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Abstract. In 1975 Chaitin introduced his Ω number as a concrete exam-
ple of random real. The real Ω is defined based on the set of all halting
inputs for an optimal prefix-free machine U , which is a universal de-
coding algorithm used to define the notion of program-size complexity.
Chaitin showed Ω to be random by discovering the property that the
first n bits of the base-two expansion of Ω solve the halting problem of
U for all binary inputs of length at most n. In this paper, we introduce a
new representation Θ of Chaitin Ω number. The real Θ is defined based
on the set of all compressible strings. We investigate the properties of Θ
and show that Θ is random. In addition, we generalize Θ to two direc-
tions Θ(T ) and Θ(T ) with real T > 0. We then study their properties.
In particular, we show that the computability of the real Θ(T ) gives a
sufficient condition for a real T ∈ (0, 1) to be a fixed point on partial
randomness, i.e., to satisfy the condition that the compression rate of T
equals to T .

Key words: algorithmic information theory, Chaitin Ω number, random-
ness, partial randomness, fixed point, program-size complexity

1 Introduction

Algorithmic information theory (AIT, for short) is a framework for applying
information-theoretic and probabilistic ideas to recursive function theory. One
of the primary concepts of AIT is the program-size complexity (or Kolmogorov
complexity) H(s) of a finite binary string s, which is defined as the length of the
shortest binary input for a universal decoding algorithm U , called an optimal
prefix-free machine, to output s. By the definition, H(s) can be thought of as
the information content of the individual finite binary string s. In fact, AIT has
precisely the formal properties of classical information theory (see Chaitin [5]).
In particular, the notion of program-size complexity plays a crucial role in char-
acterizing the randomness of an infinite binary string, or equivalently, a real. In
[5] Chaitin introduced the halting probability Ω as an example of random real.
His Ω is defined based on the set of all halting inputs for U , and plays a central
role in the metamathematical development of AIT [7]. The first n bits of the
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base-two expansion of Ω solve the halting problem of U for inputs of length at
most n. Based on this property, Chaitin showed that Ω is random.

In this paper, we introduce a new representation Θ of Chaitin Ω number.
The real Θ is defined based on the set of all compressible strings, i.e., all finite
binary strings s such that H(s) < |s|, where |s| is the length of s. The first n bits
of the base-two expansion of Θ enables us to calculate a random finite string of
length n, i.e., a finite binary string s for which |s| = n and |s| ≤ H(s). Based on
this property, we show that Θ is random.

In the works [14, 15] we introduced the notion of partial randomness for a
real as a stronger representation of the compression rate of a real by means of
program-size complexity. At the same time, we generalized the halting proba-
bility Ω to Z(T ) so that the partial randomness of Z(T ) can be controlled by a
real T with 0 < T ≤ 1.1 As T becomes larger, the partial randomness of Z(T )
increases. When T = 1, Z(T ) becomes a random real, i.e., Z(1) = Ω. Later on,
in the work [16] we revealed a special significance of the computability of the
value Z(T ). Namely, we proved the fixed point theorem on partial randomness,2
which states that, for every T ∈ (0, 1), if Z(T ) is a computable real, then the
partial randomness of T equals to T , and therefore the compression rate of T
equals to T , i.e., limn→∞H(T �n)/n = T , where T �n is the first n bits of the
base-two expansion of T .

In a similar manner to the generalization of Ω to Z(T ), in this paper we
generalize Θ to two directions Θ(T ) and Θ(T ). We then show that the reals Θ(T )
and Θ(T ) both have the same randomness properties as Z(T ). In particular, we
show that the fixed point theorem on partial randomness, which has the same
form as for Z(T ), holds for Θ(T ).

The paper is organized as follows. We begin in Section 2 with some prelim-
inaries to AIT and partial randomness. In Section 3 we introduce Θ and study
its property. Subsequently, we generalize Θ to two directions Θ(T ) and Θ(T )
in Section 4 and Section 5, respectively. In Section 6, we prove the fixed point
theorem on partial randomness based on the computability of Θ(T ).

2 Preliminaries

We start with some notation about numbers and strings which will be used in
this paper. #S is the cardinality of S for any set S. N = {0, 1, 2, 3, . . . } is the
set of natural numbers, and N+ is the set of positive integers. Q is the set of
rationals, and R is the set of reals. A sequence {an}n∈N of numbers (rationals or
reals) is called increasing if an+1 > an for all n ∈ N. Normally, O(1) denotes any
function f : N+ → R such that there is C ∈ R with the property that |f(n)| ≤ C
for all n ∈ N+. On the other hand, o(n) denotes any function g : N+ → R such
that limn→∞ g(n)/n = 0.

1 In [14, 15], Z(T ) is denoted by ΩT .
2 The fixed point theorem on partial randomness is called a fixed point theorem on

compression rate in [16].
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{0, 1}∗ = {λ, 0, 1, 00, 01, 10, 11, 000, . . . } is the set of finite binary strings
where λ denotes the empty string, and {0, 1}∗ is ordered as indicated. We iden-
tify any string in {0, 1}∗ with a natural number in this order, i.e., we consider
ϕ : {0, 1}∗ → N such that ϕ(s) = 1s − 1 where the concatenation 1s of strings
1 and s is regarded as a dyadic integer, and then we identify s with ϕ(s). For
any s ∈ {0, 1}∗, |s| is the length of s. For any n ∈ N, we denote by {0, 1}n the
set { s | s ∈ {0, 1}∗ & |s| = n}. A subset S of {0, 1}∗ is called prefix-free if no
string in S is a prefix of another string in S. For any function f , the domain
of definition of f is denoted by dom f . We write “r.e.” instead of “recursively
enumerable.”

Let α be an arbitrary real. For any n ∈ N+, we denote by α �n∈ {0, 1}∗
the first n bits of the base-two expansion of α− �α� with infinitely many zeros,
where �α� is the greatest integer less than or equal to α. For example, in the
case of α = 5/8, α�6= 101000. A real α is called right-computable if there exists
a total recursive function f : N+ → Q such that α ≤ f(n) for all n ∈ N+ and
limn→∞ f(n) = α. On the other hand, a real α is called left-computable if −α is
right-computable. A left-computable real is also called a r.e. real. It is then easy
to show the following theorem.

Theorem 1. Let α ∈ R.

(i) α is computable if and only if α is both right-computable and left-computable.
(ii) α is right-computable if and only if the set { r ∈ Q | α < r } is r.e. ��

2.1 Algorithmic Information Theory

In the following we concisely review some definitions and results of AIT [5, 7]. A
prefix-free machine is a partial recursive function C : {0, 1}∗ → {0, 1}∗ such that
dom C is a prefix-free set. For each prefix-free machine C and each s ∈ {0, 1}∗,
HC(s) is defined by HC(s) = min

�
|p|

�� p ∈ {0, 1}∗ & C(p) = s
�

(may be ∞).
A prefix-free machine U is said to be optimal if for each prefix-free machine
C there exists d ∈ N with the following property; if p ∈ dom C, then there is
q ∈ dom U for which U(q) = C(p) and |q| ≤ |p| + d. It is easy to see that there
exists an optimal prefix-free machine. We choose a particular optimal prefix-free
machine U as the standard one for use, and define H(s) as HU (s), which is
referred to as the program-size complexity of s, the information content of s,
or the Kolmogorov complexity of s [9, 11, 5]. It follows that for every prefix-free
machine C there exists d ∈ N such that, for every s ∈ {0, 1}∗,

H(s) ≤ HC(s) + d. (1)

Based on this we can show that, for every partial recursive function Ψ : {0, 1}∗ →
{0, 1}∗, there exists d ∈ N such that, for every s ∈ dom Ψ ,

H(Ψ(s)) ≤ H(s) + d. (2)

Based on (1) we can also show that there exists d ∈ N such that, for every s �= λ,

H(s) ≤ |s| + 2 log2 |s| + d. (3)
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For any s ∈ {0, 1}∗, we define s∗ as min{ p ∈ {0, 1}∗ | U(p) = s}, i.e., the
first element in the ordered set {0, 1}∗ of all strings p such that U(p) = s. Then,
|s∗| = H(s) for every s ∈ {0, 1}∗.

Chaitin [5] introduced Ω number as follows. For each optimal prefix-free
machine V , the halting probability ΩV of V is defined by

ΩV =
�

p∈dom V

2−|p|.

For every optimal prefix-free machine V , since dom V is prefix-free, ΩV converges
and 0 < ΩV ≤ 1. For any α ∈ R, we say that α is weakly Chaitin random if
there exists c ∈ N such that n − c ≤ H(α�n) for all n ∈ N+ [5, 7]. Chaitin [5]
showed that ΩV is weakly Chaitin random for every optimal prefix-free machine
V . Therefore 0 < ΩV < 1 for every optimal prefix-free machine V .

2.2 Partial Randomness

In the works [14, 15], we generalized the notion of the randomness of a real
so that the degree of the randomness, which is often referred to as the partial
randomness recently [3, 12, 4], can be characterized by a real T with 0 < T ≤ 1
as follows.

Definition 1 (weak Chaitin T -randomness). Let T ∈ (0, 1] and let α ∈ R.
We say that α is weakly Chaitin T -random if there exists c ∈ N such that, for
all n ∈ N+, Tn− c ≤ H(α�n). ��

In the case where T = 1, the weak Chaitin T -randomness results in weak
Chaitin randomness.

Definition 2 (T -compressibility and strict T -compressibility). Let T ∈
(0, 1] and let α ∈ R. We say that α is T -compressible if H(α�n) ≤ Tn + o(n),
namely, if lim supn→∞H(α�n)/n ≤ T . We say that α is strictly T -compressible
if there exists d ∈ N such that, for all n ∈ N+, H(α�n) ≤ Tn + d. ��

For every real α, if α is weakly Chaitin T -random and T -compressible, then
limn→∞H(α�n)/n = T , i.e., the compression rate of α equals to T .

In the works [14, 15], we generalized Chaitin Ω number to Z(T ) as follows.
For each optimal prefix-free machine V and each real T > 0, the generalized
halting probability ZV (T ) of V is defined by

ZV (T ) =
�

p∈dom V

2−
|p|
T .

Thus, ZV (1) = ΩV . If 0 < T ≤ 1, then ZV (T ) converges and 0 < ZV (T ) < 1,
since ZV (T ) ≤ ΩV < 1. The following theorem holds for ZV (T ).

Theorem 2 (Tadaki [14, 15]). Let V be an optimal prefix-free machine.
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(i) If 0 < T ≤ 1 and T is computable, then ZV (T ) is a left-computable real
which is weakly Chaitin T -random and T -compressible.

(ii) If 1 < T , then ZV (T ) diverges to ∞. ��

The computability of the value ZV (T ) has a special implication on T as
follows.

Theorem 3 (fixed point theorem on partial randomness, Tadaki [16]).

Let V be an optimal prefix-free machine. For every T ∈ (0, 1), if ZV (T ) is com-
putable, then T is weakly Chaitin T -random and T -compressible, and therefore

lim
n→∞

H(T�n)
n

= T. (4)

The equality (4) means that the compression rate of T equals to T itself. In-
tuitively, we might interpret the meaning of (4) as follows: Consider imaginarily
a file of infinite size whose content is

“The compression rate of this file is 0.100111001 . . . . . . ”

When this file is compressed, the compression rate of this file actually equals
to 0.100111001 . . . . . . , as the content of this file says. This situation is self-
referential and forms a fixed point. For a simple and self-contained proof of
Theorem 3, see Section 5 of Tadaki [18].

A left-computable real has a special property on partial randomness, as shown
in Theorem 4 below. For completeness, we include the proof of Theorem 4 in
Appendix A.

Definition 3 (T -convergence, Tadaki [17]). Let T ∈ (0, 1]. An increasing
sequence {an} of reals is called T -convergent if

�∞
n=0(an+1 − an)T < ∞. A

left-computable real α is called T -convergent if there exists a T -convergent com-
putable, increasing sequence of rationals which converges to α. ��

Theorem 4 (Tadaki [19]). Let T be a computable real with 0 < T < 1. For ev-
ery left-computable real α, if α is T -convergent then α is strictly T -compressible.

��

3 New Representation of Chaitin Ω Number

In this section, we introduce a new representation Θ of Chaitin Ω number based
on the set of all compressible strings, and investigate its property.

Definition 4. For any optimal prefix-free machine V , ΘV is defined by

ΘV =
�

HV (s)<|s|

2−|s|,

where the sum is over all s ∈ {0, 1}∗ such that HV (s) < |s|. ��
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For each optimal prefix-free machine V , we see that

ΘV <
�

HV (s)<|s|

2−HV (s) ≤
�

s∈{0,1}∗
2−HV (s) ≤

�

p∈dom V

2−|p| = ΩV .

Thus, ΘV converges and 0 < ΘV < ΩV for every optimal prefix-free machine V .
It is important to evaluate how many strings s satisfy the condition HV (s) < |s|.
For that purpose, we define SV (n) = { s ∈ {0, 1}∗ | |s| = n & HV (s) < n } for
each optimal prefix-free machine V and each n ∈ N. We can then show the
following theorem.

Theorem 5. Let V be an optimal prefix-free machine. Then SV (n) � {0, 1}n for
every n ∈ N. Moreover #SV (n) = 2n−H(n)+O(1) for all n ∈ N+, i.e., there exists
d ∈ N such that (i) #SV (n) ≤ 2n−H(n)+d for all n ∈ N, and (ii) 2n−H(n)−d ≤
#SV (n) for all sufficiently large n ∈ N. ��

The first half of Theorem 5 is easily shown by counting the number of binary
strings of length less than n. Solovay [13] showed that #{ s ∈ {0, 1}∗ | HV (s) <
n } = 2n−H(n)+O(1) for every optimal prefix-free machine V . The last half of
Theorem 5 slightly improves this result. For completeness, we include the proof
of Theorem 5 in Appendix B.

Theorem 6. For every optimal prefix-free machine V , ΘV is a left-computable
real which is weakly Chaitin random. ��

Theorem 6 results from each of Theorem 7 (i) and Theorem 8 (i) below by
setting T = 1. Thus, we here omit the proof of Theorem 6. For completeness,
however, we include a proof specific to Theorem 6 in Appendix C.

The works of Calude, et al. [1] and Kučera and Slaman [10] showed that, for
every α ∈ (0, 1), α is left-computable and weakly Chaitin random if and only if
there exists an optimal prefix-free machine V such that α = ΩV . Thus, it follows
from Theorem 6 that, for every optimal prefix-free machine V , there exists an
optimal prefix-free machine W such that ΘV = ΩW . However, it is open whether
the following holds or not: For every optimal prefix-free machine W , there exists
an optimal prefix-free machine V such that ΩW = ΘV .

In the subsequent two sections, we generalize ΘV to two directions ΘV (T )
and ΘV (T ) with a real T > 0. We see that the reals ΘV (T ) and ΘV (T ) both
have the same randomness properties as ZV (T ) (i.e., the properties shown in
Theorem 2 for ZV (T )).

4 Generalization of Θ to Θ(T )

Definition 5. For any optimal prefix-free machine V and any real T > 0,
ΘV (T ) is defined by

ΘV (T ) =
�

HV (s)<|s|

2−
|s|
T . ��
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Thus, ΘV (1) = ΘV . If 0 < T ≤ 1, then ΘV (T ) converges and 0 < ΘV (T ) < 1,
since ΘV (T ) ≤ ΘV < 1. The following theorem holds for ΘV (T ).

Theorem 7. Let V be an optimal prefix-free machine, and let T > 0.

(i) If T is computable and 0 < T ≤ 1, then ΘV (T ) is a left-computable real
which is weakly Chaitin T -random.

(ii) If T is computable and 0 < T < 1, then ΘV (T ) is strictly T -compressible.
(iii) If 1 < T , then ΘV (T ) diverges to ∞. ��

Proof. Let V be an optimal prefix-free machine. We first note that, for every
s ∈ {0, 1}∗, HV (s) < |s| if and only if there exists p ∈ dom V such that V (p) = s
and |p| < |s|. Thus, the set { s ∈ {0, 1}∗ | HV (s) < |s| } is r.e. and, obviously,
infinite. Let s1, s2, s3, . . . be a particular recursive enumeration of this set.

(i) Suppose that T is a computable real and 0 < T ≤ 1. Then, since ΘV (T ) =�∞
i=1 2−|si|/T , it is easy to see that ΘV (T ) is left-computable.
For each n ∈ N+, let αn be the first n bits of the base-two expansion of

ΘV (T ) with infinitely many ones. Then, since 0.αn < ΘV (T ) for every n ∈ N+,�∞
i=1 2−|si| = ΘV (T ), and T is computable, there exists a partial recursive

function ξ : {0, 1}∗ → N+ such that, for every n ∈ N+, 0.αn <
�ξ(αn)

i=1 2−|si|/T .
It is then easy to see that

�∞
i=ξ(αn)+1 2−|si|/T = ΘV (T ) −

�ξ(αn)
i=1 2−|si|/T <

ΘV (T ) − 0.αn < 2−n for every n ∈ N+. It follows that, for all i > ξ(αn),
2−|si|/T < 2−n and therefore Tn < |si|. Thus, given αn, by calculating the set
{ si | i ≤ ξ(αn) & |si| = �Tn� } and picking any one finite binary string of length
�Tn� which is not in this set, one can obtain s ∈ {0, 1}�Tn� such that |s| ≤ HV (s).
This is possible since { si | i ≤ ξ(αn) & |si| = �Tn� } = SV (�Tn�) � {0, 1}�Tn�,
where the last proper inclusion is due to the first half of Theorem 5.

Hence, there exists a partial recursive function Ψ : {0, 1}∗ → {0, 1}∗ such
that �Tn� ≤ HV (Ψ(αn)). Using the optimality of V , we then see that Tn ≤
H(Ψ(αn)) + O(1) for all n ∈ N+. On the other hand, it follows from (2) that
there exists cΨ ∈ N such that H(Ψ(αn)) ≤ H(αn) + cΨ . Therefore, we have

Tn ≤ H(αn) + O(1) (5)

for all n ∈ N+. This inequality implies that ΘV (T ) is not computable and there-
fore the base-two expansion of ΘV (T ) with infinitely many ones has infinitely
many zeros also. Hence αn = ΘV (T )�n for every n ∈ N+. It follows from (5)
that ΘV (T ) is weakly Chaitin T -random.

(ii) Suppose that T is a computable real and 0 < T < 1. Note that ΘV (T ) =�∞
i=1 2−|si|/T and

�∞
i=1(2

−|si|/T )T =
�∞

i=1 2−|si| = ΘV < ∞. Thus, since T is
computable, it is easy to show that ΘV (T ) is a T -convergent left-computable
real. It follows from Theorem 4 that ΘV (T ) is strictly T -compressible.

(iii) Suppose that T > 1. We then choose a particular computable real t
satisfying 1 < t ≤ T . Let us first assume that ΘV (t) converges. Based on an
argument similar to the proof of Theorem 7 (i), it is easy to show that ΘV (t) is
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weakly Chaitin t-random, i.e., there exists c ∈ N such that tn− c ≤ H(ΘV (t)�n)
for all n ∈ N+. It follows from (3) that tn − c ≤ n + o(n). Dividing by n and
letting n → ∞ we have t ≤ 1, which contradicts the fact t > 1. Thus, ΘV (t)
diverges to ∞. By noting ΘV (t) ≤ ΘV (T ) we see that ΘV (T ) diverges to ∞. ��

5 Generalization of Θ to Θ(T )

Definition 6. For any optimal prefix-free machine V and any real T > 0,
ΘV (T ) is defined by

ΘV (T ) =
�

HV (s)<T |s|

2−|s|,

where the sum is over all s ∈ {0, 1}∗ such that HV (s) < T |s|. ��

Thus, ΘV (1) = ΘV . For each optimal prefix-free machine V and each real T
with 0 < T ≤ 1, we see that

ΘV (T ) <
�

HV (s)<T |s|

2−
HV (s)

T ≤
�

s∈{0,1}∗
2−

HV (s)
T ≤

�

p∈dom V

2−
|p|
T = ZV (T ).

Thus, ΘV (T ) converges and 0 < ΘV (T ) < ZV (T ) for every optimal prefix-free
machine V and every real T with 0 < T ≤ 1. We define SV,T (n) = { s ∈ {0, 1}∗ |
|s| = n & HV (s) < Tn } for each optimal prefix-free machine V , each T ∈ (0, 1],
and each n ∈ N. It follows from Theorem 5 that SV,T (n) ⊂ SV (n) � {0, 1}n

for every optimal prefix-free machine V , every T ∈ (0, 1], and every n ∈ N. The
following theorem holds for ΘV (T ).

Theorem 8. Let V be an optimal prefix-free machine, and let T > 0.

(i) If T is left-computable and 0 < T ≤ 1, then ΘV (T ) is a left-computable real
which is weakly Chaitin T -random.

(ii) If T is computable and 0 < T < 1, then ΘV (T ) is strictly T -compressible.
(iii) If 1 < T , then ΘV (T ) diverges to ∞. ��

Proof. Let V be an optimal prefix-free machine.
(i) Suppose that T is a left-computable real and 0 < T ≤ 1. We first note

that, for every s ∈ {0, 1}∗, HV (s) < T |s| if and only if there exists p ∈ dom V
such that V (p) = s and |p| < T |s|. Thus, since T is left-computable, the set
{ s ∈ {0, 1}∗ | HV (s) < T |s| } is r.e. and, obviously, infinite. Let s1, s2, s3, . . . be
a particular recursive enumeration of this set. Then, since ΘV (T ) =

�∞
i=1 2−|si|,

it is easy to see that ΘV (T ) is left-computable.
For each n ∈ N+, let αn be the first n bits of the base-two expansion of

ΘV (T ) with infinitely many ones. Then, since 0.αn < ΘV (T ) for every n ∈ N+

and
�∞

i=1 2−|si| = ΘV (T ), there exists a partial recursive function ξ : {0, 1}∗ →
N+ such that, for every n ∈ N+, 0.αn <

�ξ(αn)
i=1 2−|si|. It is then easy to see

that
�∞

i=ξ(αn)+1 2−|si| = ΘV (T ) −
�ξ(αn)

i=1 2−|si| < ΘV (T ) − 0.αn < 2−n for
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every n ∈ N+. It follows that, for all i > ξ(αn), 2−|si| < 2−n and therefore
n < |si|. Thus, given αn, by calculating the set { si | i ≤ ξ(αn) & |si| = n, }
and picking any one finite binary string of length n which is not in this set,
one can obtain s ∈ {0, 1}n such that T |s| ≤ HV (s). This is possible since
{ si | i ≤ ξ(αn) & |si| = n } = SV,T (n) � {0, 1}n.

Hence, there exists a partial recursive function Ψ : {0, 1}∗ → {0, 1}∗ such
that Tn ≤ HV (Ψ(αn)). Using the optimality of V , we then see that Tn ≤
H(Ψ(αn)) + O(1) for all n ∈ N+. On the other hand, it follows from (2) that
there exists cΨ ∈ N such that H(Ψ(αn)) ≤ H(αn) + cΨ . Therefore, we have

Tn ≤ H(αn) + O(1) (6)

for all n ∈ N+. This inequality implies that ΘV (T ) is not computable and there-
fore the base-two expansion of ΘV (T ) with infinitely many ones has infinitely
many zeros also. Hence αn = ΘV (T )�n for every n ∈ N+. It follows from (6)
that ΘV (T ) is weakly Chaitin T -random.

(ii) Suppose that T is a computable real and 0 < T < 1. Note that
�

HV (s)<T |s|

(2−|s|)T =
�

HV (s)<T |s|

2−T |s| <
�

HV (s)<T |s|

2−HV (s)

≤
�

s∈{0,1}∗
2−HV (s) ≤

�

p∈dom V

2−|p| = ΩV <∞.

Thus, since T is computable, it is easy to show that ΘV (T ) is a T -convergent left-
computable real. It follows from Theorem 4 that ΘV (T ) is strictly T -compressible.

(iii) Suppose that T > 1. Using (3), it is easy to show that there exists n0 ∈ N
such that, for every s ∈ {0, 1}∗, if |s| ≥ n0 then HV (s) < T |s|. Thus, obviously,
ΘV (T ) diverges to ∞. ��

6 Fixed Point Theorem on Partial Randomness by ΘV (T )

In this section, we prove the following form of fixed point theorem on partial ran-
domness, which is based on the computability of ΘV (T ). Note that this theorem
has the same form as Theorem 3.

Theorem 9 (fixed point theorem on partial randomness by ΘV (T )).

Let V be an optimal prefix-free machine. For every T ∈ (0, 1), if ΘV (T ) is
computable, then T is weakly Chaitin T -random and T -compressible. ��

Let V be an arbitrary optimal prefix-free machine in what follows. The-
orem 9 follows immediately from Theorem 10, Theorem 11, and Theorem 12
below, as well as from Theorem 1 (i). Let s1, s2, s3, . . . be a particular recur-
sive enumeration of the infinite r.e. set { s ∈ {0, 1}∗ | HV (s) < |s| }. For each
k ∈ N+ and each real x > 0, we define Zk(x) as

�k
i=1 2−|si|/x. Note then that

limk→∞ Zk(x) = ΘV (x) for every x ∈ (0, 1].

9



Theorem 10. For every T ∈ (0, 1), if ΘV (T ) is right-computable then T is
weakly Chaitin T -random.

Proof. First, we define Wk(x) as
�k

i=1 |si| 2−|si|/x for each k ∈ N+ and each real
x > 0. We show that, for each x ∈ (0, 1), Wk(x) converges as k → ∞. Let x
be an arbitrary real with x ∈ (0, 1). Since x < 1, there is l0 ∈ N+ such that
(log2 l)/l ≤ 1/x − 1 for all l ≥ l0. Then there is k0 ∈ N+ such that |si| ≥ l0 for
all i > k0. Thus, we see that, for each i > k0,

|si| 2−
|si|

x = 2
−( 1

x
− log2|si|

|si|
)|si| ≤ 2−|si|.

Hence, for each k > k0, Wk(x)−Wk0(x) =
�k

i=k0+1 |si| 2−|si|/x ≤
�k

i=k0+1 2−|si| <
ΘV . Therefore, since {Wk(x)}k is an increasing sequence of reals bounded to the
above, it converges as k →∞, as desired. For each x ∈ (0, 1), we define a positive
real W (x) as limk→∞Wk(x).

On the other hand, since ΘV (T ) is right-computable by the assumption, there
exists a total recursive function f : N+ → Q such that ΘV (T ) ≤ f(m) for all
m ∈ N+, and limm→∞ f(m) = ΘV (T ).

We choose a particular real t with T < t < 1. Then, for each i ∈ N+, using
the mean value theorem we see that

2−
|si|

x − 2−
|si|
T <

ln 2
T 2

|si| 2−
|si|

t (x− T )

for all x ∈ (T, t). We then choose a particular c ∈ N with W (t) ln 2/T 2 ≤ 2c.
Here, the limit value W (t) exists, since 0 < t < 1. It follows that

Zk(x)− Zk(T ) < 2c(x− T ) (7)

for all k ∈ N+ and x ∈ (T, t). We also choose a particular n0 ∈ N+ such that
0.(T�n) + 2−n < t for all n ≥ n0. Such n0 exists since T < t and limn→∞ 0.(T�n

) + 2−n = T . Since T �n is the first n bits of the base-two expansion of T
with infinitely many zeros, we then see that T < 0.(T �n) + 2−n < t for all
n ≥ n0. In addition, we choose a particular n1 ∈ N+ such that (n − c)2−n ≤ 1
for all n ≥ n1. For each n ≥ 1, since |T − 0.(T�n)| < 2−n, we see that that
|T (n− c)− 0.(T�n)(n− c)| < (n− c)2−n ≤ 1. Hence, we have

�0.(T�n)(n− c)� ≤ T (n− c) & T (n− c)− 2 ≤ �0.(T�n)(n− c)� (8)

for every n ≥ n1. We define n2 = max{n0, n1, c + 1}.
Now, given T �n with n ≥ n2, one can find k0, m0 ∈ N+ such that f(m0) <

Zk0(0.(T�n) + 2−n). This is possible from Z(T ) < Z(0.(T�n) + 2−n),

lim
k→∞

Zk(0.(T�n) + 2−n) = Z(0.(T�n) + 2−n),

and the properties of f . It follows from Z(T ) ≤ f(m0) and (7) that
∞�

i=k0+1

2−|si|/T = Z(T )− Zk0(T ) < Zk0(0.(T�n) + 2−n)− Zk0(T ) < 2c−n.

10



Hence, for every i > k0, 2−|si|/T < 2c−n and therefore T (n− c) < |si|. Thus, by
calculating the set { si | i ≤ k0 & |si| = �0.(T�n)(n− c)� } and picking any one
finite binary string of length �0.(T �n)(n − c)� which is not in this set, one can
obtain s ∈ {0, 1}�0.(T �n)(n−c)� such that |s| ≤ HV (s). This is possible since { si |
i ≤ k0 & |si| = �0.(T�n)(n− c)�, } = SV (�0.(T�n)(n− c)�) � {0, 1}�0.(T �n)(n−c)�,
where the first equality follows from the first inequality in (8) and the last proper
inclusion is due to the first half of Theorem 5.

Hence, there exists a partial recursive function Ψ : {0, 1}∗ → {0, 1}∗ such
that �0.(T �n)(n − c)� ≤ H(Ψ(T �n)) for all n ≥ n2. Using (2), there is cΨ ∈ N
such that H(Ψ(T �n)) ≤ H(T �n) + cΨ for all n ≥ n2. Thus, it follows from the
second inequality in (8) that Tn− Tc− 2− cΨ < H(T�n) for all n ≥ n2, which
implies that T is weakly Chaitin T -random. ��
Theorem 11. For every T ∈ (0, 1), if ΘV (T ) is right-computable, then T is
also right-computable.

Proof. Since ΘV (T ) is right-computable, there exists a total recursive function
f : N+ → Q such that ΘV (T ) ≤ f(m) for all m ∈ N+, and limm→∞ f(m) =
ΘV (T ). Thus, since ΘV (x) is an increasing function of x ∈ (0, 1], we see that, for
every x ∈ Q with 0 < x < 1, T < x if and only if there are m, k ∈ N+ such that
f(m) < Zk(x). It follows from Theorem 1 (ii) that T is right-computable. ��
Theorem 12. For every T ∈ (0, 1), if ΘV (T ) is left-computable and T is right-
computable, then T is T -compressible.

Proof. For each i ∈ N+, using the mean value theorem we see that

2−
|s1|

t − 2−
|s1|

T > (ln 2) |s1| 2−
|s1|

T (t− T )

for all t ∈ (T, 1). We choose a particular c ∈ N+ such that (ln 2) |s1| 2−
|s1|

T ≥ 2−c.
Then, it follows that

Zk(t)− Zk(T ) > 2−c(t− T ) (9)
for all k ∈ N+ and t ∈ (T, 1).

Since T is a right-computable real with T < 1 by the assumption, there exists
a total recursive function f : N+ → Q such that T < f(l) < 1 for all l ∈ N+,
and liml→∞ f(l) = T . On the other hand, since ΘV (T ) is left-computable by
the assumption, there exists a total recursive function g : N+ → Q such that
g(m) ≤ ΘV (T ) for all m ∈ N+, and limm→∞ g(m) = ΘV (T ). By Theorem 6, ΘV

is weakly Chaitin random and therefore ΘV /∈ Q. Thus, the base-two expansion
of ΘV is unique and contains infinitely many ones, and 0 < ΘV < 1 in particular.

Given n and ΘV ��Tn� (i.e., the first �Tn� bits of the base-two expansion of
ΘV ), one can find k0 ∈ N+ such that 0.(ΘV ��Tn�) <

�k0
i=1 2−|si|. This is possible

since 0.(ΘV ��Tn�) < ΘV and limk→∞
�k

i=1 2−|si| = ΘV . It is then easy to see
that

�∞
i=k0+1 2−|si| = ΘV −

�k0
i=1 2−|si| < 2−�Tn� ≤ 2−Tn. Using the inequality

ad + bd ≤ (a + b)d for any reals a, b > 0 and d ≥ 1, it follows that

ΘV (T )− Zk0(T ) =
∞�

i=k0+1

2−
|si|
T < 2−n. (10)
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Note that liml→∞ Zk0(f(l)) = Zk0(T ). Thus, since Zk0(T ) < ΘV (T ), one can
then find l0, m0 ∈ N+ such that Zk0(f(l0)) < g(m0). It follows from (10) and
(9) that 2−n > g(m0)− Zk0(T ) > Zk0(f(l0))− Zk0(T ) > 2−c(f(l0)− T ). Thus,
0 < f(l0)− T < 2c−n. Let tn be the first n bits of the base-two expansion of the
rational number f(l0) with infinitely many zeros. Then, | f(l0)− 0.tn | < 2−n. It
follows from |T − 0.(T�n) | < 2−n that | 0.(T�n)− 0.tn | < (2c + 2)2−n. Hence,
T �n= tn, tn ± 1, tn ± 2, . . . , tn ± (2c + 1), where T �n and tn are regarded as
a dyadic integer. Thus, there are still 2c+1 + 3 possibilities of T �n, so that one
needs only c + 2 bits more in order to determine T�n.

Thus, there exists a partial recursive function Φ : N+ × {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ such that

∀n ∈ N+ ∃ s ∈ {0, 1}∗ |s| = c + 2 & Φ(n, ΘV ��Tn�, s) = T�n . (11)

Let us consider a prefix-free machine D which satisfies the following two
conditions (i) and (ii): (i) For each p, q ∈ dom U and v, s ∈ {0, 1}∗, pqvs ∈ dom D
if and only if |v| = U(q) and |s| = c + 2. (ii) For each p, q ∈ dom U and
v, s ∈ {0, 1}∗ such that |v| = U(q) and |s| = c + 2, D(pqvs) = Φ(U(p), v, s).
It is easy to see that such a prefix-free machine D exists. For each n ∈ N+,
note that n = U(n∗) and

��ΘV ��Tn�
�� = U(�Tn�∗). Thus, it follows from (11)

that there exists s ∈ {0, 1}∗ with |s| = c + 2 such that D(n∗�Tn�∗ΘV ��Tn�
s) = Φ(n, ΘV ��Tn�, s) = T �n. Hence, HD(T �n) ≤ |n∗| + |�Tn�∗| +

��ΘV ��Tn�
�� +

|s| = H(n) + H(�Tn�) + �Tn� + c + 2. It follows from (3) that HD(T �n) ≤
Tn + 2 log2 n + 2 log2 log2 n + O(1) for all n ∈ N+. Using (1) we see that T is
T -compressible. ��
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A The proof of Theorem 4

For completeness, we here prove Theorem 4 using the following two theorems.

Theorem 13 (Tadaki [17]). Let T be a computable real with 0 < T ≤ 1, and
let α be a left-computable real. Then the following conditions are equivalent:

13



(i) The real α is weakly Chaitin T -random.
(ii) For every T -convergent left-computable real β there exists d ∈ N such that,

for all n ∈ N+, H(β�n) ≤ H(α�n) + d. ��

Theorem 14 (Calude, Hay, and Stephan [2]). Let T be a computable real
with 0 < T < 1. Then there exist a left-computable real α and d ∈ N such that
|H(α�n)− Tn| ≤ d for all n ∈ N+, i.e., the real α is weakly Chaitin T -random
and strictly T -compressible. ��

Theorem 13 is the equivalence between the conditions (i) and (iv) in Theo-
rem 8 of Tadaki [17]. On the other hand, Theorem 14 is Theorem 9 of Calude,
Hay, and Stephan [2]. The proof of Theorem 4 is then given as follows.

Proof (of Theorem 4). Let T be a computable real with 0 < T < 1, and let α
be a left-computable real. Assume that α is T -convergent. Using Theorem 14
we see that there exist a left-computable real β such that β is weakly Chaitin
T -random and

H(β�n) ≤ Tn + O(1) (12)

for all n ∈ N+. Since β is weakly Chaitin T -random, using the implication (i)
⇒ (iv) of Theorem 13 we see that, for every T -convergent left-computable real
γ, there exists d ∈ N such that, for all n ∈ N+, H(γ�n) ≤ H(β�n) + d. Since α
is a T -convergent left-computable real, it follows that H(α�n) ≤ H(β�n) + d for
all n ∈ N+. Thus, using (12) we see that H(α�n) ≤ Tn + O(1) for all n ∈ N+,
which implies that α is strictly T -compressible. ��

B The proof of Theorem 5

We here prove Theorem 5. For that purpose, we need the notion of universal
probability.

The program-size complexity H(s) is originally defined using the concept
of program-size, as stated in Subsection 2.1. However, it is possible to define
H(s) without referring to such a concept, i.e., as in the following, we first intro-
duce a universal probability m, and then define H(s) as − log2 m(s). A universal
probability is defined as follows [20].

Definition 7 (universal probability). A function r : {0, 1}∗ → [0, 1] is called
a lower-computable semi-measure if

�
s∈{0,1}∗ r(s) ≤ 1 and the set {(a, s) ∈

Q × {0, 1}∗ | a < r(s)} is r.e. We say that a lower-computable semi-measure
m is a universal probability if for every lower-computable semi-measure r, there
exists c ∈ N+ such that, for all s ∈ {0, 1}∗, r(s) ≤ cm(s). ��

The following theorem can be then shown (see e.g. Theorem 3.4 of Chaitin
[5] for its proof).

Theorem 15. For every optimal prefix-free machine V , the function 2−HV (s)

of s is a universal probability. ��
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By Theorem 15, we see that H(s) = − log2 m(s) + O(1) for every universal
probability m. Thus it is possible to define H(s) as − log2 m(s) with a particular
universal probability m instead of as HU (s). Note that the difference up to an
additive constant is nonessential to algorithmic information theory.

Now the proof of Theorem 5 is given as follows.

Proof (of Theorem 5). Let V be an optimal prefix-free machine. First, for each
n ∈ N, it is easy to show that #SV (n) ≤ 2n − 1 by counting the number of
binary strings of length less than n. Thus we have SV (n) � {0, 1}n for every
n ∈ N.

Next, we show that there exists d1 ∈ N such that #SV (n) ≤ 2n−H(n)+d1

for all n ∈ N. For that purpose, we define a function f : N → [0,∞) by f(n) =
#SV (n)2−n. It follows that

�∞
n=0 f(n) = ΘV < 1. On the other hand, note

that, for every n ∈ N and every s ∈ {0, 1}n, HV (s) < n if and only if there exists
p ∈ dom V such that V (p) = s and |p| < n. Based on these facts, we see that f
is a lower-computable semi-measure. Recall here that we identify {0, 1}∗ with N.
It follows from Theorem 15 that there exists d1 ∈ N such that f(n) ≤ 2d12−H(n)

for all n ∈ N, which implies that #SV (n) ≤ 2n−H(n)+d1 for all n ∈ N, as desired.
Finally, we show that there exists d2 ∈ N such that 2n−H(n)−d2 ≤ #SV (n)

for all sufficiently large n ∈ N. Let us consider a prefix-free machine C which
satisfies the following two conditions (i) and (ii): (i) For each p, q ∈ dom U and
s ∈ {0, 1}∗, pqs ∈ dom C if and only if |pqs| = U(p) − U(q). (ii) For each
p, q ∈ dom U and s ∈ {0, 1}∗ such that |pqs| = U(p)− U(q), C(pqs) = pq0U(q)s.
Here U(p) and U(q) are regarded as a natural number. It is easy to see that such
a prefix-free machine C exists. It follows from (1) that there exists d ∈ N such
that, for every s ∈ {0, 1}∗,

H(s) ≤ HC(s) + d. (13)

For each n ∈ N and s ∈ {0, 1}∗, if |s| = n−d−H(n)−H(d), then |n∗d∗s| = n−d =
U(n∗)− U(d∗) and therefore C(n∗d∗s) = n∗d∗0ds and

��n∗d∗0ds
�� = n. Thus, for

each n ∈ N, if n− d−H(n)−H(d) ≥ 0 then #{ s | |s| = n & HC(s) ≤ n− d } ≥
2n−H(n)−d−H(d). It follows from (13) that, for each n ∈ N, if n−H(n)−d−H(d) ≥
0 then 2n−H(n)−d−H(d) ≤ #SV (n). Since n−H(n)− d−H(d) ≥ 0 holds for all
sufficiently large n ∈ N, the result follows. ��

C The proof of Theorem 6

Proof (of Theorem 6). Let V be an optimal prefix-free machine. We first note
that, for every s ∈ {0, 1}∗, HV (s) < |s| if and only if there exists p ∈ dom V such
that V (p) = s and |p| < |s|. Thus, the set { s ∈ {0, 1}∗ | HV (s) < |s| } is r.e. and,
obviously, infinite. Let s1, s2, s3, . . . be a particular recursive enumeration of this
set. Then, since ΘV =

�∞
i=1 2−|si|, it is easy to see that ΘV is left-computable.

For each n ∈ N+, let αn be the first n bits of the base-two expansion of
ΘV with infinitely many ones. Then, since 0.αn < ΘV for every n ∈ N+ and
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�∞
i=1 2−|si| = ΘV , there exists a partial recursive function ξ : {0, 1}∗ → N+ such

that, for every n ∈ N+,

0.αn <

ξ(αn)�

i=1

2−|si|.

It is then easy to see that

∞�

i=ξ(αn)+1

2−|si| = ΘV −
ξ(αn)�

i=1

2−|si| < ΘV − 0.αn < 2−n

for every n ∈ N+. It follows that, for all i > ξ(αn), 2−|si| < 2−n and therefore
n < |si|. Thus, given αn, by calculating the set { si | i ≤ ξ(αn) & |si| = n }
and picking any one finite binary string of length n which is not in this set, one
can obtain s ∈ {0, 1}n such that |s| ≤ HV (s). This is possible since { si | i ≤
ξ(αn) & |si| = n } = SV (n) � {0, 1}n, where the last proper inclusion is due to
the first half of Theorem 5.

Hence, there exists a partial recursive function Ψ : {0, 1}∗ → {0, 1}∗ such that
n ≤ HV (Ψ(αn)). Using the optimality of V , we then see that n ≤ H(Ψ(αn)) +
O(1) for all n ∈ N+. On the other hand, it follows from (2) that there exists
cΨ ∈ N such that H(Ψ(αn)) ≤ H(αn) + cΨ . Therefore, we have

n ≤ H(αn) + O(1) (14)

for all n ∈ N+. This inequality implies that ΘV is not computable and therefore
the base-two expansion of ΘV with infinitely many ones has infinitely many zeros
also. Hence αn = ΘV �n for every n ∈ N+. It follows from (14) that ΘV is weakly
Chaitin random. ��
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