RODRIGO 2000) and test for (SEO e al. 2002b) concerted changes in evolutionary rate.

2.3 Conclusion

Measurably evolving populations provide an opportunity to ask questions about
population dynamics and molecular evolution that are not possible with slow-evolving

organisms and/or contemporaneous sequence data.

All populations accumulate mutations over time, but whether or not we treat a
population as a MEP will depend on the amount of information obtainable over time.
This, in turn, depends on the sampling scheme (i.e. the number and length of sequences
obtained and the length of time over which they are sampled), and on the underlying

biological system (i.e. the mutation and population dynamics of the genetic element being
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studied). Thus the concept of measurable evolution is an empirical one, related to the

logistical constraints of data collection for the population of interest.

For a particular set of biological parameters, the concept of a MEP allows us to partition
sampling schemes into those that will show measurable amounts of evolution and those
that will not. Hence, given our current knowledge of these biological parameters, we can
use the MEP concept to guide us in designing sampling strategies that fall into one of
these two categories depending on the purpose of the analysis. Furthermore, we can
assess whether the MEP concept is of importance for a particular population and if not,
what changes in technology or understanding might make it so. Some sampling
strategies will clearly be non-accessible for many populations due to technological and
financial limitations. This may, for instance, be true of many extinct populations. It may
also be true of slowly evolving species that have little or no reservoirs of non-degraded
ancient DNA. On the other hand, fast-evolving populations such as RNA viruses can

readily be sampled to show measurable amounts of evolution.

Finally, at the limit of infinite sequence length it has been demonstrated that evenly
spacing sample times among all sequences provides more precise estimates of population

size than sampling multiple sequences at the same time (SEO e# a/. 2002b).

A solid theoretical basis for developments in this area has been put in place in recent
years based on coalescent theory and likelihood models of molecular evolution.
However, the methods available are still limited by the simplifying assumptions of the
models used. Substantial population subdivision, recombination or selection may
adversely affect many current methods of analysis for serially sampled sequences. Most
assume single panmictic populations, free of recombination and selection. Methods that
take into account migration between subpopulations, substantial recombination and

selection effects are needed.

Most of these effects fall squarely within the purview of population genetics and are
already well understood in the context of contemporaneous samples of sequences. We
expect that in the near future methods that allow incorporation of all of these effects will
exist for analysis of measurably evolving populations. In fact, very early on it was
predicted that temporally spaced data would provide the opportunity to shed new light

on these forces:
“To sum up, selective trends will be detectable only if data from the past are available”

(Cavalli-Sforza & Edwards, 1967)
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The use of the methods outlined in this chapter, and their derivatives, will assist in
answering fundamental questions about the tempo and mode of molecular evolution

from viruses to vertebrates.
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3 Reconstructing genealogies of serial samples

using setial-sample UPGMA (sUPGMA).

This chapter is based on a leading-author paper published in Molecular Biology and Evolution
entitled “Reconstructing genealogies of serial samples under the assumption of a
molecular clock using serial-sample UPGMA” by A.J. Drummond & A.G. Rodrigo
(2000).
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3.1 Overview

Reconstruction of evolutionary relationships from non-contemporaneous molecular
samples provides a new challenge for phylogenetic reconstruction methods. With recent
biotechnological advances there has been an increase in molecular sequencing
throughput, and the potential to obtain serial samples of sequences from populations,
including rapidly evolving pathogens, is fast being realized. A new method called serial
sample UPGMA (sUPGMA) is presented that reconstructs a genealogy or phylogeny of
sequences sampled serially in time, using a matrix of pair-wise distances. The resulting
tree depicts the terminal lineages of each sample ending at a different level consistent
with the samples’ temporal order. Since SUPGMA is a variant of UPGMA, it will
perform best when sequences have evolved at a constant rate (i.e., according to a
molecular clock). On simulated data, this new method performs better than standard
cluster analysis under a variety of longitudinal sampling strategies. Serial sample UPGMA
is particularly useful for analysis of longitudinal samples of viruses and bacteria as well as
ancient DNA samples, with the minimal requirement that samples of sequences are

ordered in time.

3.2 Introduction

It is well known that some of the more pernicious human viral pathogens evolve rapidly.
Indeed, it is their evolution that stymies attempts to battle infection with antiviral drugs —
resistance evolves too quickly. With HIV-1, for instance, 10” to 10™* substitutions
accumulate at each site each generation, and there are an estimated 140 — 300 generations
per year (PERELSON e¢f a/. 1996; RODRIGO e7 al. 1999). Parts of the HIV genome have
been shown to accumulate substitutions at a rate of 0.92% per year (SHANKARAPPA ¢ .
1999). There is some thought in the research community that understanding how these
viruses evolve is the key to understanding how one may control disease. Recent results
give us cause to think that this may be true: a study by Shankarappa ez 2/ (1999) found
that in nine individuals infected with HIV, the pattern of viral evolution within each
patient was strikingly similar, with certain features that appeared predictive of
progression to AIDS. If such commonality of pattern is universal, then generalizations
can be made about the process of evolution that such patterns suggest, and this, in turn,

may lead to a strategy to control progression.

The study by Shankarappa ef a/ (1999) involved repeated sampling of the viral population

from each individual over several years, but such sampling schemes are not uncommon
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for such rapidly evolving pathogens (HOLMES ¢ a/. 1992; RODRIGO ef al. 1999;
WOLINSKY ez al. 1996). A starting point for many evolutionary and population genetic
methods is a reconstructed phylogeny of sampled sequences (FELSENSTEIN 1992b; FU
1994; NEE ¢t al. 1995; PYBUS ef al. 2000), often under the assumption of a molecular
clock but, until now, there has been no method to reconstruct evolutionary trees of
serially sampled sequences under this assumption. Here, we present such a method.
Serial sample UPGMA (sUPGMA) is a fast, flexible phylogenetic reconstruction method
that can be used whenever samples have been obtained at different times. These samples
may be of sequences from a rapidly evolving viral population obtained from within a
patient over the course of infection, or from cohorts of individuals sampled over time.
We demonstrate the efficiency of sSUPGMA at recovering the true topology and describe
accessory analyses that allow the estimation of population parameters and mutation rate.

Finally, we discuss various extensions of sUPGMA and its associated analyses.

3.3 Serial sample UPGMA

Consider the following sampling scheme: a population is sampled several times over the
course of a study period, and at each sampling time a number of sequences are obtained.
If these sequences have evolved so that all lineages accumulate substitutions at the same
rate over the same period of time (i.e., according to a molecular clock), then the best
representation or model of their phylogeny will look something like that shown in Figure
3.1E. Here, six sequences have been sampled, two at each of three time points. One
would expect, if clock-like evolution were occurring, that sequences from the same time
point would terminate at identical times. One method for reconstructing phylogenies of
sequences according to a molecular clock is UPGMA [Unweighted Paired-Group
Method with Arithmetic Means (SOKAL and MICHENER 1958)]. However, with UPGMA
all tips on the tree terminate at the same time (i.e., the tree is ultrametric). What is
required to reconstruct the phylogeny shown in Figure 3.1E is a method that will allow
the tips to terminate at different times, but constrains tips sampled at the same time to
terminate at identical distances from the root. Serial sample UPGMA allows for this. The

method consists of four sequential steps.
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Figure 3.1 An outline of the sUPGMA procedure.

(A) First a distance matrix of the sequences sampled must be collected. (B) A matrix is constructed that
relates each observed distance to the parameters to be estimated. Each row in B corresponds to an instance
of Equation 3.2, and the binary values in the columns correspond to the X's in Equation 3.3. For

convenience, only a single O is estimated in this example. Once this mattix is constructed the least squates

solution (Equation 3.4) can be used to estimate the parameters. (C) The estimated values of Oare then used
to correct the original distance matrix (Equation 3.6). (D) A standard UPGMA tree is constructed from
these corrected distances. (E) The branches in the UPGMA tree are then trimmed using the estimated
deltas to produce the serially sampled genealogy.
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3.3.1 Estimation of k.

Simply, this step involves estimating the expected number of substitutions per site that
accumulates between sampling times. It has been shown how this may be done for pairs
of samples (FU 2001). The expected distance between a pair of sequences, one from a

later time point and the other from an earlier time point is:

E[dISt(Saarly’ Sate)] = E[d|§( 1)Iy’ 2)Iy)] + 5earlyﬂlate (31)

The first term on the right hand side is simply the expected average distance between any
two sequences from the earlier time point. To obtain an estimate of 0, we substitute the
average pairwise distance between early and late sequences calculated from our sample
for the term on the left, and the average pairwise distance between pairs of early

sequences for the first term on the right, and solve. The problem becomes tricky when
there are more than two time points, because then it becomes possible to calculate & for
every possible pair of sampling times. The problem with this approach is that it may be
that for any three time points .4, B, C (where C'is eatlier than B, which is earlier than .4),
BZ:A % 303 + 3BA (where 3 is the estimated value) when, in fact, under any reasonable
model the equivalent equality must be true. To overcome this problem, we have adopted
a general regression approach to estimate 0, as follows. Consider a dataset of p samples,

with sample i obtained more recently than sample i+1 (i [J1,..., p). Let d(m,n;)be

the evolutionary distance between the i™ sequence of the m" sample and the | sequence
of the N™ sample; by convention we will assume that M2 N, i.e., we will only consider

elements in the diagonal and lower triangular matrix of pairwise distances.

We can model each d(m;,n;) by its expectation E[d(m, n/)], and from Equation 3.1,

obtain

E[d(m,n)] = E[d(m”,m?)] + 7, , (3.2)
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For reasons that will become obvious below, we will designate E[d(m™, m?)]=0©_. In

0, 0, Thus, we can

addition, 9,, ,can be written as the sum of O, et o2+ Onst -

m-m-1?

write the linear equation relating the distances to the parameters as:
p

d(m,n;) = z@kxk + X eym 921 Xzl gmiOa.2 o Xl pymOpo pa T Emon, (3.32)
k=L

whete O k1 is the expected number of substitutions that have accumulated between the

K" and (k-1)" sample;

1 ifk=m
= _ (3.3b)
0 otherwise
X _ |1 ifmz>kandn < k-1 23
(k=kmmn =) g otherwise (-39

and Em n, 15 the etror due to natural variation, measurement and sampling.
k|

n

The vector of estimated parameters 512{(:)1,@)2,...,@)p,OA_z_,l,...,éA_p_lﬁ p} is

obtained by the standard least squares solution:

a=(X'x)*xd (3.4)

where d is a vector of pairwise distances. With this approach, the estimate of the s
satisfies the condition that Ozy = Ogg +0gs. One additional constraint that we make to

the Os is to set any value of Jthat has been estimated as a negative value to zero.

For the estimation approach above, it is not essential to know the actual sampling times,

only the order in which the samples were drawn. If the actual sampling times are known,

48



then an alternative approach to estimating Ois to estimate a single constant, W (effectively
the number of substitutions per unit time), and multiply this by the time interval between

two sampling occasions, i.e. a(t; —t,).

Once again, we estimate @using a regression procedure. In this case,
p
d(rnar]j):z(akxk-I_C")(tm_tn)-l_‘grq,nJ (35)
k=1

where ty is the time at which the k™ sample was obtained. Note that wis not the
mutation rate per generation, unless time is expressed in generation units. However, @
can be converted to the mutation rate (i.e., number of substitutions per site per
generation) if the generation time is known.

3.3.2 Correction of pairwise distances

Each pairwise distance dij in the distance matrix is now transformed to a corrected

distance, ¢(m,N;) as follows:

c(m,n;) =d(m,n))+J, ,+3J, ; (3.6

where O, ; and O, , are the & associated with the divergence between samples mand

N and the most recent sampling occasion (labeled "1"). What this does, in effect, is
extend the distances of sequences sampled eatlier to a value that approximates the

expected divergences of sequences obtained most recently.

3.3.3 Cluster using UPGMA.
UPGMA or WPGMA (SNEATH and SOKAL 1973) is applied to the corrected distance

matrix, giving a tree in which all branches terminate at the same time.

3.3.4 Trim back branches.

Once the UPGMA tree has been constructed, for any terminal lineage which extends to

sequences in sample M, J;,_, is subtracted from the branch length. The sSUPGMA tree
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has the topology recovered by UPGMA (on corrected distances) with tips terminating in

the appropriate order of sampling.

3.4 Estimating Population Parameters and Mutation Rate

As described above, a vector of parameters is estimated as part of the tree-building

algorithm. This vector takes the form a :{él,éz,...,é p,gzﬁl,...,étp_l_, p} when

the order of samples is known and a ={(:)1, s 0 P @} when exact times are known. Of

course, within this framework, there is no requirement to specify a model with different
values of ©; instead, we could estimate a single parameter, ©, such that a ={@q,&} . In

this case, the average pairwise diversity at each time point is effectively a random variable
with expectation ©,. Setting @, as a constant is equivalent to assuming a population
model with constant effective size; under such a model ©, = 2Ng/ where Ne is the

effective population size, and f/is the mutation rate per site per generation (TAJIMA

1983).

Although the interpretation of a single ©, is easily accommodated within a simple
constant-sized population model, this is not the case when multiple Os are estimated.
Multiple Os should not be taken as (independent) estimates of different 2Nt/ values
because the overlap in genealogies from one sample to the next affects the pair-wise

distances of the sequences in a complex way. The simple assighment of different Os in

our model does not incorporate these complexities.

However we choose to define our model, the variance of the estimates cannot be easily
calculated analytically. However, at least for a constant-sized population model a
parametric bootstrap method for obtaining the variance of these estimates can be
implemented. For a given set of parameter estimates, a large number (typically > 1000) of
serially sampled genealogies can be simulated using the estimated parameters (and
assuming a constant population size) to generate pseudo-replicate datasets. For each
generated pseudo-replicate the sSUPGMA procedure is then repeated, resulting in a range
of estimates for O(s) and & or @ In the case of a 95% confidence interval and 1000
replicates, the 26™ and 975" estimates (when ranked) are taken as the upper and lower

95% confidence limits of the original estimate.
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3.5 Efficiency of Tree Reconstruction

To test the efficiency of sSUPGMA, simulated datasets were created for which the real
phylogenetic tree was known. Rodrigo and Felsenstein (1999) described how Kingman’s
N-coalescent (IKINGMAN 1982a), essentially a diffusion approximation of the times of
N—1 coalescent events on an N-taxon tree, could be extended to coalescent trees with
non-contemporaneous tips. One of the novel properties of coalescent trees of serial
samples is that sampling a direct descendent of a sequence sampled in an earlier time
point becomes possible (although unlikely when the effective population size, Ng, is very
large). The probability of a single lineage from a later time point having a direct ancestor
in a earlier sample is equal to the fraction of the total population size sampled at the
eatlier time (Nearlier / Ne) (EPPERSON 1999). This possibility was also permitted in the
simulations performed, representing an extension of the original description of the serial
sample coalescent (FELSENSTEIN ¢ /. 1999; RODRIGO and FELSENSTEIN 1999). It
should be noted that this inclusion results in the possibility of multiple coalescent events
occurring at the same time point when more than one direct ancestor is sampled at one
time point. However, this happens at an appreciable rate only when the assumption of a
very large population size is broken (i.e. when n’ > Ne). At this point the diffusion
approximation of coalescent intervals itself is no longer valid. To avoid this problem,
values of Ne were selected so that n? was always smaller than Ne. Therefore, the
simulations were performed under the assumption of a constant population size and Ne
was set to 10,000, which is large enough to fulfill the requirements that n? << Ne. The

mutation rate was set to 5 X 10° mutations per site per generation. This results in an

overall value of © of 0.1 (for a haploid population), comparable to published values for
HIV evolution (BROWN 1997; RODRIGO et al. 1999). The model of evolution used in the
simulations was a simple Jukes-Cantor substitution model (JUKES and CANTOR 1969).
The simulated genealogies were drawn from populations with no selection,

recombination or subdivision.

The serial sample coalescent algorithm was implemented in a small Java program for the
purpose of generating coalescent trees under a variety of different sampling strategies
(Table 3.1). This allowed an appraisal of the effect of different sampling strategies on the
accuracy of tree-building algorithms. For each sampling strategy tested, a range of inter-
sample divergences was tested from 0.5% to 10% divergence, with an increment of 0.5%.

For each sampling strategy and each divergence, 1000 simulated genealogies were
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constructed. All simulations resulted in time-ordered DNA sequences 1000 nucleotides
in length. This length is comparable with lengths of many gene loci available for
phylogenetic study and is not so long that assuming no recombination is untenable. For
each simulation a pairwise Jukes-Cantor distance matrix was constructed. The ability of
sUPGMA and UPGMA to correctly reconstruct the simulated genealogies using the
pairwise distances was evaluated. The reconstructed trees of each method were compared
to the real tree using the symmetric difference index (SDI) tree comparison metric
(ROBINSON and FOULDS 1981). This metric counts the number of clades in each tree that
are not present in the other tree as a proportion of the total number of clades in both

trees.

Table 3.1 Sampling stategies under which phylogenetic reconstruction was tested.

Total sequences  Sampling strategies®

20 2x10 4x5 5x4 10x 2
40 2x20 4x10 5x8 8x5 10x4 20x2
80 2x40 4x20 5x16 8x10 10x8 16x5 20x4

* Sampling strategies are represented by the number of time points multiplied by the number of
sequences per time point.

Figure 3.2 shows the performance of sUPGMA and UPGMA on serially sampled
datasets with four serial samples. Essentially the same pattern was seen for all sampling
strategies. The performance of sSUPGMA generally increases with divergence while the
performance of UPGMA generally decreases. Figure 3.2 indicates that once some low
threshold of inter-sample divergence is exceeded, sUPGMA reconstructs the genealogy

more accurately than UPGMA.
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Figure 3.2 Phylogenetic reconstruction performances of sUPGMA and UPGMA.

All simulations were performed on four samples, with 5, 10 or 20 sequences in each sample.
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Table 3.2 shows the approximate threshold values for a variety of sampling strategies.
Each threshold value was found by picking the lowest divergence for which sUPGMA
performed better on average than UPGMA. In general, our simulations indicate that the
divergence threshold decreases with an increase in the size of each sample. Therefore,
collecting more sequences within each time point improves the ability of the least squares

procedure to detect small divergences.

Table 3.2 Threshold values of total divergence over which sUPGMA outperforms UPGMA.

Number of sampling occasions®

Total sequences 2 4 5 8 10 16 20
20 0.01 0.02 0.02 - 0.035 - -
40 0.005  0.01 0.015  0.02 0.025 - 0.05
80 0.005  0.01 0.01 0.015  0.02 0.035  0.04

*The number of sequences in each time point is equal, and can be obtained from this table by dividing
the number of timepoints by the total number of sequences.
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3.6 Efficiency of Parameter Estimation

The efficiency of parameter estimation of ©, wand & was measured by simulating two
sets of 1000 serially sampled genealogies, one parameterised in accordance with Equation
3.3a, the other in accordance with Equation 5. One thousand genealogies of four
samples, each with five sequences, were simulated under the Jukes-Cantor model of
substitution, resulting in time-ordered sequences of 1000 nucleotides. Figure 3.3 shows
the distribution of estimates of © (true value = 0.1) for the 1000 simulations with a total

divergence over the four samples of 6%.

Figure 3.3 O estimates for four samples of five sequences for 1000 simulated trees.

The real value of © = 0.1, and the total divetgence = 0.06 expected substitutions.
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The mean estimate of © was 0.0986 with a skewness statistic of 1.753, showing that the
least squates procedure produces estimates of © that ate unbiased but which have a
positively skewed distribution (Table 3.3 & Table 3.4). The least squates estimators of 0,
0, 0, and ware also unbiased, although once again the distributions of the estimates are
skewed. Figure 3.4 shows the empirical densities for estimates of 9, J,, d, and Figure 3.5

shows the empirical densities of Westimates.
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Table 3.3 Parameter estimates under the d-parameterisation for 1000 simulated datasets of four

samples of five sequences.

e ) 5, o,
True value 0.1 0.02 0.02 0.02
Mean 0.0986 0.0203 0.0189 0.0205
standard deviation 0.0432 0.0229 0.0269 0.0477
Skewness 1.753 1.807 2.356 2.452
97.5" percentile 0.207189 0.079969 0.094122 0.141634
2.5th percentile 0.045227 -0.01973 -0.01408 -0.03477

Table 3.4 Parameter estimates under the @ parameterisation for 1000 simulated datasets of four

samples of five sequences.

A

©] Q@
true value 0.1 5%x10°
Mean 0.09996 4,95 % 10°
standard deviation 0.0454 3.88 x 10°
skewness 1.797884 2.186
97.5" percentile 0.2224 1.56 x 107
2.5 percentile 0.0440 2.71 x 107
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Figure 3.4 J, & and & estimates for four samples of five sequences.

The results were obtained for 1000 simulated trees and the real values were: & = & = J = 0.02.
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Figure 3.5 Estimated mutation rate, & from 1000 simulations of four samples of five sequences.

The real value of mutation rate was 5 X 10-6 substitutions per site per generation.
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3.7 An Example Dataset

In this section, we illustrate the use of sSUPGMA with a dataset of serially sampled partial
envelope (env) gene sequences of cell-associated HIV-1 DNA, obtained from a long-term
asymptomatic individual over five sampling occasions. These samples and the patient
history have been described previously (RODRIGO ez a/. 1999). In total, there are 60
sequences in this dataset. Pairwise distances were constructed using a general time-
reversible model allowing for unequal nucleotide frequencies and relative rates of
substitutions. Substitution and frequency parameters of the substitution model were
estimated with PAUP* 4.0b4 (SWOFFORD 1999). sUPGMA was applied to the pairwise

distance matrix to reconstruct the serial genealogy of the sequences, allowing different
values of @ and &. We also reconstructed the genealogy by assuming a constant © and

mutation rate, &) and used parametric bootstrapping of 1000 simulated trees to obtain
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95% confidence intervals for these parameters. The reconstructed trees are shown in

Figure 3.6, and the associated parameter estimates are given in Table 3.5.

Figure 3.6 Two sUPGMA trees constructed from an example dataset.

Tree A was constructed under the assumption of a constant population size and a constant mutation rate.
Tree B was constructed allowing a different population size at each sampling point and allowing the
varying rate model, in which each time interval has a different mutation rate.

0.01 substitutions 0.01 substitutions

Table 3.5 Estimated parameters for example dataset.

Sample Days from earliest  No. of sequences O estimates O estimates?

(5) sample
1 0 13 0.0410 0.00386 (1.80 x 10-5)P
2 214 15 0.0388 0.01054 (2.31 x 10°9)
3 671 15 0.0519 0.0 (0.0)
4 699 9 0.0452 9.54 x 104 (3.12 x 109
5 1005 8 0.0410 N/a

* Measured in expected substitutions per site between the given sample and the sample immediately
following it.
b Corresponding mutation rates are shown in brackets in mutations per site per day.

It is instructive to consider some of the main points of these results. When © and Jare
allowed to vary, sUPGMA is unable to distinguish between Samples 3 and 4, i.e., for this

interval 0= 0. In fact, these two samples wete obtained only 1 month apart, so this
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result is reasonable. When @ is held constant, and @is estimated, the values obtained are
© =0.0446 (95% confidence interval: [0.0184, 0.1016]) and w= 7.8 x 10 substitutions

per site per day (95% confidence interval: [-3.47 x 10, 3.87 x 10”]). This estimate of @
translates into an annual substitution rate of 0.3%. This is certainly lower than other
estimates of HIV-1 env gene substitution rate that have been obtained previously, which
are on the order of 1% per year (SHANKARAPPA ¢7 a/. 1999). It is not clear why our
estimate of substitution rate is three times lower than other estimates. However, it is
pertinent to note that with this patient, antiretroviral therapy was initiated at an early
stage of the study, and this in turn may have lengthened the average generation time of
infected cells (see below) and consequently lowered the substitution rate. When a
varying rate of substitution is allowed, the average rate obtained over the entire 1005 days
of the study is 1.53 x 10~ substitutions per site per day (0.6% per year), which is closer to
previously obtained results. However, this mean rate is still deflated by the very slow

substitution rate observed in the last 306 days of the study (see Table 3.5).

Interestingly, the 95% confidence interval of our estimate of mutation rate encloses zero.
While this can mean that there is no evidence that there has been a detectable
accumulation of substitution over time, it can also mean that there are some sequences
obtained at a later time point which appear more closely related to those from an earlier
time point. In fact, in the original tree published by Rodrigo ez a/ (1999), this appears to

be the case.

3.8 Discussion

sUPGMA is a variant of UPGMA which constructs genealogies of samples of sequences
obtained at different times, under the assumption of a molecular clock. sUPGMA is a
two-step procedure. The first step involves estimating the expected sequence divergence
between samples obtained at different times. The second step requires the construction
of a corrected distance matrix adjusted to take account of these expected divergences,
and subsequent clustering using UPGMA. Given a more accurate estimation procedure
for the divergences, the accuracy of sSUPGMA tree reconstruction can be improved. For
example, given a perfect estimate of divergences, the sUPGMA procedure will perform
better than UPGMA under all sampling strategies and divergences (simulations not

shown). Therefore the threshold divergences required for sUPGMA to outperform
UPGMA will be reduced by the use of better estimators of & and/or @
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When a molecular clock does not apply, UPGMA is known to perform pootly as a tree
reconstruction method. However, in the case of clock-like data that have experienced
large amounts of evolution, the accuracy of UPGMA in reconstructing clock-like
genealogies has been favourably compared to methods such as maximum-likelihood
phylogenetic reconstruction (PYBUS e a/. 2000). Our results demonstrate that the
accuracy of UPGMA for phylogenetic reconstruction can be improved, by modifying the
distances between longitudinally sampled sequences to correct for the extra divergence
expected between earlier time points and the most recent time point. The rationale
behind using SUPGMA as a basis for a tree reconstruction procedure for serial samples is
to provide an accurate and rapid estimation of a serially sampled genealogy. Both the
criteria for large divergences and clock-like evolution are fulfilled in at least some virus
populations (GOJOBORI ¢ /. 1990; LEITNER and ALBERT 1999; SHANKARAPPA e¢f al.
1999). In addition, and perhaps most importantly, the speed of SUPGMA allows very
large datasets (with hundreds or thousands of sequences) to be analyzed with relative
ease. This is an important feature when taking into account the size of genealogies
already under consideration (SHANKARAPPA e7 a/. 1999). The distance-corrected matrix
that is constructed as part of sSUPGMA can also be used with other members of the
family of hierarchical algorithmic clustering methods such as WPGMA, Complete
Linkage and Single Linkage clustering.

As part of our parameter estimation procedures, we also introduce two parameterisations
of expected inter-sample sequence divergence. In one case — @Wparameterisation —
divergence is expressed as a product of the sampling interval and mutation rate (the latter
scaled to the same units of time as the sampling interval). A second parameterisation
that we use, O-parameterisation, is less constrained. With O-parameterisation, the i"
interval between two sampling occasions is effectively allowed to have its own mutation

rate, &, so that O = wt;, where { is the length of the interval. In a sense, &

parameterisation provides a new intermediate model of evolution between the two
extremes of a strict moleculat clock and the absence of a molecular clock. We call this
intermediate model the varying clock model. With HIV, for instance, the application of
antiretroviral therapy leads to changes in the relative frequencies of different infected cell
types (PERELSON ¢7 a/. 1996). Since each cell type has a different mean generation time, a
change in population structure will lead to a change in mean generation time, and
consequently, a change in the average mutation rate. This has already been alluded to

above when we analysed our example dataset. Under such conditions, a varying clock
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model may be appropriate. [Note that the varying clock model we propose is different
from lineage-specific models of variable mutation rates. In the latter, mutation rate is
assumed to change independently along different branches of the tree (HUELSENBECK e7

al. 2000; THORNE ¢/ al. 1998) ]

Although we have focused on rapidly evolving viral populations here, it should be
obvious that sUPGMA and its associated procedures of parameter estimation apply
equally well to eukatyotic populations from which ancient and/or archival DNA is
available. We anticipate that the search for better methods to analyse such populations
will only become more important with the increasing frequency of longitudinal sampling

strategies and the acquisition of DNA samples from ancient or archival material.

A computer program called PEBBLE that implements sUPGMA and other related
methods, written in the Java programming language can be obtained from

http://www.cebl.auckland.ac.nz/. This software will run on all computer platforms that

support the Java Virtual Machine version 1.1 (JVM 1.1). This includes Microsoft
Windows, Linux and MacOS.
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4 Interence of step-wise changes in HIV-1 enw
mutation rate using maximum likelthood

This chapter is based on a leading-author paper published in Molecular Biology and Evolution
entitled “The inference of stepwise changes in substitution rates using serial sequence

samples” by A.J. Drummond, R. Forsberg & A.G. Rodrigo (2001).
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4.1 Overview

The molecular clock hypothesis, although a useful null hypothesis, is often rejected by
statistical tests on real sequence data. Molecular sequences do not always evolve in a
strictly clock-like manner. Substitution rate may vary for a number of reasons, including
changes in selection pressure and effective population size, as well as changes in mean
generation time. Here we present two new methods for estimating stepwise changes in
substitution rates when serially sampled molecular sequences are available. These
methods are based on “multiple rates with dated tips” (MRDT) models, and allow
different rates to be estimated for different intervals of time. These intervals may
correspond to the sampling intervals, or to intervals defined @ priori not coincident with
the times the serial samples are obtained. Two methods for obtaining estimates of
multiple rates are described. The first is an extension of the phylogeny-based maximum
likelihood estimation procedure introduced by Rambaut (RAMBAUT 2000), and the
second is a new parameterisation of the pair-wise distance least-squares procedure used
by Drummond & Rodrigo (2000). The utility of these methods is demonstrated on a
genealogy of HIV-1 sequences obtained at five different sampling times from a single

patient over a period of 34 months.

4.2 Introduction

Although molecular sequences accumulate substitutions over time, the rate at which this
occurs may not be constant. The rate of substitution is dependent on biological
processes including the intensity of selection, changes in effective population size (when
selection is present) and changes in the dynamics of the population, say, a shift in mean
generation time. These effects can change substitution rate (1) over time, (i) in different
lineages and (iii) at different positions along the sequence. We present methods that
model the substitution rate of molecular sequences obtained serially from individuals
within a population or between species (and higher taxa) by allowing the rate to change

over time in a stepwise fashion.

As mentioned in Chapter 1, population genetic studies that utilize molecular sequences
typically rely on samples of sequences that have been obtained contemporaneously
(FELSENSTEIN 1992b; FU 1994; NEE ef al. 1995; PYBUS e/ al. 2000). However, recently
there has been increased interest in the analysis of samples that are gathered serially, each

at a different time. For example, in Chapter 2 the use of samples from rapidly evolving
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viral populations such as HIV-1 (LEITNER and ALBERT 1999; RODRIGO e a/. 1999;
SHANKARAPPA ¢/ al. 1999) and samples of ancient DNA from fossilized remains
(LAMBERT ef al. 2002) was discussed. It is our aim to derive estimates of substitutional

parameters from this type of data, using biologically relevant models.

Recently, two papers independently described methods to estimate substitution rate, [,
from serial samples, under the assumption of a molecular clock. Rambaut (RAMBAUT
2000) shows how a phylogeny-based maximum-likelihood estimate (MLE) of the
constant substitution rate, /4, expressing the divergence between dated sequences as a
product of f/and the time interval, can be obtained (Figure 4.1A). Drummond &
Rodrigo (2000), using a distance-matrix least-squares (LS) approach, parameterise inter-
sample divergence in two ways. First, analogous to Rambaut’s “single rate with dated
tips” (SRDT) model, f+parameterisation estimates only a single substitution rate, // using
M as the inter-sample divergence for the i" interval with elapsed time, tj, ({/is the
number of substitutions per unit time). Second, with d-parametetization, each inter-
sample interval is allowed to have its own substitution rate, 4, i.e. for the i™ interval with
elapsed time, 1, it = a (Figure 4.1B). In keeping with Rambaut’s terminology, we will
refer to this as the “multiple rates with dated tips” (MRDT) model. Drummond &
Rodrigo (2000) go on to use these estimates of substitution rate in a phylogenetic
reconstruction procedure called serial sample UPGMA (sUPGMA) which recovers a tree

with lineages that terminate in the order of sampling (see Chapter 3).

Here, we extend Rambaut’s tree-based SRDT likelihood estimation procedure to include
the MRDT model. In addition, we show that there are two forms of the MRDT model,

one where the rates are estimated differently for each sampling interval (corresponding to

Drummond & Rodrigo’s d-parameterization above), and another where the rates are
different for different a priori-defined intervals that do not necessarily coincide with
sampling intervals (Figure 4.1C). ML and LS estimators can be constructed for both
forms of the MRDT model. Finally, we illustrate the use of these methods on an
example dataset of HIV-1 partial envelope (en2) sequences obtained serially from an

individual who was treated with Zidovudine midway through the sampling program.
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Figure 4.1 Three different models of
substitution rates through time.

(A) The SRDT model with a uniform substitution
rate; (B) the MRDT model with each sampling
interval having its own sampling interval; (C) the
MRDT model with a step-wise change in the
substitution rate that does not correspond with a
sampling occasion. The substitution rates are
denoted by 4, th, b The times are denoted by 7,
T, D, lzand 11

Multiple substitution rates: sampling times
coincident with substitution rate changes

Uniform substitution rate

Multiple substitution rates: sampling times
not coincident with substitution rate changes

4.3 Likelthood model

Let us consider the case of sequence data for which there is exact time information and a

known phylogeny. Our generalisation allows for the rate of substitution to have step-wise

changes over time, and gives rise to a multiple rate model. The MRDT model is

constructed by dividing the one substitution rate of the SRDT model (RAMBAUT 2000)

into a vector Q ={f4, ly,..., 4} where [ is the i™ substitution rate in the model

(Figure 4.1). Hence this f+parameterisation allows substitution rate to have a number of
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step-wise changes between the most recent and most ancient sampling times. As in the
SRDT model, branch lengths from the root of the tree are no longer required to be
equal. Instead, branch lengths must sum to values determined by the temporal spacing of
the tip in question and the different substitution rates of the time periods that the tip
traverses. Since the information about substitution rates comes from the relative
positioning of tips in the tree, it is evident that rate parameters can only be estimated for
time intervals where there exists at least one sequence sample. Hence the maximum
number of M parameters is given by the number of sampling points minus one, as one
time point is needed as reference. However, this maximum number of rate parameters
cannot be estimated for every tree topology. For example, take the simplest case of two
sequences sampled at different times. In this situation, the uncertainty of the root
confounds rate and time parameters, and the sequence data only holds information about

the upper limit of the rate (set by the branch length between the two sequences).

The parameters of the tree are thus the substitution rates Q and the vector of times
corresponding to the dated tips and the (N-1 for a bifurcating tree) internal node heights
(h) measured in units of substitutions (following RAMBAUT 2000). Note that the tip times
may be measured either in generations or some calendar unit, and a simple rescaling
allows one to move between the two. Our framework estimates a seties of substitution
rates only within the interval bounded by the first and last samples. Specifically, no
assumptions are made with regard to the rate between the earliest sampling time and the
root of the tree. Over this interval, there are no chronological calibration points, and the
branch lengths are free to be optimised in the standard manner as composite parameters
of time and substitution rate. This rate may of course be of interest, for example in
dating the most recent common ancestor (MRCA). In this case additional assumptions
must be made: a natural assumption in the case of step-wise changes is that the earliest

estimated rate remains constant when extrapolated back to the time of the root.

For a given tree, T, the likelihood of Q is the conditional probability of obtaining the
sequence data, § given Q, T and 7, the vector of times, as well as the instantaneous

substitution rate matrix, Q (also assumed to be known):

L(Q) = Prob(S|Q, T, 7, Q) (4.1)
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This likelihood is calculated in the standard manner (FELSENSTEIN 1981; GOLDMAN

1990; RODRIGUEZ e¢# al. 1990) for phylogenetic trees; the addition of Q and T enters the

calculations as constraints on the branch tip positions (Figure 4.1B & C). The MLEs of
the rates, [ , are jointly chosen such that L(fl) is maximised. The only remaining
constraint in place is that each estimated substitution rate must not be less than zero.
When considering multiple substitution rates, confidence interval estimation is less

straightforward than for a single rate. There are at least two ways of computing

confidence intervals for multiple rates. First, multivariate upper and lower (1—a)
confidence limits may be obtained by locating rates that correspond to log-likelihood
values differing from the maximum-log-likelihood value by Y Iia /2, where Kis the
number of rates estimated. If unbiased, these confidence intervals have a (1— @)
probability of enclosing the true Q. Second, a profile confidence likelihood interval may

be obtained for each f/as follows. Over a range of [ ,locate the upper and lower values

of W such that

= 21N L} My Mg ) = INL (B B flg e B E X (42)

where f4;is the MLE of the M rate, and /J? is the maximum-likelihood estimate of the j™

rate when [ is fixed at a given value.

In the case where all elements of Q are equal, the MRDT model collapses to the SRDT

model of a uniform molecular clock. If all // parameters are set to zero, the MRDT
model reduces to the standard contemporaneous tips clock model (GOLDMAN 1993;
RAMBAUT 2000). In fact, under the likelihood framework, one is able to test whether the
MRDT model is a significantly better model for the data than the SRDT model. Since
the SRDT model is simply a constrained MRDT model, the standard asymptotic

likelihood ratio test can be applied. In this case, the test statistic,

A=2(InL(Q, notal £0Q equa) —InL(Q, dl x[1Q equd)) 4.3)
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is asymptotically distributed ¥* with k-1 degrees of freedom under the null hypothesis
that the two models are not significantly different, where Kis the number of (/

parameters.

When testing the SRDT model against the SR model, the null and alternative hypotheses

are of the form:
Ho: £=0
Hi x>0

The test is a one-tailed test. Let @'is chosen as the level of significance, then the null

hypothesis should be rejected if

A=2(InL(u>0)-InL(u=0)) > x2,, 4.4)

Incidentally, this result can also be derived by treating the constraint that £/ has to be

greater than or equal to zero as a boundary-value problem (OTA et a/. 2000).

4.4  Ieast-squares model

With the distance matrix LS estimate of Q described by Drummond & Rodrigo (2000),
the expected evolutionary distance, d(m, n,-), between a pair of sequences M (of the jth
sample; assume this is the earlier timepoint) and Nj, is equal to the expected pairwise
distance, ©j, for sequences from sample i plus the added substitutions accruing between
sequences from sample i and sample | in the interval G-7. If there exist times,

Tis1:Tisg0 Ty, in this interval that cotrespond to changes in substitution rate, then

d(m,n,) =0, +

4.5)
(T = T) g (T — T + et UL (Tj - Tj—l) +tEmn,

The parameter estimates p= {é), 9) } are obtained by the standard LS solution:
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P =(t't)t'd (4.6)

where d is the vector of the pair-wise distances, and t is the matrix of time intervals and
[0,1]-values signifying the absence or presence, respectively, of the @'s associated with
each of the samples. Unlike the MLE, LS rate estimates obtained using Equation 4.6 are
not constrained to be non-negative. Such a constraint can be added with appropriate

linear programming strategies.

The standard error of the LS estimates of f/ cannot be calculated easily because of the
non-independence of the pairwise distances. Drummond & Rodrigo (2000) advocate the
use of the parametric bootstrap (EFRON and TIBSHIRANI 1993; GOLDMAN 1993) to
generate confidence intervals of the estimates. Parametric bootstrapping requires
specification of a model and subsequent simulation of pseudoreplicate datasets with the
same number of sequences and sites as the original data, assuming that the estimates
recovered using the observed data are the “true” values of the parameters. With the
SRDT model, and an assumption of a constant © over time, it is easy to generate
pseudoreplicate datasets under a coalescent model in which population size is held
constant (Drummond & Rodrigo, 2000). However, under the MRDT model, parametric
bootstrapping is not simple, since any resampling procedure must accommodate
changing substitution rates and multiple ©. This is one drawback of the distance-based

LS method — procedures for variance estimation are often elusive.

4.5 Example

In this section, we illustrate the use of the MRDT model on an HIV-1 dataset previously
published (RODRIGO e¢f a/. 1999), where the onset of drug therapy is shown to coincide

with a significant reduction in substitution rate. This dataset is the same analysed in

Chapter 3.

Before the advent of potent combination therapy against HIV, drugs were less effective
in lowering viral load and hindering progression towards AIDS. To investigate the affect
of a one-drug therapy regime on the evolutionary progression of HIV, we analysed
previously published data consisting of serially sampled partial HIV-1 envelope (en2)
sequences from an infected individual who began Zidovudine treatment partway through

the sampling period (RODRIGO e7 a/. 1999). Complete details of the dataset are given
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elsewhere (RODRIGO et al. 1999); briefly, the dataset contains an initial sample followed
by additional samples at day 214, day 671, day 699 and day 1005. Monotherapy with
Zidovudine was initiated after day 409 (DRUMMOND ef a/. 2001) and continued during
the remaining time of study. Therefore the data set contains two samples before and

three samples after treatment began.

It has been suggested that highly active combination antiretroviral therapy leads to a
cessation of viral replication (FINZI e a/. 1997; WONG ez al. 1997). A natural question is
whether monotherapy with Zidovudine had the effect of slowing or halting viral
replication in this particular individual from whom samples were available. If viral
replication does in fact cease (or slow down), this will be reflected in the rate at which
substitutions accumulate, since it is during the process of viral replication that this
occurs. This corresponds to testing whether a MRDT model that allows for a change in
substitution rate after the onset of therapy provides a better fit to the data than a SRDT
model, and if so, whether the estimated substitution rate after drug therapy is

significantly different from zero.

The dataset consists of 60 sequences from five time points and the length of the
alignment is 660 nucleotides. Gapped columns were included in the analysis. To begin
with, the dataset was first split into two subsets, one containing all sequences before
therapy (28 sequences; henceforth called pre-treatment) and the other containing all
sequences after therapy commenced (32 sequences; henceforth called post-treatment).
For each of these datasets, a neighbour-joining tree was built and a maximum likelihood
general-time reversible (GTR) model was estimated using PAUP* 4.0b4 (SWOFFORD
1999).

Each tree was used to estimate a uniform substitution rate using the SRDT likelihood
model as implemented in the computer program TIPDATE (RAMBAUT 2000).
TIPDATE was also used to find the maximum-likelihood roots for the two trees. This is
achieved by rooting the tree at every branch on the unrooted topology. For each root the
branch-lengths are optimised while constraining tips in accordance with dates. The

rooted topology with the maximum-likelithood (greatest s#ppor?) is used to estimate the
substitution rate. All estimated rates are reported in Table 4.1. A rate (Lbefore) Of
5.034%10° substitutions per site per day (1.84% per year, 95%-confidence limits =
[1.02%, 2.73%]) was obtained for the pre-treatment sequences and a rate (fsgter) Of

5.8%107 substitutions per site per day (0.021% per year, [0.0%, 0.77%)]) for the post-
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treatment sequences. As Lhafter has a confidence interval that encloses zero, we cannot

show that significant substitutions have occurred since therapy commenced.

Table 4.1 ML and LS estimates of substitution rates under the SR, SRDT and MRDT models.

Dataset | Model -InL MLE-= Hypothesis A P LS estimates?
substitutions/site/day tests value substitutions/site /day
SR 4082.50 -
SRDT | 4080.83 1.36x10°5 SRDT vs 334 0.034 7.8%10-6
Complete [7.14x10-,2.00x105] | SR [-3.47%10 6, 3.87%10-5]¢
MRDT | 4075.41 Lbgtore = 4.15%10°5 MRDTvs | 10.84 0.001 Lbetore = 3.87X10°5
[2.6x105, 5.8x105p | SRDT
Hatter = 0.0 Later = -3.35%10°6
[0.0, 0.8%10-5]>
SR 2441.16 -
Before SRDT | 2430.90 5.03x 10 SRDT vs 2052 3x10 2.69%105
therapy [2.81x105,7.49%x105] | SR [-8.28x10-6, 1.22X10-4]¢
SR 254234
After SRDT | 2542.10 5.8x107 SRDT vs 048 024 451 x 106
therapy [0.0, 2.12%10-5] SR [-2.51%105, 6.59%10-5]¢

a Confidence intervals are presented in square brackets

b Profile likelihood confidence intervals.

¢ The 95% confidence intervals were obtained by parametric bootstrap using 1000 replicates.

Parameter © was kept constant.

The complete dataset consisting of sequences obtained pre- and post-treatment was then

used to obtain an unconstrained and unrooted neighbour-joining tree, once again using

the GTR substitution model. Once again, an SRDT model was fitted to the tree (after

the ML root was found) and a uniform substitution rate of 1.346x107 substitutions per

site per day (0.49% per year [0.26%, 0.76%]) was estimated. An MRDT model was then

fitted to the full dataset, allowing two substitution rates, the first up to the time of

therapy (i.e., 409 days from the first sample), and the second after this time. Rates of

4.145%10” substitutions per site per day (1.51%) and 0.0 substitutions per site per day

were estimated simultaneously for fhefore and Léfter, respectively. The maximum

likelihood trees for the SRDT model and the MRDT model on the full dataset are shown

in Figure 4.2.

To obtain the 95%-confidence intervals for both substitution rates, a grid search of the

two parameters was undertaken. The rate Lhefore was allowed to vary from 0 to 10*

substitutions per site per day, while aster was allowed to vary from 0 to 5%10°
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substitutions per site per day, both in steps of 10 substitutions per site per day. The

likelihood surface resulting from this search is shown in Figure 4.3 as a contour plot.

Figure 4.2 Maximume-likelihood solutions for the full example dataset.

The (A) SRDT model and (B) MRDT model are shown. Open and filled circles represent pre- and post-
treatment sequences, respectively. Sample numbers are given within circles.
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The resulting 95% profile confidence intervals were obtained by taking the maximum
and minimum values of Lefore and Lhfter 0N the contour demarcating )(f oos 1 2(= 1.92)
log-likelihood units from the maximum log-likelihood. For fhefore the profile-likelithood
confidence interval is (2.6%X107, 5.8%107), whereas for Ler it is (0, 0.8%107). The

bivariate confidence interval for Q ={ Hioctorer Mot } 1 also outlined on the likelihood
surface contour plot by the contour demarcating )(22’0‘05 12 (=2.99) log-likelihood units

from the maximum log-likelihood. The upper and lower values of Lbefore and flafter ON
this bivariate confidence interval contour are (2.1 x107, 6.1 XlO’S) for Lbefore and (0,
1.1%10”) for fifer. Of course, these intervals are larger than the profile likelihood

confidence intervals, but only marginally so.




Table 4.1 gives the log-likelihood scores obtained using the different models described

above. For the complete dataset with samples pre- and post-treatment included, the

most general clock-like model is the MRDT model. As explained above, the SRDT

model is constrained so that all /fs are equal. The SR model with contemporaneous tips

is a further constraint on the SRDT with all //s equal and set to zero. In Table 4.1,

likelihood ratio test statistics have been computed for MRDT vs. SRDT, and SRDT vs.
SR models. The SRDT model is significantly better than the SR model (p < 0.05), and

the MRDT model is significantly better than the SRDT model (p < 0.01).

Figure 4.3 The likelihood
surface of [/ parameters.

Both the 95% profile
confidence region and the
95% bivariate confidence
region are shown. A cross
(X) marks the maximum
likelihood point for equal
rates, located outside of
both confidence regions. A
diamond (0) marks the
peak of the surface.

pre-treatment rate (substitutions per site per day)

03

0.2

0.1

95%CI | \ \
Ladn ) \
_/ ro \
o )
;) \
95% CI (2 df) / \1
&\«~// \\

_ \

post-treatment rate (substitutions per site per day)

x 107

Similar analyses were performed for pre- and post-treatment samples, except that in

these instances, the only comparison made was between the SRDT and SR models. For

the pre-treatment samples, the SRDT model has a statistically better fit to the data than

the SR model (p <0.01). However, for the post-treatment sequence subset, the SRD'T

model cannot be distinguished statistically from the SR model. Taken on its own, this
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suggests that there is little or no accumulation of substitutions over this period. (Note
that caution must be taken with this interpretation: as we discuss in the next section, the
MRDT model is significantly worse than a model that assumes no consistent clocklike

pattern of evolution amongst the sequences).

Equivalent estimates were also derived with the LS method. Table 4.1 summarises the
results. Both the ML and LS procedures consistently estimate a higher pre-treatment
substitution rate; approximately an order of magnitude greater than the estimated post-

treatment rate.

4.6 Discussion

The framework presented allows for the modelling of complex evolutionary scenatios,
such as the evolution of HIV-1 sequences undergoing drug therapy. Application of the
MRDT model to samples obtained from an individual treated with Zidovudine appears
to indicate a reduction in substitution rate after the commencement of therapy. Our
results are consistent with those obtained elsewhere (CHUN ¢ a/. 1997; WONG e al.
1997). Independent estimates of rate from samples pre- and post-treatment have non-
overlapping 95% confidence intervals and are therefore significantly different at @=0.05.
This poses a problem for any SRDT estimation procedure. TIPDATE, for instance,
returns a rate of 0.5% per year for the entire genealogy. This rate is lower than previously
published rates of HIV-1 evolution (SHANKARAPPA ¢7 a/. 1999), however it is similar to
other published estimates for this dataset that assume a single rate (DRUMMOND and
RODRIGO 2000). Here, we outlined a likelihood framework that addresses this
discrepancy as well as providing a pair-wise distance least-squares estimation approach.
There are, nonetheless, several features of these analyses that bear mention, and indicate

that more work in this area is required.

For any analysis that involves the inference of some kind of clock-like behaviour,
whether it be a constant clock or a changing clock, a first step should be a test of
whether such a model is significantly worse than an unconstrained non-clock model (also
called a “different rate” or DR model). The DR model is the standard used in
phylogenetic tree reconstruction, and effectively allows every branch to have its own
substitution rate. By doing this, the length of the i" branch is an estimate of the
composite parameter £4j. If an SRDT model or MRDT model is significantly worse
than the DR model, it means that at least some lineages are not evolving in a clock-like

manner. In fact, where appropriate, we recommend a hierarchy of nested likelihood ratio
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tests: DR vs. MRDT, MRDT vs. SRDT, and SRDT vs. SR. For our example dataset, the
DR model was always significantly better than the SRDT and MRDT models (data not
shown). Our primary intention with the use of the dataset was simply to illustrate the
methods described, rather than to make substantive statements about the effects of
monotherapy on substitution rates. However, it is important to note this here for

completeness.

The ML estimation procedures presented here (RAMBAUT 2000) assumes that the
evolutionary history of the sequences i.e. the topology of the genealogy, is known or can
be reconstructed exactly. The bias introduced into parameter estimation and hypothesis-
testing procedures by using incorrect genealogies is largely unknown. On the other hand,
the LS estimation procedure is not based on a reconstructed topology and therefore may
not suffer from this possible source of bias. For example, for a single rate model the LS
estimator has been shown to be an unbiased estimator (DRUMMOND and RODRIGO
2000). However, distance-based LS methods do not take into account the correlations

induced by shared history, thus making variance estimation difficult.

Ultimately, the best approach would be to incorporate the uncertainty of the genealogy
explicitly into a probabilistic framework. One way of taking the uncertainty of the
topology into consideration in the likelihood model is to integrate over a number of
topologies. A natural way to do this is to use a Markov chain Monte Carlo (MCMC)
sampling procedure to sample tree space in proportion to the likelihood of the data
(KUHNER e¢f al. 1995). This has been used for example to incorporate the uncertainty in
the tree topology into estimates of population size and growth rates (IKUHNER e¢f a/. 1995;
KUHNER ¢ al. 1998), as discussed briefly in Chapters 1 and 2. This method has a natural
extension to the estimation of substitution rates, and can also be used to find confidence
intervals in topology space under the SRDT or MRDT models of evolution. Chapter 5
describes the development of an MCMC approach that enables estimation of single
mutation rates while taking the uncertainty of genealogy into account. The extension to

multiple rates is simple, but computationally expensive.

One of the interesting observations of this study is that different models (SR, SRDT,
MRDT) can have different maximum likelihood tree topologies. This may turn out to be
a common occurrence. For example, for a 45 sequence subset of the data, 729 strictly
bifurcating maximum likelihood tree topologies were found. Although these trees had

identical likelihood scores under an unconstrained (non-clock) model, they have a range
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of likelihood scores under the SR, SRDT, and MRDT models. Furthermore, no single
strictly bifurcating topology represented the maximum likelihood topology under all
three models. If one chooses to use different topologies for each model, then the
asymptotic approximation to the likelihood ratio test cannot be used. Instead, some
alternative procedure (GOLDMAN e /. 2000) should be used. A sampling method such as
MCMC would also be useful in this case, as the sampling procedure integrates over tree
space in proportion to the likelihood of the data. Thus, for two competing models, a null

and alternative distribution can be compared.

In the previous section, we also alluded to the fact that different rootings of an unrooted
tree can have different likelihood scores under a given model of substitution. By
extension, this also means that different models may require the tree to be rooted
differently. This does not change the mechanics of any likelihood ratio test, since no
new free parameters are added to the model. However, if the root of the tree is not

known, an extra step needs to be added to any analysis to find the appropriate root.

Serial molecular samples add a new dimension to population genetic studies. Since it is
possible to estimate substitution (or mutation) rate independently of other parameters, it
is also possible to decouple composite population parameters like © = 2Ngt/ (where Ne is
the effective population size) into their component parts. The models we introduce here
go one step further, and allow these parameters to be expressed as functions of time.
Although we have only described stepwise changes in substitution rates, these models
can be generalized to allow substitution rate to vary as any parametric function of time.
With viral populations such as HIV-1, this becomes especially interesting since it allows
us to study changes in average generation time and substitution rate during disease
progression, or under different therapeutic regimes. In conjunction with the estimation

of demographic functions of time (PYBUS ez /. 2000) it also means that we can

decompose O(t) = 2N, (t) (t) into the component functions of N (t) and 4(t), where

HU(t) is a stepwise function of time.

We have assumed that the times corresponding to changes in substitution rates are fixed
either to the sampling times, or some time point known « priori. Similarly, we have also
assumed that the phylogeny is known. However, since these times and the phylogeny are
parameters embedded in the model, they can also be jointly estimated within the

likelihood framework.
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The models we have described apply to any set of molecular sequences of sufficient
length, or obtained sufficiently far apart in time, that an appreciable number of
substitutions have accumulated. These include ancient DNA sequences as well as rapidly
evolving viral sequences. In conjunction with efforts to model lineage-specific rates
(HUELSENBECK e a/. 2000; THORNE e/ a/. 1998), and other time- or lineage- dependent
processes, the models presented here go some way towards a more realistic description

of the evolution of molecular sequences.

MLE and LS estimates under the SR, SRDT and MRDT models can be obtained using
the computer program PEBBLE, available from the website

http://www.cebl.auckland.ac.nz/, or from the authors.

4.7  Acknowledgements

We thank Matthew Goode and Greg Ewing for assistance in developing the PEBBLE
software package and the distributed programming techniques used for likelihood surface
calculations. For helpful comments and discussion we thank David Nickle, Andrew

Rambaut and Jeffrey Thorne.

77



5 Bayesian evolutionary inference of
measurably evolving populations

This chapter is based on a leading-author paper published in Genetics entitled “Estimating
mutation parameters, population history and genealogy simultaneously from temporally
spaced sequence data” by A.J. Drummond, G.K. Nicholls, A.G. Rodrigo & W. Solomon
(2002).
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5.1 Overview

Molecular sequences obtained at different sampling times from populations of rapidly
evolving pathogens and from ancient sub-fossil and fossil sources are increasingly
available with modern sequencing technology. Presented here is a Bayesian statistical
inference approach to the joint estimation of mutation rate and population size that
incorporates the uncertainty in the genealogy of such temporally spaced sequences by
using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is
used to describe the time structure of the ancestral tree. Information is recovered about
the unknown true ancestral coalescent tree, population size and the overall mutation rate
from temporally spaced data, that is, from nucleotide sequences gathered at different
times, from different individuals, in an evolving haploid population. The methodological
implications and what can be inferred, in various practically relevant states of prior
knowledge, are discussed. Extensions for exponentially growing population size and joint
estimation of substitution model parameters are also developed. The important features
are illustrated on a genealogy of HIV-1 envelope (ens) partial sequences and 400 synthetic

data sets.

5.2 Introduction

As discussed in Chapter 1, there have been a significant number of developments in both
population genetics inference and phylogenetic inference as a result of increase in
computational power. This has given birth to a new field of computational evolutionary

inference.

Here, we contribute to this growing field. We estimate population and mutation
parameters, dates of divergence and tree topology from temporally spaced sequence data,
using sample-based Bayesian inference. The important novelties in the inference are the
data type (i.e. temporally sampled sequences), the relatively large number of unknown
model parameters, and the MCMC sampling procedures, not the Bayesian framework
itself. The coalescent gives the expected frequency with which any particular genealogy
arises under the Fisher-Wright population model. The coalescent may then be treated,
either as part of the observation process defining the likelihood of population
parameters, or as the prior distribution for the unknown true genealogy. In either case we
must integrate the likelihood over the state space of the coalescent. Both Bayesian and

purely likelithood-based population genetic inference use the same reasoning, and
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software, up to the point where prior distributions are given for the parameters of the

coalescent and mutation processes.

Are there then any important difficulties or advantages in a Bayesian approach over a
purely likelithood-based approach? The principle advantage is the possibility of
quantifying the impact of prior information on parameter estimates and their
uncertainties. The new difficulty is to represent different states of prior knowledge of the
parameters of the coalescent and mutation processes as probability densities. However,
such prior elicitation is often instructive. In the absence of prior information, researchers
frequently choose to use non-informative or improper priors for the parameters of
interest. Such an approach may be problematic and can result in improper posterior
distributions. There exist a number of important cases in the literature in which
knowledgeable authors inadvertently analyse a meaningless, improper postetrior
distribution. Why then do we choose to treat improper priors? We are developing and
testing inferential and sampling methods. These methods become more difficult as the
amount of information in the prior is reduced. The sampling problem becomes
significantly more difficult. We therefore treat the “worst case” prior that might naturally
arise. Since this prior is improper, we are obliged to check that the posterior is proper.
However, when confronted with a specific analysis, detailed biological knowledge should

be encoded in the prior distributions wherever possible.

This work builds on previous contributions that developed Bayesian phylogenetic
inference (HUELSENBECK ef a/. 2000; MAU e7 al. 1999; THORNE ¢ al. 1998; YANG and
RANNALA 1997) and Bayesian population genetic inference (WILSON and BALDING
1998). We begin with a description of the models we use, and then give the overall
structure of the inferential framework followed by an overview of how MCMC is carried
out. We mention extensions of the basic inference that allow for (i) deterministically
varying populations and (ii) estimation of substitution parameters. Finally, we illustrate
our methods with a group of studies of a sample of HIV-1 envelope (env) sequences, and

a second group of studies of synthetic sequence data.

5.2.1 Kingman coalescent with temporally offset leaves

In this section we recapitulate and expand on the description of the coalescent density
for the constant-sized Fisher-Wright population model described in Chapter 2. Later we
will give the corresponding density for the case of a population with deterministic

exponential growth. It is assumed genealogies are realised by the Kingman coalescent
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process. Our time units are ‘calendar units before the present’ (for example, days before

present, or days BP), where the present is the time of the most recent leaf and set to

zero. Let pdenote the number of calendar units per generation and 8 = N_p . The scale

factor @converts “coalescent time” to calendar time, and is one of two key objects of our

inference. Notice that we will not estimate 0 and Ne separately, but only their product.

Consider a rooted binary tree g with N leaf nodes and N - 1 ancestral nodes. For node |,
let tj denote the age of that node in calendar units. Node labels are numerically increasing
with age so | > | implies tj = tj. Let | denote the set of leaf node labels and let Y denote
the set of ancestral node labels. There is one leaf node i [J1 associated with each

individual in the data. These individuals are selected, possibly at different times, from a

large background population. An edge <i, ]>, I > ] of g represents an ancestral lineage.

Going back in time, an ancestral node 1 Y cotresponds to a calescence of two ancestral
lineages. The root node, with label i = 2n-1, represents the most recent common

ancestor (MRCA) of all leaves. Let t; be the times of the leaves and t, be the divergence
times of the ancestral nodes, and let Eq denote the edge set of @, so that g = (E,,t,)

specifies a realisation of the coalescent process. For given Nand 1, let [ denote the class

of all coalescent trees (Eg ,t,) with nleaf nodes having fixed ages t|. The ages ty are

subject to the obvious patent-child age order constraint. The element of measure in [ is
dg =dt,,,...dt,,_, with counting measure over distinct topologies associated with the

distinguishable leaves.

The probability density for a tree, f5(g|6), gUI is computed as follows. Let ki denote

the number of lineages present in the interval of time between the node i-1 and the node

I. The coalescent process generates g = (Eg,t,) with probability density
2n-1 -1
fo (g|0)—6n1q‘!ex K(K “kk =D .Jj 61

The interpretation is as follows. Fix a time t and suppose K lineages are present at that
time. A coalescence event between any of the K(k-1)/2 pairs of distinguished lineages

occurs at instantaneous rate 1/ 6. Given that two lineages coalesce at time t, the

81



probability it was some particular pair is 2/K(k-1). It follows that, in the time interval of

length t,—t,_, preceding the time of a leaf node i | , ‘nothing’ happens with probability

exp(—k (k —D(t, —t,_;)/26), and that the length of time, t;—t,_;, preceding coalescent
node 1 Y is a random vatiable with density “kk =D (k' exp( k (ki —D(t —-t_)/20).

Taking the product of these factors over all intervals [t._,,t.],1 =2,3,...,2n—1, we obtain

Equation 5.1 (RODRIGO and FELSENSTEIN 1999).

5.2.2 DNA Substitution Model

We use the standard finite-sites selection-neutral likelihood framework (FELSENSTEIN
1981) with a general time-reversible (GTR) substitution model (RODRIGUEZ e7 a/. 1990).
However, as we are considering genealogies in calendar units (or generations) as opposed

to mutations we take some space to develop notation.

Associated with each leaf node | U | there is a nucleotide sequence

D, =(D;,D,5,...D,¢,.... D; ) of some fixed length L. Nucleotide base characters

D ., ill,s=12,..,L take values in the set C ={A,C,G, T} . An additional gap

-
character, @ indicates missing data, however this is treated as missing data rather than a
fifth state. Let D =(D,,D,,...,D,)" denote the Nx L matrix of sequences associated
with the tree leaves, and let Da denote the (N—1) X L matrix of unknown sequences

associated with the ancestral nodes. The data is D together with t), that is, the n
sequences observed in the leaf-individuals and the N ages at which those individual
sequences were taken. Let D =C"™" denote the set of all possible ancestral sequences.
Consider a site S=1,2,...,L in the nucleotide sequence of an individual. The character at
site Smutates in forward time according to a Poisson jump process with 4% 4 rate

matrix Q. Here, Q ; is the instantaneous rate for the transition from character i to
character j,and A « ,C « 2,G « 3T ~ 4. We assume mutations are independent
between sites. Let 7T = (7T, 7T, 715, 7%; ) be a 1x4 vector of base frequencies,

corresponding to the stationary distribution of the mutation process, 7Q = (0,0,0,0) .

The matrix Q is parameterised in terms of a symmetric ‘relative rate’ matrix R,
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Ao C RA<—.G RAHT

I:QAHC F%HG I:QCHT
RA<—.G F%HG 1
I:QAHT RC<—.T 1

(5.2)

as

ngm%J

17k (5.3)
Q= _ZQ,j

J#i

Q=

The time units of the rate Q j have been chosen so that the mean number of mutations

per unit time occurring at a site is equal to one. Let [/ give the mean number of

mutations per calendar unit (for example, mutations per year) at a site.

The conversion factor f/is the second of the two principal objects of our inference. In
addition to /4, the relative rates R may be estimated. We have found that wherever it is
feasible to estimate the scale parameters f/and @, our data is informative about the

elements of R We return to inference of relative rates in section 5.4.

We now write down the likelihood for 4. Consider an edge (i, ) O E; of tree 9. The

individual associated with node | is a direct descendant of the individual associated with
node i. However, the sequences Dj and Dj may differ if mutations have occurred in the

interval. Let €° denote the 4% 4 matrix exponential of Q. In the standard finite-sites
selection-neutral likelihood framework Pr{D,  =¢'| D, =¢} = [e_Q”(ti _tj)] for cOC.
: : o

The probability for any particular set of sequences D, Da to be realised at the nodes of a

given tree is

D

is1-].s

L
— Qu(t-t;)
Pr{D,D, |9, /3 _<i,|,>_JEg ” [ ] (5.4)

j,s¢¢
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(in the above formula, compact notation is obtained by including in the product over
edges an edge terminating at the root from an ancestor of infinite age). We may eliminate
the unknown ancestral sequences Da from the above expression, by simply summing all

D, 0D,

P{D|g, 4} =Y P{D,D,|9, 1} (5.5)

DAOD

It is feasible to evaluate this sum using a pruning algorithm (FELSENSTEIN 1981).

5.2.3 Bayesian Inference for scale parameters

We now consider Bayesian inference for scale parameters f/and 8 Each of these
quantities takes a real positive value. The joint posterior density, N,oq (14,8,9| D), for
the scale parameters and genealogy, is given in terms of the likelihood and coalescent
densities above and two additional densities, f,, (1) and fg(8) . These functions

quantify prior information about the scale parameters. Let Z be an unknown normalising

constant. The posterior is then

hyec (146,91 D) =%Pf{ D|u, 0} f.(916) fy (1) 16 (6) (5.0)

We are interested in the marginal density, hy,o (1,8 | D) . We summarise this density

using samples (1£,68,9) ~ hyoe - The sampled genealogies can be thought of as

uninteresting “missing data”.

Consider now the densities fy, (&) and fg (). In any particular application these

functions will be chosen to summarise available prior knowledge of scale parameters. It is
common practice to avoid the problem of prior elicitation, and attempt to construct a
‘non-informative’ prior. This notion is poorly defined, since a prior may be non-
informative with respect to some hypotheses but informative with respect to others.
Nevertheless, we will illustrate sample-based Bayesian inference under a prior that
contains little information. We do this for two reasons. First, we wish to give our

sampling instruments a thorough workout. From this point of view an improper prior is
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the best choice. Second, when carrying out Bayesian inference, it is necessary to test the
sensitivity of conclusions to changes in the state of prior knowledge. What conclusions
would a person in a state close to ignorance reach from this data? The improper prior we
consider represents ignorance of a rather natural kind. People using our methods will
very likely want to consider this particular state of knowledge, along with others more

representative of their own.

In our case 4 and Bate both scale parameters (for time). Jeffreys’ ptior,

f(z) 01/ z, z>0, invariant under scale transformations Z — az, and the uniform prior
on z>0, are candidates for f,, (&) and fo(6). If f,, 01/, fg 01/8 and f;(g|6O)

and Pr{D|Q, 4} ate as given in Equation 5.1 and Equation 5.5, then it may be shown
that the posterior density in Equation 5.6 is not finitely normalisable. We may
nevertheless consider ratios of posterior densities, but that means the only feasible
Bayesian inference, at least under the uniform, improper prior, is exactly frequentist
inference. We cannot treat the parameters of interest as random variables. Suppose fixed

<t

o May be set, along with a lower limit 8> . For

upper limits of (/< g/ and t

root
the problems we use to illustrate our methods in section 5.5, conservative limits of this
kind determine a state of knowledge that arises quite naturally. Moreover, it may be

shown that the posterior density is finitely normalisable under uniform priors on the

restricted state space, even though the prior on 8 remains impropet.

5.3 Markov chain Monte Catlo for evolutionary parameters

The postetior density hy,og is a complicated function defined on a space of high
dimension (between 30 and 40 in the examples which follow). We summarise the
information it contains by computing the expectations, over N, , of vatrious statistics of
interest. These expectations are estimated using samples disttibuted according to hyg

and we use MCMC to gather the samples we need. MCMC and importance sampling are
part of a family of Monte Carlo methods that may be used either individually or in
concert to solve the difficult integration problems that arise in population genetic
inference, and earlier work on this subject is cited in the introduction. Figure 5.1 shows a

diagram of two proposal mechanisms used.
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Figure 5.1 Diagrams of two
proposal mechanisms used to
modify tree topology during an
MCMC analysis.

(A) This move called “narrow
exchange”, is similar to a nearest-
neighbour interchange (NNI). It
picks two subtrees at random
under the constraint that they
have an aunt-niece relationship,
i.e. the parent of one is the
grandparent of the other, but
neither is the parent of the other.
Once picked, these two subtrees
are swapped so that doing so does
not require any changes to the
node heights to maintain parent-
child order constraints. (B) The
second move is similar to one
proposed by Wilson and Balding
(WILSON and BALDING 1998)8). It
involves removing a subtree and
reattaching on a new parent
branch.

00

As always in MCMC, it is not feasible to test for convergence to equilibrium. MCMC
users are obliged to test for stationarity as a proxy. We make three basic tests. First, we
check that results are independent of the starting state, using ten independent runs with
very widely dispersed initialisations. Secondly, we visually inspect output traces. These
should contain no obvious trend. Thirdly, we check that the MCMC output contains a
large number of segments that are effectively independent of one another, at least in the
distribution determined empirically by the MCMC output. Let 0 (K) give the
autocotrelation at lag K for some function f of the MCMC output. Let Vi denote the

asymptotic standard deviation of some estimate of & (K), formed from the MCMC

output. Large lag autocorrelations should fall off to zero, and remain within O(yr) of
zero, as discussed by Geyer (1992). Note that in the examples that follow in section 5.5,
these standards are not uniformly applied. The examples in sections 5.5.1.1 and 5.5.1.2
pass all three checks, but the examples in Section 5.5.1.3 only pass the first test. Here we
are displaying the limitations of our MCMC algorithm, however we believe the

convergence is adequate for the points we make.
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The MCMC algorithm was implemented twice; by myself in JAVA, and by Dr Geoff
Nicholls in MatlLab. This allowed us to compare results and proved very useful in
debugging some of the more complex proposal mechanism combinations. To minimise
programming burden, one of our implementations (Dr Geoff Nicholls’ in MatLab) was

partial, allowing only fixed population size and fixed R to be compared.

We will now describe a Markov chain Monte Carlo algorithm for temporally spaced

sequence data including proposal mechanisms used. Denote by Q,,o5 the space

[0,00) X[0,00) X" of all possible (4, 6, Q) values. Let

Q:\/IG)G :{(ﬂ!H!(Eg’tY)) DQMOG :/'15 IU*!QS 6*’troot St:foot} .

We now describe a Monte Catlo algorithm realising a Markov chain Xp, N=0,1,2,... with

states X= (1, 6, 9) , X[ Qpos, and equilibrium hx= h,og .

Suppose X, = X. A value for Xu+1 is computed using a Metropolis-Hastings algorithm.
Define a set of random operations on the state. A given move may alter one or more of
M, Band g. Label the different move types NF1,2,...,M. The random operation with label

M, acting on state X, generates state X, with probability density q,,(X | X) say. Let (@ O b)

equal @ if a<b and b otherwise, let (& 1 D) equal a if @>b and b otherwise, let

P(x,X) = hx(X'|D ) / hx(x|D)

stand for the ratio of posterior densities, and let

Qun(*X) = am(X|X) / gm(X[X)

give the ratio of the densities for proposals X' — X, and X— X The algorithm determining
Xn+1given Xn can be described as follows. First, a label Mis chosen according to some

arbitrary fixed probability distribution on the M move types. A value for the candidate
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state X is drawn according to the density ¢,(X | X). Secondly, we accept the candidate,

and set X ,, =X with probability

am(X, X) =10 (P(X, X) Qu(X, X)) . (5.7)

Otherwise, with probability 1—-am(X, X), the candidate is rejected and we set X ,; = X.

5.3.1 Proposal mechanisms

In this section we describe the proposal mechanisms (moves) and their acceptance

probabilities. In each move X, = X, with X= (1, 8, (Eg, ty) ). For each node i let
parent(i) Y denote the label of the node ancestral to I, and connected to | by an edge.

We get a compact notation if we treat Y, and @, as if Y contained a notional parent(root)

node with t =0, as we did in Equation 5.4. Also, we now drop the convention

parent (root)

that node labels increase with age.

Let dx = dpd@dgin Qo and

H, (dx| D) = h, (x| D)dx.

The moves listed below determine an Hx-irreducible aperiodic Metropolis-Hastings

kernel.

5.3.1.1 Scaling move
Label this move M=1. Let a real constant #>1 be given. For < d < B, let X— X

denote the transformation

(1,6,(E,1,)) — (u18,00,(E,, &) -
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If X = OXthen X= d X with d = 1/A The change of variables in the product measure is

H, (dX | D)dd = 0" °H, (dx|D)dJ.

Notice that this transformation is not simply a change of units. The times tj associated
with ancestral nodes 1Y are scaled, while leaf node times ti, il (which are part of the
data) are left unchanged.

The move is as follows. Choose a 0 ~ Unif (87, B) and set X = X If X0 Qo (for
example if /0> U Yot the parent child age order constraint is violated at the unscaled

leaves in the scaled tree) then the move fails and we set X, ,; = X. In a slight abuse of

notation we set Q,(X,X) =1/0"* in the formula for @1(X, X') in Equation 5.7 (Green
(1995) explains how this scale factor arises in Metropolis-Hastings MCMC). The choice

[=1.2 gave reasonable acceptance rates in our simulations.

5.3.1.2 Wilson-Balding move

Label this move m=2. A random sub-tree is moved to a new branch. This move is based
on the branch-swapping move of Wilson and Balding (1998). The SPR move in PAUP*
(SWOFFORD 1999) is similar. However the move below acts on a rooted-tree and

maintains all node ages except one.

Two nodes, I, j J1 OY are chosen uniformly at random without replacement. Let
jp=parent(j) and ip = parent(i). If tp< t,if ip=jor ip = jp, then the move fails
and we set X,,; = X. Given i and |, the candidate state X =(4,8,Q’) is generated in the

following way. Let i denote the child of ip that is not i, and let ipp = parent(ip), the

grandparent of i. Reconnect node ip so that it is a child of jp and a patent of |, that is, set

E, = {(jp.ip).ip, j),<ipp,7) O Eg\ (jp, j).(ip.7),(ipp.ip) }

If node j is not the root, assign to node ip a new time t, chosen uniformly at random in

the interval [(ti Ot), tip]. If node j is the root, choose SEXp(6) and set tj, = tj+ A Let
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t, denote the set of node times with t; replaced by ti'p LetX = (U, 6, ( E; ,£,) ). If node

J and node ip ate not root, the ratio Qo(X, X) in Equation 5.7 is

Qa(x, X) = (tip— (i Ot) ) / (tipp—(t Oti ).

If node j is the root,

Qax, X) = 81 (exp(-0/8) (tipp— (1 L7 )),

and if ip is the root,

Qux X) = (tp—(t Ot ) ) exp(- (tp—t7 )/ 8) /6.

5.3.1.3 Sub-tree exchange
Label this move m=3. Choose a node i 11 Y . Let ip = parent(i), jp = parent(ip),
and let | denote the child of |p that is not Ip. If node i is either the root or a direct child

of the root, or t, <t; then the move fails and we set X, ,; =X. Given i and |, the

candidate state X = (4,6,Q') is generated in the following way. Swap nodes i and j,

setting

E, = {Gip, .CIpi) 3 O Eg\ {<ip, ).Cip.i) §

LetX = (4 6, (Ej,ty) ). The ratio Qy(X,X) =1 in Equation 5.7,

The sub-tree exchange above is a local operation. In a second version of this move, we

chose node J uniformly at random over the whole tree.
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5.3.1.4 Node age move
Label this move M=4. Choose an internal node, 1LY, uniformly at random. Let ip =
parent(i) and let j and K be the two children of I ( so i=parent(j) and i=parent(k), j zk).

If i is not the root, choose a new time t uniformly at random in [({jty), tip], otherwise,

if i is the root, choose d ~ Unif (87, B) (see move M=1) and set

t=(t, Ot) + ot — (t; Ot)). Let t, denote the set of ancestral node times, ty, with
t. replaced by t. Let X = (1, 8. (Eg,ty,)). If i is not the root, then Q4(X, X) = 1in

Equation 5.7. If i is the root then Qa(X, X') = 1/4

5.3.1.5 Random walk moves for Band U/
Label this move M=5. The random-walk update to Ois as follows. Let a real constant

Wg>0 be given. Choose dUNIf(-wg, Wg) and set X' = (14, 6+ J, ). If XO Q|0 , then the
move fails and we set X, ,; = X. Since the candidate generation process is symmettic,

Qs(X, X') = 1, in the formula for as(X, X') in Equation 5.7. The random walk move for £/,
with random-walk window parameter Wy, say, is similar to the move just described for &,

The window sizes Wgand W, must be adjusted in order to get reasonable sampling

efficiency.
5.3.2 Implementation, convergence checking and debugging

5.3.2.1 Convergence and standard errors

The efficiency of our Markov sampler, as a tool for estimating the mean of a given
function f, is measured by calculating from the output % =1+ 2% ps (K), the integrated
autocotrelation time (IACT) of f. Dividing the run length by %, we get the number of
“effective independent” samples in the run (the number of independent samples required
to get the same precision for estimation of the mean of f). We will call this the effective
sample size (ESS). Better MCMC algorithms have smaller IACTSs and thus larger ESSs,
though it may be necessary to measure Tt in units of CPU time in order to make a really
useful comparison. One will typically want to run the Markov chain at least a few
hundred times the IACT, in order to test convergence and get reasonably stable marginal
histograms. Notice first, that we do not know the IACT when we set the MCMC
running. Exploratory runs are needed. Secondly, a statement like “We ran the MCMC

for 10° updates discarding the first 10" is worthless without some accompanying

91



measurement of an IACT or equivalent. This point is made by Sokal (SOKAL 1989). The
summation cutoff in the estimate for the IACT, 7, is determined using a monotone
sequence estimator (GEYER 1992). The IACTSs we get for our MCMC algorithms suggest
that analysis of large datasets (50-100 sequences and 500-1000 nucleotides) is feasible
with current desktop computers. Examples may be found in Section 5.5 (Table 5.2) and

in the Appendix.

The inverse of the IACT of a given statistic is the “mixing rate”. Statistics with small
mixing rates are called the “slow modes” of a MCMC algorithm. The mutation rate [

was the slowest mode among those we checked, and we therefore present IACTs for that

statistic in Section 5.5.

5.3.2.2 Implementation issues

In this section we discuss debugging and MCMC efficiency of our two implementations.
We compare expectations computed in the coalescent with estimates obtained from
MCMC output. Standard errors are obtained from estimates of the corresponding IACT.
Consider a tree with four leaves, two at time zero and two offset T time units to greater

age, and consider simulation in the coalescent, with no data. The expectation of tygot is

Ec{ toot} =( 7+ 483) (1-€"%)+ ( 7+ 342)e™

A number of other expectations may also be computed.

For problems involving data, expectations are not available. However, an MCMC
algorithm with several different move types may be tested for consistency. The
equilibrium is the posterior distribution of 4 Gand @, and should not alter as we vary the
proportions in which move types are used to generate candidate states. For example,
move 2 (Wilson-Balding) is irreducible on its own, whilst moves 3 and 4 (Sub-tree
exchange and Node-age move) form another irreducible group. We fix a small synthetic
data set and compare the output of two MCMC runs: one generated using move 2 alone,

and the other using only moves 3 and 4.

We now turn to questions of MCMC efficiency. Each update has a number of
parameters, and these are adjusted by trial and error for each analysis, so that the MCMC

is reasonably efficient. An ad hoc adaptive scheme, based on monitoring acceptance rates
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and akin to that described in Larget and Simon (1999), was used. The samples used in
output analysis are taken from the final portion of the run, in which these parameters are

fixed. The scaling and Wilson-Balding updates are particularly effective.

We have experimented with a range of other moves. However, whilst it is easy to think
up computationally demanding updates with good mixing rates per MCMC update, we
have focused on developing a set of primitive moves with good mixing rate per CPU
second. In our experience simple moves may have low acceptance rates, but they are easy
to implement accurately, and are rapidly evaluated. They may give good mixing rates
when we measure in CPU-seconds. Larget and Simon (1999) have given an effective
MCMC scheme for a similar problem. We did not use their scheme, as its natural data
structure did not fit well with our other operators. A second update, which may be useful
to us in future, would use the importance sampling process of Stephens and Donnelly

(2000) to determine an independence sampling update.

Because of the explicit nature of MCMC inference, the details of a particular analysis,
including the proposal mechanisms, the chain length, the evolutionary model and the
prior distributions can be quite difficult to keep track of. An XML data format was
developed to desctibe phylogenetic/population genetic analyses, which enables the user
to write down the details of an analysis in a human-readable format that can also be used
as the input for the computer program. The XML data format is described in Chapter 10.
For the more visually inclined a graphical user interface (GUI) was developed that can
generate the XML input files, given a NEXUS or PHYLIP alignment. This software is
called MEPI and is also described in Chapter 10.

5.4 Exponential growth and relative rates of substitution

Extending the framework of Sections 5.2 and 5.3 to include deterministically varying

models of population history and estimation of relative rate parameters is
straightforward. Let @ = (0,00)5 be the state space for the relative rates of Rabove the

diagonal and excluding R, _;.LetS= (14 8 g, 1, R), and let hg(S|D) denote the postetior

density for SO Q'swhere Q's= Q},5c X[IX®. The posterior probability density has the

form

hs(s| D) =%Pf{ D w9, R f(918.r) fy (1) 15 (O) T (r) Tr(R) (5.8)
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Let T denote the age of the most recent leaf, i.e. T= minig ti. Here, T=0. Lett 2T be a
generic age. In this model Ng=Ng(t). Recall that o, the number of calendar units per
generation, is an unknown constant. Define a constant 8= Ng(T)p and a growth rate

parameter I'. The density f;(g|8,r)is the density determined by the coalescent process

0 _
with a population growing as N (t) =—e" ™" (SLATKIN and HUDSON 1991). In terms
0

of the notation defined in Section 5.2 in connection with Equation 5.1, for genealogies

with temporally spaced tips the density is

fe(g16.r) =

1 2n-1 rti _ k| (k| _1)(erti _ e"ti—1)
g ED e exp( 5 ] (5.9)

If all of the relative rates in Rexcept R, _; atre estimated, we are fitting a general time-

reversible model of substitution. However, it is sometimes useful to consider simpler

nested models. One such model is the HKY model (HASEGAWA ¢7 a/. 1985). In the HKY
model transitions occur at rate K relative to transversions. Thus Ra.c = Rc.1= Kkand

Ra.c=Ra.1=Rc.c=Rs.1=1 Either a Jeffreys' prior or a uniform prior can be used
for the relative rates. However, as a result of our parameterisation, the Jeffreys' prior

provides more accurate estimates. In the examples that follow, a uniform prior is used
for Rand K as this represents the most ignorant state of knowledge and is more than

adequate for the purpose of illustrating the methodology. In the same spirit f, (') is set

uniform on r, and this also proves acceptable.

5.5 Examples

In this section, we illustrate our methods on two HIV-1 env data sets and a series of

synthetic data sets of comparable size.

5.5.1 HIV-1 env data

The method was first tested on HIV-1 partial envelope sequences obtained from a single
patient over five sampling occasions spanning approximately 3 years: an initial sample

(day 0) followed by additional samples after 214 days, 671 days, 699 days and 1005 days.
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This data is the same dataset analysed in Chapters 3 and 4. An important feature of this
data is that monotherapy with Zidovudine was initiated on day 409 (DRUMMOND e/ aL.
2001) and continued during the remainder of the study. The total dataset consists of 60
sequences from these five time points and the length of the alignment is 660 nucleotides.
Gapped columns were included in the analysis. The evidence for recombination seems to
be negligible in this dataset (RODRIGO ¢7 a/. 1999) and recombination is ignored for the
purposes of illustrating our method. Rough estimates of Ne may be obtained by assuming

a generation length of p= 1 day per generation (RODRIGO ¢7 al. 1999). However, we

emphasize that we estimate Ne© only in this work. The dataset was split into two subsets
for separate analysis. One contained all pre-treatment sequences (28 sequences), and the
other contained all sequences after treatment commenced (32 sequences; henceforth
called post-treatment). The rationale behind this split is that a replication inhibitor such
as Ziduvodine may affect both population size and mutation rate per unit time. In all of
the analyses, base frequencies were fixed to empirically determined values, however,
inference of these would have been trivial. Two analyses were undertaken on each
dataset. The pre-treatment data is strongly informative for all parameters estimated. The
results are robust to the choice of priors and MCMC convergence is quick. In contrast,
the post-treatment data is only weakly informative for £, @and troor parameters, the

results are sensitive to the choice of prior and MCMC convergence is very slow.

5.5.1.1 Pre-treatment data, constant population size, HKY substitution

In this first analysis of the pre-treatment dataset, we fit the HKY substitution model and
assume a constant population size. We are estimating £ 6 @, and K. The methods atre
illustrated using uniform prior distributions on f/and 6, an upper limit on mutation rate
of ,LI*Z 1, a lower limit on Neo of G=1landa very consetrvative upper limit on trgot Of

t' =10’ days. Ten MCMC runs were made, with starting values for mutation rate
distributed on a log scale from 5%X10” down to 10”7 mutations per site per day. This range
greatly exceeds the range of values supported by the posterior. In order to test MCMC
convergence on tree topologies, each of the ten MCMC runs was started on a random
tree drawn from a coalescent distribution with population size equal to one thousand (in
exploratory work we initialize on a sSUPGMA or neighbour-joining topology). The 10
Markov chain simulations were run for 2,000,000 steps and the first 100,000 steps were
discarded as burn-in. Each run took about four hours on a machine with a 700MHz

Pentium III processor. The mean integrated autocorrelation time (IACT) of the mutation
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rate parameter was 4190, giving an effective sample size (ESS) of approximately 450 per
simulation. Table 5.1 presents parameter estimates for all ten runs, illustrating close
concordance between runs. Note also that the variability of estimated means between
runs is in line with standard errors estimated within runs. This is a consistency check on
our estimation of the IACT. Figure 5.2 shows the marginal postetior density of f/and 8
for each of the ten runs. In all ten runs the consensus tree computed from the MCMC
output was the same, despite the fact that the starting trees were drawn randomly (data
not shown). Combining the output of all ten runs, the 95% HPD (highest posterior
density) intervals for the mutation rate and troot are respectively (4.20, 8.28)><1O’5

mutations per site per day, and (580, 1040) days.
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Figure 5.2 Marginal posterior densities for the pre-treatment dataset.

Ten independent runs are shown. Each run was started on a random topology and the initial mutation
rates ranged from 5e-3 to le-7. (A) The mutation rate densities and (B) the densities for the parameter

Bare both shown.
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Table 5.1 Parameter estimates for ten independent analyses of the pre-treatment dataset with a
simple model.

A constant population size and HKY model of mutation was assumed.

Run Mutation rate Population size ~ Age of root (days) Transition/
(mutations X generation transversion bias

generation! site-! length (6) parameter (K)

x10°)
1 6238 (0.0517) 1284 (13.0) 796 (6.03)  4.132 (0.00634)
2 6.173 (0.0498) 1304 (12.7) 799 (5.99)  4.141 (0.00599)
3 6.218 (0.0466) 1291 (12.7) 794 (5.45)  4.124 (0.00631)
4 6.168 (0.0434) 1303 (14.0) 797 (5.65)  4.138 (0.00629)
5 6297 (0.0474) 1269 (12.8) 784 (5.45)  4.134 (0.00640)
6 6.159 (0.0458) 1309 (12.4) 802 (6.21)  4.135 (0.00630)
7 6308 (0.0539) 1270 (13.9) 784 (5.90)  4.130 (0.00678)
8 6256 (0.0463) 1279 (11.5) 790 (5.63)  4.133 (0.00674)
9 6.247 (0.0474) 1283 (13.1) 791 (5.75)  4.122 (0.00661)
10 6.201 (0.0578) 1291 (15.4) 801 (7.54)  4.123 (0.00736)
Overall 6.227 1288 794 4.131
95% HPD (4.20, 8.28) (660, 2050) (580, 1040) (3.07, 5.31)
interval

“Numbers in brackets are the standard errors of the means calculated using IACT statistic.

5.5.1.2 Pre-treatment data, exponential growth, general substitution model

In this second analysis of the pre-treatment dataset, we fit the general-time reversible
substitution model, with exponential growth of population size. We are estimating 14 6,
0,1 Ra.c, Ra.c Ra.1, Re.g and Re. 1. This is the most parameter-rich model we fit.
To assess the convergence characteristics of this analysis we ran ten independent runs of
3,000,000 cycles, each starting with an independent random tree topology (the mean
IACT for twas 7955 giving an ESS of 358 per run). Figure 5.3 shows the ten estimates
of the marginal posterior density of mutation rate. Table 5.2 shows parameter estimates

for each of the ten runs. Convergence is still achieved with the extra parameters.
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Figure 5.3 Marginal posterior density for the pre-treatment dataset assuming exponential growth
rate and a GTR model of substitution.

Ten independent runs are shown. Each run was started on a random topology and the initial mutation rates
ranged from 5e-3 to le-7.
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Compare the distribution of summary statistics under the two models - described here
and in section 5.5.1.1. Given the nature of infection of HIV-1, it seems likely that an
exponential growth rate assumption is more accurate. Estimated 95% HPD intervals for
the growth rate I = (1.09%10°, 6.65><10'3) exclude small growth rates, corroborating this
view. The 95% HPD intervals for the mutation rate and troot are respectively (3.61, 8.11)
X 10” mutations per site per day, and (570, 1090) days. Compare these with the model in
section 5.5.1.1. The change in model has minimal effect (< 10%) on the posterior mean

mutation rate.
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Table 5.2 Parameter estimates for ten independent analyses of the pre-treatment dataset with a
complex model.

An exponential growth model and GTR model of substitution are assumed.

Run Mutation rate Population size Age of root (days) Growth rate (rx103)
(mutations X generation
generation! site! lenoth
1oh gth (6)
1 5.910 (0.0623)* 5404 (127) 800 (7.43) 3.815 (0.0407)
2 5761 (0.0526) 5321 (125) 821 (7.05)  3.719 (0.0436)
3 6.045 (0.0550) 5089 (123) 786 (6.85) 3.832 (0.0418)
4 5.891 (0.0708) 5443 (172) 806 (8.50) 3.839 (0.0377)
5 5.849 (0.0609) 5338 (113) 812 (8.05  3.815 (0.0423)
6 5.930 (0.0615) 5242 (170) 804 8.66)  3.748 (0.0409)
7 5.857 (0.0589) 5318 (148) 806 (7.33) 3.780 (0.0388)
8 5.809 (0.0605) 5236 (123) 817 (7.51) 3.696 (0.0382)
9 5982 (0.0542) 5064 (127) 795 (5.63)  3.786 (0.0382)
10 5.859 (0.0692) 5306 (188) 813 (102)  3.708 (0.0400)
Overall 5.889 5276 806 3.774
95% (3.61, 8.11) (920, 12450) (570, 1090) (1.09, 6.65)
HPD
interval

“Numbers in brackets are the standard errors of the means calculated using IACT statistic.

5.5.1.3 Post-treatment

The post treatment data is analysed twice under the HKY substitution model with
constant population size. The first analysis uses the same priors as the first pre-treatment
analysis. In contrast to the pre-treatment dataset, the mutation rate of the post-treatment
dataset is difficult to estimate. This is illustrated in Figure 5.4, in which the marginal
postetior densities of f/and @estimated from ten independent MCMC runs, each
5,000,000 cycles long, are shown. We were unable to compute an IACT for each run, so
we are unable to compare within and between run variability. However, the between run
concordance visible in Figure 5.4 justifies the following statement. The post-treatment
mutation rate shows one mode at about 2.8%10” mutations per site per day, with a
second mode on the lower boundary. The data determines a diffuse, and bimodal,
marginal postetior on [ One of the modes is associated with states (4, 6, g) with
physically unrealistic root times (greater than the age of the patient). These are allowed, if
we are not prepared to assert some restriction on troor. This behaviour also occurs when
we use a Jeffreys' prior on the mutation rate (data not shown). It reflects a real property

of the data, namely that states of low f/and large tyoot are not well distinguished from

otherwise identical states of larger f/and smaller {root.
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Figure 5.4 Marginal posterior densities for the post-treatment dataset.
Ten independent runs are shown. Each run was started on a random topology and the initial mutation
rates ranged from 5e-3 to le-7. (A) The mutation rate densities (dark line is mean) and (B) the
densities for the parameter Bare both shown.
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In the second post-treatment analysis, we revise the upper limit on troot downwards from
10" to t =3650, a value more representative of actual prior knowledge for this data set.
The new limit, set 3 years before seroconversion occurred in the infected patient, is still
conservative. Here we explored the prior belief that HIV infection most often originates
from a small, homogenous population and then subsequently accumulates variation. This
prior effectively assumes that all viruses in an infected individual share a common

ancestor at most as old as the time of infection of the host. Estimated 95% HPD interval

for the mutation rate was (1.16, 4.27) X 10” mutations per site per day, markedly down
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on the pre-treatment mutation rate. Figure 5.5 depicts the resulting uni-modal marginal
posterior density for mutation rate, showing that the spurious mode has been eliminated.
Again, no IACT was computed. However, between run variability was much improved
over Figure 5.4. Information about tyoot has been converted into information about

mutation rates and population size.

Figure 5.5 Marginal posterior density for the post-treatment mutation rate assuming a upper limit
on oot

Ten independent runs are shown. Each run was started on a random topology and the initial mutation rates
ranged from 5e-3 to le-7. The dark line shows the mean density.
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5.5.2  Simulated sequence data

To test the ability of our inference procedure to recover accurate estimates of parameters

from the above HIV-1 dataset, we undertook four simulation studies. In each experiment
we generated 100 synthetic datasets. For experiment 1, the postetior estimates of 6, i
and K obtained from the pre-treatment dataset in section 5.5.1.1 were used to generate

100 coalescent trees and then simulate sequences on each of the resulting trees. The

synthetic data was generated under a constant-size population model with HKY
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mutation model, but analysed under an exponentially growing population model and a

GTR mutation model.

In the second experiment, 100 synthetic datasets were generated using the pre-treatment
parameter estimates in section 5.5.1.2 as the true values. In this case, the models for
simulation and inference are matched. Synthetic data was generated under an
exponentially growing population model and a GTR mutation model. In both
experiments 1 and 2, uniform bounded priors were used for all parameters. Experiments
3 and 4 differed from experiments 1 and 2 only in that we used Jeffreys’ prior for scale

parameters (mutation rate, population size and relative rates).

All datasets had the same number of sequences (28), the same sampling times (0 and 214
days) and the same sequence length (660) as the pre-treatment dataset. Table 5.3 shows
that the true values are successfully recovered (i.e. fall within the 95% HPD interval) =
90% of the time in all cases except for the relative rate parameters in experiment 1. In the
most complex model we fit, we recover true parameter values. The over-parameterisation
present in experiments 1 and 3 does not seem problematic for estimating mutation rate,
0 or growth rate. These results suggest that inference of biologically realistic growth rates
is quite feasible. The relative rates performed the most poorly of the parameters of
interest. This is caused predominantly because the uniform prior on relative rates
introduces metric factors that inflate the densities. In experiment 1, when the true value
of a relative rate parameter was not within the 95% HPD interval (which occurred 75

times out of 500), it was almost always over estimated (74 out of 75 times).

However, experiments 3 and 4 demonstrate that the use of a Jeffreys' prior for these and
other scale parameters results in > 90% recovery in all parameters. We are not aiming to
prescribe any particular non-informative prior. Our choice of uniform prior in eatlier
experiments is deliberately crude, but it allows us to describe the methodology with as
little emphasis as possible on prior elicitation. The reader should undertake this process

for their specific problem.
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Table 5.3 Simulation studies to assess the performance of Bayesian inference.

This table shows the percentage of times that the true parameter was found in the 95% HPD region of the
marginal postetior density.

Parameter Experiment 1 Experiment 2 Experiment 3 Experiment 4

Mutation rate 92 96 96 97
2 98 99 96 97
Growth rate 91 92 94 92
Ra_.c 87* 93 96 92
Ra_g 79% 90 96 94
Ra_T 83* 90 94 96
Re.g 88* 96 98 91
Re.t 88* 92 98 94

“indicates success rate significantly lower than 95%.

5.6 Discussion

We have described Bayesian coalescent-based methods to estimate and assess the
uncertainty in mutation parameters, population parameters, tree topology and dates of
divergence from aligned temporally spaced sequence data. The sample-based Bayesian
framework allows us to bring together information of different kinds, in order to reduce
uncertainty in the objects of the inference. Much of the hard work is in designing,
implementing and testing a suitable Monte Carlo algorithm. We found a suite of MCMC

updates that perform satisfactorily.

We have analysed two contrasting HIV-1 datasets and 400 synthetic datasets to illustrate
the main features of our methods. The results of section 5.5.2 show that a robust
summary of parameter-rich models, including the joint estimation of mutation rate and
population size, is possible for some moderate-sized datasets. The pre-treatment data
restricts the set of plausible parameter values to a comparatively small range. For this
dataset, useful results can be obtained from a state of ignorance about physically plausible
outcomes. This situation is in contrast to the situation illustrated in Section 5.5.1.3 by the
post-treatment data. For this data set, prior ighorance implies posterior ambiguity, in the
form of a bimodal posterior distribution for the mutation rate. One of these modes is
supported by genealogies conflicting with very basic current ideas about HIV population
dynamics. We modify the coalescent prior on genealogies to account for this prior
knowledge, restricting the most recent common ancestor to physically realistic values,
and thus the ambiguity in mutation rate is removed. Similar results could be obtained in a
likelihood-based analysis of the post-treatment data, since the prior information amounts

to an additional hard constraint on the root time of the coalescent genealogy.
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There is some redundancy in the set of MCMC updates we used, in the sense that the
limiting distribution of the MCMC is unaltered if we remove the scaling update (move
MF1) or the Wilson-Balding update (move M~2). However, these two updates types are
needed in practice. There are two time scales in MCMC, time to equilibrium, and mixing
time in equilibrium. The scaling move sharply reduces mixing time in equilibrium. The
Wilson-Balding update is needed to bring the equilibrium time to acceptable values. We
have seen MCMC simulations, minus the Wilson-Balding move, in which an apparently
stationary Monte Catlo process undergoes a sudden and unheralded mean shift at around
two million updates. This problem was picked up at the debugging stage, in comparisons
between our two MCMC implementations. Subsequent simulation has shown that the
genealogies explored in the first two million updates of that simulation were just one of

the tree-clusters supported by the target distribution.

The methods presented here reduce to those of Felsenstein and co-workers (IKKUHNER e#
al. 1995) in the case of a uniform prior on © = 2Ng/4, a fixed R a fixed f/and
contemporaneous data, if instead of summarizing results using 95% HPD interval
estimates, we use the mode and curvature of the postetior density for O to recover the

MLE estimate and its associated confidence interval.

A distinction can be made between a dataset like the pre-treatment dataset, for which
there is strong statistical information about mutation rates (we refer to populations from
which such datasets may be obtained as “measurably evolving” in reference to
considerations in Chapter 2) and a dataset like the post-treatment data, in which the

statistical signal is weak. In both of these datasets the familiar parameter © = 2N/ is in

fact well determined by the data (not shown above), so that MCMC convergence in O is
quick. However, it is only in the pre-treatment data that this parameter can easily be
separated into its two factors. This is related to the well-known problem of identifiability
for population size and mutation rate. We can see that temporally spaced data may or

may not contain information that allows us to separate these two factors.

In this particular example, lineages of the post-treatment viruses branch from those of
the pre-treatment viral population. Consequently a more appropriate analysis for this
dataset would allow for a change of mutation rate and/ot population size over the
genealogy of the entire set of sequences. In the case of mutation rate, this has already
been demonstrated within a likelthood framework (DRUMMOND e7 2/. 2001). In a

Bayesian analysis, coalescence of post-treatment lineages with pre-treatment lineages will
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tend to limit the age of the most recent common ancestor of the post-treatment data, so
that the pre-treatment lineages will play the role of the reduced upper bound t_, in

section 5.5.1.3.

A description of the software package called MEPI (Molecular Evolutionary Population
Inference), developed using the Phylogenetic Analysis Library (PAL, DRUMMOND and
STRIMMER 2001) is given in Chapter 10. MEPI implements the MCMC sampler
described in this chapter (including extensions such as codon position rate heterogeneity

and more complex population demographic models described in the next chapter).
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6 Extending Bayesian Evolutionary Inference
By Example
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6.1 Overview

This chapter contains three examples/case studies, each of which extends, in some small
way, the Bayesian inference framework developed in the previous chapter. The
extensions considered are (i) gamma-distributed rate heterogeneity among sites, (ii)
inference of the age of fossil remains by molecular dating, (1ii) estimation of piecewise
logistic growth and (iv) codon-position rate heterogeneity among sites. All of these

extensions are implemented in the MEPI software described in Chapter 10.

6.2 Ancient DNA of Beringian Brown Bears: A case study

The Bayesian inference framework described in Chapter 5 has been previously used to
uncover an apparently elevated mtDNA mutation rate in Adelie penguins (LAMBERT e/ al.
2002). Here, a second dataset was investigated to test if this pattern is a general
characteristic of vertebrate mitochondrial evolution over short time frames (hundreds of
thousands of years). A set of 30 ancient sequences collected from fossil brown bear
bones in eastern Beringia (BARNES e7 a/. 2002) was analysed, demonstrating a similarly
elevated rate to that found in Adelie penguins. The rates presented here for Beringian
bears are about 2-8 times faster than the eatlier estimates of Waits ez @/ (1998) of 11-14%
per million years. A second experiment, which included an additional 17 modern
sequences, yielded similar results, indicating a 2-5 fold larger rate then conventional
wisdom would suggest. These findings have a potentially large impact on dating methods
that use mitochondrial DNA and bring into question basic assumptions about the time-
scale invariance of evolutionary processes. The question posed is, “Is the rate of

evolution the same over different time scales?”

6.2.1 Data

Two sets of data were analysed to ascertain the rate of mtDNA evolution in brown bears.
Experiment 1 comprised of two sections of the mitochondrial (mt) control region, 135
and 60 bases pairs (bp), respectively, from 30 radiocarbon-dated bones ranging in age
from 9995 to >59000 years old. The dataset is fully described by Barnes e 4/ (2002). The
six sequences reported by Barnes ez 2/ (2002) that were recovered from undated bones

were not used in this analysis.

The second dataset (Experiment 2) was analysed to assess the consistency of ancient and
modern sequence material. Experiment 2 was constructed by adding an additional 17

modern sequences to Experiment 1. These additional sequences included modern brown
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bears (Ursus arctos), polar bears (Ursus maritimus) and a single black bear outgroup (Ursus

americanus). All of these sequences have been previously used in Barnes ef a/ (2002).

In both datasets the raw radiocarbon dates were used as surrogates for the real age (in
years before present; years BP) of the bones. Although calibration curves exist for
converting from radiocarbon dates to years BP, these calibration curves are currently
only accurate as far back as about 20,000 years (STUIVER e a/. 1998). As eleven of the
sequences analysed had radiocarbon ages between 35,000 and 60,000, all ages were left
uncalibrated. The extent to which this affects the analysis is partially investigated in

section 6.3.

On the larger dataset, a further experiment (Experiment 3) was undertaken to estimate
the amount of rate heterogeneity among sites and to assess the influence of rate

heterogeneity on overall rate estimates and estimates of divergence times.

6.2.2 Results

Markov chain Monte Carlo integration (as described in Chapter 5 and implemented in
the software package MEPI) was used to jointly estimate the divergence times, tree
topology, mutation rate and transition/transversion ratio of two sets of mtDNA partial
control region sequences. The posterior probability density under consideration in

Experiments 1 and 2 is:

h(u,6,r,x,9|D) :%PF{D | 1.k, 9} £ (916.1) fy (1) T (BiT) () (6.1)

Where:
U is the mutation rate in mutations per year.
is the product of effective population size and generation length in years
r is the exponential growth rate of the population
K is the transition/transversion bias

g is the genealogy g = (Eg, tv), the branching topology Eg and ancestral

ages.

D is the sequence alignment data
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Pr{D| i, «, g} is the likelihood

fs(g18,r) s the coalescent probability density

fw(L) is a uniform prior density on mutation rate.
for(6,r) is a uniform prior density on demographic parameters.
f(K) is a uniform prior density on transition/transvetsion bias.

In addition a novel extension to the MCMC method was developed to allow for the

estimation of rate heterogeneity among sites in Experiment 3.

0.2.2.1 Experiment 1: ancient sequences only

The results of four independent MCMC runs, each starting from a random tree topology,
are shown in Table 6.1. The first two runs assume an exponentially growing (or
declining) population, while the second two runs assume a constant population size
through time. Assuming an exponential growth rate, the estimated mutation rate was

about 6.4x107, with 95% highest posterior density (95% HPD) upper and lower limits of
2.5%107 and 10.3%107 respectively. The assumption of a constant population size gave
very similar results. This estimate is 2-8 times larger than recent estimates of HVR1
substitution rate in brown bears (WAITS ez a/. 1998) using standard fossil-calibration
techniques.

Table 6.1 Experiment 1: Analysis of 30 ancient sequences.

Results from four independent MCMC runs. The first two assume an exponentially growing population
and the second two assume a constant population. The numbers in parentheses are the 95% highest
posterior densities (95% HPD).

Parameter Run1 Run 2 Run 3 Run 4
Mutation rate 6.34 (2.65-10.4) 6.37 (2.44 -10.2) 6.14 (2.62-10.4) 6.11 (2.13-10.2)
(s/s/107 years)

Kappa 25 (8-49) 25 (8-49) 25 (9-50) 25 (8-49)

tmrca (1000%s of years | 152 (91-233) 153 (90-233) 160 (93-249) 161 (90-260)
BP)

Neo (1000%s) 67 (6-180) 66 (6-175) 65 (17-131) 66 (18-144)
Growth rate (x 109 -1.9 (-22-17) -2.1 (-22-17) 0.0 0.0%

Effective sample size | 516 599 589 574

*The growth rate was constrained to zero in runs 3 and 4.
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Unsurprisingly for mtDNA, the transition/transversion ratio is heavily biased towards
transitions, estimated at K= 25 (95% HPD: 8-49). The age of the most recent common
ancestor (MRCA) of this group of ancient sequences was estimated at 150,000 years BP
(90,000 — 230,000), much more recent than would be suggested by conventional

estimates of mtDNA rates in this region (WAITS e a/. 1998).

A sample tree from the posterior distribution of Run 2 is displayed in Figure 6.1. The
posterior probabilities of individual clades are presented, showing that the basic
backbone of the tree is well determined, but there is significant uncertainty in the order
of branching events within each major clade. This is unsurprising as only 21 of the 30
sequences are unique. In fact, identical sequences don’t always form monophyletic
groups! This is due to back mutations (reversions). Even though a particular reversion
has a low probability of occurring, there are a lot more possible sequences with one or
more reversions than with none, so the observation of at least some reversions in a set of
sequences becomes more likely with more sequences. In general, the structure of the tree,
despite being constrained to a molecular clock, is concordant with the neighbour-joining
(N]J) tree presented by Barnes ez 2/ (2002). Both exponential growth and constant

population size models gave similar results for all estimated parameters.
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Figure 6.1 Sample tree from Experiment 1.

Clades that have a posterior probability of greater than 50% are labelled. The clade designation used by
Barnes e# a/ (2002) is also shown.
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0.2.2.2 Experiment 2: ancient and modern bear sequences

The addition of 17 modern sequences has a significant impact on the estimated mutation
rate. The estimate is revised downward to around 4.4%107 (95% HPD: 2.5x107-6.4%107).
The results of four independent MCMC runs, each starting from a random tree topology,
are shown in Table 6.2. As with Experiment 1, the first two runs assume an exponential

growth (or decline) in the Beringian bear population and the second two runs assume a
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constant population size through time. The assumption of a constant population size

results in a slightly lower estimated mutation rate, of 4.24x107, averaged over two runs.

When compared with Experiment 1, the lower limit is about the same, but the upper

limit is significantly reduced. The estimated rate in Experiment 2 is still 2-5 times faster

then previous estimates of 1.1X107=1.4x107 (WAITS ez a/. 1998). The
transition/transversion ratio is still very uncertain but concordant with the estimate

established in Experiment 1. The 95% HPD interval of the transition/transversion bias is

about 15-75.

The estimated age of the most recent common ancestor of black, brown and polar bears
is 120,000 — 320,000 years ago, under the exponential model. In both the first two runs,
the estimated growth rate spans zero, suggesting little support for concerted growth or
decline of bear populations over the last hundred thousand years.

Table 6.2 Experiment 2: Analysis of 30 ancient sequences and 17 modern sequences.

Results from four independent MCMC runs. The first two assume an exponentially growing population
and the second two assume a constant population. The numbers in parentheses are the 95% highest
posterior densities (95% HPD).

Parameter Run 1 Run 2 Run 3 Run 4
Mutation rate 4.44 (2.56-6.33) 4.44 (2.52 - 6.41) 4.21 (2.38-6.18) 4.27 (2.51-5.98)
(s/s/107 years)

Kappa 40 (14-76) 40 (15-75) 41 (15-76) 41 (14-75)
tmrea (1000s of years | 210 (120-320) 210 (120-320) 235 (130-365) 230 (130-350)
BP)

Neo (1000s) 290 (115-525) 285 (100-520) 200 (100-335) 190 (95-310)
Growth rate (X106) 8.4 (-1.6-19) 8.3 (-1.3-19) 0.0* 0.0*

Effective sample size | 611 624 618 741

*The growth rate was constrained to zero in runs 3 and 4.

The posterior clade probabilities support many details of the tree presented in Barnes ez
al (2002), as shown in Figure 6.2. One important detail is different; in this tree, clade 4

falls within clade 3.

0.2.2.3 Experiment 3: ancient and modern bear sequences with rate heterogeneity
Recently it has been suggested that the elevated mutation rates observed in mtDNA over

short time frames is due to a large amount of rate heterogeneity among sites in the
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control region of mtDNA (HEYER ez a/. 2001). To test this hypothesis, a third experiment
was undertaken, in which rate heterogeneity among sites was modelled using a discrete
approximation of the gamma distribution (YANG 1994) with four rate categories. The

shape parameter of the gamma distribution was estimated using MCMC.

Let abe the shape parameter of the gamma distribution. Following equation 5.6 in

Chapter 5, the posterior probability density under examination here is:

h-(u,6,r,k,a,9|D) =

1 6.2)
~ PiD| .k, 9.a} 15 (916.7) fu (1) Tor (€.1) fo (@) F, (%)

fa(@) is a uniform prior density on the shape parameter. The probability

Pr{D | it,k,9,a} was calculated by the method of Yang (YANG 1994), using a
discretization of the gamma distribution and integrating over all rate categories at all sites,
as implemented in the open-source programming library PAL (DRUMMOND and
STRIMMER 2001). It should be noted that as the shape parameter of the gamma
distribution approaches infinity, the gamma distribution approaches a singleton
distribution at which all sites evolve at the same rate. Conversely, as the shape parameter
approaches zero, most sites evolve extremely slowly while a few sites have widely
distributed rates. Thus a uniform prior density on the shape parameter was chosen to

allow for arbitrarily large values, corresponding to exactly equal rates across sites.

Table 6.3 shows the results of two independent MCMC runs, estimating the gamma
shape parameter from 47 Beringian brown bear sequences. It is evident that there is
significant rate heterogeneity in the Beringian Brown bear sequences. The slowest of the
four (equally represented) rate categories is estimated to evolve ~2000 times slower than

the fastest. Furthermore, the introduction of a gamma distribution of rates increases our

estimate of the mean mutation rate, to about 5.6x107 (3.1-8.4).
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Table 6.3 Experiment 3: Analysis of 30 ancient sequences and 17 modern sequences with gamma-
distributed rate heterogeneity among sites.

Results from two independent MCMC runs. Both analyses assume an exponentially growing population.
The numbers in parentheses are the 95% highest posterior densities (95% HPD).

Parameter Run 1 Run 2
Mutation rate (s/s/107 years) 5.53 (3.0-8.35) 5.61 (3.14-8.53)
Gamma shape parameter 0.27 (0.16-0.41) 0.27 (0.16-0.41)
Kappa 48 (16-89) 47 (17-88)
Ne© (1000s) 235 (95-410) 230 (85-400)
Growth rate (x10-9) 6.3 (-3.0-17) 6.3 (-3.4-17)
Effective sample size 686 669

It should be apparent that the contribution of the fastest sites (with rates of
approximately 18.2 x 107 [10.1-27.3]) would be quickly masked by saturation of the sites
involved as the timeframe increases. The time frame over which these sites are
informative can be estimated as 0.5 / 18.2x107 = 275,000 years. The value of 0.5 is the
diversity of saturated sequences of binary characters. This is appropriate for mtDNA in
which transitions vastly outnumber transversions. Even the more generous estimate of
0.75 / 10.1x107 (assuming #o transition/ transversion bias azd taking the lower limit of
the rate estimate) will still lead to a maximum timeframe of 750,000 years over which an
accurate estimate of mean mutation rate can be obtained. Table 6.4 shows the maximum
time frame over which different rate categories can provide phylogenetic and molecular
rate information, based on a discrete approximation of the gamma distribution with a
shape parameter of 0.27 and four rate categories. The calculated saturation times for the
slowest rate category are probably unreliable because over long enough time frames the
rate category of a site is likely to change due to shifting structural constraints and
molecular sequence context. Thus most sites will not remain in the slowest rate category
for tens of millions of years. Evidence to support this conclusion exists in the inability to

align control region sequences from distantly related vertebrates.
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Table 6.4 The maximum time frame over which different rate categories can provide phylogenetic
and molecular rate information.

The estimates are based on a discrete approximation of the gamma distribution with a shape parameter of
0.27 and four rate categories.

Category (25% each) | Mean rate (X10-7) Saturation time (binaty Saturation time (4
characters) characters)

1 0.0089 (0.0049-0.013) 560,000,000 843,000,000

2 0.51 (0.28-0.77) 9,800,000 14,700,000

3 3.7 (2.0-5.5) 1,350,000 2,030,000

4 18.2 (10.1-27.3) 275,000 412,000

6.2.3 Discussion

The recent use of both pedigree material (HEYER e7 2/ 2001) and ancient DNA from
sub-fossil bones (LAMBERT e /. 2002) to study the rate of mitochondrial evolution over
relatively short periods (<1,000,000 years) has suggested that the rate of evolution in the
control region in vertebrates may be much faster than previously thought. Here, an
analysis of Beringian brown bear sequences ranging up to at least as old as 59,000 years
supports these recent studies and suggests the mitochondrial rates are at least 2 times
faster than previously thought when measured over short (in geological terms) time

frames.

Radiocarbon dating starts to become inaccurate for dates greater than 20,000 years and
fails completely to discriminate between different ages beyond an upper limit of about
50,000-60,000 years. Three of the bones used in this analysis are dated to this upper
range of 50,000-60,000 years, and thus these ages should be regarded as wznimum
estimates of the actual ages. What happens if we take into account the uncertainty in their
ages? One possibility is doubling the ages of the three oldest bones and repeating
experiments 1, 2 and 3. A better approach might be to let the ages of these bones
become parameters of the model, with a lower limit of the radiocarbon age, and then
integrate over all possible ages to estimate the mutation rate. In the next section on
molecnlar dating, this solution is attempted, without any large change in the estimate of

mutation rate.

Why are the mutation rates estimated here faster than those estimated by Waits ez a2 A
recent study of human mtDNA (HEYER e7 2/. 2001) has suggested that this observation is

due to extreme rate heterogeneity in the mitochondrial control region. Thus, short
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timeframes permit measurements of the rate of mutation at highly mutable sites, while
measurements of rates over long time frames are dominated by slowly evolving sites.
This effect is further exacerbated by the high transition/transversion bias in mtDNA,
which causes most sites to be effectively binary. Thus the fastest sites are saturated very
quickly and provide phylogenetic information only over very short time frames. The
above analysis of rate heterogeneity in Beringian brown bear sequences supportts this
hypothesis, by uncovering extremely rapid evolution in some sites of the molecule that
will be completely saturated over long time periods, resulting in an apparent reduction in
evolutionary rate. If this hypothesis is correct then it has important consequences for
phylogenetic dating of divergences. Rates of evolution calibrated from the fossil record
over long periods (such as tens of millions of years) will not accurately reflect the rate of
evolution observed over tens, or hundreds of thousands of years. Thus conservation
genetic and population genetic studies that use mtDNA to date intra-specific divergences
or divergences between closely related species, should revise the mutation rates used for
calibration upwards. In terms of the current literature this would bring many hundreds of
estimates of the age of common ancestors in mammal and bird populations nearer to the

present.
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Figure 6.2 Sample tree from Experiment 2.

All sub-clades in Barnes ¢z a/ (2002) (1, 2a, 2b, 2c, 4, 3a, 3b, 3¢c) are monophyletic in this representative tree.

In addition all have >70% posterior probabilities. Unlike Barnes ¢# @/, clade 3 and clade 4 are not

reciprocally monophyletic. Clade 4 falls inside clade 3 and the postetior density most strongly supports its
placement between 3a and 3¢, however alternative positions within clade 3 have appreciable probability.
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0.3 Molecular dating of undated and old sub-fossil bones

In section 6.2 the problem of estimating mutation rate was considered for the situation
of temporally spaced molecular sequences of known ages. In viral populations, where the
evolutionary rate is very fast, this temporal spacing can be achieved by simply sampling
the population of interest over a relatively short time period (for example, a couple of
years). In this case the ages of the sequences are known exactly. However in the case of
vertebrate populations, the mutation rate being much lower, it is necessary to rely on
sub-fossil remains to obtain a sufficient temporal depth to estimate evolutionary rates. In
this case the ages of the sequences are 7o known exactly. For bones aged less than
10,000 years this may not be an issue as the calibration curve between radiocarbon dates
and calendar dates is quite well determined (albeit non-linear). However for older bones,
the radiocarbon dates are a very rough estimator, and for ages above 60,000 years

radiocarbon dating is not possible.

In the situation of radiocarbon-dated material, the problem can be turned on its head
somewhat. Given a number of accurately dated molecular sequences and a small number
of inaccurately (or un-) dated sequences, it may be possible to gain information about the
ages of the undated material from their sequence relationships to the dated material. This
is a kind of molecular dating. In loose terms, the most likely placement and branch length
of an undated sequence, in a rooted and dated tree, will provide information about how

likely various ages of the said sequence are.

A set of Beringian brown bear sequences is analysed. Of the 53 sequences analysed 44
sequences are treated as having known ages, and nine sequences are treated as unknown,

with or without a lower bound.

Let ty be the set of unknown (or partially known) ages and a strict subset of the set of
ages of the leaf nodes (t)). Following equation 5.6 in Chapter 5, the posterior probability

density under examination is:

hy (4,6,7,4,0,t,|D) =

1 (6.3)
- PAD 14K, 9.t} e (9.8, 18.1) Ty (1) Te (6.1) £, (1) T (1)
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The prior fr(ty) can accommodate various upper and lower limits on the ages of undated
(or partially dated) sequence. This prior information could be based on radiocarbon
dating, stratigraphic information and other auxiliary sources of information. In the
context of this analysis, it consists of an upper limit on all nine bones of uncertain age,
and a non-trivial lower limit on three of them. Both uniform and Jeffrey’s prior densities

were investigated, within the upper and lower boundaries.

6.3.1 Methods and materials

The dataset was comprised of the 47 sequences analysed in Experiment 2 above, along
with an additional six undated sequences from Barnes ¢f @/ (2002). This represents all of
the ancient material published in Barnes ¢z 2/ (2002) and most of the same modern
material. The three oldest sequences in Experiment 1 and 2 (FAM95640, FAM95639 and
FAM 95681) were treated as undated with lower limits of 53900, 56900 and 59000

respectively.

Simple random walk and scaling proposal mechanisms were tested, and both performed
adequately for the purposes, although the scaling proposal mechanisms required less
fine-tuning of parameters, in all cases performing adequately with a simple 0.5-2.0 scaling
range. Each proposal of a new age for an undated sequence was made independently in
the MCMC chain. This represents the simplest possible proposal scheme, and while

proving adequate for the problem at hand, could undoubtedly be improved on.

6.3.2 Priors

A lower limit of 1 year was assumed for the six undated sequences. The three old
sequences were given lower limits of 53900, 56900 and 59000 as mentioned earlier. An
upper limit on age was also introduced as a prior for all undated material. The upper age
was set at 150,000 years. The rationale for this selection is based on the fact that
sequence data was recovered from the bones in question. With current techniques, the
upper age limit at which recovery of a 135 bp fragment is still feasible is probably about
80,000-100,000 years (Alan Cooper, personal communication). This serves as a natural a prior:
belief, based on expertise. In order to be conservative the upper limit was extended out
to 150,000 years BP. Within the upper and lower boundaries, both Jeftreys’ and uniform

distributions were investigated as priors.
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6.3.3 Results

Firstly, a naive analysis of the dataset was undertaken, in which all nine sequences were
given a uniform prior on age (with appropriate lower limits in the case of the three old
sequences), with an upper limit of 150,000 years BP. Only two of the sequences had
posterior densities with considerably lower upper limits than the prior (KU23034,
FAM95597). This suggests that there was not enough sequence data to estimate precise
posterior densities for the other seven sequences. Table 6.5 shows the estimated ages of

the nine sequences with unknown dates.

A second analysis was also undertaken, in which a Jeffreys’ prior on sequence age was
used. This implies that an age ten times younger is ten times more likely and thus
strongly favours younger ages. One of the six undated bones (IB_Duvanny_Yar) and the
three old bones (FAM95640, FAM95639 and FAM 95681) maintained a strong signal for
antiquity under this prior. Low estimates of age were established for the remaining five
bones under this prior. The estimates of ages were therefore sensitive to selection of a
prior as can be seen in Table 6.5.

Table 6.5 Estimates of bone ages based on sequence comparison to known ages using MCMC.

Estimates with uniform prior and Jeffreys’ priorgive are shown. In all cases the upper limit on age was
assumed to by 150,000 years BP. IB_Duvanny_Yar was the only undated bone that had strong sequence
signal suggesting that it was an old bone. KU23034 and FAM95597 both had molecular signals indicating
young bones. The three old radiocarbon dated bones (FAM95640, FAM95639 and FAM 95681) all have
molecular signals that indicate they could easily be ~20,000 years older than the minimum estimates
established by radiocarbon dating.

Sequence Id Location Radiocarbon | Estimated age Estimated age
date (uniform prior) (Jeffreys’ prior)
rounded to the rounded to the
nearest 1000 years nearest 1000 years
RSM1962/63 Scotland - 48000 (0-130000) 3000 (0-20000)
1B Duvanny Yar - 70000 (12000-136000) | 37000 (0-87000)
KU23034 Ice Cave - 16000 (0-45000) 2000 (0-10000)
FAM95596 Goldstream - 67000 (0-136000) 7000 (0-37000)
FAM95597 Gold hill - 25000 (0-63000) 6000 (0-22000)
AMNH30421 | Fairbanks - 45000 (0-114000) 2000 (0-11000)
FAM95640 Cripple Creek >53900 84000 (53900-130000) | 69000 (53900-94000)
FAM95639 Cripple Creek >56900 97000 (56900-140000) | 79000 (56900-108000)
FAM95681 Fairbanks Creek | >59000 92000 (59000-138000) | 77000 (59000-108000)
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6.3.4 Discussion

The use of uniform and Jeffreys’ priors gave very different results for the estimated
absolute ages of undated bones, suggesting that there is not enough sequence
information to determine precise ages of the undated bones by the molecular dating
technique described. Despite this, molecular dating still provided useful information.
IB_Duvanny_Yar was the only undated bone that had strong sequence signal suggesting
that it was an old bone, even under the Jeffreys’ prior. KU23034 and FAM95597 both
had strong molecular signals for being young bones. The three old radiocarbon dated
bones (FAM95640, FAM95639 and FAM 95681) all had molecular signals that indicate
they could easily be ~20,000 years older than the minimum estimates established by
radiocarbon dating. This kind of qualitative information could help to make decisions as
to which undated, but sequenced, bones should be radiocarbon dated. However this
analysis also suggests that precise molecular dating is not possible without obtaining

much longer sequences (>>200 bp) from undated bones.
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0.4 Hepatitis C in Egypt: A non-MEP analysis

The number of people infected by Hepatitis C virus (HCV) worldwide has been
estimated at about 170 million (World Health Organisation; 1997). HCV is a positive,
single-stranded RNA virus and is a member of the Flaviviridae family of viruses. The
HCV genome is ~10,000 nucleotides long, encoding a single polyprotein of about 3,000
amino acids. Egypt has a high prevalence of HCV, estimated at about 10-20% of the
total population. It has been suggested that the high incidence of HCV in Egypt has
resulted from the use of unsterile injection equipment during widespread treatment of
the population with parenteral antischistosomal therapy (PAT) from the 1920s to the
1980s (FRANK e al. 2000; HABIB ez al. 2001; NAFEH et al. 2000). In this section a
computationally intensive sample-based Bayesian inference approach is used to
investigate the demographic signal contained in modern Hepatitis C viral sequences
obtained from infected members of the Egyptian population. This dataset provides two
interesting methodological challenges: (i) piecewise logistic demographic model and (ii)

codon-position specific rate heterogeneity.

6.4.1 The piecewise logistic demographic model

Coalescent theory can be used to calculate the expected distribution of times of
coalescent events given a parametric demographic model. In chapter 5 two simple
parametric models of demography were investigated: the constant population size model,
N(t) = N¢, and the exponential growth model, N(t) = Nc€". Neither of these simple
models of population size dynamics is an adequate description of the PAT-mediated
population expansion in the Egyptian HCV epidemic over the last century. Therefore, to
facilitate investigation of the HCV epidemic a new model called the piecewise logistic model

of demography is introduced:

Nc if t<x
N(t) ={N.e "™ if x<t<y (6.4)
N, iftzy

This model allows for a small ancestral population to undergo exponential expansion
over a finite period of time, resulting in a large modern population. Nc is the current

population size, assumed to have been constant back in time until time X, and Na is the
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ancestral population size, assumed constant at times early than time Y. For the interval
between X and Y, exponential growth (with growth rate I) is assumed. For the current
purposes the units of population size can be assumed to be effective number of infections. 1t
should be noted that this model is completely specified with four parameters, although
five are given. Any one of the five parameters given is fully determined by the values of

the other four. For example, given values for the parameters Nc, X, Y and I', the ancestral

population size, Na, can be calculated by, N, = Nce_r(y_x),

Given a known genealogy (including branching order and node heights), maximum-
likelihood parameter estimates can be readily obtained for a parametric demographic
model such as the one described above, by applying coalescent theory (HUDSON 1990;
KINGMAN 1982a). However in most cases, exact knowledge of the genealogical
relationships of sampled sequences (for example, the ages of ancestral nodes) is not
available. One solution is to integrate over all possible genealogies that are supported by
the data, and find the average estimates of the demographic parameters. One way to do
this is using sampled-based Bayesian inference. Chapter 5 described an MCMC method
for the joint estimation of genealogy, demography (population history) and mutation rate.
This inferential framework can be readily extended to the problem at hand. MCMC can
be used to weight the contribution of an individual genealogy to parameter estimates in
proportion to its posterior probability. For a given mutation rate, /4, this is achieved by

initially sampling the entire parameter space:

Nyog (Ne, X, Y, 1,9 D) OPH{D | 1,0} fo (91 N, X, Vo 1) frpe (NG, X, Y, 1) (6.5)

where Pr{D | &, g} is the likelihood, f;(g|Nc,X,Y,r)is the coalescent density of the
piecewise lpgistic model, and . (N, X, Y,T)is the prior density of the parameters.
However, we are only interested in the marginal density, hy,, (N¢, X, y,r [ D). We

summarise this density by using samples (N, X, Y,r) ~ Ny, sampled from the full

Nxyrg
density The genealogical information is discarded and can be thought of as uninteresting

“missing data”.

As discussed in early chapters, it is not possible to separate the contributions of

substitution rate and population size to sequence diversity with contemporaneous
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sequences. Therefore, to calibrate the parameters of the demographic model in terms of
calendar units, it was necessary to fix the overall mutation rate (44 to the ‘known’ value of

5%107 substitutions per site per year.

0.4.2 Codon position rate heterogeneity
Although the mean substitution rate was fixed, the relative contributions of codon
positions 1, 2 and 3 to the overall rate can be estimated using MCMC integration. To

achieve this, two proposal mechanisms were employed (see Figure 6.3).

Figure 6.3 Two proposal mechanisms for estimating the relative contributions of codon positions
1, 2, and 3 to the overall rate of substitution.

(A) A random walk that preserves the mean rate of a pair of positions. This proposal mechanism can
change the order of the rates as depicted in the figure. (B) A centred scaling proposal mechanism, that
shrinks or expands the rates around the mean by a scale factor A. This proposal mechanism presetves the
order of the rates.

State x = (lula o, /,13)

[ O O ® O >
o H y2 H3
+0 —0
A } m ® m >
0
o K H '
shrink around center by A=0.5
B ! OO L O >
0

/121 ,Llll /»l /131

0.42.1 A random walk that preserves the mean rate of a pair of positions

First consider a set of codon position rates X = (L, I, [43) with a mean rate of
M= (4, + Uy + 115) 13, which must be conserved. Consider a proposal mechanism in

which a random pair of rates, say, 44, and [4, is selected and a small random number

0 ~Unif (-, &) is added to one rate and subtracted from the other, so that the new
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state is X = (4, + O, U,, Us — O). This proposal mechanism is symmetric, so that the
Hastings ratio is 1.0, and maintains the mean rate of the selected pair of rates and thus
the triple. It should be noted that the proposed state X is immediately rejected if any of
the mutation rates becomes negative. This proposal mechanism by itself is sufficient to
sample the space of codon position contributions to overall substitution rate, however a

second proposal mechanism was used to improve convergence rates in the MCMC chain.

0.4.2.2 A centred scaling proposal mechanism

Again, consider a set of codon position rates X = (4, Uy, 13) with a mean rate of U.
Chose a random scale factor A ~Unif (0.5,2) and propose a candidate set of codon
position rates, X' = (g + Aty = {), fy + A(fd, = H), s + A(U5 = 1)) . This proposal
mechanism has the effect of expanding or contracting the three rates around their mean.
By itself, this proposal mechanism cannot change the order of the rates and thus is not

sufficient to sample the full parameter space of interest, however it is useful for sampling

the variance of the rates.

0.4.2.3 'The full posterior probability density

The full posterior probability density under consideration is:

Nuoy (NG, X, Y, 1, O, 4, 1y, s K | DL ) =
1
EPI’{D“,II,/JZ,,US,K,Q}X (6.6)
fG(g | N01X1 y,r)foyr(NC,X, y,r)fﬂ(ﬂl,ﬂz’ﬂs |'[j)

1 iff (4, + 4ty + 115)13= U

Where f My, = i
ere u('ul M, /usllu) {0 otherwise

The MCMC algorithm described in Chapter 5 was extended to allow sampling of the
posterior probability density described in equation 6.3 above. The input data was a

sample of modern contemporaneous Hepatitis C nucleotide sequences.

6.4.3 Data

Two datasets of partial E1 gene sequences, obtained from a comprehensive recent study
(RAY ez al. 2000), were analysed to estimate the demographic history of HCV in Egypt
over the last century. Theses sequences were all sampled from the same year (1993), and
they show no obvious correlation between geographic distance and genetic distance. In

addition the sample is geographically diverse, with ample phylogenetic information. An
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independent estimate of nucleotide substitution rate for the partial E1 gene region is

already available, of, 5 x 10~ substitutions/site/year (PYBUS e a/. 2001).

Dataset A consists of 68 E1 partial sequences of length 411 bp (63 type 4 sequences and
5 subtype 1g sequences). This dataset contains all E1 sequences published in the recent
survey by Ray ez a/ (2000) except for three isolates belonging to types 1a and 1b that were
excluded because they are probably not representative of the endemic population of

HCV. Dataset B contains only the 63 type 4 sequences of Dataset A.

6.4.3.1 Priors

An upper limit on exponential growth rate of 0.75 was chosen. This corresponds to a
doubling of the HCV population size every year and is far higher than previous estimates
of HCV growth rates (PYBUS ¢/ a/. 2001). This limit was impinged on, suggesting that
extremely high growth rates are compatible with the data analysed. However the HPD
was focused around substantially lower growth rates of about 0.1-0.2. An upper limit on
x and y of three hundred years BP was chosen. These limits were never reached in

sampling the posterior.

6.4.4 Results

Table 6.6 shows the estimated marginal posterior densities of some parameters of
interest. These estimates suggest a pronounced growth in effective infection size of the
Egyptian HCV epidemic of about two orders of magnitude over a period of about 20
years, from mid 1930s to the mid 1950s. Figure 6.4 depicts a sample piecewise logistic
demographic function from the MCMC analysis of Dataset A, along with a mean
demographic function obtained by averaging the demographic height at each time across

all of the demographic parameter values sampled by MCMC.
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Figure 6.4 Demography of the Egypt HCV epidemic.

Both a sample demographic function from the MCMC chain of an analysis of Egypt HCV sequences and
the mean demographic function resulting from averaging all demographic functions in the MCMC chain
for Dataset B. The sequence data analysed was thus comprised of E1 gene sequences from HCV type 4.

12000
—— sample demographic
- == mean demographic function

I 10000
~—~
@
g
s

[ 8000 =
D
N—r
=}
c
3
o

+ 6000 o)
o
=
5
=

La000 3
=
o
=
n

2000

T T T T T T T T T 0

100 90 80 70 60 50 40 30 20 10 0

time (years BP)

Finally, we found that allowing for codon position rate heterogeneity had a significant
effect on the estimated time of the most recent common ancestor (fvrca), estimating an

older age of the root than a model assuming uniform rates across sites (data not shown).
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Table 6.6 Parameter estimates for two datasets of partial E1 genes.

These estimates suggest a pronounced growth in effective infection size of about two orders of magnitude
over a period of about 20 years from the mid 1930s to the mid 1950s.

Parameter

Dataset A

Dataset B

I (exponential growth rate)

Y (exponential growth start date)

X (exponential growth end date)

Nc (current number of infections)
Na (ancestral number of infections)
codon position 1

codon position 2

codon position 3
transition/transversion rate ratio

date of most recent common ancestor

0.264 (0.075, 0.620)
1934 (1924, 1943)

1953 (1941, 1966)

10310 (4095, 18960)

245 (153, 345)

0.45¢-3 (0.40e-3, 0.49¢-3)
0.23¢-3 (0.1.98¢-3, 0.27¢-3)
1.69¢-3 (1.63e-3, 1.75¢-3)
7.71 (6.75, 8.69)

1374 (1258, 1481)

0.237 (0.072, 0.564)
1932 (1922, 1940)

1953 (1941, 1966)

8779 (3323, 15780)

170 (99.6, 251)

0.45¢-3 (0.39¢-3, 0.49¢-3)
0.25¢-3 (0.21¢-3, 0.28¢-3)
1.68¢-3 (1.62¢-3, 1.74¢-3)
8.26 (7.13, 9.38)

1710 (1673, 1747)

6.4.5

Conclusion

A piecewise logistic model of epidemiology was investigated as a tool for analysis of 68 partial
E1 gene sequences from HCV strains isolated in a comprehensive survey of Hepatitis C
in Egypt. Parameter estimates of the model were obtained by MCMC integration to take
into account uncertainty in the genealogical relationships of the sampled sequenced. A
strong signal for a rapid growth of HCV in Egypt in the middle of the last century was
detected. The data could not eliminate the possibility that HCV prevalence experienced
an extremely rapid increase, but could reject the hypothesis that there has been no
change in HCV prevalence over the last century. Finally a strong signal for rate
heterogeneity among sites by codon position category was observed in the data, and the
incorporation of this knowledge into the inference has a marked effect on estimates of

the age of the most recent common ancestor of HCV in Egypt.
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6.5 Discussion

Section 6.2 provided further support for the recent observation of higher evolutionary
rates in mtDNA control region sequences than originally thought (LAMBERT ef a/. 2002).
This analysis also showed that a relatively small number of short sequences (~200 bp)
could still give rise to accurate estimates of substitution rates in mtDNA if ancient
material is distributed over a large temporal scale (in this case, at least 60,000 years). This
should be compared to other recent studies in which a large number of longer sequences
(~350 bp) over a short temporal scale (LAMBERT ef a/. 2002) was used to yield similar
estimates of the substitution rate of the mitochondrial control region. The question was
asked, “Is the rate of evolution the same over different time scales?” It seems apparent
that extreme rate heterogeneity (the fastest 25% of the sites appeared to be accumulating
substitutions 2000 times the slowest 25% of the sites) could provide an explanation for
an apparent discrepancy of overall substitution rate over different time scales. This
provides an obvious prediction: data from longer timescales (for example across all
Carnivora) should have both apparently reduced overall substitutions rates and apparently

reduced rate heterogeneity because of complete saturation of the fastest sites.

Another possible explanation for the variation of rates over different time scales is that
the effects of purifying selection will be more apparent at larger time scales. This would
seem more likely to occur in the case of protein-coding sequences, in which a small
amount of genetic drift over short time frames may be tolerated, however over long time
frames, proportionally larger shifts in sequence may be more strongly resisted by
purifying selection. This argument is compelling, however little is known of the particular
functional and structural constraints on the DNA sequence in the mitochondrial control

loop.

Section 6.3 investigated the possibility of dating sequences of unknown ages by
comparing them to sequences with known ages in an MCMC framework. This analysis
resulted in marginal posterior distributions for the ages of nine undated Beringian bear
bones. The marginal densities were diffuse and highly sensitive to choices of prior
distributions, suggesting that only a very weak signal existed for molecular dating with the
sequence lengths available. Despite this, qualitative statements about the relative ages of

bones were fairly robust to changes in prior information.

The two case studies described in this chapter demonstrated a number of simple yet

powerful extensions that can be made to the basic framework described in Chapter 5.
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The Bayesian inference of gamma-distributed rate heterogeneity among sites was
demonstrated using the Beringian bear mtDNA dataset. Although the estimated rate
heterogeneity was very high, it had only a modest effect on the estimated substitution
rate (~25% increase) and divergence times over the time scale considered. An alternative
approach to rate heterogeneity among sites was investigated in the analysis of a set of
HCV partial E1 gene sequences, where a separate substitution rate was estimated for
each codon position. Again, substantial rate heterogeneity was observed and the wobble
position was estimated to be evolving 7 times faster than the 2™ codon position.
However, unlike the Beringian bear data, the assumption of rate heterogeneity in the
HCV dataset was associated with a larger estimate (~2 times larger) of the age of the root
than similar analyses that assumed a single rate across sites (data not shown). It is also
worth noting that these two models of rate heterogeneity could easily be used in concert,

so that a gamma shape parameter is estimated for each codon position.

The evolutionary models investigated in this chapter are just a few of the modifications
that can be made to the Bayesian framework described in Chapter 5. Programmatically,
they were made easier by the existence of open-source programming libraries such as
PAL (DRUMMOND and STRIMMER 2001). Nonetheless, the ease with which they were
implemented was largely due to the nature of the MCMC algorithm. If a model can be

simulated then it can be implemented in MCMC.

In some instances (for example, the piecewise logistic growth model of demography) it
remains to be seen under what prior conditions the models investigated here represent
meaningful posterior distributions. Despite this, the results of this chapter again
demonstrate that, as an exploratory tool with statistical rigor, MCMC is a powerful
alternative to more classical approaches such as maximum likelihood and least-squares

regression.
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7 Evolution of RNA secondary structure
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7.1 Introduction

Evolutionary inference is often conducted on gene sequences that code for functional
molecules such as proteins or functional RNA molecules. The structure of these
molecules is often important to their function. In chapter 8 I investigate the ability of
molecular structure information to improve on two problems in phylogenetics: multiple

sequence alighment and phylogenetic reconstruction.

Understanding evolutionary processes requires an understanding of the ways in which
mutation affects phenotypic fitness. In a molecular context this question can be
rephrased: How do mutations in a gene affect the fitness of the gene’s product? To
answer this question, knowledge of the relation between the primary sequence of the
gene (genotype) and the active conformation of the product (phenotype) is required. This
relation is called the sequence-structure (or genotype-phenotype) mapping. A sequence-
structure mapping is a function that maps a (DNA) sequence into a molecular structure.
Obtaining a sequence-structure mapping requires a solution to the structure prediction
problem. Molecular evolution results from the combined action of mutational processes
acting on the genotype and ‘selective’ processes (purifying and adaptive) acting on the
Pphenotype, and thus its full understanding requires knowledge of the sequence-structure
mapping.

This chapter focuses on RNA secondary structure of the small-subunit ribosomal RNA
molecule as a phenotype. This molecule is found in all living organisms and plays a
central role in biology, including viral replication, as part of the translation machinery of
the ribosome. As a result its structure is highly conserved across all three domains of life.
Furthermore, RNA secondary structure is a computationally tractable intermediate
phenotype that can be determined directly from its genotype. RNA structure prediction

from sequence data is possible by thermodynamic, kinetic and phylogenetic techniques.

The aim of this research is to compare the predicted structures of evolutionarily related
molecules, and in doing so ascertain if structural information can improve our
understanding of molecular evolution. The goal is to use structural information to

accurately align sequences and infer phylogenetic relationships.

7.2 Secondary structure prediction

As mentioned above, obtaining a sequence-structure mapping requires a solution to the

structure prediction problem. Structure prediction is based on the hypothesis that the 3D
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biologically active structure of a gene’s product (RNA or protein) can be predicted from
the corresponding nucleotide or amino acid sequence. Approximate structure prediction

techniques have been developed for both protein and RNA molecules.

Obtaining any mapping from genotype to phenotype requires environmental factors to
be fixed. At the level of the organism this constraint can be very difficult to justify.
Phenotypes are the product of the interaction between the developing organism and its
environment, both of which vary over evolutionary time frames. Likewise, in a molecular
context, the phenotype is the product of the genotype and its kinetic development in the
cellular environment. However, structure prediction techniques must fix the cellular
environment as a constant. The implications of this assumption will not be considered
here, except to say that phylogenies containing organisms living in very different

environments should be treated with care.

The biologically active conformation of an RNA or protein molecule can be described by
its three dimensional structure (i.e. the average spatial positioning of its constituent
atoms). However, accurately deriving this information from a primary sequence is
currently not feasible. For RNA molecules a convenient intermediate description of
molecular structure exists, called the secondary structure. The secondary structure can be
described by a list of Watson-Crick (AU and GC) and GU paired nucleotide positions
(base-pairs) in the RNA sequence (REIDYS e a/. 1997). These base pairs bring
complementary sub-sections of the molecule together to form helices (or stems or
stacks). A number of coarse structural elements can be defined for secondary structures;

L.e. stack, loop, bulge, unpaired regions and multi-stem loop (see Figure 7.1).

In a mathematical sense, secondary structures are contact graphs with an associated
adjacency matrix (REIDYS ez a/. 1997). This simple definition of secondary structures
allows statistical analysis by conventional combinatorics in a way difficult or impossible
to achieve for the full three dimensional structure of RNA. For instance, straightforward
estimates of the number of possible secondary structures of a given chain length are
readily obtainable. Three approaches to RNA secondary structure prediction -

thermodynamic, kinetic and phylogenetic techniques — are discussed below.
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Figure 7.1 A transfer RNA (tRNA) secondary structure.

This diagram of a transfer RNA (tRNA) illustrates most of the major features of RNA secondary structure:
S = stem/helix, M = multi-stem loop, L. = loop, U = unpaired region. (Reproduced and modified from
Fontana, 1998).

F-End

7.2.1 Thermodynamic structure prediction

Thermodynamic prediction techniques are based on the assumption that an RNA
molecule is in its thermodynamic ground state in the cell. This ground state can be
calculated by minimising the free energy of the molecule. Efficient algorithms to calculate
the minimum free energy secondary structure have been developed (WUCHTY ef a/. 1999;
ZUKER and STIEGLER 1981). In these algorithms the free energy of a secondary structure
is approximated by the sum of the free energies of simple sub-structures such as hairpin
loops, bulges, multi-stem loops and unpaired regions. The free energies of these sub-

structures are experimentally determined.

The thermodynamic stability (and ground state) of an RNA molecule is affected by
variables such as the temperature, salt content and pH of the environment (SERRA e/ a/.
1997). These variables are fixed during experiments that measure the stability of small
RNA fragments (SERRA ¢f al. 1997; SINGH and KOLLMAN 1996; X1A ¢f al. 1997). From
these analyses the thermodynamic stability at different pH, temperature and salinity can

be extrapolated. Thus thermodynamic RNA secondary structure prediction algorithms
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require not only the base sequence, but also an approximation of the cellular

environment of the molecule being studied.

Thermodynamic secondary structure prediction is valid because the base pairing and base
pair stacking interactions in an RNA molecule utilise the majority of the free energy of

the molecule, and the individual contributions are reasonably independent (WALTER e7 a/.
1994). Because of this, secondary structure prediction is also a valid intermediate step for
determining the tertiary interactions and complete 3D structure of the molecule (REIDYS

et al. 1997).

It can be argued that for large molecules the minimum free energy conformation is not as
important as some sub-optimal conformations (WUCHTY e¢f a/. 1999; ZUKER 1989;
ZUKER et al. 1991). Many close-to-optimal conformations may have significant biological
functions. Furthermore, as we will see later, the minimum free energy structure might not
be attained 7 vivo, for reasons to do with kinetics. Two improvements on the original

algorithm have been described and implemented to address this inadequacy.

McCaskill developed a description of RNA secondary structure based on statistical
mechanical theory (MCCASKILL 1990). By considering the complete ensemble of all
permissible secondary structure conformations for a given sequence and their associated

free energies, McCaskill was able to describe an RNA molecule by its base-pairing

probability matrix (BPPM). Each entry () in the matrix is the probability of the base-
pair (i, J) occurring in the molecule at equilibrium. The value of p; is determined by the

proportion of permissible conformations that contain base-pair (i, J) weighted by the

thermodynamic stability (Boltzmann factor) of those conformations.

A slightly different technique has been employed to find a subset of the conformations
represented by the statistical mechanical ensemble (WUCHTY e a/. 1999; ZUKER 1989). It
predicts all structures with free energies within a threshold of the minimum free energy
(®). Thus taking the minimum free energy of an RNA molecule to be & these algorithms
determine all conformations with free energies within the range € < X< £+ 9. This
technique is particularly useful in two important ways. It only generates the relatively
stable conformations likely to be biologically important and it is easier to interpret the
molecule as a group of stable conformations, than as a matrix of contingent base-pairing

probabilities.
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However all of these thermodynamic methods suffer from some shared inadequacies.
They are unable to successfully predict the secondary structure of molecules that are
modified by interaction with other molecules, have a significant proportion of non-
canonical base pairs, or include pseudoknots or more complex structures (FIELDS and
GUTELL 1996; HUYNEN e/ a/. 1997; KONINGS and GUTELL 1995). Despite these
weaknesses, the general agreement of thermodynamic prediction with other techniques
suggests that thermodynamic assumptions are reasonably robust (FIELDS and GUTELL
1996; HUYNEN ef al. 1997, KONINGS and GUTELL 1995; ZUKER and JACOBSON 1995;
ZUKER et al. 1991).

7.2.2  Kinetic structure prediction

High-resolution kinetic experiments of RNA molecules have shown that RNA folding is
an ordered process (BATEY and DOUDNA 1998). Kinetic secondary structure prediction
is based on the fact that secondary structure is the outcome of a controlled process of
folding. The problem of folding can be visualised as the relaxation of the molecule on a
free energy landscape (GULTYAEV ef al. 1995; VAN BATENBURG e¢f a/. 1995). The
landscape is one in which the height of the terrain represents the free energy of the
conformation at that point, and neighbouring points in the terrain are similar structural
conformations. The process of folding a complete molecule can then be understood as a
downbhill path from the initial conformation to a nearby basin, where the basin represents
a stable conformation with low free energy. The deepest basin in the landscape thus
corresponds to the minimum free energy structure determined by a pure thermodynamic

algorithm.

Kinetic prediction methods (for both proteins and RNA) attempt to simulate a walk in a
free energy (or folding) landscape (FLAMM ef a/. 2000; GULTYAEV e7 al. 1995; VAN
BATENBURG ¢t al. 1995). The folding (energy relaxation) process will not always lead to
the minimum free energy structure (FLAMM e7 a/. 2000; GULTYAEV e¢f al. 1995; VAN
BATENBURG et al. 1995). However, it will lead to a meta-stable structure. RNA folding
simulations generally incorporate two different kinetic properties of RNA maturation.
The first is the folding that occurs during transcription of the RNA from the DNA
template. The second is the creation and destruction of helices (stacks) in an orderly way
during maturation, leading to more and more stable conformations. Algorithms that
employ both of these techniques have been developed (FLAMM e7 a/. 2000; GULTYAEV ef

al. 1995; VAN BATENBURG ¢f al. 1995).
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Kinetic methods could conceivably be used to select the most likely candidates for
biologically important structures from the large class of relatively stable sub-optimal
structures that exists for most sequences. They also have the advantage that they can
predict important tertiary interactions such as those involved in pseudo-knots’
(GULTYAEV ef al. 1995; VAN BATENBURG e¢f al. 1995). Unfortunately, kinetic prediction
methods are very computationally expensive and do not yet appear to give significantly

better predictions than their more mature purely thermodynamic counterparts.

7.2.3 Phylogenetic (or comparative) structure prediction
Both of the previous classes of secondary structure prediction methods have as a central
principle the concept of thermodynamic molecular equilibrium. Phylogenetic prediction

methods are unique in being completely independent of thermodynamic considerations.

Whereas a thermodynamic approach predicts an entire structure (or ensemble of
probable conformations) from a single sequence, phylogenetic methods use many related
sequences to arrive at a secondary structure. The basic procedure involves the detection
of compensating substitutions in sequence alignments of closely related organisms. This
technique has been used extensively in the development of secondary structure of rRNA
(SCHNARE ¢7 al. 1996). Phylogenetic secondary structure prediction relies on two main
assumptions. Firstly, if two points in a sequence co-vary in a sequence alignment they are
probably closely coupled in the folded molecule. Secondly, the secondary structure of the

molecule is conserved over evolutionary time-scales (SCHNARE ez a/. 1996).

Notwithstanding these assumptions, direct comparison of thermodynamic and
phylogenetic prediction methods can be misleading for a number of other reasons. For
example, phylogenetic methods necessarily predict only those base-pairs that are
evolutionarily conserved. Base-pair modifications that do not affect the fitness of the
molecule will not necessarily be detected by compiling secondary structure databases.
Furthermore, phylogenetically derived secondary structures may represent a mosaic of
different conformations that are all evolutionarily important. This is of interest because
more than one of the sub-optimal structures of the molecule may be biologically

significant (ROSENBAUM e a/. 1993).

7 Pseudoknots are a condition of RNA base pairing in which base-pairs are interleaved (Stadler &
Haslinger, 1997). For example base pairs (i, j) and (K, |) form a pseudoknot if i<k<j<l or k<i<I<j. These
structures are not permitted in most thermodynamic structure prediction algorithms because they require
much more complex algorithms. Non-nested pseudoknots require an extension of the mathematical
formalism of secondary structures to a class of entities known as planar graphs (Stadler & Haslinger, 1997).
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Having said this, phylogenetic techniques also have a number of distinct advantages over
thermodynamic techniques. They allow the detection of non-canonical base-pairs. In
some organisms the proportion of non-canonical base pairs is quite significant and
correlates negatively with accuracy of thermodynamic-based prediction algorithms
(FIELDS and GUTELL 1996). Comparative sequence analysis can also be used to identify
tertiary interactions such as base-triples (GAUTHERET e a/. 1995) and pseudoknots
(SCHNARE e7 al. 1996; WILLS 1992).

The existence of independent methods for predicting secondary structure from sequence
(thermodynamic, kinetic and phylogenetic) is very useful in objectively examining each
method’s strengths and weaknesses (FIELDS and GUTELL 1996; HUYNEN ez 4/ 1997,

KONINGS and GUTELL 1995; ZUKER and JACOBSON 1995; ZUKER e# a/. 1991).

7.2.4 Hybrid techniques

Recently the possibility of estimating the stabilities of small RNA sub-structures from
populations of phylogenetically predicted secondary structures has been investigated
(MATHEWS e7 al. 1999). For example the pseudo-energy® of a particular hairpin structure
can be calculated by its prevalence in a large pool of secondary structures. If it occurs
often in predicted structures then it is probably a stable sub-structure. This technique
might provide a means to rapidly improve the thermodynamic parameters that are
difficult to obtain empirically. However, it also creates the danger of reducing the

independence of the two techniques.

Another technique of interest uses interactive constraint satisfaction to manipulate an
energy minimisation procedure (GASPIN and WESTHOF 1995). This technique is unique
in that it allows the user to interactively define constraints on the RNA folding both
before and during the folding process, thus allowing the investigation of different
assumptions about constraints. Using this technique, tertiary interactions within the
molecule and interactions with other molecules can be investigated by imposing

constraints that simulate these interactions.

7.3 Properties of RNA sequence-structure maps

A number of researchers have investigated the general properties of RNA sequence-
structure maps. In particular the properties of the mapping defined by thermodynamic

prediction have been rigorously investigated (BASKARAN e7 a/. 1996; FONTANA e# al. 1993;

8 These statistically derived ‘energies’ are called pseudo-energies to differentiate them from experimentally
derived energies.
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SCHUSTER e¢f al. 1994). A number of these properties have important implications for the
evolutionary dynamics of RNA molecules (FONTANA and SCHUSTER 1998; HUYNEN
1996; HUYNEN and HOGEWEG 1994; HUYNEN e/ a/. 1996). More general studies on the
properties of redundant sequence-structure mapping functions have also been

undertaken (REIDYS ez a/ 1997).

RNA folding is a many-to-one mapping. For a given length molecule, there are many
more possible sequences than secondary structures. Thus many sequences fold into the
same structure. Furthermore, structures can be partitioned into common and rare
categories based on the number of sequences that fold into them. The vast majority of
sequences fold into the small minority of structures that are common (refer to Figure 7.2)
These properties of the RNA sequence-structure mapping have been investigated by

exhaustive search techniques and inverse folding’ (SCHUSTER ez a/. 1997).

Through a mathematical model (REIDYS ¢f a/ 1997) and neutral path simulations it has
been demonstrated that neutral networks exist for common structures in both RNA

(SCHUSTER and STADLER 1998) and proteins (BABAJIDE ez a/. 1997).

A neutral network is a network of neighbouring sequences in sequence space10 that all
fold into the same secondary structure. The neutral network of a common structure
extends across large distances in sequence space. For example, it has been predicted that
by a series of neutral mutations a tRNA molecule can be changed at every nucleotide
position but at all times maintain its secondary structure (HUYNEN ez 2/ 1996). Figure 7.2
shows a simplified sequence space and neutral network in which each sequence has only

6 neighbours.

The existence of large neutral networks in sequence space has led to an exciting new view
of the evolutionary dynamics of RNA molecules. Simulations show that these neutral
networks are exploited by evolving populations of molecules to ‘search’ large areas of
sequence space (HUYNEN 1996; HUYNEN ez a/. 1996). In these simulations, RNA

evolution is manifested as a series of extended periods of neutral drift punctuated by

? Inverse folding is the reverse of structure prediction. From a structure, the possible sequences that
produced the sequence are predicted.

10°A sequence space is an abstract space that represents all sequences of a certain length (N). Thus an
N=100 RNA sequence space contains all possible 100 nucleotide RNA sequences. Each pointin a
sequence space represents a unique sequence, and is neighboured by all of its one base-pair mutants. Thus
for an N=100 sequence space, each sequence has 300 one-mutant neighbours. A move in sequence space
from one point to a neighbouring point thus represents a base-pair mutation in a sequence. For long
sequences there are obviously many more directions to move in sequence space than can be easily
represented in two dimensions.
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rapid adaptive improvements. The periods of neutral drift are characterised by diffusion
of the population across the dominant neutral network'". In each generation the
sequence population produces new mutants, and these mutants are either members of
the dominant neutral network or represent new shapes. Mutants that represent new
shapes constitute a ‘search’ for fitter candidates in shape space'” to replace the dominant
structure. The adaptive improvements observed in simulations thus represent a
Darwinian relocation of the sequence population onto a neutral network of greater
fitness (HUYNEN e7 a/. 1996). These simulations show that neutral evolution potentially
plays an important role in adaptation of RNA molecules (FONTANA and SCHUSTER 1998;

HUYNEN 1996; HUYNEN ez a/. 1996).

Figure 7.2 The concept of common secondary structures.

This is indicated by the (simplified) sequence space and neutral network alongside the structure. Common
secondary structures are characterised by extensive connected networks in sequence space. All of the nodes
connected by heavy lines represent sequences that fold into the structure illustrated. (Reproduced and
modified from Fontana, 1998).

7.3.1 Structural Discontinuity and Punctuated Equilibrium
Two characteristics of RNA evolution simulations are of great interest in terms of
evolutionary theory. The first is the important role that neutral drift appears to have. This

observation appears to be more compatible with the neutral theory of evolution

1'The dominant neutral network represents the structure that is currently the fittest in the population.
12 Shape is used synonymously with secondaty structure. Shape space is used hetre to mean an intuitive
structure-based parallel to sequence space. A more formal definition has been developed (Fontana &
Schuster; 1998), and will be discussed in later sections.
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(KIMURA 1968; KIMURA 1983) than with Darwinian orthodoxy. The second
characteristic is the abruptness of the (infrequent) adaptive improvements. At the
organismic level the debate over punctuated equilibrium has continued since first
hypothesised by Eldredge & Gould (1972). The debate has often focused on the question
of what constitutes a punctuated change (ELDREDGE and GOULD 1997; GOULD and
ELDREDGE 1993). A recent addition to this debate was developed from observations of
evolutionary punctuations in RNA evolution simulations (FONTANA and SCHUSTER

1998).

Fontana and Schuster focussed on providing a formal definition of secondary structure
neighbourhood (or nearness). With a neighbourhood function for RNA secondary
structures, a precise definition of shape space (a structural analogue to sequence space)
was described (FONTANA and SCHUSTER 1998). This definition of shape space allowed
the classification of continuous and discontinuous' shape transitions. Continuous
transitions occur between neighbonrs in shape space whereas discontinuous transitions

occur between non-neighbours.

Fontana and Schuster defined the nearness of two structures in terms of the extent to
which their corresponding neutral networks come into close proximity in sequence
space' (FONTANA and SCHUSTER 1998). For a given structure (A), the closest
neighbouring structure is that structure that most often results from non-neutral mutants

of sequences folding into A.

Fontana and Schuster observed that although continuous transitions are much more
common (by definition), it was the discontinuous transitions that most often coincided
with adaptive improvements in their simulations. Therefore they demonstrated that their
classification of structural transitions coincides with their observations of sudden fitness
improvements. When a fitness improvement occurs, it most often results from a rare

discontinuous change.

7.4 Prokaryotic systematics

Tens of thousands of ribosomal RNA small sub-unit ({fRNA SSU) gene loci have been

sequenced from microbial organisms. A large proportion of these sequences exist

13 In this proposal structural continuity and discontinuity are meant in the sense defined by Fontana and
Schuster (1998).
14 The structural nearness relationship can be asymmetric because neutral networks vary greatly in size. So

the accessibility of the transition A — B may not equal the accessibility of the transition B — A (A and B
are neutral networks).

142



without a corresponding identification of the organism from which they came. The
advent of PCR techniques has allowed microbiologists to obtain large numbers of DNA
fragments from the environment without isolating the source organisms. This has
enabled the classification of species and groups of bacteria that have not been

individually isolated or cultured.

With this growing class of microorganisms that cannot be easily classified by standard
numerical taxonomy, the importance of molecular phylogenetics has increased. The most
important molecule used to infer microbial phylogenies is rRNA SSU. However, a
number of properties of RNA molecules make the analysis of these genes problematic
given current molecular systematic techniques. For example, many alignments of RNA
are edited manually to cotrect for improper placement of insertions/deletions (indels) by
standard alignment algorithms. When an indel occurs in a region of the molecule that is
paired in the secondary structure, a compensating indel also generally occurs on the
paired portion. However, gap creation penalties in standard alignment algorithms do not

take this into account (O'BRIEN e7 2/ 1998).

Sequence alignments of rRNA genes can be partitioned into regions of high conservation
and regions of high variability (O'BRIEN e¢7 2/ 1998). The conserved regions have very
few informative sites (polymorphisms). In contrast, the variable regions are often highly
polymorphic and very difficult to align, due to ambiguous positioning of indels. This
makes the determination of homologous nucleotide positions difficult. A comparison of
secondary structure similarity instead of sequence similarity may help determine true
homology more accurately. In Chapter 8, the use of secondary structure information to

improve both sequence alignment procedures and phylogenetic inference is investigated.

7.5 Discussion

This chapter has described the developments in RNA secondary structure prediction and
the current theoretical understanding of RNA secondary structure evolution. How does
this information impact the fields of molecular evolution and phylogenetic inference? A

number of specific questions are apparent:

1. How does conservation of RNA secondary structure impact the patterns of

substitution of the RNA sequence?
2. How can RNA secondary structure be used to assist in sequence alighment?

3. How can RNA secondary structure be used to assist in phylogenetic inference?
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All of these questions are addressed in the following chapter.
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8 RNA-based evolutionary inference
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8.1 Introduction

This chapter is presented in three parts. In section 8.2, RNA secondary structure is
assumed to be known (or predicted) and conserved across the taxa of interest. Under
these assumptions an empirical substitution model for RNA is derived from a large
alignment of sequences, and simulation studies are undertaken to investigate the
properties of the model. In sections 8.3 and 8.4, RNA secondary structure is assumed
known (or predicted), and mostly conserved. Under these assumptions, both multiple

sequence alighment and Bayesian phylogenetic inference are investigated.

8.2 Structurally-specific RNA substitution models

The question posed in this section is: ‘Does the secondary structure of a nucleotide site
in a functional RNA molecule impose structure-specific substitution patterns on that
site?” This question arises from the notion that if selective processes affect substitution
patterns, then they will do so through the function and therefore structure of the RNA
molecule. In this simple model, the phenotype is the structure of the RNA molecule and
the genotype is the sequence of the gene encoding the molecule. This model is
appropriate for structural RNA molecules that do not also encode for a protein product.
RNA secondary structure describes the base-pairing of the molecule, and is a topological
rather than 3D description of the molecule's shape. One of the useful properties of RNA
secondary structure is that the hydrogen bonds involved in base pairing account for the

majority of the free energy of the molecule.

The approach we have taken to answer the question posed is to partition an RNA
molecule into different structural categories and determine if different categories have
different substitution patterns. A number of papers discussing the influence of protein
secondary structure on the replacement patterns in protein evolution have been
previously published (GOLDMAN e7 a/. 1998; JONES e# al. 1994; THORNE e? al. 1990).
Differential patterns of nucleotide substitution can be interpreted similarly as the result
of selective constraints imposed by different secondary structures. Thorne, Goldman and
Jones (T'GJ) used an empirical approach to estimate the model of evolution (amino acid
replacement) in different ‘structural environments’. This previous work on amino acid
replacement models provides a basis for the techniques used here. We extend this kind
of analysis by attempting to understand what selective processes impose these patterns

on the gene sequences. This is achieved through computer simulations of
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thermodynamic and mutation stability of random sequences mutated under different

substitution models.

8.2.1 Methods

Following Thorne, Goldman and Jones (1996) an empirical method for determining the

substitution process in different rRNA structure categories was used.

For this purpose an alignment of all eubacterial 16S rRNA sequences was extracted from
the RDP database (MAIDAK e# 2/ 2001). This alignment was then trimmed to contain
only Domain 2 of the molecule, and all records in the database that did not contain the
complete sequence over this region or that contained ambiguous nucleotides were
removed. The remaining sequences were then passed through a final filtering stage,
where the thermodynamically favourable structures of each sequence were predicted
using MFOLD 3.0 (copyright 1996, Dr M Zuker). If, for a given sequence, no structures
were found that matched (in terms of the branching structure of helices in the published

Escherichia coli secondary structure of domain 2), then that sequence was also removed.

It has been shown that the overall structure of the 16S molecule is highly conserved over
the entire eubacterial tree (GUTELL 1994), especially in terms of the presence or absence
of helices and hence helix branching patterns. However, as more models have been
produced for specific species, it has been found that within the constraints of the overall
structure there is flexibility, especially in the length of the helices and placement of small
bulges and internal loops. The use of MFOLD 3.0 and the filtering step of the above
protocol were designed to account for this. The methodology outlined here departs from

TGJ in this respect.

TG]J used ‘known’ structures of individual proteins within each protein family and
imposed that structure on all sequences within the family. They considered all pairs of
sequences that shared at least 85% similarity and contained at least one sequence that was
the closest sequence in the database to the other. Here the same general criteria for
comparisons are used, but with a more stringent 95% similarity threshold. This
stringency was made possible by the availability of a large number of sequences and a

comparatively small number of parameters requiring empirical estimation.

Finally, in each pair of sequences compared, only nucleotide positions that had the same

predicted structural category were used (see Figure 8.2).
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8.2.2 Models for structural environment assignment

Using the predicted secondary structures produced by MFOLD 3.0, three strategies were
employed to assign structural environments to nucleotide positions. The first strategy
distinguished two structure categories — (U)npaired and (P)aired (henceforth referred to
as the UP model), while the second distinguished a total of 5 structure categories —
(H)airpin loop, (I)nternal loop or bulge, (M)ulti-stem loop, (D)ownstream paired and
(U)pstream paired (the HIMDU model). A null hypothesis assighment strategy in which
all nucleotide positions were assigned the same category was also used. This represents a
homogeneous (HOM) model in which secondary structure is ignored. The HOM model
is the one usually employed in maximum likelihood phylogenetic reconstruction using
this gene. Examples of the two non-trivial assignment strategies are depicted in Figure

8.1.
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Figure 8.1 Annotation of rRNA-encoding sequences with structure category information.

(A) Predict secondary structure using thermodynamic criteria (minimum free energy). (B) Determine the
structural environments under different models. Two models are shown here: the UP model

(unpaited/ paited) and the HIMDU model (Haitpin, Internal bulge, Multi-stem loop, Downsttream-paired
and Upstream-paired) (C) Annotate the sequence with structure categories. The third model is a
homogeneous model (HOM) in which structural information is ignored.
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8.2.3 Empirically-derived substitution models constructed from a large

sequence alignment
An alignment of 2487 SSU domain 2 sequences extracted from the RDP database was
used to derive substitution parameters under the UP and HIMDU structure category
models. An example of substitution statistics collected from a pair of annotated sequence

fragments is illustrated in Figure 8.2. Each pair of annotated sequences in which (i) one
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sequence is the closest match to the other, and (ii) the overall difference is within some
threshold, is used to collect substitution statistics. Nucleotide differences are categorized
by type A C,AG AT, CoG,CoT,GoT)and by structure category (for
example, unpaired/paired in the UP model). If the structure categoties at a site don’t
match in the two sequences, then the site is ignored, as these sites do not meet the

assumption of structure conservation.

Figure 8.2 The collection of substitution statistics from a pair of sequences.

Each pair of annotated sequences in which (i) one sequence is the closest match to the other, and (ii) the
overall difference is within some threshold, is used to collect substitution statistics. Nucleotide differences
(in red) ate categotized by type A - C,A - G, Ao T,Co G, Co T, G T) and by structute category
(unpaired or paired, in this example). If the structure categories at a site don’t match in the two sequences,
then the site is ignored, as these sites do not meet the assumption of structure conservation.
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8.2.3.1 Base frequency heterogeneity
Both the UP and HIMDU models exhibit distinct partitioning of base composition into

different structural categories.

One of the more striking patterns immediately observable in this dataset is the difference
in base frequency patterns in different structure categories. Adenosine makes up over
40% of unpaired regions and less than 15% of paired regions. Even within paired
regions, the proportions of Guanine and Cytosine are reversed, and as one would expect,
this results in a complementarity of base frequencies in paired regions. The question this
begs is, why are the upstream-paired regions so much more G-rich (>40%) than the
downstream-paired (<30%)? Figure 8.3A and Figure 8.3B show the empirical base
trequencies for the UP and HIMDU models respectively.
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8.2.3.2 Instantaneous rate matrices

Figure 8.3C and Figure 8.3D shows the empirically derived instantaneous rate matrices
for the HOM model and the UP model respectively, calculated from the 2487 sequences
analysed. The UP model reveals a strong transition/transversion bias in the paired

regions that is not as apparent in the unpaired parts of the molecules. However the

unpaired regions seem to have a bias towards C - T.

Although the rate matrices for the HIMDU model were calculated, there were not
enough sites to get accurate estimates because some structure categories had only a few
representative sites in the region looked at. For this reason, only the UP model was
pursued in the next section on simulations. However, in both models, a bias in the

transition/transversion ratio was most cleatly seen in the paired regions (data not shown

for HIMDU model).
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Figure 8.3 Empirical base
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8.2.4 Simulations of RNA substitution models

The UP and HOM substitution processes were compared by simulation. Both of the
models were used to simulate the evolution of 2000 random 100-nucleotide sequences
through 250 structure-consistent point mutations per sequence. An initial structure for
each sequence was determined by free energy minimization techniques (ZUKER 1989).
An a priori assumption of the simulations was that the initial structure of each sequence
had to be conserved. This assumption is based on the biological evidence of the
extremely high conservation of 16S secondary structure over the entire eubacterial tree.

Thus for each sequence only mutations that conserved its structure were ‘accepted’.

After each of 250 accepted point mutations, the mean mutational stability and mean
thermodynamic stability of the populations were measured. In the first experiment the
HOM model of substitution was used as the source of mutation, whereas in the second
the UP model was used. In this way, the extent to which each of these models encodes

mutational and/or thermodynamic stability was assessed.

Figure 8.4 demonstrates that under the UP model both the mutational and

thermodynamic stability of the simulated sequences increase over time.
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Figure 8.4 A comparison of the structural stability of the HOM and UP models.

The UP model encodes structural stability, both in terms of (A) thermodynamic stability and (B) stability in
the face of mutational pressure. These figures show the result of simulations of sequence under the UP
model, starting from a non-partitioned initial sequence.
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8.2.4.1 Results

Direct examination of the resulting sequences reveals that this increase in stability
coincides with the sequences becoming partitioned into different base compositions in
different structural categories. Thus, The UP model encodes structural stability, both in
terms of (A) thermodynamic stability and (B) stability in the face of mutational pressure.
If one remembers that the substitutions observed arise from the combination of mutation
and sefection than the results depicted in Figure 8.4 provide strong evidence that the
acceptance, by selection, of mutations was determined predominantly by the criterion of

thermodynamic and/or mutational stability.

8.2.5 A maximum-likelihood comparison on a small dataset

A likelihood ratio test was employed to compare the fit of the HOM model and the UP
model for a set of Pseudomonas 16S tRNA sequences on a given tree (AISLABIE ef al.
2000). The published tree topology was used. To assign the UP categories to the
nucleotides of this data set, an Escherichia coli 16S tRNA sequence was aligned to the
Psendomonas sequences using PILEUP in the GCG package. This alighment was then
used to ovetlay the Escherichia coli secondary structure (GUTELL 1994) onto the
Psendomonas sequences. The sequence data was then split into two sets and the likelihood
of each was calculated based on the empirically derived substitution models for the
respective structure categories, described in section 8.2.2. The two log-likelihood values
were then combined and compared with the log-likelihood of the combined dataset

estimated under a single homogeneous substitution model.

Using PAUP* (SWOFFORD 1999) this likelihood ratio test was also undertaken with

substitution models optimised for the data sets under analysis.

8.2.5.1 Results

Table 8.1 shows that the empirically-derived structural model UP outperformed the
HOM model, even when the homogeneous model was optimised (HOM*) and the UP
model was not (UP).
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Table 8.1 Log-likehood values of HOM and UP models of RNA evolution.

Both optimised and un-optimised the UP model proved significantly better than the HOM model as a
description of the Pseudomonas dataset analysed.

Model Log Likelihood ratio tests
Likelihood

Df HOM HOM*

HOM -3082.14 - - -

HOM* -3024.58 - - -

up -3001.69 10 P<0.00001 P<0.00001

up* -2947.28 10 P<0.00001 P<0.00001

8.2.6 Conclusions

Maximum likelihood methods of phylogenetic reconstruction have traditionally assumed
that all sites along a gene evolve under the same model of substitution and independently
of other sites. While rate heterogeneity has been addressed using Hidden Markov Models
(FELSENSTEIN and CHURCHILL 1996; YANG 1995), heterogeneity of substitution model
based on RNA secondary structure has not. The assumption of pattern homogeneity has
been one of convenience, as the interactions between different sites were poorly
understood. However as more and more data about the secondary structure of structural
RNA molecules have become available, it has become possible to incorporate this
information into phylogenetic reconstruction methods (MUSE 1995; RZHETSKY 1995;

TILLIER and COLLINS 1995; 1998).

Assigning a ‘structural environment’ to each nucleotide takes into account different
selective pressures but does not take into account the contingency of changes at different
sites. As a result the interaction of sites with each other (perhaps due to contact in three-
dimensional structure) is not modelled in this analysis. Sites are treated independently and
are linked only in that some sites share the same structural environment. Nevertheless,
the lack of independence between sites becomes readily apparent when considering the
secondary structure of a structural RNA molecule. Pairing between distant sites is the
rule rather than the exception and the maintenance of these pairs is often crucial to the
function of the molecule. Therefore a substitution in one half of a pair will almost
invariably lead to a concomitant substitution in the other. This correlation between
distant sites cannot be captured within the standard phylogenetic model of maximum

likelihood estimation, without a reassessment of the definition of a site. For example
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instead of treating every nucleotide as a separate evolutionary unit, each pair of
nucleotides in the secondary structure helix could be treated as an evolutionary unit.
Instead of 4 states (A, C, G, T), these new units would have 6 states (A-T, T-A, C-G, G-
C, T-G, G-T). Tillier and Collins (1995; 1998) have implemented a version of this
method. Despite not incorporating information about the non-independence of sites, the
method described here is a significant improvement on conventional models of
substitution and it sheds light on how base composition is partitioned in different

secondary structure categories.

The eventual goal is the understanding of how the complete 3D structure and function
of a gene product affects the evolutionary patterns of the nucleotides in the gene’s
coding region. This goal, while still distant, has been assisted in recent times by increased
knowledge of the structures of molecules of interest as well as an improved
understanding of the general properties of the genotype to phenotype mapping. A
successful incorporation of structural information into a model of molecular evolution
will require a precise understanding of the relationship between structural homology and

sequence homology. The research presented herein is a small step towards that goal.
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8.3 Multiple sequence alignment of RNA

Secondary structure is more highly conserved than primary sequence in molecules such
as the ribosomal RNA small- and large- subunits (SSU and LSU). Therefore secondary
structure prediction methods could potentially be used to improve RNA sequence
alignment techniques. This could be particularly important, for example, in bacterial
systematics where SSU (also known as 16S-like) rRNA is the main molecule for

phylogenetic classification.

Phylogenetic inference techniques rely on the correct identification of homologous
characters. In terms of molecular data such as rRNA sequences, the predominant
molecular character is the nucleotide position. The act of assigning nucleotides sites to
classes of homologues is called sequence alignment. Homologous (comparable) nucleotide
positions are determined by attempting to optimise the overall sequence similarity over two
or more related sequences, through the insertion of gaps into the sequences. However
structure is more highly conserved than sequence in both RNAs (LUCK e# a/. 1996) and
proteins (LEVITT and GERSTEIN 1998). Therefore it can be argued that structural similarity
may be a more powerful technique for ascertaining homology. The use of secondary

structure prediction might therefore improve the accuracy of sequence alignment.

One of the least rigorously treated problems in molecular evolution is the problem of
multiple sequence alignment. This seems to stem from a general inability to come up
with concrete statistical models of nucleotide indels that is mathematically tractable. The
focus in this section is on an ad hoc method by which RNA structural information can be
used to enhance the performance of traditional “model-free” methods of sequence

alignment.

8.3.1 Pair-wise alignments

In the absence of an evolutionary model, it would seem that a good alighment of two
sequences is one that maximises the apparent similarity of the two sequences. Needleman
and Wunsch (1970) introduced a dynamic programming approach to solve the problem
of pair-wise alignment. This dynamic programming method is guaranteed to produce an
optimal alighment of two given sequences for a number of simple alignment-scoring
schemes. A popular scheme for scoring alignments is the affine gap costs scheme, in which
a gap of length £ is penalized g + ¢(4-7), where gis a fixed “gap-opening penalty” and e is
a “gap-extension penalty”. The dynamic programming solution to the affine gap costs

scheme of pair-wise alignment was first described by Gotoh (1982). The algorithm runs
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in quadratic time (i.e. O(L1L2), where L1 and Ly are the lengths of the sequences). The

affine gap costs scoring scheme will be the focus of this section.

8.3.2 Multiple sequence alignments

Given that an exact O(L1L2) dynamic programming solution exists for the alignment of
two sequences, it seems intuitive that an exact O(L1L>...L) dynamic programming
solution should exist for N sequences. This intuition is correct and a program that
performs exact multiple sequence alignment is available (LIPMAN e a/. 1989)".
Unfortunately, this method is extremely slow and is currently only feasible for very small

alignments (<6 sequences).

By far the most widely used method of multiple sequence alignment is progressive pair-
wise alignment (FENG and DOOLITTLE 1987). This is the method implemented in
ClustalW and ClustalX (THOMPSON ¢ al. 1997; THOMPSON ¢/ al. 1994), both of which are
highly popular automated alignment tools. Progressive pair-wise alignment is a heuristic
method. The first step involves calculation of an alignment between all pairs of
sequences. This pair-wise alignment uses standard dynamic programming methods to
find an exact optimal alignment (given an affine gap costs scoring scheme) between two
sequences. The resulting pair alignments are used to calculate evolutionary distances
between the sequences. ClustalX uses the Hamming distance (H) or a simple correction
thereof. These pair-wise distances are then used to construct a guide free between the
sequences to be aligned. The tree is used to guide a hierarchical algorithm of successive
pair-wise alighments between clusters. The last two clusters are aligned to form the final

alignment at the root of the guide tree.

8.3.3 Statistical alignhment

The alignment methods outlined in section 8.2.1 and 8.2.2 are based on affine gap cost
scoring schemes. These models are in some sense “model-free” as they are not based on

any explicit statistical model of the evolutionary process of indels.

Thorne, Kishino & Felsenstein (1991) introduced a method to calculate the maximum
likelihood alighment between a pair of sequences under the assumption that insertions
and deletions occur one nucleotide at a time, governed by a birth-death process. Their
work has since been extended to the problem of multiple sequence alignments (HEIN

2001; STEEL and HEIN 2000), however it is fair to say that the field of statistical

15> However, it should be noted that since this method does not use a phylogeny the penalties is uses are not
‘correct’ in the sense that they don’t approximate an evolutionary process.
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alignment is still in its infancy. Statistical multiple sequence alignment is still not feasible
for most practical situations, especially when the precise phylogenetic relationships
between the sequences are not known. Current methods assume a fixed tree topology
and overly simple models of insertion and deletion. For these reasons, less sophisticated

“model-free” methods will be investigated in this section.

8.3.4 Sequence alignment of RNA sequences

An alignment based on secondary structure alone can be produced by representing each
nucleotide in the molecule as one of three characters: unpaired, paired upstream or
paired downstream (see Figure 8.2). These new character sequences can then be
subjected to sequence alignment (and tree-building) in the same manner as nucleotide
sequences. It should be noted that information is lost in this coding of the molecule. This
is a manifestation of the neutrality (or redundancy) in the mapping from base sequence
to secondary structure. This is because the application of this conversion discards neutral
substitutions that do not change the structure of the molecule. A more powerful method
might be to combine both sequence and structure information into a single “combined”
character string. Because structure is more highly conserved than sequence we expect to
see greater structural homology than sequence homology in the variable regions of the

alignment.

8.3.4.1 Combined sequence-structure characters

For each site in a RN A-encoding sequence, both the sequence information (A, C, G, T)
and the structure information (unpaired, paired-upstream, paired-downstream) are
combined into a single state, so that each site can be one of 12 states {ALICLIGLITLIA,
C(, G(, T(,A), C), G), T)}, where structure categories {LI(, )} represent unpaired,
paired-upstream and paired-downstream respectively. This secondary structure model is
intermediate between the UP and HIMDU models discussed in section 8.2, and captures
the two main empirical features of secondary structure discovered in that section: (i)

unpaired-paired differences and (ii) upstream-downstream complementarity.

8.3.4.2 Non-independence of secondary structure paired regions

Unfortunately both of the above methods of structure alignment still treat each
nucleotide independently. While this is an obvious shortfall of these methods, it doesn’t
preclude their usefulness. The “combined” character method suggested here has the
advantage of ease of use with (i) available software and (ii) existing statistical techniques

for alignhment and phylogenetic inference. In fact is has been demonstrated that the
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assumption of independence of sites made by maximum-likelihood methods does not
adversely bias phylogenetic reconstruction from RNA encoding gene sequences (TTLLIER

and COLLINS 1995).

Here, alighments based on nucleotide sequences are compared with alignments based on
“combined” character sequences for a group of 28 bacterial nucleotide sequences for
which the 16S rRNA secondary structure is known. The results suggest that without
strong statistical information on nucleotide indels, RNA structure information can

improve the performance of standard alignment algorithms.

8.3.5 Combining RNA secondary structure and sequence information

In this section an affine gap costs alignment scoring system that incorporates both sequence
and secondary structure information is investigated. It is shown to be more robust to
uncertainty in insertion and deletion rates than a scoring scheme that ignores structure
information. To demonstrate the scoring scheme, twenty-eight 16S sequences

representative of bacterial diversity were aligned under a variety of gap costs.

8.3.5.1 Sequence info only

A set of sequences representative of the major lineages of eubacteria was compiled from
the ribosomal database of Gutell e @/ (CANNONE e7 /. 2002). Because it is not obvious
what appropriate values for gap costs gand ¢ are, a set of 1600 candidate alignments were
generated. The ClustalX software was used to generate an alignment for all combinations
of g. and ¢, between 0.05 and 2.0, in step sizes of 0.05'"°. Each of the 1600 multiple
sequence alighments generated was evaluated by considering the sum of the scores of all
pair-wise alighments implied by it. Different evaluation schemes (1.e. different values of gap
costs g, and ¢;)) favoured different candidate alignments (see Figure 8.5). This is not
surprising, as each alignment was generated using a different generation scheme (i.e. different
values of gap costs g. and ¢). In fact, had it been feasible to generate the alignhments
using exact multiple sequence alignment (e.g. with MSA), each evaluation scheme would have
chosen the alignment from the corresponding generation scheme as optimal; meaning that all
1600 generated alignments would have been optimal under at least one evaluation scheme.
However, this is not the case with progressive pair-wise alignment. In fact, a very small
number of the candidate alignments were optimal over a large range of evaluation schemes.

This is of practical interest, and suggests that progressive pair-wise alignment is very

16 T'o differentiate between gap costs used to generate alignments (generation schemes) and gap costs used to
evalnate alignments (evaluation schemes) subscripts G=generate and E=evaluate are used.

161



sensitive to the generation scheme used. For example the alignment generated using g.=0.9
and ¢,=0.25 was the best alignment (of the 1600 candidate alignments) for 36.5% of the
evalnation schemes considered (see Figure 8.5). Perhaps more surprisingly, this alignment
was 7ot the optimal alignment for its corresponding evaluation scheme. Instead the
alignment generated using g.=0.65 and ¢,=0.15 was the best alignment under the g,=0.9

and e,=0.25 evaluation scheme.

How do we pick which of the generated alignments is the best? It depends on the
evaluation scheme we consider the best. Which evaluation scheme do we consider the best? The
approach taken here was to choose a set of plausible evaluation schemes (the white triangle
in Figure 8.5) and pick the alignment that is the optimal for the largest proportion of
them. The evaluation schemes considered plausible are those that penalize longer indels
proportionally equal or less than an equivalent number of independent single-nucleotide
indels (¢ < gp). In addition only evaluation schemes that penalize an insertion no more than
twice a substitution were considered. By this method we chose the alignment generated
with parameter values of g.=0.9 and ¢,=0.25 as the best alignment of the 28 bacterial

sequences.

Figure 8.5 Comparison of
different evaluation
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sequence information was 0
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G=(0.65, 0.05) 11.1%

Each polygon represents a
set of evalnation schemes that
unanimously pick a single
candidate alignment as the
best. For the largest regions,
the gap-opening penalty and
gap-extension penalty of the
generation scheme are shown.
Evaluation schemes in grey are
non-biological and ignored
for this analysis. The
percentages represent the
proportion of the white
triangle occupied by the five
largest regions. Diagrams of
this type, involving just
sequence information have
been previously investigated
by Fitch and Smith (FrTcH
and SMITH 1983)
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8.3.5.2 Adding structural information

By including structural information in the generation scheme a second set of 1600 candidate
alignments was generated for the same 28 eubacterial sequences. The structural
information was added by penalizing aligned positions that had a mismatch in structure

category. The mismatch penalties used were:

Unpaired Paired upstream Paired downstream

Unpaired - 0.5 0.5
Paired upstream - 1.0
Paired downstream -

The above penalties were chosen so that a change from paired to unpaired was penalized
less than the more radical change that would result in a paired-upstream changing to a
paired-downstream or vice versa. The absolute weights were chosen to give approximately
similar weights to sequence and structure information. The generation scheme was the
same as in section 8.3.5.1 apart from these added penalties. The nucleotide evaluation
scheme was retained, so that structural similarity was not part of the evaluation criteria.
Again there were a small number of candidate alignhments that were optimal for a wide

range of evaluation schemes (Figure 8.6).

Figure 8.6 Comparison of
different evaluation
schemes where both
sequence and structure
information was
considered.

gap open penalty g.
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1.1%

G=(0.05, 0.05)
9.1%

Each polygon represents a
set of evalnation schemes that
unanimously pick a single
candidate alignment as the
best. For the largest regions,
the gap-opening penalty and
gap-extension penalty of the
generation scheme are shown.
Evaluation schemes in grey are
non-biological and ignored
for this analysis. The
percentages represent the
proportion of the white
triangle occupied by the six
largest regions.
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Another way to compare alignments constructed with and without RNA structure
information is to consider the distribution of alighment scores under a single evaluation
scheme. This comparison provides information about how stable alignment scores are,
when different gap generation schemes are used, with and without structural information. In
Figure 8.7 a graphical representation of 1600 alignments generated with only sequence
information and 1600 alignments generated with both sequence and structure
information is presented. This figure shows that the use of structural information
provides alignments that are robust to misspecification of gap penalties in the generation
schemes. The alighment score surface of alighments generated with structural information
is flatter and has a higher average than the alignment surface generated from sequence

data alone.
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8.3.5.3 Is structure information always better?

Will the addition of structure information always improve progressive pair-wise
alignment? To investigate this question, evaluation schemes were categorized by whether
the best alignhment of the 3200 candidates did or did not use structure information.

Figure 8.8 shows that most (~80%) but not all evaluation schemes picked an alignment
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generated with the aid of RNA secondary structure information. Furthermore the
evaluation schemes that preferred sequence-only alignments were generally those schemes
with lower gap-opening penalties. These evaluation schemes lead to ‘gappy’ subjectively poor
optimal alighments that do not conform to expectations consistent with biological

principles.
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8.3.6 Conclusions

The use of information about RNA secondary structure improves the robustness of
progressive pair-wise alignment to uncertainty in the choice of affine gap costs. For many
particular evaluation schemes use of structural information enables the generation of higher
scoring alignments than alignments generated by using sequence information alone.
Ultimately, a model of secondary structure evolution, based on the work of Fontana and
Schuster should provide the means for statistical alignment of RNA-encoding genes.
However until then, it seems that the use of RNA secondary structure in standard
alignment packages such as ClustalX, may be a useful alternative to naive sequence-only

alignment.
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8.4 Bayesian inference of substitution parameters and

phylogeny from sequence-structure data

In section 8.2, tRNA evolution was considered under the assumption that the secondary
structure of the molecule was completely conserved across eubacteria. However, in
reality, small local rearrangements of RNA secondary structure do accumulate over long
periods of time. In this section a model of evolution that permits changes in both
structure and sequence is investigated. The combined sequence-structure character states
described above in section 8.3.4.1 where used within a sample-based Bayesian inference

framework.

8.4.1 Bayesian inference of combined sequence-structure characters

The posterior probability density under consideration is:
1
Mo (T Reom, | B) = — PHD T, R} Fr (T) T (Reo) 8.1

Where:
T is an unrooted tree topology with branch lengths in mutations

Reomb  is a relative rate matrix of combined sequence-structure characters

fr(T) is a uniform prior density on trees
freomb(Reomb) is a Jeffreys’ prior on relative rates
Pr{D| T, Reomb} is the likelihood

The equilibrium frequencies of combined character states in the data were fixed to values
derived empirically from the input data and were not part of the inference. Two proposal
mechanisms where used to sample the posterior density described in 7.1. The first is the
LOCAL move described by Wilson and Balding (1998) for unrooted trees (also used in
MrBayes). In addition a simple scaling move on each relative rate was employed as

described for the case of nucleotides relative rates in Chapter 5.
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8.4.2 Data

An alignment of 62 16S-like ribosomal RNA sequences was analysed. The generation scheme
that produced the ‘best’ alighment of eubacteria in the previous section was used to align
a larger set of 16S sequences, that included 12 eukaryotic sequences, 22 archaeal
sequences in addition to the 28 bacterial sequences analysed in section 8.3. The resulting
alignment was then assumed ‘known’ and used as input to an MCMC analysis to jointly
estimate the relative rates and phylogeny of the sequence-structure alignment. The
secondary structure used for these sequences was as published in the Gutell online

database (CANNONE e¢7 a/. 2002).

8.4.3 Results

Figure 8.9 and Figure 8.10 show the estimated relative rate matrix and a sample
genealogy respectively. The relative rate matrix bears striking resemblance, along the
diagonal, to the models developed in section 8.2. In addition, the off-diagonal rates, in
which structures change, are much lower, empirically confirming statements of structural

conservation across 16S-like sequences.
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Figure 8.9 Estimated relative rate mattix (Rcomp) for combined characters.

Empitical frequencies ate factored out, so the Q matrix can be obtained by scaling each column by the
frequency of the corresponding state. The rates were estimated relative to A& C[{the gray citcle in top left).
The inner circle corresponds to the lower bound on the estimate of the relative rate, and the area enclosed by
the outside of the circle corresponds the upper bound on the estimate. The thickness of the circle thus
represents the uncertainty of the estimated rate.
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Figure 8.10 Sample tree of life established using sequence and structure information.
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8.5 Discussion

The research presented in this chapter provides examples of the use of large data sets and

computationally intensive methods in the investigation of molecular evolution and

molecular systematics. With the growing databases of DNA and protein sequences, there

is an increasing demand for detailed examination and analysis of this information. This

type of research is essential to the continued progress of all areas of molecular biology.

Molecular biologists are faced with an ever-increasing need to use computational

techniques in their research. A simple example of this is the fundamental importance of

comparison of molecules for similarities both in sequence and structure. By improving

these computational techniques the work done by molecular biologists is also improved.

It is for this same reason that theoretical biology is important. The testing and adoption

of theoretical evolutionary hypotheses has direct implications on many important
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computational tools. For example, almost all character-based phylogenetic tree-building
algorithms have a model of molecular evolution as a basis. By testing a new theoretical
hypothesis of molecular evolution this research tests the validity of the models of

evolution employed in current tree-building algorithms for RNA-based phylogenies.
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9 A Tangent: Spatial Population Genetics
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9.1 Overview

Most classical population genetics models treat populations as either panmictic (perfect
mixing), and thus exhibiting no spatial structure, or highly structured into (perfectly
mixing) subpopulations with a migration matrix defining flux between them. Here, an
alternative model, based on spatial diffusion in N-dimensions will be introduced and a
Bayesian inference framework will be described. The inference method is related to (i)
comparative methods for Brownian characters and (ii) maximum likelihood methods on
continuous characters. Spherical geometry is considered for the practical purposes of
using latitude and longitude information in real populations. Finally, a simple class of
lattice models are used to carry out simulations that demonstrate some of the
characteristics of spatially distributed populations. The aim of this chapter is to provoke
thought and demonstrate future directions that might be fruitful in Bayesian population

genetics, and no attempt is made to validate the methods described.

9.2 A simple model of movement for inference

The panmixia assumption of the Wright-Fisher population model amounts to a statement
that the progeny of one individual can potentially displace the progeny of any other
individual in the population, no matter how far away. This is obviously not true if the
area covered by the population is large in comparison to the average area accessible to an
organism in its lifetime. The diffusion process is a simple and general characterization of
random movement that can account for the localization of individuals in a population.
Almost any jump process (such as a random walk in one dimension) can be represented
as a diffusion process in some kind of limit. Gaussian diffusion in N-dimensions is the
continuous limit of a random (Brownian) walk on an N-dimensional lattice. In this
section, a simple model of movement based on diffusion in N-dimensions (MALECOT
1948) will be discussed in the context of inference from a small sample of sequence data

collected at known times and places.

9.2.1 Bayesian estimation of diffusion in N-dimensions on a tree

The rate of a diffusion process is governed by the diffusion coefficient, D, which
corresponds to the rate of increase in area accessible from some starting point. Here,
geographical diffusion of organisms and their haplotypes is considered. If time is
measured in years and area is measured in squate kilometres, then D = 10, say, implies

that on average the area accessible to a haplotype/organism, starting from a given point
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at time t=0), increases at a rate of 10 km?/year. In this section we develop a formulation
of the posterior density of the rate of diffusion of a group of organisms given a known
genealogical topology and known ages and positions of a sample of sequences. First we

will consider the simple problem of diffusion in a Euclidean space of N dimensions:

2
@:Dag
ot ox

9.1)

where position X has N dimensions. The probability density function for a
haplotype/organism travelling Euclidean distance d, in any direction from a defined

starting point, in a given time t is:

(1Y (-d?
p(d,t)—(ﬁJ exp[ ot ] (9.2)

An edge (or alternatively ‘branch’), joining two nodes on an evolutionary tree represents

a lineage of organisms through time (going back in time: child, parent, grandparent,
great-grandparent, et cetera). The genetic information of these organisms can be thought
of as the baton carried by runners in a relay race that is passed from one runner to the
next during the race. For a given lineage, the baton is passed on each time a new
organism is born. Here we are considering a ‘race’ in which the runners are running
about in a Brownian fashion. The average diffusive properties of this
birth/diffusion/birth process along an edge of an evolutionary tree can be analysed by
regarding the lineage of organisms as a single, long-lived organism, moving in a Brownian
fashion, with an average diffusion rate, D. It then follows from equation 9.2 that the log-
likelihood (dropping constants) of two nodes in a tree, joined by an edge of length t,

being separated in space by Euclidean distance d, is:

_d2

In(p(d,t)) O ot

+gln(Dt) 9.3)
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One of the first formulations of diffusion on a tree was by Cavalli-Sforza & Edwards
(1967). Cavalli-Sforza & Edwards used this formulation for modelling genetic drift of
gene frequencies. Here, diffusion will be used to model movement in physical space rather

than genetic space. First, recall from chapter 5 that Eg denotes the edge set of g, so that

g =(E,,ty) specifies a genealogy (the branching topology Eg, and the node times ty).

For a given genealogy, g, a given diffusion rate D, and modern positions in space X, the

probability density function for ancestral nodes having positions Xy is:

P(legaD!X|) = |_D| ; exp M (9-4)
(i, 1)0Eq 7D(t| _tj) D(t| _tj)

where [X; —X; | is defined as the Euclidean distance between X; and X;. Equation 9.4 gives
us a way to obtain the most probable set of physical positions of ancestral nodes in a tree
with fixed topology, fixed node ages and fixed diffusion rate. Unfortunately it is usually
the case that the rate of diffusion is actually a parameter of interest. When the rate of
diffusion is not known we can use MCMC integration. Assuming a fixed genealogy g, the

posterior probability density of interest is:

P(X,.D]g.x,) %P(xy 19,D,,) o (D) ©.5)

Where Z is the unknown normalizing constant and (D) is the prior distribution of D.

Furthermore it is often the case that the ages of the ancestral nodes are not known either.
For a fixed topology and unknown times we can adapt and extend the posterior density
given by Equation 5.6 in Chapter 5. Using Sfor sequence data we are interested in the

posterior probability density:

P(xy,D,1,0,t, | S Ey) =%Pf{5|,u, gtP(xy 19,D,x,) f5(916) fy (1) T (6) 5 (D)

9.6)

175



Where:

Xy the physical positions in Euclidean space of ancestral nodes Y.
D the diffusion coefficient (in units area / time)

M the mutation rate (in units of time)

7] the product of effective population size and generation length
ty the times (ages) of ancestral nodes.

fa(g| O the coalescent density of genealogy, @, given population size &.

The posterior probability density described in equation 9.6 can be sampled using MCMC
by adding two simple symmetric proposal mechanisms to the MCMC kernel described in
Chapter 5: A random walk on the diffusion coefficient and a random walk in Euclidean

space of each of the ancestral node positions.

9.2.2 Ecological data and spherical geometry

Often, geographical information (in the form of latitude and longitude coordinates) is
available in conjunction with sequence data. For widely distributed populations and
species, geographic distances and genetic distances are frequently correlated (BARNES e#
al. 2002), suggesting that isolation by distance is a common mechanism in natural
populations. If the area considered is large, or far away from the equator, longitude and
latitude data cannot be treated as Euclidean coordinates. However, it should be noticed
that, in equations 9.1 and 9.2 the geographical information appears only as a distance in
N-dimensional space. The surface of the earth is, though not Euclidean, still
approximately locally flat. Additionally, a number of methods exist for estimating the
distance between two points on the earth. The simplest, called the Great Circle distance,
is a basic result of spherical trigonometry. It works by simply approximating the shape of
the earth with a sphere. A reasonably accurate approximation of diffusion on the surface
of a sphere can be modelled, by simply replacing the Euclidean distances in equations 9.1
and 9.2 with Great Circle distances. This provides the potential for inference of latitude
and longitude coordinates of ancestral nodes in a tree, when coordinates of the
sequences at the leaves are known. Let I'e be the mean radius of the earth in kilometres
(according to NASA the volumetric mean radius is 6371.0 kilometres;

http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html).
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The Great Circle distance (in kilometres) between two (latitude, longitude) points

X; = (X, Y,) and X, =(X,,Y,) on the Earth, can be calculated by:

dGc (X1’ Xz) =TIe arccos(si n(x1) S| n(Xz) + COS(X1) COS(XZ) cos(y2 - yl)) ©.7)

Equation 9.4 can be rewritten as:

— 1 2 _dGC(Xi’Xj)Z
P(xy lg’D’Xl)_@,!;IEg —I'D(t- = exp(—D(ti 1) J (9.8)

where d.(x,, X,) is given by equation 9.7 and X, and X, are now a set of unknown and
known (latitude, longitude) pairs respectively. It should be noted, that this is only an
approximate method, and its discussion is confined to geographical scales much smaller
than the radius of the earth (dgc<<rg), where the approximation is faitly accurate. From
here we can develop an analogue of equation 9.5 that will allow us to simultaneously
infer divergence times, rate of diffusion and the location on earth of the ancestral nodes

in a tree for which sequence data and geographical position information is available.
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9.3 Simple models of movement for simulation

For the purposes of simulation, a class of simple spatial models of evolving populations
was investigated. The standard Wright-Fisher population model can be extended to
include the concept of spatially localized interactions by placing the population on a two-
dimensional lattice and requiring that each member of the population interact only with a
local population of neighbouring individuals. This model, referred to as the zsolation by
distance model, has been investigated by simulation at least as far back as 1971 (ROHLF
and SCHNELL 1971). This method of relaxing the panmictic assumption of the Wright-
Fisher model was used to test of the robustness of the inference strategy described in

section 9.2.

9.3.1 Lattice models

Many models of spatial dynamics use the simplifying concept of a lattice to discretize
space. All the models considered in this section are described in terms of a finite sized
two-dimensional lattice. We will focus on “constant-organisation” models in which the
population size is exactly fixed, so that there are no population size fluctuations from
generation to generation. In the simplest case each point on the lattice contains exactly
one individual (for example, a 20 x 20 lattice has 400 individuals). Generations are
discrete and synchronized, so that in each new generation, all individuals are replaced. In
each generation, each point on the lattice is filled with the progeny of a parent from the
previous generation. The parent is chosen from a neighbourhood surrounding the focal
point. Two different neighbourhoods will be considered below. A number of boundary
conditions of the lattice at the edges are conceivable including periodic, absorbing or
reflective. In this study, periodic boundary conditions were used, which have the

simplifying property that all cells are dynamically equivalent.

9.3.2 The box neighbourhood

The first neighbourhood investigated is a simple neighbourhood with a positive integer
parameter K, such that the point (i, J) is in the neighbourhood of (X, Y) iff

max(| X —i|,| y—j [) < K. This simply defines a squate centred on the point (X, Y)
enclosing (2K+ 1) points. As K increases, the size of the neighbourhood increases. Each
generation, each point on the lattice is filled with the progeny of a randomly selected
parent from its neighbourhood. In this way, each member of the population in

generation G will be represented by, at most, (2K+1)? progeny in generation G+1.
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Related progeny will be clustered around the original parent position Figure 9.1 illustrates

a population with some highlighted neighbourhoods of size K=2.

Figure 9.1 The neighbourhood model.

N = 400 (20x20) and K = 2. Four individuals ORGSO OO0000000O00O00O
and their corresponding neighbourhoods are O O00 I O0O00O0O0O0O0O0OoOoOono
highlighted. The progeny of only two of the OOOO0OO 000000000000
highlighted individuals are able to compete OOOROO 000000000000
in the next generation. OO000O 000000000000

]
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OO0O0O0O0O0O00O00O0c
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COOO0O0O 10000
COOOOO 10000
COOOO0O 10000
COOOOO 10000
COOOOO 10000
OooooodOoOonOono
OO0O0OoOooOooono
OO0O0oOoooooono

Figure 9.2 shows three different populations of 40,000 individuals that each started from

a uniform field of genomes before evolving for 2000 generations. Mutation rates of

1x107°, 5x107°, 1x10™ mutations per site per generation were used. In addition,
Figure 9.3 shows the spatial evolution of a single nucleotide position over four orders of

magnitude of mutation rate. All of these examples are for a neighbourhood size of K=1.
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Figure 9.2 Three different populations
evolving spatially under the neighbourhood
model.

Each population has 40,000 individuals on a 200
x 200 lattice. Each population started from a
uniform field of genomes and was evolved for
2000 generations. Mutation rates of (A) 1x10-3,
(B) 5x10, (C) 1x10-* mutations per site pet
generation are shown. In all three cases K = 1.
For the purpose of representation, each genome
was a binary string of length 24 and was
interpreted as a 3-byte RGB encoded colour for
visual representation. This means that some
mutations have a much larger impact on the
colour than others, which, while nicely capturing
the qualitative nature of real biology is not exactly
a representation of neutral evolution!
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Figure 9.3 The effect of mutation rate on spatial patterns of a single nucleotide site under the
neighbourhood model.

Each population has 40,000 individuals on a 200 x 200 lattice. Mutation rates of (A) 1x10-, (B) 1x104, (C)
1x10-% and (D) 1x10-2 mutations pet site per generation are shown. In all four cases K = 1. Each colour
represents one of the four nucleotides A, C, G and T.

A

9.3.3 The Gaussian neighbourhood

The Gaussian neighbour uses a discretized bivariate normal distribution centred around
the focal point on the lattice to choose a parent. As described in equations 9.1 and 9.2
the diffusion coefficient, D, determines the rate of diffusion. To simulate diffusion of an
individual on a lattice, a random Gaussian number with a standard deviation of x/B is
picked for each direction X and Y each generation. Figure 9.4 shows the percentage
probabilities of picking each neighbouring cell as the parent of the central cell in the next

generation for two different values of the diffusion coefficient, D.
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9.3.4 Restrictions of “constant-organisation” models

The models described above assume a fixed
density of one individual per unit area. An
interesting alternative is to allow each cell on
the lattice to have a carrying capacity, C, so
that at most, C individuals can occupy a cell
at any one time. This model suggests a new
method of simulation. Let us now consider
time to be measured in discrete calendar
units (for example, years) rather than
generations. Each year, an organism picks a
new position in its neighbourhood to 7zove
to. Each organism then has a small
probability of dying. Each organism then
has a (usually slightly larger) probability of
giving birth to a single offspring in the same
spot. Finally, for every cell that has more
individuals in it than the carrying capacity,
individuals are randomly removed until
there are C individuals remaining. These
models will not be investigated further here,
apart from saying that; if possible, an
inference method should be robust to

changes in spatial models of this kind.

9.4 Discussion

Figure 9.4 The Gaussian neighbour model on

a lattice.

This figure shows the percentage chance that the
parent of the central position comes from each
neighbouting position, for (A) D =1 and (B) D

=4.
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This chapter describes an alternative statistical inference strategy for spatially resolved

populations to models that assume discrete subpopulation structure. In addition, some

simple simulations are undertaken to develop an intuition about the properties of such

populations. Further simulation work is required to validate the inference method

described. In addition the relationship between the models presented in this chapter and

the geographically resolved models recently investigated by Epperson (EPPERSON 1999)

need to be established.
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10 MEPI

Molecular Evolution and Population Inference
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10.1 Introduction

This chapter describes the MEPI (Molecular Evolution and Population Inference)
software package for evolutionary inference and does not describe in detail the merits
and pitfalls of either Bayesian inference or genealogy-based evolutionary inference. For a
detailed discussion of technical aspects of this software see Chapter 5 or the paper it is

based on (DRUMMOND e¢7 a/. 2002).

MEPI is a software package developed for the Bayesian inference of molecular evolution
and population genetics using molecular sequence data. The dynamics of a population
over time and the action of mutation and selection at the molecular level leave their
traces in the pattern of nucleotide sequences observed in a sample of individuals taken
from the population. The combination of these forces leads to a particular shape of the
(unknown) phylogenetic tree or genealogy of these samples as well as in the pattern of
mutations/substitutions seen in an alignment of sequences. Given an explicit
probabilistic model of molecular evolution and population dynamics and a set of
(possibly woefully uninformative) prior beliefs about the parameters of interest, Bayesian
inference can be used to jointly estimate the combination of model parameters that are
most probable given the observed data. MEPI provides population inference based on
the coalescent (DRUMMOND ¢7 a/. 2002; HUDSON 1990; KINGMAN 1982a; RODRIGO and
FELSENSTEIN 1999) and molecular evolutionary inference based on independent-sites
neutrally evolving likelihood models (FELSENSTEIN 1981; HASEGAWA e a/. 1985;
RODRIGUEZ ¢t al. 1990). The details of the inference engine are described in Drummond
et al (2002).

With MEPI, a researcher can obtain estimates and joint probability densities for mutation
parameters, population parameters, dates of divergences, and genealogies (or
phylogenetic trees). Because of the rich variety of models that can be investigated using
MEDPI, researchers should focus attention on the parameters of most importance and

vary other assumptions to test the sensitivity to prior and model selection.

10.2 Programs

The MEPI softwate package is made up of four main programs: Mepi , mepi X,
tracer andtreesunmary. All of these programs are written in the Java
programming language. To run them, Java Runtime Environment (JRE) version 1.4.0 or

greater must be installed on your system. These programs are distributed using the Java
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Network Launching Protocol (JNLP). This enables (among other things) automatic
updating of MEPI over the web. Currently two programs support JNLP: Java Web Start
and OpenJNLP. You must have one of these programs installed to use MEPI. Both are
freely available for Microsoft Windows, Mac OS X, Linux and SunOS. Java Web Start
comes as part of MacOS X version 10.1 and later versions. If you have Java Web Start
installed the mepi programs can be run by simply clicking on a link at
http://www.ceblauckland.ac.nz/mepi/index.html. After the softwatre has been
downloaded once it can be used offline indefinitely. Furthermore newer versions of the

software are automatically downloaded.

Program Brief description

nmepi Performs an MCMC analysis.

tracer Plots and summarizes the log file that is generated by mepi .
nmepi x Easy-to-use GUI for creating mepix analysis files.
treesunmary Displays and summarized the trees file that is generated by mepi .
10.2.1 mepi

The program MePI takes as input an analysis file that describes an MCMC analysis,
including all aspects of raw data, priors, models in use and technical details of MCMC
operators. The analysis file is written in an XML language called mepiX. This language

is described in detail in section 0.

The output of the program IMEPI is a log file and a trees file. The log file holds a set of
samples of the states that the MCMC chain has visited. The trees file likewise contains a
sample of trees that the MCMC chain visited. The log file can be analysed by the
program t r acer and the trees file can be view by TreeView (PAGE 1996) or
treesummary.

10.2.2 mepix

The program MePI X provides a simple way for users to create a large number of
different analysis files for input into MePi . It has a graphical user interface (GUI) and
can read Phylip format alignments and interleaved Nexus format alignments. Some

complex simulations will require modification of the output file by hand before the

mepix file is ready for input into MEPI .

10.2.2.1 “Enter times” dialog

This dialog lets you enter the ages of the sequences in units before present (for example,

years before present). If the names of the sequences have the age (or time) of the
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sequence as a suffix then the times can be directly read by pressing one of the two Read
buttons at the top of the dialog. The “Read” button assumes that the times are integer
and separated from the rest of the name by a . as shown in Figure 10.1. The “Read
(TipDate)” button assumes the age/time could be a decimal number and uses as much of
the end of the name as can validly be interpreted as a number. The option box labelled
“times represent:” can be used to specify whether the suffix represents an age (bigger is

older) or a time (bigger is younger).

If the names do not have times as a suffix, then the times can be directly entered in to
the age column of the table. The “include?” column can be used to exclude some taxa. If

your data is contemporaneous you can just click on “OK”’.

Figure 10.1 “Enter times” dialog.
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10.2.2.2 “MCMC Analysis settings” dialog

The settings dialog allows the user to select the evolutionary model to be analysed, the
operators used in the MCMC analysis and the length of the MCMC run. It consists of a
number of tabs for different aspects of the evolutionary model (for example,

demographic model, tree, substitution model, site/rate model), a “Parameters” tab and

an “MCMC” tab.

The “Parameters” tab contains a list of all the parameters that can be pontentially
estimated (not including tree node heights and topologies) based on the selections in the
other panels (see Figure 10.2). In this tab each parameter can be fixed at a user-specified
value or an MCMC operator can be tailored for the sampling of it. The “lower” and
“upper” columns determine the prior limits on each parameter. The “adapt” column

allows the user to specify if the operators should be automatically fine-tuned (this should
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be used sparingly as it is not always guaranteed to work!). Operator tuning parameters
(specified in the “window/scale” column) should be chosen so that the acceptance rate
of the parameter is between 10-40%. For current population size a good choice is a

“scale move” with a scale parameter of 0.5.

Figure 10.2 “Parameters” tab of the “MCMC Analysis settings” dialog.

X
el | Tree i { i el | Parameters | MCM
_ p_arar_’r]eter. _ | valle ﬂkedl Iuwer.l Lpper: | pri'ur.l rove type | w‘induwfsc:ale:l adapt
current mutation rate 1.0E-6] [ 01 1,000,000,000uniform |random walk oo el
kappa 200 [ 0] 1,000,000,000uniform |randorm walk 0.01 [¥]
current population size: 100 [ 0l 1,000,000,000\unifarm |scale move na [
growdth rate 0.0/ 1 | -1.0ee} 1,000,000,000unifarm (random walk 001 (e

| oK || Cancel |

After selecting the appropriate analysis settings and clicking “OK” the user can save the

generated mepix file using the “Save As...” menu item in the “File” menu.

10.2.3 tracer

The program t r acer allows the user to plot the MCMC traces from the log file output
of mepi and do simple analyses to calculate mean estimates, highest postetior density
(HPD) intervals and autocorrelation times (ACT). A trace of the log-likelihood of an

analysis of 47 Beringian bear sequences is shown in Figure 10.3.
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Figure 10.3 A screenshot of tracer program.

A trace of log-likelihood in a 10,000,000 state Markov chain.
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10.2.4 treesummary

The program t r eesunmar y allows the user to view trees and do some simple analyses
on the tree file output of Mepi . The MCMC state of the tree is displayed in the status
bar at the bottom of the window. The posterior probabilities of the clades present in the
current tree can be calculated by selecting “clade probability” from the option box. The
left scrollbar adjusts the scale of the trees and the right scrollbar can be used to select the
tree to view. This program currently only reads tree files outputted by mepi. Figure 10.4

shows a screen shot of treesummary.

10.2.4.1 Printing trees

There is currently no method for printing the trees in treesummary. TreeView is able to

print trees. However a quick way to get an image of your tree under Microsoft Windows
is to capture the window to the clipboard by pressing Alt+PrintScreen and then pasting

the captured image into a Word document or image processing software.
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Figure 10.4 A screenshot of treesummary program.

A sample tree with posterior probabilities of the clades displayed.
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10.2.4.2 The tree file format

The tree file format is a simple list of rooted newick format trees with branch lengths.

Each tree is preceded on the line above it by a comment in square brackets containing

the MCMC state of the tree. This format is directly readable by TreeView, although the

state information is discarded (see Figure 10.5).

Figure 10.5 An example tree
file.

This example file has 3 clock-

constrained trees of four taxa A,

B, C, and D, representing states
0, 100 and 200 of an MCMC
analysis.

[ 0]
((A:0.5,B:0.5):0.75,
[ 100]
((A0.6,B:0.6):0. 65,
[ 200]
(((A:0.5,B:0.5):0.1, C0.6):0.1,

(C. 0.6, D:0.6):0.65);
(C.0.65, D:0.65):0.6);

D:0.7);
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10.3 The mepixX file format

The input file for the MEPI program is an XML document written in a language called
mMepiX. In this section we will look at an example MCMC analysis written in mepix

and look in detail at the various features of the MepiX language.

The example file in section 10.3.1 describes an analysis that jointly estimates mutation
rate, population size, transition/transversion ratio (kappa) and tree topologies and
divergence times in 10 HIV-1 env sequence fragments. The analysis runs for 100,000
cycles and outputs the results to a file called hi V1. | 0g. Sequences 06-10 were sampled
214 day before sequences 01-05. An HKY substitution model is assumed and the
equilibrium frequencies are fixed to empirical values calculated from a larger dataset of
the same region. By itself this file is quite readable and self-explanatory and a close
examination of it is encouraged. However it fails to demonstrate the full range of
variations available to users of Mepi . To remedy this a2 more or less exhaustive list of
valid elements and attributes that may appear within a MepiX input file are given in the

following sections.
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10.3.1 Example file: hi v1. mepi X

<?xml version="1.0" ?>

<mcmc chainlength="100000" keepevery="10" outfile="hiv1.log" >

<data>

<alignment datatype="nucleotide" datatypeid="0">

<sequence
<sequence
<sequence
<sequence
<sequence
<sequence
<sequence
<sequence
<sequence
<sequence
</alignment>

name="01">AAAGAAGAGGTAGTAATTAGATCTGAAAAT</sequence>
name="02">GAAGAAGAGGTAGTAATTAGATCTGAAAAT</sequence>
name="03">AAAGAAGAGGTAGTGATTAGATCTGAAAAT</sequence>
name="04">AAAGAAGAGGTAGTGATTAGATCTGAAAAT</sequence>
name="05">AAAGAAGAGGTAGTAATTAGATCTGAAAAT</sequence>
name="06">GAAGAAGAGGTAGTAATTAGATCTGAAGAT</sequence>
name="07">AAAGAAGAGGTAGTGATTAGATCTGAAGAT</sequence>
name="08">AAAGAAGAGGTAGTAATTAGATCTGAAGAT</sequence>
name="09">AAAGAAGAGGTAGTAATTAGATCTGAAGAT</sequence>
name="10">GAAGAAGAGGTAATAATTAGATCTGAAGAT</sequence>

<timedata units="days" origin="0" direction="backwards">
<time value="214">01 02 03 04 05</time>
<time value="0">06 07 08 09 10 </time>

</timedata>
</data>

<evolutionmodel type="coalescent">
<ratematrix model="HKY" datatype="nucleotide" datatypeid="0">
<frequencies>0.406 0.152 0.212 0.230</frequencies>
<parameter name="kappa" value="2.0" />

</ratematrix>

<sitemodel type="uniform">
<mutationratemodel type="constant">
<parameter name="current mutation rate" value="5.0E-3" />
</mutationratemodel>

</sitemodel>

<demographicmodel type="constant" units="generations">
<parameter name="current population size" value="1000.0" />
</demographicmodel>
</evolutionmodel>

<operators>

<operator paramname="current mutation rate" type="random walk" windowsize="1e-5"

/>

<operator paramname="current population size" type="scale" scalefactor="0.5" />

<operator paramname="kappa" type="scale" scalefactor="0.5" />
<operator type="node height" topthreeonly="true" />

<operator type="node height" />

<operator type="narrow exchange" />

<operator type="wide exchange" />

<operator type="wilson-balding" />

<operator type="scale tree" scalefactor="0.9" />

</operators>

<prior type="coalescent" />
<prior paramname="current mutation rate" minimum="0.0" maximum="1.0" type="uniform"

/>

<prior paramname="kappa" minimum="0.0" maximum="1e9" type="Jeffreys’" />
<prior paramname="current population size" minimum="0" maximum="1e9" type="uniform"

/>

</mcmc>
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10.3.2 mepix elements

In the following sections a brief description of the elements and attributes that make up a
mepiX file will be given. Each subsection will give details of a single element including
valid attributes and subelements. The sections are ordered alphabetically. Section 10.3.8

describes the MCMC element, the parent of all other elements.

Attributes that are restricted to a finite set of literal strings have an attribute type of the
form("literal 1","literal 2",...;," i teral 3"). The strings within quotes,
including spaces, are the only valid attribute values for these enumerated attributes. Default
values are given for attributes that may be omitted. If ‘N/ @” appears in the default value

column of an attribute, then the attribute is required.
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10.3.3 The alignment element

<alignment datatype="nucleotide" datatypeid="0">

<sequence
<sequence
<sequence
<sequence
<sequence
<sequence
<sequence
<sequence
<sequence
<sequence

</alignment>

name="hiv-01">AAAGAAGAGGTAGTAATTAGATCTGAAAAT</sequence>
name="hiv-02">GAAGAAGAGGTAGTAATTAGATCTGAAAAT</sequence>
name="hiv-03">AAAGAAGAGGTAGTGATTAGATCTGAAAAT</sequence>
name="hiv-04">AAAGAAGAGGTAGTGATTAGATCTGAAAAT</sequence>
name="hiv-05">AAAGAAGAGGTAGTAATTAGATCTGAAAAT</sequence>
name="hiv-06">GAAGAAGAGGTAGTAATTAGATCTGAAGAT</sequence>
name="hiv-07">AAAGAAGAGGTAGTGATTAGATCTGAAGAT</sequence>
name="hiv-08">AAAGAAGAGGTAGTAATTAGATCTGAAGAT</sequence>
name="hiv-09">AAAGAAGAGGTAGTAATTAGATCTGAAGAT</sequence>
name="hiv-10">GAAGAAGAGGTAATAATTAGATCTGAAGAT</sequence>

An example alignment of 10 nucleotide sequences.

The alignment element contains an alignment of sequences. The sequences can be of

nucleotides, amino acids, codons or binary characters. It should be noted that strictly

speaking the observation is the set of raw sequences (as the true alignment of the

sequences is often not known), but MepPi  does not yet provide inference of alignments.

Attribute Attribute type Default value Description
name
datatype ("nucl eotide", "nucleotide" The typeof sequence data contained in this
"am no acid", alignment.
"codon",
"bi nary")
datatypeid Integer 0 An alternative method of specifying the
datatype.
0 = nucleotide
1 = amino acids
2 = binary
4 = codons
missing String B This string contains the characters that
should be interpreted as missing data (i.c.
gaps in the alignment and missing data at
ends).
Element Required? Multiple Description
name allowed?
sequence Yes Yes Contains a sequence string (including gaps) and

name.
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10.3.4 The data element

<data>
<alignment datatype="nucleotide" datatypeid="0">
<sequence name="01">AAAGAAGAGGTAGTAATTAGATCTGAAAAT</sequence>
<sequence name="02">GAAGAAGAGGTAGTAATTAGATCTGAAAAT</sequence>
<sequence name="03">AAAGAAGAGGTAGTGATTAGATCTGAAAAT</sequence>
<sequence name="04">AAAGAAGAGGTAGTGATTAGATCTGAAAAT</sequence>
<sequence name="05">AAAGAAGAGGTAGTAATTAGATCTGAAAAT</sequence>
<sequence name="06">GAAGAAGAGGTAGTAATTAGATCTGAAGAT</sequence>
<sequence name="07">AAAGAAGAGGTAGTGATTAGATCTGAAGAT</sequence>
<sequence name="08">AAAGAAGAGGTAGTAATTAGATCTGAAGAT</sequence>
<sequence name="09">AAAGAAGAGGTAGTAATTAGATCTGAAGAT</sequence>
<sequence name="10">GAAGAAGAGGTAATAATTAGATCTGAAGAT</sequence>
</alignment>
<timedata units="days" origin="0" direction="backwards" >
<time value="214">01 02 03 04 05</time>
<time value="0">06 07 08 09 10 </time>
</timedata>
</data>

An example data element containing an alignment of 10 nucleotide sequences. The first 5
sequences are 214 days older than the second 5.

The data element contains all of the observation data on which an analysis is based.
These observations currently include sequence alignments and sequence ages. It should
be noted that strictly speaking the observation is the raw sequences (as the true alignment
of the sequences is often not known), but Mepi does not yet provide inference of
alignments. Also in the case of ancient DNA the observation data is usually radiocarbon
ages rather than calendar ages, but again, Mepi does not currently allow inference of

true ages from radiocarbon ages.

Element Required? Multiple Description

name allowed?

alignment * No Contains information about sequence names and alignment.
timedata * No Contains information about the ages of the sequences (i.e. the

time structure). If no time data is given then all sequences are
assumed to be contemporaneous (i.e. all times are set to
Z€10).

*At least one of alignment and timedata is required.
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10.3.5 The demographicmodel element

<demographicmodel type="exponential" units="generations">
<parameter name="current population size" value="1000.0" />
<parameter name="growth rate" value="0.1" />

</demographicmodel>

An example of an exponential demographic model.

The demographicmodel element describes a2 model of population (size) dynamics

over time. The type and units attributes are both required.

Attribute  Attribute type Default value Description
name
type ("constant", constant = constant population size
"exponential ", exponential = exponentially growing
"const exp"”, population size
"const expconst” ) constexp = constant ancestral population
size followed by exponential growth.
constexpconst = constant ancestral
population followed by exponential
growth phase, followed by a second
constant phase at the current population
size.
units ("days", "generations" This attribute specifies the units in which
"nmont hs", the parameters of this demographic
"years", model are specified. It is recommended
"generations") that this is matched with the units of the
timedata clement.
Element Required? Multiple Description
name allowed?
parameter No Yes Contains details of a parameter of the demographic

model. See parameter element for details.
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10.3.6 The evolutionmodel element

<evolutionmodel type="coalescent">
<ratematrix model="HKY" datatype="nucleotide" datatypeid="0">
<frequencies>0.406 0.152 0.212 0.230</frequencies>
<parameter name="kappa" value="2.0" />
</ratematrix>
<sitemodel type="uniform">
<mutationratemodel type="constant">
<parameter name="current mutation rate" value="5.0E-3" />
</mutationratemodel>
</sitemodel>
<demographicmodel type="constant" units="generations">
<parameter name="current population size" value="1000.0" />
</demographicmodel>
</evolutionmodel>

An example of an evolutionary model with a HKY model of substitution, uniform across sites, and
a constant population size of 1000.

The evolutionmodel element provides a description of the evolutionary model used
to analyze the given data. This element contains information about the mutation rates,

the substitution process and the population models used in the analysis.

Attribute Attribute type Default value Description
name
initialtree ("supgma", "coal escent™ The method used to generate the initial tree if
"coal escent") one isn't given.
Element name Required? Multiple Description
allowed?
demographicmodel No No Contains the demographic model used for

coalescent prior. The MCMC element must have a
coalescent Pri Or element to make this

meaningful!

ratematrix * No Contains the rate matrix model type to be
used/estimated.

sitemodel * No Contains the site model used, parameters of this
may be estimated if appropriate operators exist.

tree No No Contains the starting tree. This tree may be

modified during simulation if operators such as
wilson-balding, narrow exchange and

wide exchange are specified in Operators
element. If no tree is specified a tree is generated
from the data.

* both are required if data is being analyzed. If the prior is being sampled a ratematrix and a
sitemodel are not required.
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10.3.7 The frequencies element

<frequencies>0.406 0.152 0.212 0.230</frequencies>

The frequencies element describes the equilibrium frequencies of a rate matrix. The

frequencies are white-space-delimited in the body of the element. DNA frequencies are

ordered A, C, G, T.

10.3.8 The MCMC element

<mcmc chainlength="100000" keepevery="10" outfile="hiv1.log" >

</mcmc>

The entire analysis must be embodied with a MCMC element, which is the first thing the

mepi program looks for. There should be only one such element in the input file.

Attribute Attribute Default value  Description
name type
chainlength  Integer 1000 The length of the chain to be run, excluding any

adaptive optimization.

keepevery Integer 1 This number determines how often a state is logged to
the outfile. A value of 10 indicates that every tenth state
is logged.
outfile String "nmcnt. | 09" The path of the output file.
verbose Boolean fal se If t r ue then tells all, else remains faitly silent.
repeats Integer 1 the number of times to repeat the analysis.
Element name Required? Multiple  Description
allowed?
data * No contains information about sequence alignment
and individual ages of sequences.
simulatedata * No describes how to simulate data to be analyzed.
evolutionmodel Yes No describes the mutation model, site model and
population model used in the analysis
operators Yes No contains all of the operators used by the memc
algorithm.
prior No Yes all the prior elements together describe the full

priot. Each element typically describes the prior
for a single parameter.

* Either data or simulatedata must be present, and only one is allowed.
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10.3.9 The mutationratemodel element

<mutationratemodel type="constant">

<parameter name="current mutation rate" value="2.5e-3" />
<parameter name="ancestral mutation rate" value="5.0E-3" />
<parameter name="step time" value="100" />

</mutationratemodel>

An example of a stepped mutation rate model that assumes an ancestral rate of 5.0e-3 that
changed suddenly 100 time units ago to 2.5e-3.

The mutationratemodel element describes a mutation rate model over time.

Currently, there are two models, constant and stepped.

Attribute Attribute type Default Description
name value
type ("constant", N/a constant = constant mutation rate.
"stepped") stepped = a mutation rate model with an instantaneous
change (or step) in mutation rate at some time in the past.
Element Required? Multiple Description
name allowed?
parameter No Yes Contains details of a parameter of the mutation rate

model.
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10.3.10 The node element

<node height="0.5" name="my archaea">
<node height="0.4" name="">
<node height="0.3" name="">
<node height="0.0" name="Halobacterium"
/>
<node height="0.0" name="Haloferax" />
</node>
<node height="0.0" name="Thermoplasma" />
</node>

<node height="0.0" name="Methanobacterium" />
</node>

A fragment of a rooted tree of archaea exhibiting the nested structure of node elements used to
define an evolutionary history.

The Node element describes a node in a tree. The node can be a leaf (in which case it
represents an actual sequence) or it can be an internal node (in which case it represents
an ancestral divergence in the tree or genealogy). If it is an internal node, then it will have

child nodes nested in it.

Attribute Attribute Default Description
name type value
name String " This attribute specifies the name that is given to this node. The

default name is the empty string.

height Double 0.0 This attribute specifies the height of this node. The units of
this height are determined by the UNItS attribute in the parent
tree element.

Element Required?  Multiple Description
name allowed?
node No Yes The children of this node, if any exist. In a strictly

bifurcating tree, the number of these children nodes will be
either 0 or 2.
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10.3.11 The operator element

<operator paramname="current population size" type="scale" scalefactor="0.5" />

The operator element describes a single meme operator. Operators come in two
flavours: simple and special. Simple operators act on a single parameter of interest by
name and have two flavours: random walk and scale move. Special operators typically act
on a number of parameters simultaneously and have usually been designed specifically to

improve the performance of certain kinds of analyses.

Attribute Attribute type Default Description
name value
paramname String N/a The name of the parameter to opetate on.

See standard parameters in section 10.3.13
for an explanation. This attribute is valid if
the operator type is r andom wal K or

scal e.
type ("random wal k", N/a The type of operator. If the type is
"scal e" , random wal k or scal e then the
"narrow exchange" , operator is a simple operator, otherwise it
"wi de exchange" , is a special operator.
"wi | son-bal di ng" ,
"node height" |
"scale tree",
"stochastic SPR',
"stochastic SPR',
"l ocal -unr oot ed",
"centered rate scal e",
"relative site-rate")
windowsize  Double N/a This attribute must appear if the operator
type is r andom wal k. It is ignored
otherwise.
scalefactor Double N/a This attribute must appear if the operator
type is Scal e. It is ignored otherwise.
weight Integer 1 This is the weighting that this operator

gets when the next move is being picked
in the meme chain. If the operator
schedule is sequential, this is the number
of times this move is called consecutively,
otherwise this is the relative proportion of
the total weight that this operator has.
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10.3.12 The operators element

<operators sequential="false">

<operator paramname="current mutation rate" type="random walk" windowsize="1e-5"

/>

<operator paramname="current population size" type="scale" scalefactor="0.5" />

<operator paramname="kappa" type="scale" scalefactor="0.5" />

<operator type="node height" topthreeonly="true" />

<operator type="node height" />

<operator type="narrow exchange" />

<operator type="wide exchange" />

<operator type="wilson-balding" />

<operator type="scale tree" scalefactor="0.9" />

<operator type="centered rate scale" />

<operator type="relative site-rate" windowsize="0.00025" adapt="false" />
</operators>

An example of an operators element used to describe the moves the MCMC sampler will use.

The operators element provides a desctiption of all of the memc operators that are
used to move around in the state space. The operators you specify will determine what
parameters are integrated over and what parameters are fixed. For example if an operator
acting on the variable Kappa is included then kappa will be integrated over (included
as part of the inference) rather than being conditioned on. Extreme care should be taken
when selecting the operators to be used. Not all combinations of operators describe valid
MCMC samplers. If you are unsure then don’t guess! Results of an analysis may be

meaningless for certain combinations of parameters.

Attribute Attribute Default Description
name type value
sequential  Boolean fal se If t r ue then the operators are used sequentially, otherwise

an operator is chosen randomly (perhaps with a weighting) in
each cycle of the memc simulation.

Element Required?  Multiple Description
name allowed?
operator Yes Yes One of perhaps many operators used by the memc

algorithm to integrate over the state space of interest.
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10.3.13

The parameter element

<parameter name="kappa" value="2.0" />

The parameter clement describes a single parameter of interest (be it an object of

inference or conditioned on). The parameter is generally associated to an aspect of an

evolutionary model by its nested position in the XML document. Parameters are referred

to by name in operators and prior elements.

Attribute Attribute type Default Description

name value

name String N/a The name of the parameter.

value Double N/a The value of the parameter.

Parameter Model(s) Natural Description

name Range

current demographicmodel (0, «) The population size at time 0.0. This parameter

popul ati on
si ze

growth rate

al pha

ancestral
popul ati on
si ze

tx

tnrca

demographicmodel (-, )

demographicmodel [0, )

demographicmodel |0, o)

demographicmodel [0, )

Special (0, )

is required for all demographic models
(constant, exponential, constexp and
constexpconst).

The exponential growth rate. A positive value
for this parameter means a increasing
population size going forward in time (decreasing
back in time). This parameter is required for the
exponential, constexp and
constexpconst models.

The size of the ancestral population (before
exponential growth phase) relative to the
current population size. A value of 1.0 means
the ancestral and current populations are the
same size. This parameter is used for the
constexp and constexpconst models.
Note: If the growth rate is negative then alpha
must be greater than 1.0, else it must be smaller
than 1.0!

This parameter is the absolute population size
of the ancestral population before the
exponential growth phase and can be used with
constexp and constexpconst models.
This is an alternative parameterization to
alpha allowing (for example) for one of the
population sizes to be fixed and the other to
vary.

Note: If the growth rate is negative then the
ancestral population size must be greater than
the current population size, else it must be
smaller!

This parameter is the duration of the current
population size constant phase in
constexpconst models.

This parameter can only be used to specify a
prior. It is the height of the root of the tree.
Setting a prior on this parameter restricts the
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current
mut ati on
rate

ancestral
mut ati on

rate

step tinme

random
branch
| engt h

A-C

kappa

mutationratemodel

mutationratemodel

mutationratemodel

special

ratematrix

ratematrix

ratematrix

ratematrix

ratematrix

ratematrix

0, )

[0, )

[0, @)

values of the tree height.

The mutation rate. This parameter is required
for both constant and stepped mutation
rate models. In a Stepped model this is the
most recent mutation rate.

The ancestral mutation rate in a Stepped
mutation rate model.

The time at which the mutation rate changes
from the ancestral mutation rate to
thecurrent nutation rateina
stepped mutation rate model.

This parameter can be used only to create an
operator. An operator that uses
paramname="random branch
length" will operate on a randomly selected
branch length in the tree each time it is called.
The rate (ignoring equilibrium frequencies) of
A « C transversions relative to G « T =1. Used
in GTR rate matrix.

The rate (ignoring equilibrium frequencies) of
A & G transitions relative to G « T = 1. Used
in GTR rate matrix.

The rate (ignoring equilibrium frequencies) of
A « T transversions relative to G « T = 1. Used
in GTR rate matrix.

The rate (ignoring equilibrium frequencies) of
C & G transversions relative to G T = 1.
Used in GTR rate matrix.

The rate (ignoring equilibrium frequencies) of
C o T transitions relative to G » T = 1. Used in
GTR rate matrix.

The rate (ignoring equilibrium frequencies) of
transitions (A « G, C » T) relative to
transversions (A« C, AT, Co G, G« T).
This parameter is used in the HKY rate matrix.
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10.3.14 The prior element

<prior paramname="current mutation rate" minimum="0.0" maximum="1.0" type="uniform"/>

The prior element provides a description of a component of the priot, usually

pertaining to a single parameter of interest. The full prior used in the Bayesian inference

is the combination of all the prior elements.

Attribute Attribute type

Default
name value

Description

paramname String N/a

The name of the parameter to define a prior for.
See standard parameters in section 10.3.13 for an
explanation.

minimum Double 0.0

The lowest value that the parameter is allowed to
assume.

maximum Double I

The highest value that the parameter is allowed
to assume.

type* ("uni fornt, N/a
"Jeffreys'",
"coal escent ",
"exponenti al

tnrca prior")

Currently only two basic forms of prior
distribution are provided: uniform and Jeffreys'".
The uniform distribution weights every value
(within the valid range) equally. The Jeffreys'
disitrbution weights smaller values more highly

Ge. F(X)0O i).
X

The coal escent is a special prior that uses
Kingman's coalescent to provide a prior
distribution on genealogies based on the
population model provided.

The exponential tnrca priorisa
special prior and should be accompanied with an
attribute mean="x" where X is the mean of

the exponential prior on tmrca.

mean Double N/a

The mean of the exponenti al tnrca
pri or . Ignored if type is not exponent i al
tnrca prior.

*If coal escent orexponential tnrca prior isspecified as the type then par ammane,
M ni Mumand Maxi MuMmare not valid and should not be present.
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10.3.15 The ratematrix element

<ratematrix model="GTR" datatype="nucleotide" datatypeid="0">
<frequencies>0.406 0.152 0.212 0.230</frequencies>
<parameter name="A-C" value="1.0" />
<parameter name="A-G" value="2.0" />
<parameter name="A-T" value="1.0" />
<parameter name="C-G" value="1.0" />
<parameter name="C-T" value="2.0" />

</ratematrix>

An example GTR rate matrix that assumes fixed frequencies and starts with rate parameters
corresponding with kappa=2.

The ratematriX element describes a rate matrix to be used during an memc simulation

or alternatively to be used to generate sequence data.

Attribute Attribute type Default value Description
name
model "Jc', N/a This attribute specifies the rate matrix
"F81", model being used.
"F84",
" HKY",
"GIR")
datatype ("nucl eotide", "nucleotide" Thetype ofsequence data contained in this
"am no acid", alignment.
"codon",
"bi nary")
datatypeid Integer 0 An alternative method of specifying the
datatype.

0 = nucleotide
1 = amino acids

2 = binary
4 = codons
Element Required? Multiple Description
name allowed?
parameter No Yes Contains details of a parameter of the rate matrix model.
frequencies No No Contains the equilibrium frequencies used in this rate

matrix model. If this is not specified the frequencies are
calculated empirically from the given alignment.
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10.3.16 The sequence clement

<sequence name="01">AAAGAAGAGGTAGTAATTAGATCTGAAAAT</sequence>

The SequUeNCEe element contains a single (named and aligned) sequence fragment. The

content of this element is the raw sequence.

Attribute Attribute type Default Description

name value

name String N/a The name of sequence contained in this
element.
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10.3.17 The simulatedata element

<simulatedata length="660">

<ratematrix model="GTR" datatype="nucleotide" datatypeid="0">
<frequencies>0.406 0.152 0.212 0.230</frequencies>
<parameter name="A-C" value="1.505" />
<parameter name="A-G" value="3.418" />
<parameter name="A-T" value="0.419" />
<parameter name="C-G" value="0.477" />
<parameter name="C-T" value="3.136" />

</ratematrix>

<mutationratemodel type="constant">

<parameter name="current mutation rate" value="5.889E-5" />

</mutationratemodel>
<simulatetree>

<demographicmodel type="constant" units="generations">
<parameter name="current population size" value="5000" />

</demographicmodel>
</simulatetree>

<timedata units="generations" origin="0" direction="backwards">
<time value="214">01 02 03 04 05</time>
<time value="0">06 07 08 09 10</time>

</timedata>
</simulatedata>

An example simulatedata element that simulates sequences under a GTR model along a 10
taxa tree with 5 sequences 214 days old and 5 sequences 0 days old. The sequence length is 660
nucleotides. The tree is itself simulated using the coalescent with the assumption of an population

size of 5000.

The simulatedata element provides a description of an evolutionary model and

sampling strategy that can be used to generate a simulated dataset. This element can

replace a data element in order to do parametric simulations. These observations include

sequence alighments and sequence ages.

Attribute name  Attribute type Default value

Description

length Integer 500 The length of the sequences to be generated.
Element name Required? Multiple Description
allowed?

ratematrix Yes No Contains the mutation rate matrix (Q) used to evolve
sequences on a tree.

timedata Yes No Describes the time structure, labels and number of
sequences.

simulatetree * No Describes the population model used to simulate a
tree.

tree * No Contains a tree used when simulating the sequence

data.

* Bither tree or simulatetree must be present, and only one is allowed.
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10.3.18 The simulatetree clement

<simulatetree>
<demographicmodel type="exponential" units="generations">
<parameter name="current population size" value="5000" />
<parameter name="growth rate" value="0.1" />
</demographicmodel>
</simulatetree>

A simulatetree element describing 2 demographic model that can be used to simulate a tree.
The number of tips and their times are determined by the sibling timedata element.

The simulatetree element describes a population model used to simulate a coalescent
tree. This element is cutrently only valid when placed within a Simulatedata element.

The timedata clement within the same Simulatedata element is used to decide the

number and names of the taxa.

Element name Required? Multiple Description
allowed?
demographicmodel Yes No The demographic model used to simulate a

coalescent tree.
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10.3.19 The sitemodel element

<sitemodel type="codon position">
<!-- first codon position -=>
<mutationratemodel type="constant">
<parameter name="current mutation rate" value="7.9E-4" />
</mutationratemodel>
<!-- second codon position =->
<mutationratemodel type="constant">
<parameter name="current mutation rate" value="7.9E-4" />
</mutationratemodel>
<!-- third codon position -=>
<mutationratemodel type="constant">
<parameter name="current mutation rate" value="7.9E-4" />
</mutationratemodel>
</sitemodel>

A codon position site model. All three codon positions start with the same rate in this example.
However if the appropriate operators are used (“centered rate scale” and “relative site-rate”) then
these site specific rates will be estimated. Note that first mutationratemodel will be the first
codon position and so on.

The sitemodel element describes a site model of mutation. Currently two models exist:
uni f or mand codon posi ti on. For the codon position model, note that first

mutationratemodel will be the first codon position and so on.

Attribute  Attribute type Default value Description

name

type ("uni fornt, "codon If uniform, then all sites in the
"codon position") position" alignment are treated identically. If

codon position is selected then each
of the three codon positions are
given there own mutation rate

model.
Element name Required? Multiple Description
allowed?
mutationratemodel Yes Yes Contains details of a single mutation rate model.

Only one of these elements is expected in a
uniform model, and exactly three are expected in a
codon position model.

209




10.3.20 The time element

<time value="214">01 02 03 04 05</time>

The time element contains a white-space-separated list of sequence names of the given
time (age). In the case of ancient DNA the observation data is usually radiocarbon ages
rather than true ages, but Mepi does not cutrently allow inference of true ages from

radiocarbon ages.

Attribute Attribute type Default Description
name value
value Double N/a The time (age) of the sequence names enclosed

by the time element.
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10.3.21 The timedata element

<timedata units="days" origin="0" direction="backwards">
<time value="214">01 02 03 04 05</time>
<time value="0">06 07 08 09 10 </time>

</timedata>

An example timedata element with two samples of 5 sequences 214 days apatt.

The timedata element contains information about a time line and the ages of a set of

labels that relate to sequences in the alignment element. In the case of ancient DNA
the observation data is usually radiocarbon ages rather than true ages, but Mepi does not

currently allow inference of true ages from radiocarbon ages.

Attribute Attribute type Default value Description

name

units ("days", "generations" This attribute specifies the units in which
"nont hs" | the time is specified.
"years",
"generations")

origin Double 0.0 An alternative method of specifying the

datatype.

0 = nucleotide
1 = amino acids

2 = binary
4 = codons

direction (" backwar ds", " This string contains the characters that

"forwards") should be interpreted as missing data (i.e.

gaps in the alignment and missing data at
ends).

Element Required?  Multiple Description

name allowed?

time Yes Yes Contains a list of sequence names that share this

time/age.
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10.3.22 The tree element

<tree units="mutations">
<node height="0.267779" name="">
<node height="0.182928" name="">
<node height="0.138605">
<node name="human"/>
<node name="chimp"/>

</node>
<node name="gorilla"/>
</node>
<node name="orangutan"/>
</node>
</tree>

An example tree element of 4 apes.

The tree clement describes a tree to be used during an memc simulation or alternatively

to be used to generate sequence data.

Attribute Attribute type Default value Description

name

units ("days", "generations" This attribute specifies the units in which
"nont hs", the time is specified.
"years",

"generations")

Element Required?  Multiple Description
name allowed?
node Yes No The root node of the tree. Only one node may be the

direct child of the tree element.

10.4 Conclusion

The software package MEPI is a suite of programs for the Bayesian inference of

molecular evolution and population genetics from molecular sequence data. It

implements sampling of all of the posterior probability densities described in Chapters 5,

6 and 8. MEPI is developed in the programming language Java and benefits heavily from

the open source project: Phylogenetic Analysis Library (PAL).
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11 Personal Conclusion

Ironically, the two aspects of this thesis that accounted for the majority of time and
effort are barely even spoken of: the programming and the talking. The implementation
of the algorithms and the auxiliary software (such as graphical user interfaces and the
XML language described in Chapter 10) used to conduct this research program was its
most consuming aspect. A close second was plain old-fashioned scientific discourse.
Loud discussions with my supervisors about questions like “What exactly is a species?”
or “Is the concept even useful?” regularly echoed through the corridors, often to the

amusement of nearby colleagues.

The field of biology as a whole, and evolutionary inference in particular, is now at a point
of maturity where progress is often intimately linked with CPU cycles and computation. I
must confess to wishing, at many stages, I could have conducted more of my research
outdoors with pencil and paper. However I feel that evolutionary biology has long since
passed the days of Fisher and Wright, when research could be conducted almost without
data, and certainly without computers. By this, I do not mean that statistical and
mathematical theories are neither interesting nor relevant, but that we must not ignore
the masses of data in choosing between alternative hypotheses. We, as a scientific
community, are drowning in a sea of data that demands to be listened to. For me this is
an exhilarating prospect. The answers to many of the burning questions of evolutionary
biology are out there just waiting to be found. A fellow theoretician once said to me that
he was a filter feeder; at the bottom of the scientific food chain relying on others’ data. I

have a feeling that the tides are changing and a Kuhnian revolution is upon us.

11.1 Open problems

In many ways this thesis has served more as a starting point for me rather than any kind
of an end. In developing the methods presented herein, some of the open problems
facing evolutionary biology as a field have become more apparent. The explicit modelling
of selection, both adaptive and purifying, at the molecular level is one such open
problem. The challenge is to integrate the knowledge of molecular structure and function

with models of mutation. Most current models of molecular evolution lump mutations
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and selection into a single bucket called “substitutions”. I feel that both sides of the

mutation-selection balance need more rigorous mechanistic and statistical treatment.

Models of mutation need to integrate information about the DNA polymerase apparatus
and its biochemical properties with regard to slippage and (mis-) repair. More important,
and more demanding is the development of models of selection that incorporate our
knowledge of sequence-structure mapping. In the case of RNA secondary structure, the
research presented in Chapter 8 falls well short of this second goal, at best merely

highlighting the problems associated with current methods.

Another open problem is the joint estimation of phylogeny and alignment. Within the
Bayesian framework described in Chapters 5, 6, 8 and 10, I would boldly say that this
task is programmatically straightforward. The need is for more scientific discourse. The
difficulty is in developing realistic models of the evolutionary process of insertions and
deletions (indels). Only two years ago, upon mentioning at a conference my ambition to
solve this problem, I received a chuckle, and was told it was unreachable because of
computer limitations. However, a few months ago I again mentioned my aspirations at
another meeting and heads nodded in almost bored agreement that it was the way to go.

Such is the exciting pace of computational advance.

Rate heterogeneity both among sites and across lineages is currently treated as
phenomenological. The statistical models used are justified by their empirical fit, rather
than their mechanistic interpretation. Therefore, a third open problem is the integration
of knowledge about (i) mutational hotspots and (ii) allometry and metabolic rate

information in the analysis of rate heterogeneity, both among sites and across lineages.

11.1.1 The rate invariance problem

A fourth open problem is quite directly related to the research I conducted on measurably
evolving populations. It relates to the internal and external conflict of molecular data with
regard to time scales. The facts clash. One exemplar is “When did humans first get
HIV-1?” Another is “When did the most recent common ancestor of modern humans
exist?” Both of these questions require some knowledge of the rate of evolution, or else a
calibration point. Specifically, recent examples seem to indicate that the rate of evolution

is faster on shorter time scales.
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11.1.1.1 Fast rates of mtDNA evolution in bears and penguins over short time
frames

Data from both bears (see Chapter 6) and Adelie penguins (see Appendix) suggest a fast

rate of evolution over short time frames (tens to hundreds of thousand years) in

comparison with rates over longer time frames (tens to hundreds of million years). This

discrepancy is a factor in the range of 2-7 times. In the case of bears, the comparison of

estimated evolutionary rates over different time scales for the same genetic region and

the same species still exhibits this discrepancy.

11.1.1.2 Fast rates of HIV-1 evolution within patients

Within an infected patient, HIV-1 regularly evolves at rates of about 1-2% sequence
divergence per year (DRUMMOND ef a/. 2001; SHANKARAPPA ¢ al. 1999). However a
recent high-profile analysis of rates of evolution of HIV-1 over a much longer time
frame (since its introduction into humans) estimated an overall rate of about 0.24% per
year (KORBER ¢ /. 2000). This discrepancy appears to have gone relatively unnoticed.
However it represents a second exemplar of what I believe is an open problem in

evolutionary biology.

11.1.1.3 The mouse and the elephant

Imagine if you will a mouse tied to an elephant by a fine stretchy lead and collar. The
mouse is quite active, and from a position next to the elephant, it can run quickly in any
direction for a short while, before the lead eventually drags him back to the elephant. The
elephant on the other hand is much more sedate and contemplative, occasionally taking a
step, this way or that, and thus moving the centre of the mouse’s world. If one can only
see mice then they appear to behave in a very odd manner. Over short periods, mice tend
to move at a very rapid rate. However over long periods, the distance they travel does
not correspond to the fast rate. The long timescale rate of mouse movement is much

slower, because the slower movements of the unobserved elephant dominate it.

In this model, we might regard the mouse’s movement as mutation and the tether as
purifying selection. The elephant might then represent the archetypal sequence and her
movement is the slowly changing background environment or changes of sequence

context.

11.1.1.4 Weakly coupled models of molecular evolution
The rather fanciful imagery conjured up above leads us to a model of molecular

evolution that may partially explain the observation that rates of substitution are faster
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over short times frames than long time frames. Hierarchical coupling of multiple rates
that act on different time scales may be a general pattern generated by a number of
different mechanisms, like (i) mutation-selection balance in shifting environments, (ii)
context-dependent rate heterogeneity across sites, (iii) covarion models of molecular
evolution and (iv) coupling of function of different gene products. It would seem to me,
that all of these examples can be regarded as models of (weakly) coupled molecular
evolution that have the capacity to present different evolutionary rates over different
time scales. These concepts are by no means fully formed scientific theorems; rather they

are ‘merely’ analogies/hypotheses for the beginnings of future directions.

11.2 Future directions

The use of Bayesian inference often leads to a great flexibility in model specification.
This is because any model that can be simulated can be sampled using Metropolis-
Hastings Markov chain Monte Carlo techniques. As a result the handful of models
investigated in this thesis is just a beginning point. A theme in this research has been the
incorporation of data other than molecular sequences, such as sampling times (Chapter
5), radiocarbon ages (Chapter 6), geographic position (Chapter 9) and RNA secondary
structure (Chapter 8) into phylogenetic and population genetic inference. A partial list of

possible directions to take from here would read something like:

1. Development of a likelihood function that specifically incorporates the

sequence-structure (genotype-phenotype) mapping.

2. Development of statistical models of the insertion and deletion (indel)
process.
3. Development of statistical models that take into account coupling of

evolution of different gene fragments.

4. Extension of analysis of mweasurably evolving populations to include
recombination.
5. Extension of analysis of mweasurably evolving populations to include standard

subpopulation models of migration.

0. Extension of analysis of mweasurably evolving populations to include “relaxed

molecular clock™ models of evolution.

7. Validation of the diffusion model suggested in Chapter 9.
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8. Incorporation of radiocarbon dating error into analyses of ancient DNA.

9. Incorporation of external information such as metabolic rate and allometric

information into phylogenetic inference of evolutionary rate heterogeneity.

11.3 Conclusion

During the last three or four years of my academic life I have been thinking about how
evolution works. In my mind a simulation of the entire evolutionary process is the
ultimate goal. If that is so, then the goal is a long way off. But small steps can certainly be
made swiftly. The historical crises of cladistics and phenetics seem remote and forgotten
to me — abandoned arguments and no longer necessary. Here I have endeavoured to
advocate a different approach, resoundingly statistically explicit. I have argued here for
computational, data-rich methods that incorporate all sources of knowledge into a
cohesive framework of inference. I am hopeful that in the near future, others and myself
will tackle some of the open problems and travel in some of the directions I have

outlined above.
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