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Abstract

We provide an exact estimate on the maximal subword complex-
ity for quasiperiodic infinite words. To this end we give a repre-
sentation of the set of finite and of infinite words having a certain
quasiperiod q via a finite language derived from q. It is shown that
this language is a suffix code having a bounded delay of decipher-
ability.

Our estimate of the subword complexity uses this property, ex-
ploits previously known results on the subword complexity and ele-
mentary facts on formal power series and recurrence relations.
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In his tutorial [Mar04] Solomon Marcus provided some initial facts on
quasiperiodic infinite words. Here he posed several questions on the
complexity of quasiperiodic infinite words. The papers [LR04, LR07] stud-
ied in more detail quasiperiodic infinite words generated by morphisms
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and their relation to Sturmian words. Their results concern mainly infi-
nite words of low complexity. This fits into the line pursued in the tutorial
[BK03] or the book [AS03] where also mainly infinite words of low (poly-
nomial) complexity were considered. Some results on high (exponential)
subword complexity were derived in [Sta93, Sta97].

The investigations of the present paper turn to the question posed in
[LR04] of finding the maximally possible complexity functions for those
words. As complexity here and in the cited above papers one consid-
ers Marcus’ [Mar04] (subword) complexity function f (ξ,n) of an infinite
word ξ, where f (ξ,n) is the number of its subwords of length n.

As a final result we deduce that the maximally possible complexity
functions for quasiperiodic infinite words ξ are bounded from above by
a function of the form f (ξ,n)≤ c · tn

P,n≥ nξ where nξ is a number depend-
ing on ξ and tP is the smallest Pisot-Vijayaraghavan number, that is, the
unique real root tP of the cubic polynomial x3− x− 1, which is approxi-
mately equal to tP ≈ 1.324718. We show also that this bound is tight, that
is, there are ω-words ξ having f (ξ,n) ≈ c · tn

P. Moreover, we estimate the
quasiperiods for which this bound can be achieved and we estimate the
then possible constants c.

The paper is organised as follows. After introducing some notation
we derive in Section 2 a characterisation of quasiperiodic words and ω-
words having a certain quasiperiod q. Moreover, we introduce a finite
basis set Pq from which the sets of quasiperiodic words or ω-words having
quasiperiod q can be constructed. In Section 3 it is then proved that the
star root of Pq is a suffix code having a bounded delay of decipherability.

This much prerequisites allow us, in Section 4, to estimate the num-
ber of subwords of the language Qq of all quasiperiodic words having
quasiperiod q. It turns out that cq,1 ·λn

q ≤ f (Qq,n)≤ cq,2 ·λn
q where f (Qq,n)

is the number of subwords of length n of words in Qq and 1 ≤ λq ≤ tP
depends on q. We construct, for every quasiperiod q, a quasiperiodic
ω-word ξq with quasiperiod q whose subword complexity f (ξq,n) meets
the upper bound cq,2 · λn

q. Finally, from these results we derive our es-
timates for the subword complexity of quasiperiodic infinite words and
we draw via the results of [Sta93, Sta07, Sta08] a connection to the Kol-
mogorov complexity of infinite quasiperiodic words. The paper concludes
with an exact estimate of the maximally possible subword complexity for
quasiperiodic infinite words.
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1 Notation

In this section we introduce the notation used throughout the paper. By
IN = {0,1,2, . . .}we denote the set of natural numbers. Let X be an alpha-
bet of cardinality |X |= r≥ 2. By X∗ we denote the set of finite words on X ,
including the empty word e, and Xω is the set of infinite strings (ω-words)
over X . Subsets of X∗ will be referred to as languages and subsets of Xω as
ω-languages.

For w ∈ X∗ and η ∈ X∗∪Xω let w ·η be their concatenation. This con-
catenation product extends in an obvious way to subsets L⊆ X∗ and B⊆
X∗ ∪ Xω. For a language L let L∗ :=

S
i∈IN Li, and by Lω := {w1 · · ·wi · · · :

wi ∈ L\{e}}we denote the set of infinite strings formed by concatenating
words in L. Furthermore |w| is the length of the word w ∈ X∗ and pref(B)
is the set of all finite prefixes of strings in B⊆ X∗∪Xω. We shall abbreviate
w ∈ pref(η) (η ∈ X∗∪Xω) by wv η.

We denote by B/w := {η : w ·η ∈ B} the left derivative of the set B ⊆
X∗∪Xω. As usual, a language L⊆ X∗ is regular provided it is accepted by a
finite automaton. An equivalent condition is that its set of left derivatives
{L/w : w ∈ X∗} is finite.

The sets of infixes of B or η are infix(B) :=
S

w∈X∗ pref(B/w) and infix(η) :=S
w∈X∗ pref({η}/w), respectively. In the sequel we assume the reader to be

familiar with basic facts of language theory.
As usual a language L ⊆ X∗ is called a code provided w1 · · ·wl = v1 · · ·vk

for w1, . . . ,wl, v1, . . . ,vk ∈ L implies l = k and wi = vi.

2 Quasiperiodicity

2.1 General properties

A finite or infinite word η ∈ X∗ ∪Xω is referred to as quasiperiodic with
quasiperiod q ∈ X∗ \ {e} provided for every j < |η| ∈ IN∪ {∞} there is a
prefix u j v η of length j−|q|< |u j| ≤ j such that u j ·qv η, that is, for every
wv η the relation u|w| @ wv u|w| ·q is valid (cf. [Mar04, LR04]).

Let for q∈X∗\{e}, Qq be the set of quasiperiodic words with quasiperiod
q. Then {q}∗ ⊆ Qq = Q∗q and Qq \{e} ⊆ X∗ ·q∩q ·X∗.

Definition 1 A family
(
wi
)`

i=1, ` ∈ IN∪{∞}, of words wi ∈ X∗ ·q is referred
to as a q-chain provided w1 = q, wi @ wi+1 and |wi+1|− |wi| ≤ |q|.

It holds the following.
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Lemma 2

1. w ∈ Qq \{e} if and only if there is a q-chain
(
wi
)`

i=1 such that w` = w.

2. An ω-word ξ ∈ Xω is quasiperiodic with quasiperiod q if and only if
there is a q-chain

(
wi
)∞

i=1 such that wi @ ξ.

Proof. It suffices to show how a family
(
u j
)|η|−1

j=0 can be converted to a

q-chain
(
wi
)`

i=1 and vice versa.

Consider η ∈ X∗ ∪Xω and let
(
u j
)|η|−1

j=0 be a family such that u j · q v η

and j−|q|< |u j| ≤ j for j < |η|.
Define w1 := q and wi+1 := u|wi| ·q as long as |wi|< |η|. Then wi v η and

|wi|< |wi+1|= |u|wi| ·q| ≤ |wi|+ |q|. Thus
(
wi
)`

i=1 is a q-chain with wi v η.

Conversely, let
(
wi
)`

i=1 be a q-chain such that wi v η and set

u j := maxv
{

w′ : ∃i(w′ ·q = wi∧|w′| ≤ j)
}

, for j < |η| .

By definition, u j · q v η and |u j| ≤ j. Assume |u j| ≤ j− |q| and u j · q = wi.
Then |wi| ≤ j < |η|. Consequently, in the q-chain there is a successor wi+1,
|wi+1| ≤ |wi|+ |q| ≤ j+ |q|. Let wi+1 = w′′ ·q. Then u j @ w′′ and |w′′| ≤ j which
contradicts the maximality of u j. o

Corollary 3 Let u ∈ pref(Qq). Then there are words w,w′ ∈ Qq such that
wv uv w′ and |u|− |w|, |w′|− |u| ≤ |q|.

Corollary 4 Let ξ ∈ Xω. Then the following are equivalent.

1. ξ is quasiperiodic with quasiperiod q.

2. pref(ξ)∩Qq is infinite.

3. pref(ξ)⊆ pref(Qq).

2.2 A finite generator for quasiperiodic words

In this part we introduce the finite language Pq which generates the set of
quasiperiodic words as well as the set of quasiperiodic ω-words having
quasiperiod q. We investigate basic properties of Pq using simple facts
from combinatorics on words (see e.g. [Shy01]). We set

Pq := {v : e @ vv q @ v ·q} . (1)

Then we have the following relations to Qq.
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Proposition 5 Qq = P∗q ·q∪{e} ⊆ P∗q , (2)

pref(P∗q ) = pref(Qq) = P∗q ·pref(q) (3)

Proof. In order to prove Eq. (2) we show that wi ∈ P∗q · q for every q-

chain
(
wi
)`

i=1. This is certainly true for w1 = q. Now proceed by induction
on i. Let wi = w′i ·q ∈ P∗q ·q and wi+1 = w′i+1 ·q. Then w′i ·vi = w′i+1. Now from
wi @ wi+1 we obtain e @ vi v q @ vi ·q, that is, vi ∈ Pq.

Eq. (3) is an immediate consequence of Eq. (2). o

Corollary 4 and Proposition 5 imply the following characterisation of ω-
words having quasiperiod q.

{ξ : ξ ∈ Xω∧ξ has quasiperiod q}= Pω
q (4)

Proof. Since Pq is finite, Pω
q = {ξ : ξ ∈ Xω∧pref(ξ)⊆ pref(P∗q )}. o

The following property of words in Pq is a consequence of the Lyndon-
Schützenberger Theorem (see [BP85, Shy01]).

Proposition 6 v ∈ Pq if and only if |v| ≤ |q| and there is a prefix v̄ @ v such
that q = vk · v̄ for k =

⌊
|q|/|v|

⌋
.

Proof. Sufficiency is clear. Let now v ∈ Pq. Then v v q @ v · q. This
implies vl v q @ vl ·q as long as l ≤ k and, finally, q @ vk+1. o

Corollary 7 v ∈ Pq if and only if |v| ≤ |q| and there is a k′ ∈ IN such that
qv vk′ .

Now set q0 := minvPq. Then in view of Proposition 6 and Corollary 7 we
have the following.

q = qk
0 · q̄ for k =

⌊
|q|/|q0|

⌋
and some q̄ @ q0 . (5)

Corollary 8 The word q0 is primitive, that is, there are no u ∈ X∗ and n > 1
such that q0 = un.

Proof. Assume q0 = ql
1 for some l > 1. Then q̄ = q j

1 · q̄1 where q̄1 @ q1,
and, consequently, q @ qk·l+ j+1

1 contradicting the fact that q0 is the short-
est word in Pq. o

Proposition 9 1. If v ∈ Pq and wv q then v ·wv q or qv v ·w.
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2. If v ∈ Pq and |v| ≤ |q|− |q0| then v = qm
0 for some m ∈ IN.

Proof. The first assertion follows from vv q @ v ·q and v ·wv v ·q.
For the proof of the second one observe that, by the first item v ·q0 v q

and q0 · vv q whence q0 · v = v ·q0. Thus q0 and v are powers of a common
word. Since q0 is primitive, the assertion follows. o

Theorem 10 If v ∈ Pq and w · vv q then w ∈ {q0}∗.

Proof. If v ∈ Pq then q0 v v. Thus it suffices to prove the assertion for
q0.

Let w · q0 v q = qk
0 · q̄. Then w · q0 v qk+2

0 and, trivially, q0 v qk+2
0 . Since

|w ·q0|+ |q0|< |qk+2
0 |, w ·q0 and q0 are powers of a common word. The as-

sertion follows because q0 is primitive. o

3 Codes

In this section we investigate in more detail the properties of the star root
of Pq, that is, of the smallest subset V ⊆ Pq such that V ∗ = P∗qq . It turns out
that the star root of Pq is a suffix code which, additionally, has a bounded
delay of decipherability. This delay is closely related to the largest power
of q0 being a prefix of q.

According to [BP85] a subset C ⊆ X∗ is a code of a delay of decipher-
ability m∈ IN if and only if for all w,w′,v1, . . . ,vm ∈C and u∈C∗ the relation
w · v1 · · ·vm v w′ · u implies w = w′. Observe that C ⊆ X∗ \ {e} is a prefix
code, that is, w,w′,∈C and w v w′ imply w = w′, if and only if C has delay
0. A subset C ⊆ X∗ \{e} is referred to as a suffix code if no word w ∈C is a
proper suffix of another word v ∈C.

Define now the star-root of a language L⊆ X∗:

∗√L := L\{e}\
(
(L\{e})2 ·L∗

)
For ∗

√
Pq we obtain the following.

∗√Pq =
(
Pq \{q0}∗

)
∪{q0} ⊆ {q0}∪{v : vv q∧|q0|+ |v|> |q|} (6)

Proof. First we prove the identity. The inclusion “⊆” follows from(
Pq \{q0}∗

)
∪{q0} ⊆ Pq ⊆

(
(Pq \{q0}∗)∪{q0}

)∗.
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To prove the reverse inclusion assume ` > 1 and v1 · · ·v` ∈ Pq for vi ∈ Pq.
Then |q0| ≤ |vi| and thus |q0|+ |vi| ≤ |q| for all i. According to Proposi-
tion 9.2 we have vi ∈ {q0}∗ which shows Pq∩

(
P2

q ·P∗q
)
⊆ {q0}∗.

The remaining inclusion now follows from Proposition 9.2. o

Next we are going to show that ∗
√

Pq is a suffix code having a bounded
delay of decipherability.

Corollary 11 ∗√Pq is a suffix code.

Proof. Assume u = w · v for some u,v ∈ ∗
√

Pq ,u 6= v. Then Theorem 10
proves w ∈ {q0}∗ ⊆ Pq. If w 6= e, in view of u v q Proposition 9.2 implies
v ∈ {q0}∗ and hence u ∈ {q0}∗. Thus u = v = q0 contradicting u 6= v. o

We conclude this part by investigating the delay of decipherability of ∗
√

Pq.
We prove that the this delay depends on the relation between the quasiperiod
q and the minimal w.r.t. v word q0 ∈ Pq. If q = qk

0 then ∗
√

Pq = {q0} is a
prefix code. If q /∈ {q0}∗ then qk

0 v q implies that the delay of decipher-
ability of ∗

√
Pq is at least k. The following theorem gives an upper bound.

Theorem 12 Let q = qk
0 · q̄ where q̄ @ q0. Then ∗

√
Pq is a code having a delay

of decipherability of at most k +1.

Proof. We have to show that if the words v·w1 · · ·wk+1 and v′ ·w′1 · · ·w′k+1,
where v,w1, . . . ,wk+1, v′,w′1, . . . ,w

′
k+1 ∈ ∗

√
Pq are comparable w.r.t. “v” then

v = v′.
Without loss of generality, assume v @ v′. Then |q0| ≤ |v|< |v′| ≤ |q|. We

have |wi|, |w′i| ≥ |q0|. Thus |w1 · · ·wk+1|, |w′1 · · ·w′k+1|> |q|. Moreover, accord-
ing to Proposition 9.1 qvw1 · · ·wk+1 and qvw′1 · · ·w′k+1, whence v ·q @ v′ ·q.
Then in view of the inequality |v|+ |q| ≥ |v′|+ |q0|we have qw w ·q0 for the
word w 6= e with v ·w = v′ and, according to Theorem 10 w ∈ {q0}∗. This
contradicts the fact that ∗

√
Pq is a suffix code. o

Thus, if qk
0 @ q @ qk+1

0 the code ∗
√

Pq may have a minimum delay of
decipherability of k or k + 1. We provide examples that both cases are
possible.

Example 13 Let q := aabaaaaba. Then q0 = aabaa, k = 1 and ∗
√

Pq = Pq =
{q0,aabaaaab,q }which is a code having a delay of decipherability 2.

Indeed aabaaaabaa = q0 ·q0 v q ·q0 or
aabaaaabaa = q0 ·q0 v aabaaaab ·q0 . o
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Moreover, in Example 13, q · q0 /∈ Qq. Thus our example shows also
that q ·P∗q need not be contained in Qq.

Example 14 Let q := aba. Then k = 1 and Pq = {ab,aba} is a code having a
delay of decipherability 1. o

4 Subword Complexity

In this section we investigate upper bounds on the the subword complex-
ity function f (ξ,n) for quasiperiodic ω-words. If ξ ∈ Xω is quasiperiodic
with quasiperiod q then Proposition 6 and Corollary 7 show infix(ξ) ⊆
infix(P∗q ). Thus

f (ξ,n)≤ |infix(P∗q )∩Xn| for ξ ∈ Pω
q . (7)

Similar to the proof of Proposition 5.5 of [Sta93] let ξq := ∏v∈P∗q \{e} v. This
implies infix(ξ) = infix(P∗q ). Consequently, the tight upper bound on the
subword complexity of quasiperiodic ω-words having a certain quasiperiod
q is fq(n) := |infix(P∗q )∩Xn|.

The following facts are known from the theory of formal power series
(cf. [BR88, SS78]). As infix(P∗q ) is a regular language the power series s∗q :=
∑n∈IN fq(n) · tn is a rational series and, therefore, fq satisfies a recurrence
relation

fq(n+ k) = ∑
k−1
i=0 ai · fq(n+ i)

with integer coefficients ai ∈ Z. Thus fq(n) = ∑
k′−1
i=0 gi(n) · tn

i where k′ ≤ k,
ti are pairwise distinct roots of the polynomial tn−∑

k−1
i=0 ai · t i and gi are

polynomials of degree not larger than k.
In the subsequent parts we estimate values characterising the expo-

nential growth of the family
(
|infix(P∗q )∩Xn|

)
n∈IN. This growth mainly de-

pends on the root of largest modulus among the ti and the corresponding
polynomial gi.

First we show that, independently of the quasiperiod q this polyno-
mial is constant. Then we show that, for every quasiperiod q, a root of
largest modulus is always positive. Then we estimate those quasiperiods
for which this root is maximal, and finally, for those quasiperiods with
maximal roots we estimate the corresponding constants.
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4.1 The subword complexity of a regular star language

The language P∗q is a regular star-language of special shape. Here we show
that, generally, the number of subwords of regular star-languages grows
only exponentially without a polynomial factor. We start with some easily
derived relations between the number of words in a regular language and
the number of its subwords.

Lemma 15 If L⊆ X∗ is a regular language then there is a k ∈ IN such that

|L∩Xn| ≤ |infix(L)∩Xn| ≤ ∑
k
i=0 |L∩Xn+i| (8)

As a suitable k one may choose the twice number of states of an automa-
ton accepting the language L⊆ X∗.

In order to derive the announced simple exponential growth we use
Corollary 4 of [Sta85] which shows that for every regular language L⊆ X∗

there are constants c1,c2 > 0 and a λ≥ 1 such that

c1 ·λn ≤ |pref(L∗)∩Xn| ≤ c2 ·λn . (9)

A consequence of Lemma 15 is that Eq. (9) holds also (with constant k ·c2
instead of c2) for infix(L∗).

4.2 The subword complexity of P∗q
It is now our task to estimate the value λq which satisfies c1 ·λn

q≤ |infix(P∗q )∩
Xn| ≤ k · c2 ·λn

q. Following Lemma 15 and Eqs. (9) and (3) it holds

λq = limsup
n→∞

n
√
|P∗q ∩Xn| (10)

which is the inverse of the convergence radius rads∗q of the power series
s∗q(t) := ∑n∈IN |P∗q ∩Xn| · tn. The series s∗q is also known as the structure gen-
erating function of the language P∗q .

If |q0| divides |q| then P∗q = {q0}∗ whence λq = 1. Therefore, in the fol-
lowing considerations we may assume that |q|/|q0| /∈ IN.

Since ∗
√

Pq is a code, we have s∗q(t) = 1
1−sq(t)

where sq(t) := ∑v∈ ∗
√

Pq
t |v|

is the structure generating function of the finite language ∗
√

Pq. Thus the
convergence radius rads∗q is the smallest root of 1−sq(t). It is readily seen
that this root is positive. So λq is the largest positive root of the reversed
polynomial1 pq(t) := t |q|−∑v∈ ∗

√
Pq

t |q|−|v|. Summarising these observations

we obtain the following.

1If |q0| divides |q|we have pq(t) = t |q0|−1 instead.
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Lemma 16 Let q∈ X∗ \{e}. Then there are constants cq,1,cq,2 > 0 such that
the structure function of the language infix(P∗q ) satisfies

cq,1 ·λn
q ≤ |infix(P∗q )∩Xn| ≤ cq,2 ·λn

q

where λq is the largest (positive) root of the polynomial pq(t).

Remark 17 One could prove Lemma 16 by showing that, for each poly-
nomial pq(t), its largest (positive) root has multiplicity 1. Referring to
Corollary 4 of [Sta85] (see Eq. (9)) we avoided these more detailed con-
siderations of a particular class of polynomials.

Next we are looking for those quasiperiods q which yield the largest value
of λq among all quasiperiods. To this aim we show that we may restrict
our considerations to the case when |q0|> |q|/2.

Lemma 18 If |q0| does not divide |q| and the language P∗q is maximal w.r.t.
“⊆” in the class

{
P∗q′ : q′ ∈ X∗ \{e}

}
then |q0|> |q|/2.

Proof. If |q|/|q0| /∈ IN and |q0| ≤ |q|/2 we have q = qk
0 · q̄ for k ≥ 2 and

e 6= q̄ @ q0. Then, obviously P∗q ⊂ P∗q′ for q′ := q0 · q̄. o

From |q0| > |q|/2 we obtain that the polynomial pq(t) has the form t |q|−
∑i∈M t i where 0 ∈M ⊆ { j : j < |q|

2 }. In [Pol09] the following properties were
derived.

Lemma 19 Let P :=
{

tn−∑i∈M t i : n≥ 1∧0 ∈M ⊆ { j : j ≤ n−1
2 }
}

. Then

1. for every n ≥ 1 the polynomial tn−∑
b n−1

2 c
i=0 t i has the largest positive

root among all polynomials of degree n in P , and

2. the polynomials t3− t−1 and t5− t2− t−1 = (t2 +1) · (t3− t−1) have
the largest positive roots among all polynomials in P .

Some remarks are in order here.

Remark 20

1. It holds panban(t) = t2n+1−∑
n
i=0 t i and panb2an(t) = t2n+2−∑

n
i=0 t i, so for

all degrees≥ 1 there are polynomials of the form pq(t) in P .

2. The polynomials paba(t) = t3− t−1 and pa2ba2(t) = (t2 +1) · (t3− t−1)
have exactly one positive root which is also their only root of mod-
ulus > 1.
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This positive root tP of paba(t) = t3− t−1 (or of pa2ba2(t)) is known as
the smallest Pisot-Vijayaraghavan number, that is, a positive root
> 1 of a polynomial with integer coefficients all of whose conjugates
have modulus smaller than 1.

3. The other roots are non-real and form pairs of conjugate complex
numbers. The complex roots t1, t2 of paba(t) = t3− t − 1 have |t1| =
|t2|= 1/

√
tP < 1.

Before proceeding to the proof of Lemma 19 we recall that the polynomi-
als p(t) ∈ P have the following easily verified property.

If ε > 0 and p(t ′)≥ 0 for some t ′ > 0 then p((1+ ε) · t ′) > 0 . (11)

Since p(0) = −1 < 0 for p(t) ∈ P , Eq. (11) shows that once p(t ′) ≥ 0, t ′ > 0
the polynomial p(t) has no further root in the interval (t ′,∞).

Proof. (of Lemma 19) Using Eq. (11) the first assertion is easy to verify.
To show the second one it suffices to show that pn(tP) > 0 for every

polynomial of the form pn(t) := tn−∑
b n−1

2 c
i=0 t i other than t3− t − 1 or t5−

t2− t−1.
For degrees n = 1,2 or n = 4 this is readily seen.
Now we proceed by induction on n. To this end we observe the fol-

lowing properties of the family (pn(t))n≥1.

pn+2(t)− pn(t) = tn+2− tn− tb
n+1

2 c for n≥ 3 (12)

From this one easily obtains that pn+2(tP)− pn(tP) = tn−1
P − t

b n+1
2 c

P > 0 for
n≥ 4, and the assertion follows by induction. o

4.3 The subword complexity of ω-words

Having derived the results on the subword complexity of quasiperiodic
words we are now in a position to give a first answer to Question 2 in
[Mar04] by deriving tight upper bounds on the subword complexity of
quasiperiodic infinite words.

To this aim recall Eq. (7) and the definition of ξq. We obtain the fol-
lowing bounds.
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Lemma 21

1. If ξ ∈ Xω is quasiperiodic with quasiperiod q then f (ξ,n) = |infix(ξ)∩
Xn| ≤ c ·λn

q for a suitable constant c > 0 not depending on ξ.

2. For every quasiperiod q ∈ X∗ \ {e} there is a constant cq ξ ∈ Pω
q such

that cq ·λn
q ≤ f (ξ,n) = |infix(ξ)∩Xn| for every ξ ∈ Pω

q having infix(ξ) =
infix(P∗q ).

3. There is a constant c > 0 such that for every quasiperiodic ω-word
ξ ∈ Xω there is an nξ ∈ IN such that f (ξ,n) = |infix(ξ)∩Xn| ≤ c · tn

P for
all n≥ nξ.

Remark 22 The bound in Lemma 21.3 is independent of the size of the
alphabet X . And indeed, quasiperiodic ω-words of maximal subword
complexity have quasiperiods of the form aba or aabaa, a,b∈ X , a 6= b (see
the remark after Lemma 19), thus consist of only two different letters.

We conclude this section by mentioning that the bounds obtained
here can be extended to the Kolmogorov complexity of infinite words.

In [Sta93, Section 5] (see also [Sta07]) the asymptotic subword com-

plexity of an ω-word ξ∈Xω was introduced as τ(ξ) := limn→∞

log|X | |infix(ξ)∩Xn|
n

and it was shown that τ is an upper bound to the asymptotic upper and
lower Kolmogorov complexities of infinite words:

κ(ξ)≤ κ(ξ)≤ τ(ξ) .

Moreover, from the results of [Sta93, Section 5] it follows that for every
quasiperiodic word q there is a ξ∈ Pω

q such that κ(ξ) = τ(ξ) = log|X |λq, that
is, a quasiperiodic ω-word having quasiperiod q of maximally possible
asymptotic (lower) Kolmogorov complexity. Using results of Section 4 of
the same paper [Sta93] and of [Sta08] one obtains that there are ξ ∈ Pω

q
such that the Kolmogorov complexity and the a priori complexity of the
n-length prefix ξ[0..n] of ξ is K(ξ[0..n]) = log|X |λq ·n+o(n).

4.4 The exact complexity

We have seen that the quasiperiods aba and aabaa yield quasiperiodic
words of maximal subword complexity. Having this in mind it would be
interesting to know which one of these two quasiperiods forces the larger
constant in the upper bound cq,2 ·λq (q∈ {aba,aabaa}). To this end we use
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the methods of rational powerseries and recurrence relations as desribed
in [BR88, GKP94, SS78].

Calculating the recurrence relations and the corresponding initial val-
ues

(1,2,3,4) for |W ∩{a,b}i|, i = 0,1,2,3 , and
(1,2,3,4,6,8,10) for |V ∩{a,b}i|, i = 0,1, . . . ,6 (13)

from the minimal deterministic automata accepting W := infix(P∗aba) and
V := infix(P∗aabaa), respectively, we obtain that f (W,n) := |W ∩{a,b}n| and
f (V,n) := |V ∩{a,b}n| satisfy the recurrences

f (W,n+3) = f (W,n+1)+ f (W,n) for n≥ 1 (14)

f (V,n+5) = f (V,n+2)+ f (V,n+1)+ f (V,n) for n≥ 2 , (15)

This corresponds to the polynomials paba(t) = t3− t−1 and paabaa(t) = t5−
t2− t−1 = (t3− t−1) · (t2 +1).

In particluar, also f (W,n) satisfies a recurrence of the form of Eq. (15).
For the initial values we have f (W,4) = 5 < f (V,4), f (W,5) = 7 < f (V,5)
and f (W,6) = 9 < f (V,4). This yields f (W,n) < f (V,n) for all n≥ 4.

Let tP, t1, t2 (see Remark 20.3) denote the roots of the polynomial paba(t)=
t3− t−1. Then

f (W,n) = cW · tn
P + c′W · tn

1 + c′′W · tn
2 , n≥ 1 .

From this and the initial conditions of Eq. (13) one calculates

cW = 1+
t2
P + tP +2

2 · t2
P +3 · tP

≈ 1.6787 .

For f (V,n) we obtain in the same way

f (V,n) = cV · tn
P + c′V · tn

1 + c′′V · tn
2 + c(3)

V · (
√
−1)n + c(4)

V · (−
√
−1)n, n≥ 2 ,

and from the initial conditions of Eq. (13)

cV = 1+
7 · t2

P +19 · tP +6
15 · t2

P +10 · tP +10
≈ 1.8766 .

Since |t1| = |t2| < 1, for large n, the values cW · tn
P and cV · tn

P give close
approximations to f (W,n) and f (V,n), respectively, and thus to the maxi-
mum achievable subword complexity of a quasiperiodic ω-word.



14 R. Polley and L. Staiger

References

[AS03] Jean-Paul Allouche and Jeffrey Shallit. Automatic sequences.
Cambridge University Press, Cambridge, 2003. Theory, appli-
cations, generalizations.

[BK03] Jean Berstel and Juhani Karhumäki. Combinatorics on words:
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[LR04] Florence Levé and Gwénaël Richomme. Quasiperiodic infinite
words: Some answers (column: Formal language theory). Bul-
letin of the EATCS, 84:128–138, 2004.
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A Calculating the Constants

In the appendix we give a derivation of how to calculate the constants
cW and cV . To this end we start from non-deterministic automata accept-
ing P∗aba = {ab,aba}∗ and P∗aabaa = {aab,aaba,aabaa}∗ and deterministic au-
tomata accepting W = infix(P∗aba) and V = infix(P∗aabaa), respectively.

Aaba s0 s1 s2
a s1 s0
b s0,s2

Baba z0 z1 z2 z3
a z3 z3 z1
b z2 z2 z2

Table 1: Automata Aaba and Baba accepting P∗aba and infix(P∗aba), respectively
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Aaabaa s0 s1 s2 s3 s4
a s1 s2 s0,s4 s0
b s0,s3

Baabaa z0 z1 z2 z3 z4 z5 z6
a z1 z5 z4 z5 z6 z2
b z3 z3 z3 z3 z3

Table 2: Automata Aaabaa and Baabaa accepting P∗aabaa and infix(P∗aabaa), respec-
tively

From the automata Baba and Baabaa we calculate the adjacency matri-
ces Maba and Maabaa. For these we have f (W,n) = e0 ·M n

aba · e and f (V,n) =
e0 ·M n

aabaa · e where e0 is the row vector (1,0, . . . ,0) and e is the all ones
column vector, both being chosen of appropriate length. Then f (W,n)
and f (V,n) fulfil a recurrence relation f (W,n + 4) = ∑

3
j=0 χ j · f (W,n + j)

and f (V,n + 7) = ∑
6
j=0 χ′j · f (V,n + j) where t4−∑

3
j=0 χ j · t j = t · paba(t) and

t7−∑
6
j=0 χ′j · t j = t2 ·paabaa(t) are the characteristic polynomials χaba(t) and

χaabaa(t) of the matrices Maba and Maabaa, respectively (cf. Eqs. (16) and
(17)).

Maba =


0 0 1 1
0 0 1 0
0 0 0 1
0 1 1 0

 χaba(t) = t · (t3− t−1) (16)

Maabaa =



0 1 0 1 0 0 0
0 0 0 1 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 1 0 0 0


χaabaa(t) = t2 ·(t3−t−1) ·(t2 +1) (17)

The non-zero roots of the polynomials χaba(t) and χaabaa(t) are the roots
tP, t1, t2 of t3− t− 1 (cf. Remark 20.2 and 3) and, for χaabaa(t) additionally,

i and −i where i =
√
−1 is the imaginary unit. Since both characteristic

polynomials have only simple non-zero roots, f (W,n) and f (V,n) satisfy
the following indentities (cf. [BR88, GKP94, SS78]).

f (W,n) = γ1 · tn
P + γ2 · tn

1 + γ3 · tn
2 , n≥ 1 and (18)

f (V,n) = γ
′
1 · tn

P + γ
′
2 · tn

1 + γ
′
3 · tn

2 + γ
′
4 · in + γ

′
5 · (−i)n, n≥ 2. (19)
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For the function f (V,n) the following initial conditions hold.

f (V,2) = 3 = γ′1 · t2
P + γ′2 · t2

1 + γ′3 · t2
2 + γ′4 · i2 + γ′5 · (−i)2

f (V,3) = 4 = γ′1 · t3
P + γ′2 · t3

1 + γ′3 · t3
2 + γ′4 · i3 + γ′5 · (−i)3

f (V,4) = 6 = γ′1 · t4
P + γ′2 · t4

1 + γ′3 · t4
2 + γ′4 · i4 + γ′5 · (−i)4

f (V,5) = 8 = γ′1 · t5
P + γ′2 · t5

1 + γ′3 · t5
2 + γ′4 · i5 + γ′5 · (−i)5

f (V,6) = 10 = γ′1 · t6
P + γ′2 · t6

1 + γ′3 · t6
2 + γ′4 · i6 + γ′5 · (−i)6

(20)

Then f (V,5)− f (V,3)− f (V,2) = 1 and f (V,6)− f (V,4)− f (V,3) = 0 in view
of t3 = t +1 for t ∈ {tP, t1, t2} imply

2 · i · (γ′4− γ′5)+ (γ′4 + γ′5) = 1 , and

i · (γ′4− γ′5)−2 · (γ′4 + γ′5) = 0
(21)

which in turn yields γ′4 + γ′5 = 1
5 and γ′4− γ′5 = −2·i

5 . Thus we may reduce
the numbers of equations in Eq. (20) to three.

f (V,2) = 3 = γ′1 · t2
P + γ′2 · t2

1 + γ′3 · t2
2 −1/5

f (V,3) = 4 = γ′1 · t3
P + γ′2 · t3

1 + γ′3 · t3
2 −2/5

f (V,4) = 6 = γ′1 · t4
P + γ′2 · t4

1 + γ′3 · t4
2 +1/5

(22)

And for f (W,n) we obtain the following three equations from the initial
conditions.

f (W,1) = 2 = γ1 · tP + γ2 · t1 + γ3 · t2
f (W,2) = 3 = γ1 · t2

P + γ2 · t2
1 + γ3 · t2

2

f (W,3) = 4 = γ1 · t3
P + γ2 · t3

1 + γ3 · t3
2

(23)

To solve these for values of γ1 and γ′1, respectively, we use Cramer’s rule.
To this end we consider the following determinant and use the identities
tP + t1 + t2 = 0, tP · t1 · t2 = 1, tP · t1 + tP · t2 + t1 · t2 =−1 and thus t2

P + t2
1 + t2

2 = 2
which hold for the roots tP, t1, t2 of t3− t−1.∣∣∣∣∣∣

x 1 1
y t1 t2
z t2

1 t2
2

∣∣∣∣∣∣= (t2− t1) ·

∣∣∣∣∣∣
x 1 0
y t1 1
z t2

1 t2 + t1

∣∣∣∣∣∣= (t2− t1) ·
y · t2

P + z · tP + x
tP

(24)

Applying Cramer’s rule to Eq. (23) yields γ1 = 3·t2
P+4·tP+2

2·t2
P+3·tP

≈ 1.6787, and from

Eq. (22) we obtain γ′1 = 22·t2
P+29·tP+16

15·t2
P+10·tP+10

≈ 1.8766.
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