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Abstract. We propose to “boost” the speed of communication and com-
putation by immersing the computing environment into a medium whose
index of refraction is smaller than one, thereby trespassing the speed-of-
light barrier.

The Church-Turing and the Cook-Karp theses, as well as other, more general
limits on computation, are under permanent “scrutiny” (cf., e.g., Ref. [1, p 11] or
Ref. [2, p. 5]) by the physical sciences. Some recent issues which have been raised
comprise Zeno-squeezed accelerated time scales [3–7] enabling the construction
of “infinity machines” capable of hypercomputation [8–10], counterfactual com-
putation [11] and cryptography [12] based on quantum counterfactuals [13, 14],
as well as the dissipation limits to computation [15]. Here we shall consider the
possibility to speed up optical [16] computations and communication by trans-
gressing the speed of light barrier in vacuum. Note that, although the speed
of light barrier appears to be a fundamental limit for the transfer of “freely
willable” information [17], several ways for “signals” trespassing the relativistic
light cone [18], even to the extent of time travel [19–23], have been proposed.
There appears to be a consensus that, just as for quantum correlations featur-
ing (un)controllable non-locality [24] via outcome dependence but parameter
dependence, “signal” signatures beyond the velocity of light limit [25] could be
tolerated at the kinematical level [26] as long as they are “benign” and thus
incapable of rendering diagonalization-type [1, 27] paradoxes.

In what follows we propose to “boost” the speed of communication and com-
putation by “pushing” the computer into a medium whose index of refraction
is smaller than one. The speed of communication by light signals varies indi-
rectly proportional to the index of refraction, differing greatly for various forms
of media, substrata or “ethers” susceptible of the traversal of light. Quantum
field theory allows the index of refraction to become smaller than one, thereby
formally indicating a speed of photons exceeding the classical speed of light limit
in vacuum.

“Diagrammatically speaking” [28–30], i.e., in terms of perturbative quan-
tum field theory, a photon, i.e., the “unit quantum of light” associated with a
particular mode of the electromagnetic field, travels through the vacuum ether



medium [31] by polarizing it through partly “splitting up” into an electron-
positron pair and recombining. In solid state physics, this phenomenon gives
rise to lattice excitations called phonons [32]. The electrons and positrons are
themselves subject to higher order radiative corrections involving photons.

Thus, any change of vacuum polarization, such as finite boundary condi-
tions, or increased or decreased pair production, alters the susceptibility of the
vacuum ether medium for carrying electromagnetic waves, and thus results in
a change of the velocity of light. Historically, this effect has first been studied
for magnetic fields [33–35] and finite temperatures [36]. The first indication of a
vacuum polarization-induced index of refraction smaller than one was reported
by Scharnhorst [37–39] and Barton [40, 41] in an attempt to utilize the reduced
vacuum polarization in the “Casimir vacuum” [42] between two conducting par-
allel plates. More recently, trans-vacuum-speed metamaterials [43–47] as well as
negative refractive indices in gyrotropically magnetoelectric media [48] have been
suggested. It would be interesting to extend these calculations to the squeezed
vacuum state by computing the polarization in such an “exotic” vacuum [49].

One of the possibilities which have not been discussed so far is the immersion
of the computing environment into a vacuum ether medium “filled” with elec-
trons or positrons. In such an environment, the Pauli exclusion principle would
“attenuate” pair creation, thereby reducing the polarization of the medium, re-
sulting in a reduced index of refraction as well as in an increase of the velocity
of light.
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Fig. 1. Lowest order vacuum polarization diagram.

After regularization and renormalization, the lowest order change to the ra-
diative correction associated with the vacuum polarization (whose Feynman di-
agram is depicted in Fig. 1) can be written as [50, 51, 29]

∆Πµν(k2) = −
(
gµνk

2 − kµkν
) 2α

3π
log

εF
m
, (1)

where m stands for the electron rest mass and εF denotes the cutoff associated
with the filled electron or positron modes; the calculation assumed k2 < m. Let
εµ stand for the vacuum polarization. Then we can introduce an effective mass
term [52–54]

M(k) = εµΠµν(k)εν (2)

such that the eigenvalue equation is

k2 +M(k) = (k0)2, (3)



where kµ = (k, k0 = ω); and

|k| ≈ ω − 1

2ω
M(k). (4)

Thus the index of refraction can be defined by

n(ω) =
|k|
ω
≈ 1− 1

2ω2
M(k). (5)

Hence the change of the refractive index is given by

∆n(ω) ≈ − α

3πω2
(εµkµ)2 log

εF
m
. (6)

As a result, the speed of light c/(1−∆n) ≈ c+ ∆c is changed by ∆c = c∆n.
As has already pointed out, this effect can be used to “push” the computer

into a domain of faster-than-light communication; with the possibility to decrease
its time cycles accordingly. One should keep in mind that at present such a possi-
bility merely remains a theoretical speculation; this hypothetical character being
shared with some relativistic “realizations” of hypercomputers. Nevertheless it
might be interesting to pursue the possibilities related to temporal quantum field
theoretical speedup further, for in principle nothing prevents ∆n in Eq. (6) or
in other “exotic” vacuum states from approaching one, yielding an unbounded
cycle speed, associated with expanding memory requirements [55].

In summary we have discussed field theoretic options for the “speedup” of
communication and computation. These are based on the alteration of the po-
larization of “exotic vacua” and the respective changes of the index of refraction.
It should be emphasized that these findings do not represent the possibility to
circumvent relativistic causality, nor are they inconsistent with the present for-
malism of relativity theory or the theory of quantized fields.
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