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Abstract

We consider the problems of finding a caterpillar tree in a graph. We first prove
that, unless P=NP, there is no approximation algorithms for finding a minimum
spanning caterpillar in a graph within a factor of f(n); where f(n) is any polynomial
time computable function of n, the order of the graph. Then we present a quadratic
integer programming formulation for the problem that can be a base for a branch
and cut algorithm. We also show that by using Gomory cuts iteratively, one can
obtain a solution for the problem that is close to the optimal value by a factor
of 1/ε, for 0 < ε < 1. Finally, we show that our formulation is equivalent to
a semidefinite programming formulation, which introduces another approach for
solving the problem.

Keywords: Caterpillar Trees, Optimization, Approximation Algorithm, Integer Program-
ming, Semidefinite Programming.

1 Introduction

In this paper we study the Minimum Spanning Caterpillar Problem (MSCP) and the
Largest Caterpillar Problem (LCP). By a caterpillar we mean a tree that reduces to
a path by deleting all its leaves. We refer to the remaining path as the spine of the
caterpillar. The edges of a caterpillar H can be partitioned into two sets, the spine
edges, S(H), and the leaf edges, L(H). An instance of the MSCP is denoted by a triple
(G, s, l), where G = (V,E) is an undirected graph and s : E → N and l : E → N are two
(cost) functions. For each caterpillar H as a subgraph of G we define the cost of H by

c(H) :=
∑

e∈S(H)

s(e) +
∑

e′∈L(H)

l(e′).

In the MSCP one wants to find a caterpillar in a graph with the minimum cost that
contains all vertices, as shown in Figure 1. In the LCP the goal is to find a caterpillar with
the largest number of vertices. Note that while every connected graph has a spanning
tree, there are some graphsr that do not have a spanning caterpillar. It is not hard
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Figure 1: A graph and its minimum spanning caterpillar, where each (s, l) label on an
edge represents the spine and leaf costs.

to prove that both problems are NP-hard for general graphs by reductions from the
Hamiltonian Path Problem.

In some applications in addition to finding an optimal cost spanning caterpillar, we
also need to satisfy some restrictions on the final output. For example one may wish to
have a caterpillar whose total spine cost is bounded by a fixed number, or one may wish
to have an upper bound on the largest degree of a caterpillar.

Caterpillars appear in many applications. For example, in network design, one may
wish to find a cost effective linearly arranged backbone to place the communication
routers. We may also consider the MSCP as a facility transportation problem, where
we are allowed to divide the task of distributing facilities among one global and costly
distributer and some local and cheap ones. Here the global distributer follows the spine
path to deliver facilities and the local ones use the leaf edges. The goal is to find a
transportation route that has the minimum overall cost.

In chemical graph theory caterpillars are considered as a model for benzenoid hydro-
carbon molecules; see [4]. They also appear in bioinformatics in designing algorithms for
RNA structure alignment and comparing evolutionary trees; see [2] and [6]. For more
applications in combinatorics and mathematics (in general) we refer the reader to [9] and
[10]

[8] present an exact non-polynomial time algorithm that finds a minimum spanning
caterpillar. Their method is based on an Integer Linear Programming (ILP) formulation
by transforming the MSCP to the Minimum Steiner Arborescence Problem. In another
paper we present a linear time algorithm for the special case when the input graph is
restricted to the bounded treewidth graphs when the associated tree decompositions are
given as part of the inputs; see [3].

The organization of this paper is as follows. In the next section we give our hardness
result for approximating the minimum spanning caterpillar in a graph. In Section 3
we present our quadratic integer programming formulation for the problems and some
restricted versions of them. In Section 4 we present a heuristic algorithm for the MSCP
by using the Gomory cutting plane method iteratively. We also show that for every
ε > 0, our algorithm guarantees to achieve a 1/ε factor approximation. Semidefinite
programming gives another alternative for solving the problems, which is the theme of
Section 5.
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2 Hardness of Approximation

In this section we show that by assuming P 6= NP it is not possible to find an approxima-
tion algorithm for the MSCP within a factor of a polynomial-time computable function
of the number of vertices of the graph. Our proof is based on a reduction from the
Hamiltonian Path Problem to an instance of the MSCP. We show if there is such an ap-
proximation algorithm for MSCP then there is a polynomial time algorithm for deciding
the Hamiltonian Path Problem. Our proof follows the same idea as [7].

Theorem 1 Let f(n) be a polynomial time computable function. The MSCP has no
approximation algorithm within a factor of f(n), unless P = NP

Proof. Let G = (V,E) be an instance of the Hamiltonian Path Problem with |V | ≥ 3.
We reduce it to an instance (G′, s, l) of MSCP. Here G′ is made from a copy of G with one
extra vertex vext which is connected to all vertices of the copy of G. Then we define two
cost functions s and l such that to every edge e that belongs to the copy of G, the function
s assigns the value of s(e) = 1 and the function l assigns the value of l(e) = f(n)(n− 1),
where n = |V | is the number of vertices of G.

To assign cost functions to the edges incident to vext we choose a fixed vertex vfix in
our copy of G. Then both functions assign the value 0 to the edge (vfix, vext), and they
assign the value of f(n)(n − 1) to the other edges incident to vext. We add the extra
vertex vext to ensure that graph G′ has at least one spanning caterpillar.

Now we show that if one has an f(n)-approximation algorithm for the MSCP then it
can be used to decide if G has a Hamiltonian path in polynomial time. We first run the
approximation algorithm onG′, then it will return a solution T that has c(T ) ≤ f(n)OPT.
Where OPT is the overall cost of a minimum spanning caterpillar in G′. Now if G has
a Hamiltonian path then OPT = n − 1 and c(T ) ≤ f(n)(n − 1). Note that in this case
vext is attached to the Hamiltonian path in the copy of G by (vfix, vext). If G has no
Hamiltonian path then the resulting spanning caterpillar either has at least one leaf edge
from the copy of G, or it uses two incident edges of vext, so we have

f(n)(n− 1) < OPT ≤ c(T ).

�

Theorems 1 justifies our effort in the rest of the paper to concentrate on finding heuris-
tic algorithms for solving the MSCP. Since, assuming P 6= NP, there is no polynomial-
time approximation algorithm for the problem.

3 Integer Programming Formulation

Having an integer linear programming formulation is the first step in applying the branch
and cut method for solving an optimization problem. In this section we introduce an
integer quadratic programming formulation that can be applied to both problems. As
we shall show later, by adding proper constraints, we can use this formulation for solving
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Figure 2: A graph and its rooted spanning caterpillar.

some restricted versions of the problems. Though our basic formulation in not linear, it is
known that any integer quadratic programming problem can be transform to a linear one
by adding extra variables and constrains in a mechanical way; see [14]. We first explain
the formulation for the MSCP. Note that without loss of generality we can assume that
all instances of the MSCP are complete graphs.

Let G = (V,E) be a graph and let (G, s, l) be an instance of the MSCP. We convert
G to a directed graph H = (N,A), N = V , with replacing each edge e ∈ E with a pair
of anti-parallel arcs, f, f− ∈ A (with opposite directions). In this case, we can consider
a caterpillar in H as a rooted tree that has a directed path as its spine; see Figure 2.
Where each spine vertex has one incoming arc and one or more outgoing arcs and every
leaf vertex has one incoming arc and no outgoing arc.

For each vertex v ∈ N , we denote by in(v) and out(v) the incoming and the outgoing
arcs of v, respectively. Also for each f ∈ A we denote by f− the anti-parallel arc
associated with f . The costs of anti-parallel arcs are the same as the cost of their
corresponding (undirected) edge, which depend on their role as spine or leaf arcs. For
each arc f ∈ A we denote its spine cost s(f) by sf and its leaf cost l(f) by lf .

Here we first present our integer programming formulation for the MSCP with a fixed
root r. To each arc f ∈ A we assign two variables, xf and yf . In each solution a variable
xf is 1 if f is chosen as a leaf edge and a variable yf is 1 if it is chosen as a spine edge,
otherwise they are 0. Also to each vertex v ∈ N we assign variable zv that represents the
level of v in the rooted caterpillar. In particular, we have zr = 0. Our goal is to minimize
the objective function (∑

f∈A

lfxf +
∑
f∈A

sfyf

)
.

In what follows M is a large positive integer, say, a number greater than the order of
the graph. We show the integer programming constraints in Figure 3.
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xf + yf + xf− + yf− ≤ 1, ∀f ∈ A, (1)∑
f∈in(v)

yf +
∑

f∈in(v)

xf = 1, ∀v ∈ N \ r, (2)

∑
f∈out(v)

yf +
∑

f∈in(v)

xf = 1, ∀v ∈ N, (3)

∑
f∈out(v)

xf −M

 ∑
f∈in(v)

yf +
∑

f∈out(v)

yf

 ≤ 0, ∀v ∈ N, (4)

(5)∑
f=(u,v)∈in(v)

yf (zv − zu) +
∑

f=(u,v)∈in(v)

xf (zv − zu) = 1, ∀v ∈ N \ r,

zr = 0, (6)

∀f ∈ A, (7)

xf , yf ∈ {0, 1},
∀v ∈ N, (8)

zv ∈ {0, . . . , n− 1}.

Figure 3: The constraints in the integer programming formulation for the MSCP.

The next theorem shows that each integral feasible solution, that satisfies these con-
straints, represents a spanning caterpillar.

Theorem 2 Constraints 1-8 make a valid formulation for the MSCP.

Proof. The first constraint shows that from the pair of anti-parallel arcs that have the
same end vertices, only one may be chosen in a feasible solution. The second and the
third constraints say that each vertex on the spine has at most one incoming spine arc
and one outgoing spine arc while it has no incoming leaf arc. Constraint 4 says that if a
vertex is chosen as a leaf then it has no outgoing leaf arc, but if it is chosen as a spine
vertex then there is no restriction on the number of its outgoing leaf arcs. Constraint 5
alongside Constraint 6 guarantee that each feasible solution is a connected tree that is
rooted at r. Constrains 7 and 8 enforce the integrality of a feasible solution.

On the other hand, let T be a spanning caterpillar of a graph G. Also let e be an
edge of T , if e is a spine edge then we assign yf = 1 and xf = 0, if e is a leaf edge then
we set yf = 0 and xf = 1. For any other edge f of the graph that does not belong to T ,
we have xf = yf = 0. Now it is easily seen that these values make a feasible solution for
our formulation. �

When in our integer programming formulation we replace the Constraints 7 and 8
on the integrality of variables by weaker constraints that for all f ∈ A, xf ≥ 0 and
yf ≥ 0 and also for all v ∈ N , zv ≥ 0, then we say that we have a relaxation of the
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integer programming problem. While solving an integer linear programming problem is
NP-hard, its relaxation (a linear programming problem) can be solved in linear time.

Note that with some changes we can use the same formulation for the LCP. First, we
need to change the objective to

maximize

(∑
f∈A

(xf + yf )

)
,

then we have to change the equality relations in Constrains 2, 3 to inequalities. Con-
straint 5 needs more changes to ensure the connectivity and to prevent cycles from
appearing in feasible solutions. We leave the details to the reader.

Now we consider more constraints to formulate the restricted versions of the problems.
The first one is when we have a restriction on the number of spine edges, as an upper
bound U . We can impose this by adding the following constraint∑

f∈A

yf ≤ U. (9)

If the restriction is on the overall cost of spine then we have∑
f∈A

sfyf ≤ U. (10)

Also the following set of inequalities restricts the degree of each vertex to be a value no
more than a fixed δ > 0.

∑
f∈in(v)∪out(v)

(yf + xf ) ≤ δ, ∀v ∈ A. (11)

In the rest of the paper and with respect to our result on the hardness of approximation
of the MSCP, we will concentrate on finding a heuristic algorithm for the problem.

4 An
(

1
ε

)
-Approximation for the MSCP

It is know that each quadratic programming problem can be transformed to a linear
programming (LP) formulation in a mechanical way by introducing more variables and
constraints. We refer the reader to the text by [14]. So in this section we assume that
we have an integer linear programming formulation (ILP) for the problem. By this
assumption, we can solve the relaxation by any available method in polynomial time,
and then we will apply Gomory cuts iteratively to find an approximation solution to the
problem.

A Gomory cutting method adds a linear constraint to the set of constraints of an
integer linear programming problem such that it does not exclude any feasible integer
solution. The process is repeated until an integer optimal solution is found. It is proven
that the Gomory cutting method always terminates with an integer solution that is
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optimal. Note that here the number of steps required may be exponential. We use the
Gomory cutting method to present a heuristic algorithm for the MSCP. The outline of
the algorithm is as follows.

Algorithm:
(

1
ε

)
-Approximation via Gomory cut

Input: Graph (G, s, l) and ε > 0

Output: A Caterpillar T

1. Construct the integer programming formulation.

2. Find an optimal solution, OPT, for the relaxation.

3. Find a directed path starting from r such that the y values of the arcs of the path
are not less than ε, where 0 < ε < 1. To this end choose an outgoing arc from r
with y value at least ε. Then follow this process until reaching a vertex that has
no outgoing arc with that property.

4. If all other vertices are attached to this spine with x values that are greater or equal
to ε, then the resulted caterpillar has a cost less than (1

ε
)OPT and stop.

Else use the Gomory cutting plane method to add one more constraint.

5. Solve the resulting linear programming problem and go to Step 3.

The convergence of Gomory cuts guarantees that the desired approximation is achiev-
able within a finite number of iterations. What follows is our formal justification.

Theorem 3 There is an algorithm that for any ε, 0 < ε < 1, computes a 1/ε factor
approximation for the MSCP.

Proof. Here we prove that by following the algorithm mentioned above, we eventually
reach to the desired approximation. Let OPTA be the cost of the final caterpillar that
spans the graph and has arcs with costs at least ε.

First, note that if for a vertex v ∈ N there is an arc f ∈ in(v), such that xf ≥ ε > 0,
then we have

1− xf ≤ xf

(
1− ε
ε

)
.

Also if there is an arc f such that yf ≥ ε > 0 we have

1− yf ≤ yf

(
1− ε
ε

)
.

Now by using these inequalities for the edges of a caterpillar we have
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∑
f∈L

lf (1− xf ) +
∑
f∈S

sf (1− yf ) ≤

(
1− ε
ε

)(∑
f∈L

lfxf +
∑
f∈S

sfyf

)
,

where L is the set of leaf edges and S is the set of the spine edges of the caterpillar.
Now by using this information we show that the resulting caterpillar has a cost that

is less than 1
ε
OPT. First of all we have

OPTA =
∑
f∈L

lf +
∑
f∈S

sf .

By rewriting the right-hand side summations we have

∑
f∈L

lf +
∑
f∈S

sf =
∑
f∈L

(xf + (1− xf ))lf +∑
f∈S

(yf + (1− yf ))sf

=

(∑
f∈L

lfxf +
∑
f∈S

sfyf

)
+(∑

f∈L

lf (1− xf ) +
∑
f∈S

sf (1− yf )

)

≤
(

1 +
1− ε
ε

)(∑
f∈L

lfxf +
∑
f∈S

sfyf

)

≤ 1

ε
OPT.

�
There are many software tools for solving LP problems and this is an advantage

for our method. On the other side, using Gomory cuts has its own drawbacks. Since
there is no guarantee on the rate of convergence to the optimal (integral) solution. Also,
converting the quadratic integer programming formulation to an LP one, introduces many
new variables and constraints that increases the size of the input.

In the next section we show that the MSCP can be considered as a semidefinite pro-
gramming problem. So we do not need to introduce many new variables and constrains.
This point of view gives another alternative for obtaining a heuristic algorithm.

5 Semidefinite Programming Transformation

A semidefinite programming problem is the problem of optimization of a linear function
of a symmetric and positive semidefinite matrix subject to linear equality constraints;
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vxf · vt + vyf · vt + vxf− · vt + vyf− · vt ≤ 1, ∀f ∈ A, (12)∑
f∈in(v)

vyf · vt ≤ 1, ∀v ∈ N, (13)

∑
f∈out(v)

vyf · vt ≤ 1, ∀v ∈ N, (14)

∑
f∈in(v)

vxf · vt +
∑

f∈in(v)

vyf · vt ≤ 1, ∀v ∈ N, (15)

∑
f∈in(v)

vxf · vt +
∑

f∈out(v)

vyf · vt ≤ 1, ∀v ∈ N, (16)

∑
f∈out(v)

vxf · vt −M

 ∑
f∈in(v)

vyf · vt +
∑

f∈out(v)

vyf · vt

 ≤ 0, ∀v ∈ N, (17)

(18)∑
f=(u,v)∈in(v)

vyf · (v
z
v − uzv) +

∑
f=(u,v)∈in(v)

vxf · (vzu − uzv) = 1, ∀v ∈ N \ r

vzr · vt = 0. (19)

Figure 4: The constraints in the vector programming formulation of the MSCP.

for exact definition see [1]. One can solve a semidefinite programming problem within a
constant approximation factor.

Semidefinite programming has been applied to solve some problems in combinato-
rial optimization. For example [5] obtained a 0.878 factor randomized approximation
algorithm for the Maximum Cut Problem by using this method.

As we show in the former section the MSCP can be formulated as a quadratic integer
program. Now we convert the problem to a vector program. In a vector program the
objective function and all constraints are represented as linear combinations of inner
products of vectors. It is know that each vector program is equivalent to a semidefinite
program; see [5] and [13].

Theorem 4 The quadratic formulation of the MSCP has a semi definite equivalent for-
mulation.

Proof. We assign vectors vxe = (xe, 0, . . . , 0),vye = (ye, 0, . . . , 0), and vzu = (zv, 0, . . . , 0)
to variables xe, ye, and ze, respectively. We also have an extra vector variable vt =
(1, . . . , 1, t). Now we write the objective function and all constraints in the former section
by linear combinations of inner products of these vector variables.

Finally we want to minimize(∑
f∈A

lf (v
x
f · vt) +

∑
f∈A

sf (v
y
f · vt)

)
,
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subject to the constraints given in Figure 4.
The validity of the assertion follows from the fact that any vector programming prob-

lem is equivalent to a semidefinite programming problem and vice versa. �

6 Conclusion and Open Problems

We introduced the Minimum Spanning Caterpillar Problem. We showed that the prob-
lem has no approximation algorithm with a polynomial time computable function as an
approximation factor, unless P = NP. By this result we end the search for any proper
approximation algorithm. Then we introduced our quadratic integer programming for-
mulation for the problem and we gave some arguments on its strength and weakness for
finding heuristic algorithms, by using Gomory cuts or semidefinite programming.

There are some natural open problems left, such as:

1. We know that the Traveling Salesman Problem (TSP) also has the same prop-
erty with respect to having no approximation algorithm within a polynomial time
computable factor, while its metric version has a constant factor approximation.
Now the question that arises is: “Can one find a constant factor approximation
algorithm for a metric version of the MSCP?”

2. When compared to our method of using Gomory cuts, does a branch and cut
algorithm behave better in practice?

3. Is the LCP (Largest Caterpillar Problem) has a better approximation algorithm?
We refer the reader to the relation between the TSP and the longest path problem.

4. It is knows that the longest path problem has polynomial time solutions for some
classes of graphs like block graphs: [11], and bipartite permutation graphs: [12]. We
are interested in knowing the computation complexity of the MSCP and the LCP
on those classes of graphs.
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