8888888

CDMTCS
Research
Report
Series

An Adaptive Algorithm for
P System Synchronization

Michael J. Dinneen
Yun-Bum Kim
Radu Nicolescu

Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-404
May 2011

Centre for Discrete Mathematics and
Theoretical Computer Science

An Adaptive Algorithm for P System Synchronization

MICHAEL J. DINNEEN, YUN-BUM KIM AND RADU NICOLESCU

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand

{mjd,yun,radu}@cs.auckland.ac.nz

Abstract

We present an improved solution for the Firing Squad Synchronization Problem
(FSSP) for digraph-based P systems. We improve our previous FSSP algorithm
by allowing the general to delegate a more central cell in the P system to send the
final command to synchronize. With e being the eccentricity of the general and
r denoting the radius of the underlying digraph, our new algorithm guarantees to
synchronize all cells of the system, between e + 2r + 3 steps (for all trees structures
and many digraphs) and up to 3e + 7 steps, in the worst case for any digraph.
Empirical results show our new algorithm for tree-based P systems yields at least
20% reduction in the number of steps needed to synchronize over the previous
best-known algorithm.

Keywords: cellular automata, firing squad synchronization, P systems.

1 Introduction

The Firing Squad Synchronization Problem (FSSP) is one of the best studied problems
for cellular automata, originally proposed by Myhill in 1957 [11]. The initial problem
involves finding a cellular automaton, such that after the “firing” order is given by the
general, after some finite time, all the cells in a line enter a designated firing state,
simultaneously and for the first time. For an array of length n with the general at one
end, minimal time (2n — 2) solutions was presented by Goto [6], Waksman [18] and
Balzer [2]. Several variations of the FSSP have been proposed and studied [12, 15]. The
FSSP have been proposed and studied for variety of structures [10, 13, 7, 4].

In the field of membrane computing, deterministic solutions to the FSSP for a tree-
based P system have been presented by Bernardini et al. [3] and Alhazov et al. [1]. For
digraph-based P systems, we presented a deterministic solution in [5] for the generalized
FSSP (in which the general is located at an arbitrary cell of the digraph), which runs in
3e + 11 steps, where e is the eccentricity of the general.

In this paper, we present an improved FSSP solution for tree-based P systems, where
the key improvement comes in having the general delegate a more central cell, as an

alternative to itself, to broadcast the final “firing” order, to enter the firing state. We
also give details on how to use this approach to improve the synchronization time of
digraph-based P systems.

It is well known in cellular automata [17], where “signals” with propagating speeds
1/1 and 1/3 are used to find a half point of one-dimensional arrays; the signal with speed
1/1 is reflected and meets the signal with speed 1/3 at half point. We generalize the idea
used in cellular automata to find the center of a tree that defines the membrane structure
of a P system.

Let r denote the radius of the underlying graph of a digraph, where /2 <r <e. Our
new algorithm is guaranteed to synchronize in ¢ steps, where e +2r +3 <t < 3e+7. In
fact, the lower bound is achieved, for all digraphs that are trees. In addition to our FSSP
solution, determining a center cell has many potential real world applications, such as
facility location problems and broadcasting.

The rest of the paper is organized as follows. In Section 2, we give some basic prelimi-
nary definitions including our P system model and formally introduce the synchronization
problem that we solve. In Section 3, we provide a detailed P system specification for
solving the FSSP for tree-based P systems. In Section 4, we provide a detailed P system
specification for solving the FSSP for digraph-based P systems. Finally, in Section 5, we
summarize our results and conclude with some open problems.

2 Preliminary

We assume that the reader is familiar with the basic terminology and notations, such
as relations, graphs, nodes (vertices), edges, directed graphs (digraphs), directed acyclic
graphs (dag), arcs, alphabets, strings and multisets.

For a digraph (X, §), recall that Neighbor(x) = §(z)Ud ' (x). The relation Neighbor
is always symmetric and defines a graph structure, which will be here called the virtual
communication graph defined by 0.

A special node g € X is designated as the general. For a given general g, we define
the depth of a node =, depthg(a:) € N, as the length of a shortest path between g and
x, over the Neighbor relation. Recall that the eccentricity of a node x € X, ecc(z),
as the maximum length of a shortest path between x and any other node. We note
ecc(g) = max{depth (v) [z € X}.

Recall that a (free or unrooted) tree has either one or two center nodes—any node
with minimum eccentricity. We denote a tree T' = (X, A), rooted at node g € X by 7y,
The height of a node x in T, is denoted by height (). For a tree T}, we define the
middle node to be the center node closest to g of the underlying tree T" of T,. Let T,(z)
denote the subtree rooted at node z in 7.

Given nodes x and y, if y € Neighbor(z) and depth (y) = depth,(z) + 1, then
x is a predecessor of y and y is a successor of x. Similarly, a node z is a peer of z,
if 2 € Neighbor(r) and depth,(2) = depth, (z). Note that, for node =, the set of
peers and the set of successors are disjoint with respect to g. For node z, Predy(z) =
{y | vy is a predecessor of z}, Peer,(z) = {y | yis a peer of z} and Succ,(z) = {y |
y is a successor of x}.

Definition 1. A P system of order n with duplex channels and cell states is a system
IT=(0,K,§), where:

1. O is a finite non-empty alphabet of objects;
2. K ={0y,09,...,0,} is a finite set of cells;

3. § is an rreflerive binary relation on K, which represents a set of structural arcs
between cells, with duplex communication capabilities.

Each cell, o; € K, has the initial configuration o; = (Q;, S0, Wi, R;), and the current
configuration o; = (Qy, s;, w;, R;), where:

e (); is a finite set of states;
e s;0 € (Q; is the initial state; s; € QQ; is the current state;

e w;y € O is the initial content; w; € O* is the current content; note that, for o € O,
|w;|, denotes the multiplicity of object o in the multiset wy;

e RR; is a finite ordered set of multiset rewriting rules (with promoters) of the form:
sx —q 8 2’ (u)g | z, where s,8" € Q, z,2',u € O, z € O* is the promoter [9],
« € {min,max} and 8 € {1,],]}. For convenience, we also allow a rule to contain
zero or more instances of (u)g. For example, if u = A, i.e. the empty multiset of
objects, this rule can be abbreviated as s © —, s’ 2.

A cell evolves by applying one or more rules, which can change its content and state
and can send objects to its neighbors. For a cell o; = (Q;, s;, w;, R;), a rule s © —,
s' 2’ (u)s | z € Ry is applicable, if s = s;, ¥ C w;, 2 C w;, 6(i) # 0 for B =4, 571(i) # 0
for 8 =1 and (i) Ud1(:) # 0 for B =].

The application of a rule transforms the current state s to the target state s’ transforms
multiset x to 2’ and sends multiset u as specified by the transfer operator (as further
described below). Note that, multisets 2’ and u will not be visible to other applicable
rules in this same step, but they will be visible after all the applicable rules have been
applied.

The rules are applied in the weak priority order [14], i.e. (1) higher priority applicable
rules are applied before lower priority applicable rules, and (2) a lower priority applicable
rule is applied only if it indicates the same target state as the previously applied rules.

The rewriting operator @ = max indicates that an applicable rewriting rule of R; is
applied as many times as possible. The rewriting operator & = min indicates that an
applicable rewriting rule of R; is applied once. If the right-hand side of a rule contains
(), B € {1,4,1}, then for each application of this rule, a copy of multiset is replicated
and sent to each cell o; € 671(2) if 8 =1, 0, € 6(¢) if B =] and 0; € 6(i) US(4) if B =].

All applicable rules are applied in one step. An execution of a P system is a sequence
of steps, that starts from the initial configuration. An execution halts if no further rules
are applicable for all cells.

Problem 2. We formulate the FSSP to P systems as follows:

Input: An integer n > 2 and an integer g, 1 < g < n.

Output: A class C of P systems that satisfies the following two conditions for any weakly
connected digraph (X, A), isomorphic to the structure of a member of C with n = |X|
cells.

1. Cell oy is the only cell with an applicable rule (i.e. o, can evolve) from its initial
configuration.

2. There exists state sy € @y, for all o; € K, such that during the last step of the
system’s execution, all cells enter state s, simultaneously and for the first time.

We want to find a general-purpose solution to the FSSP that synchronizes in the fewest
number of steps, as a function of some of the natural structural properties of a weakly-
connected digraph (X, A), such as the eccentricity of node g € X in the communication
graph defined by A.

RO ROn6)

Figure 1: (a) a tree with the center o5; (b) a tree with two centers o3 and o3, 03 being
the middle cell.

3 Deterministic FSSP solution for rooted trees

We first solve Problem 2 for the subclass of weakly-connected digraphs (X, A), where the
underlying graph of (X, A) is a tree. This section is organized as follow. In Section 3.1,
we present the P system for solving the FSSP for trees rooted at the general. In order to
help the comprehension of our FSSP algorithm, we provide a trace of the FSSP algorithm
in Table 1. Phase I of our FSSP algorithm is described in Section 3.2, which finds the
middle cell (i.e. a center of a tree, closest to the root) and determines the height of the
middle cell. Phase IT of our FSSP algorithm is described in Section 3.3, which broadcasts
the “command” that prompts all cells to enter the firing state. Finally, in Section 3.4,
we present some empirical results that show improvements of our algorithm over the
previously best-known FSSP algorithms for tree-based P systems [1, 5].

9¢ 9¢ 9¢ 9¢ 9¢ 9¢ 9¢ 9¢ 9¢ 9¢ 9¢ A
ap s mp Ss | map 9s | ap Vs | m,ap 9 mv €s | mgap s | mav 9 mpav S | mp 9 mav Ss 91
D Vs L0 Vs LMD Ss | D Vs | omoap S 0 Vs | omgan Ss M s | omoap 95| ap s LMD €5 Gl
D rs D Vs D Vs | DTS cMD S5 D Vs | mgap 9s LD TS cMD S5 D ¥s LD TS il
D Vs (R4S D¥s| p¥s LD TS D Vs pMD s D Vs LD TS D Vs D Vs o1
D Vs D s DVs | Vs D s D Vs QYv Vs D Vs D Vs D Vs D s 4l
DS D Vs DV¥s| DVs oY s D Vs QYD s D Vs QYD s Drs D Vs 11
D Vs D Vs pYL £ | DTS | gy ,D s D VS | 099D s o Vs QU gD ©S D Vs D s 01
D ¥s ZUD S| Y s | D Vs | yoop s D Vs LYo s D Vs | 0.yoD Cs D ¥s D Vs 6
D Vs | YD Es | yaop s | DS | oD s D Vs 9o s sy s | L0,yoD s D ¥s D Vs Q
D Vs | Yoow &s | yop s | D VS| yop s U s YD TS | Y, D TS | 0y ,20D S D ¥s D Vs)
q Os yo s | yov s | o Vs | yov s | y.p s FYPD TS | [yaoD TS | 0,1 9D S D¥s yUv s 9
Og q Os yv s | » Vs | Yoo s | 420D s GOV s | Yoo s | 0.4,9D ts | oD TS U P s G
Og Og Q0| q0s yo ls yv s Y2V TS | Yo ts U 2D S D Vs 032D S i%
Og Og Og Og q Os q Os yv s Yy ls U 2D s D Vs 0D s e
Og Og Og Og Og Og q Os q Os yv s D VS | N0 Y ,29D TS ré
Og U3 Og U3 U3 Og Os Og q Os q Os noyv ls 1
Os 0g Os 0g 0g Os Os 0g Os Os o Os 0
ITp 0Tp 60 80 Lo 90 So Yo €0 <o To Q@wm

Aq pejeoIpuUl ST (SUISaq [] oSeYJ 9Y) 10) Spue [aseyd oy} yorym ut dejs oy, -

S0 S1 [[0D S[pPIL Y} PUrE

"S[[99 9B} PoprRYS o1}
Lo ST [RISUSS O IS M

‘() T 2INS1,] UT UMOYS 901) o) A PAUYSP SINJOILIIS SURIGUISUI 9} [JIM WDISAS J ® UO WILIOB[R JSS] o3 JO soorI) o], :T o[qR],

3.1 P systems for solving the FSSP for rooted trees

Given a tree (X, A) and g € X, our FSSP algorithm is implemented using the P system
II = (0, K,§) of order n = |X|, where:

1. O={a,b,c,e h,o0,v,w}.
2. K =A{oy,09,...,0,}.

3. 0 is arooted tree, with an underlying graph isomorphic to (X, A), where the general
o, € K (the root of §) corresponds to g € X.

All cells have the same set of states, the same set of rules and start at the same
initial quiescent state sg, but with different initial contents. The first output condition
of Problem 2 will be satisfied by our chosen set of rules.

For each cell o; € K, its initial configuration is o; = (@, sg, w;p, R) and its final
configuration at the end of the execution is o; = (Q, sg,), R), where:

e) = {so, 51, S2, S3, S4, S5, S¢ }, where sy is the initial quiescent state and sg is the
firing state.
ot if o, =0,
® W = { {@} if o; # UZ.
e R is defined by the following rulesets.
Rules used in Phase I: all the rules in states sg, s1, s2, s3 and Rule 4.6 in state
S4.
Rules used in Phase II: all the rules in states s4 and s5, except Rule 4.6.

0. Rules in state sq: 3. Rules in state s3:
1. S0 0 —max 51 ahou (), 1. 83 G —pax S4 @
2. 50 b —rmax 51 ah (€)+ (b), 2. 83 h —nax 84
3. S0 b —max S4 @ (ce)r 4. Rules in state sg4:
1. Rules in state sq: 1. S4 hh —pax S5 W (U)$
1. 81 @ —pax S2 ah 2. 54 AUV —pax S5 aW (V)g

2. Rules in state ss: S4 AUV —pax S5 QW

1. 55 aaa —rpax S4 G

54 U —pax S5 W (V)1

3.

4. S4 AU —>pax Se
2. S9 GO —pax S3 A 5.
6.

3. Sg CeU —dpax S2 S4 O —Fmax S4

4. Sg CE —dpax S2 5. Rules in state S5

5. 89 ace —rpax So aceh 1. s5 aww —pax S5 AW
6. S2 AE000 —rpax S2 aa (0)) 2. S5 AW —pax S6

7. Sy AEOU —pay S2 aa (0); 3. S5 U —rpax S6

8. S @O —rpax S2 achoo 4. 85 0 —rpax S6

9. S5 A0 —>pax S2 GGQQ

10. s9 ae —>pax S2 ach 6

11. S5 @ —rpay S2 aa (¢)4

12. S9 U —pax S2

\0
@) @)
@

Figure 2: Propagations of symbols b, ¢ and o, in a tree with one center. The symbols ¢
and o meet at the middle cell o5. Cells that have sent symbol ¢ or o are shaded. The
propagation of symbol o to a shaded cell is omitted. In cell o;, j € {1,3}, |w;|, — 1
represents the number of steps since o; received symbol ¢ from all of its children but one.

C/ \C
@
te:

Figure 3: Propagations of symbols b, ¢ and o, in a tree with two centers. The symbols
¢ and o meet at the middle cell 3. Cells that have sent symbol ¢ or o are shaded. The
propagation of symbol o to a shaded cell is omitted. In cell o;, j € {1,3}, |w;|, — 1
represents the number of steps since o; received symbol ¢ from all of its children but one.

3.2 Phase I: Find the middle cell of rooted trees

In this phase, a breadth-first search (BFS) is performed from the root, which propagates
symbol b from the root to all other cells. When the symbol b from the BFS reaches a
leaf cell, symbol ¢ is reflected back up the tree. Starting from the root, the search for
the middle cell is performed as described below, where symbol o represents the current
search pivot. Note that symbol o’s propagation speed is 1/3 of the propagation speed of
symbols b and c¢; intuitively, this ensures that o and ¢ meet in the middle cell.

We provide a visual description of the propagations of symbols b, ¢ and o in Figure 2
(for a tree with one center) and Figure 3 (for a tree with two centers).

Details of Phase 1

Objective: The objective of Phase I is to find the middle cell, o,,, and its height,
height (m).
Precondition: Phase I starts with the initial configuration of P system II, described in
Section 3.1.

Postcondition: Phase I ends when o,, enters state s;. At the end of Phase I, the
configuration of cell o; € K is (Q, s4,w;, R), where |wi|, = 1; [w;|, = 2 - height (i), if
O; = Om.

Description: In Phase I, each cell starts in state sg, transits through states si, ss, s3,
and ends in state s4; a cell in state s4 will ignore any symbol o that it may receive.
The behaviors of cells in this phase are described below.

e Propagation of symbol b: The root cell sends symbol b to all its children (Rule
0.1). An internal cell forwards the received symbol b to all its children (Rule 0.2)
After applying Rule 0.1 or 0.2, each of these non-leaf cells produces a copy of symbol
h in each step, until it receives symbol ¢ from all its children (Rules 1.1, 2.5 and
2.10).

e Propagation of symbol c: If a leaf cell receives symbol b, then it sends symbol ¢
to its parent (Rule 0.3) and enters state s, (the end state of Phase I). If a non-leaf
cell receives symbol ¢ from all its children, then it sends symbol ¢ to its parent
(Rule 2.11), consumes all copies of symbol h and enters state s, (Rule 3.2).

Note, when a cell applies Rule 0.2 or 0.3, it sends one copy of symbol e up to its
parent. A copy of symbol e is consumed with a copy of symbol ¢ by Rule 2.4. Hence,
|w;|e = k indicates the number of ¢;’s children that have not sent symbol ¢ to o;.

e Propagation of symbol o: The root cell initially contains the symbol o. We
denote o; as the current cell that contains symbol o and has not entered state s4.

Assume, at step t, o; received symbol ¢ from all but one subtree rooted at o,.
Starting from step t 4 1, o; produces a copy of symbol o in each step, until it
receives symbol ¢ from o, (Rule 2.8), That is, |w;|, — 1 indicates the number of
steps since o; received symbol ¢ from all of its children except o,.

If o, receives symbol ¢ from o, by step ¢ + 2, i.e. |wj|, < 3, then o; is the middle
cell; o; keeps all copies of symbol h and enters state s;, (Rule 2.1). Otherwise, o;
sends a copy of symbol o to o, at step t + 3 (Rule 2.6 or 2.7); in the subsequent
steps, o; consumes all copies of symbol h and enters state s, (Rules 2.2 and 3.2).
Note, using current setup, o; cannot send a symbol to a specific child; o; has to
send a copy of symbol o to all its children. However, all o;’s children, except o,
would have entered state s,.

Proposition 3 indicates the step in which o, receives symbol ¢ from all its children
and Proposition 4 indicates the number of steps needed to propagate symbol o from o,
to o,,.

Proposition 3. Cell 0,, receives the symbol ¢ from all its children by step heightg(g) +
height (m).

Proof. Cell o,, is at distance height (g) —height (m) from o,, hence o, receives sym-
bol b in step height (g) — height, (m). In the subtree rooted at o,,, the propagations
of the symbol b from o, to its farthest leaf and the symbol ¢ reflected from the leaf to
om take 2 - height g(m) steps. Thus, o, receives symbol ¢ from all its children by step
height (g) —height (m) + 2 -height (m) = height (g) + height (m). O

Figure 4: (a) k subtrees of o,,, T)n(1), T1n(2), ..., T,n(k). (b) The structure of subtree
T,,(j), which contains o,,.

Proposition 4. The propagation of the symbol o from o4 to o, takes at most heightg(g)—i—
height (m) steps.
Proof. For a given tree T}, rooted at o4, we construct a tree T}, which re-roots T} at o,.
Recall, T},,(7) denotes a subtree rooted at o; in T,,. Assume that o,, has k > 2 subtrees,
T (1), T,(2), ..., T, (k), such that height (1) > height, (2) > --- > height, (k) and
height, (1) —height, (2) < 1. Figure 4 (a) illustrates the subtrees of o,,.

Assume T,,(7) is a subtree of o,,, which contains o,. In 7,,(7), let z be the height of
o, and + w > 0 be the distance between o, and o;. Figure 4 (b) illustrates the z, x
and w in T,,(7).

To prove Proposition 4, we determine the number of steps needed to propagate symbol
o from o4 to 0,,. In T,,(7), let p be a path from o; to its farthest leaf and ¢ be the number
of steps needed to propagate symbol o from o, to 0,,,. Note, height, (m) = height (m)
and z +w + 1 = height (g) —height (m).

10

e If 0, is a part of path p, then z + 2z +w + 1 = height, (i) + 1 = height, (m) — j,
j>0,and t =22+ 3(x +w + 1). Hence,

t=2z+z+w+1)+(@+w+1)
= 2(height,, (m) — j) + (height,(g) — height (m))
= height (g) + height (m) — 2j

e If o, is not a part of p, then 2z +z+w+1 < v+ w+ 1 = height, (i) +1 =
height, (m)—j,j >0, and t = x + 2v + 3(w + 1). Hence,

t=2w+w+1)+(z+w+1)
= 2(height,, (m) — j) + (height,(g) — height (m))
= height (g) +height (m) — 2j

Proposition 5. Phase [takes height (g) +height (m) + 2 steps.

Proof. From Propositions 3 and 4, symbols o and ¢ meets in o, at step height g(g) +
height, (m). Cell g, enters state s4 by applying Rule 2.9 and 2.1, which takes two steps.
Thus, Phase I takes height (g) + height (m) + 2 steps. O

3.3 Phase II: Determine the step to enter the firing state

Phase II begins immediately after Phase I. In Phase II, the middle cell broadcasts the
“firing” order, which prompts receiving cells to enter the firing state. In general, the
middle cell does not have direct communication channels to all cells. Thus, the firing
order has to be relayed through intermediate cells, which results in some cells receiving
the order before other cells. To ensure that all cells enter the firing state simultaneously,
each cell needs to determine the number of steps it needs to wait, until all other cells
receive the order.

The firing order is paired with a counter, which is initially set to the eccentricity of the
middle cell. Propagating an order from one cell to another decrements its current counter
by one. The current counter of the received order equals the number of remaining steps
before all other cells receive the order. Hence, each cell waits according to the current
counter, before it enters the firing state. Figure 5 illustrates the propagation of the firing
order.

Details of Phase 11

Objective: The objective of Phase II is to determine the step to enter the firing state,
such that during the last step of Phase II, i.e. the system’s execution, all cells enter the
firing state, simultaneously and for the first time.

Precondition: Phase II starts with the postcondition of Phase I, described in Sec-
tion 3.2.

11

Figure 5: Propagations of the firing order from the middle cell, o5, where the counter is
represented by the multiplicity of symbol v. Cells that have propagated the order are
shaded.

Postcondition: Phase II ends when all cells enter the firing state sg. At the end of
Phase II, the configuration of cell o; € K is (Q, s6, 0, R).

Description: The behaviors of the middle cell o,, and a non-middle cell, o; # 7,,, in
this phase are as follow. We also indicate which rules accomplish the described behaviors.

e We first describe the behavior of ¢,,. For every two copies of symbol h, o,, produces
one copy of symbol w and sends one copy of symbol v to all its neighbors (Rule
4.1). In the next sequence of steps, o, consumes one copy of symbol w (Rule 5.1).
If 0,, consumes all copies of symbol w, then o, enters the firing state (Rule 5.2).

e Next, we describe the behavior of o; # o,,. Let k; > 1 denote the multiplicity of
symbol v that o; receives for the first time. If k; = 1, then o; enters the firing state
(Rule 4.4). If k; > 2, then o; consumes k; copies of symbol v, produces k; — 1 copies
of symbol w and sends k; — 1 copies of symbol v to all its neighbors (Rules 4.2, 4.3
and 4.5); in each subsequent step, ¢; consumes one copy of symbol w (Rule 5.1)
and o; enters the firing state (Rule 5.2), after all copies of symbol w is consumed.

12

Proposition 6. Cell 0,,, produces height (m) copies of symbol w and sends height (m)
copies of symbol v to all s neighbors.

Proof. At the beginning of Phase II, 0, contains 2 - height g(m) copies of symbol h. As
described earlier, for every two copies of the symbol A that o,, consumes, o,, produces
one copy of symbol w and sends one copy of symbol v to all its neighbors. O]

Proposition 7. Cell o; receives k copies of symbol v at step t and sends k — 1 copies of
symbol v to all its neighbors at step t + 1, where k = height (m) — depth,, (i) + 1 and
t =height (g) +height (m) + depth,, (i) + 2.

Proof. Proof by induction on depth,, (i) > 1. First, o,, sends height (m) copies of sym-
bol v to all its neighbors. Thus, each cell 0;, at distance 1 from o,,, receives height g(m)
copies of symbol v. By Rules 4.3, 4.4, 4.7 and 4.8, 0; consumes heightg(m) copies of
symbol v, produces height (m) — 1 copies of symbol w and sends height (m) —1 copies
of symbol v to all its neighbors.

Assume that the induction hypothesis holds for each cell ¢; at distance depth,, (7).
Consider cell o;, where depth,_ (i) = depth,(j) + 1. By the induction hypothesis, cell
0j € Neighbor(i), sends height (m) —depth,,(j) = height (m) — depth, (i) + 1 copies
of symbol v, such that o; receives height (m) — depth, (i) + 1 copies of symbol v. By
Rules 4.3, 4.4, 4.7 and 4.8, 0; consumes height (m) — depth,, (i) + 1 copies of symbol v,
produces height (m)—depth, (i) copies of symbol w and sends height (m)—depth, (i)
copies of symbol v to all its neighbors. O]

Proposition 8. Phase II takes height (m) + 1 steps.

Proof. Each cell o; receives height (m) — depth,, (i) + 1 copies of symbol v at step
height (g) +height (m) + depth,, (i) + 2.

Consider o;, where depth,,(j) = height (m). Cell o; receives one copy of symbol v.
As described earlier, if a cell receives one copy of symbol v, then it enters the firing state
at the next step. Hence, o; enters the firing state at step height (g) +2-height (m)+3.

Consider oy, where depth, (k) < height (m). Cell o), contains height (m) —
depth,, (i) copies of symbol w at step height,(g) +height (m) + depth,, (i) + 3. Since
o), consumes one copy of symbol w in each step, oy will take height (m) — depth,, (i)
steps to consume all copies of symbol w. Hence, o; enters the firing state at step
(height (g)+height (m)+depth,, (i) +3)+ (height, (m)—depth, (i)) = height (g) +
2 -height, (m) + 3.

Phase I ends at step height (g) +height (m) + 2 and all cells enter the firing state
at step height (g) +2-height (m)+3. Thus, Phase II takes height (m)+ 1 steps. [J

Theorem 9. The synchronization time of our FSSP solution, for a P system with un-
derlying structure of a tree, is height (g) + 2 -height (m) + 3.

Proof. The result is obtained by summing the individual running times of Phases I and
IT, as given by Propositions 5 and 8: (height (g)+height (m)+2)+ (height, (m)+1) =
height (g) +2-height (m) + 3. O

13

Table 2: Statistics for improvement on many random trees of various (smaller) orders.

average | average | average average average %

n | height | radius |3-height | height+2-radius gain
100 | 22.12 | 14.49 | 66.36 51.1 23.00
200 | 31.91 | 21.35 | 95.73 74.61 22.06
300 | 41.13 | 26.79 | 123.39 94.71 23.24
400 | 47.86 | 31.3 | 143.58 110.46 23.07
500 | 51.52 | 33.77 | 154.56 119.06 22.97
600 | 57.16 | 37.76 | 171.48 132.68 22.63
700 | 63.43 | 42.19 | 190.29 147.81 22.32
800 | 68.12 | 45.37 | 204.36 158.86 22.26
900 | 72.46 | 47.83 | 217.38 168.12 22.66
1000 79.94 | 52.21 | 239.82 184.36 23.13

3.4 Empirical results

We tested the improvement in running times over the previously best-known FSSP al-
gorithms that synchronize tree-based P systems [1, 5]. We wanted to see how our new
running time, that is proportional to e + 2r, compares with the earlier value of 3e, where
e is the eccentricity of the general (which is also the height of the tree, rooted at the gen-
eral) and r is the radius of a tree. We did two tests suites; one for relatively small trees
and one for larger trees as shown in Tables 2 and 3, respectively. In both cases, our em-
pirical results show at least 20% reduction in the number of steps needed to synchronize,
which we believe is significant.

For the statistics given in Table 2, we generated random (free) trees by starting from
a single node and repeatedly add new leaf nodes to the partially generated tree. We
then averaged over all possible locations for the general node. The “average gain” is the
average difference 3e — (e +2r) and the “average % gain” is improvement as a percentage
speedup over 3e.

For the statistics given in Table 3, we generated random labeled trees using the well-
known Priifer correspondence [19] (using the implementation given in Sage [16]). In
these sets of trees, the first indexed vertex is randomly placed, unlike the random trees
generated in our first test suite. Hence, for this test suite, we did not need to average
over all possible general node locations per tree. Due to the uniform randomness of the
labeled tree generator, we assumed the general is placed at the node labeled by 1. Each
row in Table 3 is based on 100 random trees of that given order.

We have run both test suites several times and the results are consistent with these
two tables. Hence, we are pretty confident in the practical speedup that our new syn-
chronization algorithm provides.

14

Table 3: Statistics for improvement on random trees of various (larger) orders.

average |average ||average %

n diameter |radius | eccentricity | gain gain
1000 21 11 16.27 10.54 21.59
2000 32 16 23.45 14.90 21.18
3000 26 13 19.97 13.95 23.27
4000 30 15 22.65 15.30 22.51
5000 35 18 26.51 17.01 21.40
6000 32 16 23.82 15.64 21.89
7000 34 17 25.29 16.58 21.85
8000 34 17 25.01 16.03 21.36
9000 40 20 28.37 16.74 19.67
10000 37 19 27.16 16.32 20.03
10000 38 19 27.36 16.72 20.37

20000 37 19 28.23 18.47 21.80
30000 43 22 31.74 19.49 20.46

40000 43 22 31.55 19.09 20.18
50000 42 21 30.81 19.63 21.23
60000 14 22 32.50 21.00 21.54
70000 48 24 34.55 21.09 20.35
80000 45 23 33.08 20.17 20.32
90000 90 25 36.00 22.01 20.37

100000 47 24 34.15 20.29 19.81

4 FSSP solution for digraphs

The key idea of FSSP solution for digraphs is as follows. For a given digraph, perform a
BFS from the general on the communication graph and construct a virtual spanning tree,
implemented via pointer symbols, not by changing existing arcs. If a node finds multiple
parents in the BFS, then one of the parents is chosen as its spanning tree parent. In
Figure 6, (a) illustrates a digraph G, (b) illustrates the underlying graph of G and (c)
illustrates a spanning tree of the underlying graph of G, rooted at .

Using the spanning tree constructed from the BFS, the FSSP algorithm described in
Section 3, is applied to achieve the synchronization.

We present the details of P system for solving the FSSP (Problem 2) for digraphs in
Section 4.1. A trace of the FSSP algorithm for digraphs is given in Table 4. The details
Phases I and II of this FSSP algorithm are described in Sections 4.2 and 4.3, respec-
tively. Finally, in Section 4.4, we present some empirical results that illustrates expected
improvements of our new algorithm over our previous FSSP algorithm for digraphs [5].

15

(&
-3
S
&

@)
@9
@9

~—
o
~—

()

Figure 6: (a) A digraph G. (b) The underlying graph of G. (c¢) A spanning tree of the
underlying graph of GG, rooted at o;.

4.1 P systems for solving the FSSP for digraphs

Given a digraph (X, A) and ¢ € X, our FSSP algorithm is implemented using the
P system II' = (O, K, 0) of order n = | X|, where:

1. O= {CL, h,o,v,w,x,z} U {Lk7bk7ck7ek7pk | 1 S k S n}
2. K =A{oy,09,...,0,}.

3. ¢ is a digraph, isomorphic to (X, A), where the general o, € K corresponds to
g € X.

All cells have the same set of states and start at the same initial quiescent state sg, but
with different initial contents and set of rules. The first output condition of Problem 2
will be satisfied by our chosen set of rules.

In this FSSP solution, we extend the basic P system framework, described Section 2.
Specifically, we assume that each cell o; € K has a unique cell ID symbol ¢;, which will
be used as an immutable promoter and we allow rules with a simple form of complex
symbols.

To explain these additional features, consider rules 3.10 and 3.11 from the ruleset R,
listed below. In this ruleset, symbols ¢ and j are free variables (which in our case happen
to match cell IDs). Symbols e; and e; are complex symbols. Rule 3.11 deletes all existing
e; symbols, regardless of the actual values matched by the free variable j. However, the
preceding Rule 3.10 fires only for symbols e;, with indices ¢ matching the local cell ID,
as required by the right-hand side promoter ¢;. Together, Rules 3.10 and 3.11, applied
in a weak priority scheme, keep all symbols e;, with indices ¢ matching the local cell 1D,
and delete all other symbols e;.

For each cell o; € K, its initial configuration is o; = (Q, so, wi0, R) and its final
configuration at the end of the execution is o; = (Q, s7, {¢;}, R), where:

e () = {so,s1, S2, S3, S4, S5, S¢, S7}, where sq is the initial quiescent state and sy is the
firing state.

{0} if oy = oy,
® Wio = { {Ll} if o; # Og-

16

e R is defined by the following rulesets.

Rules used in Phase I: all the rules in states sg, s1, So, s3, s4 and Rules 5.5 and

5.6 in state ss.

Rules used in Phase II: all the rules in states s; and sg, except Rules 5.5 and

2.6.

0. Rules for cells in state sq:

L. 80 0 —pin 51 GO (Thy)1 | 1
2. 50 & —rnin S1 0 (2bi)1 | ¢4

3. So bj —7max S1 Pj

. Rules for cells in state sy:

L. s1 ap; —max S2 apj (€5)1
2. 81 G4 —pax S2 @

3. 51 Py —7max 52

. Rules for cells in state ss:

1. 59 @4 —>pax S3 @
2. 89 bj —max S3

3. S9 & —pax S3

. Rules for cells in state ss:

S3 AAA —pax S5 O

$3 A0 —Spax S4 O

83 Ci€i —rmax S3 | Li

53 A000€; —payx 53 aa (0)1 | t;
S3 A0€;€; — nax Sz ahoe;e; | 1;
83 A0€; —rpay S3 ahooe; | i;
$3 @0 —Spax S3 AAG

S3 A€; —rpay S3 ae;h | i

© X N o Ok W N

53 AP; —max 53 G (Cj)1

—_
<

83 €; —7max S3 €; | L

—_
—_

53 €5 —7max 53

—_
[\

- 83 Py ~—7max S4

—
bt

53 Dj —7max S5

17

4. Rules for cells in state sy:

1. s4 @ —pax S5
2. S4 h —max S5

3. 84 Cj —nax S5
5. Rules for cells in state ss:

1. S5 a —nax S6 @ (2)1
S5 hh —pax 56 W (V)g
S5 2V —pax S6 @ (2)1
55 U —rmax 56 W (V)1

S5 O —Ppax S5

S A

S5 Cj —7max S5
6. Rules for cells in state sg:
1. sg aw —pax Sg Q
2. S6 G —rpax S7
3. S6 Z —>max S7
4

. S U —Ppax ST

67 Ls 87 Ls L1 Ls 97 Ls G7 Ls V1 Ls €7 Ls 27 Ls 17 Ls LT

767 95 uwmdwg 9s ¢4 95 wwwaﬁf 9s 2% P51 98 ¢Z0¥1 95 ¢Z P81 95 % gDT1 95 eZan 17 95 91
mwma? gs mSmd? 9s mmmaS Ss wNSwadwg 9s mNSm;G? 9s mov1 9s mamdmg 9s mNSm@d? 9s mNSmadS 9s [eh)
67 Sg 27287 S5 L7 Ss ZMD97 98 M9 95 Z 071 S8 781 S8 §Z M ganT1 95 Mol 9s !

67 Sg 87 Sg¢ L7 Ss Nmaw\\ Ss Nms\mg gs V1 Ss €7 S¢ mBBQ 9s Nmas Ss eT

67 9s 87 Gg L7 Ss 97 S5 97 9s V1 Ss €7 Ss w:dmg Ss 17 Ss 4

67 9s 87 Ss L7 S Y ov91 s g7 Ss V1 Ss €71 S¢ ld gy ner €s oyl Vs IT

67 S mcvumosf Vs L7 S Y 10,097 €8 g1 Ss ov1 Ss 0%o€1 S5 | 1dogyTatonir €s o P17 €5 0T
9167 Vs NQ%ONUNGMS €s 9017 S¢ N&we\@@woﬁodwg €s 90417 Ss V1 Ss €7 9s H&mtmm:ume €s mcwe\awd: €s 6
ZD67 s 9d ,1y8280¥0%oD 81 Es L7 Ss ed y92Ton97 €5 G671 Ss Yo TS €1 S¢ td %ot €s 0gY vt €s I
8d99167 €5 9dy8272%on87 €5 WQGS Vs ed y92Ton 97 €5 D91 Vs ZUgPV1 €8 €7 s tdy%ants €s oaﬁcmmﬁo@: €s L
8d99067 Ts w&wmwwmwwugsf €s To,nl1 € ¢dy921on91 €s gP91 €s | TId, yVva¥op¥i s Yon€1 ¥s Hamcmwmosﬁ €s Omcmwﬁs €s 9
8d9o161 Is ¢T9d72%a26qD87 Cs | ¥d9alalonli €s ¢d92la1on91 €5 ed921onS? €5 tdyvon¥ €5 D€ €5 tdyZoner €s o ylatonls €s g
8967 0s | ,xld9dSdValon®t s | w¥dlasqvir Ts ;TedLa8qor Ts | xedlasqp9r Cs Idvon¥r €5 Idvatoner €s 1dZaner €s oylanli €s ¥
67 Os 049994987 Os Hwamawwsi Is &m&m&mw@wg Is ¢dTon9r s xldiqova s | x1dLq9qp€r Cs T 1d9q%qnea Ts omwds €s e

67 Os 87 Os zTVrq€qL1 Os 7 T€qTq91 Os xeq9r Os Tdovi Ts Tdpn€r 1s Idotr s | xoVqQEqlqnlt Ts 4

67 Os 87 Os L7 Os 97 Os 97 Os xlq¥? Os xlq€r Os x1qcr Os onlr Is T

67 Os 87 Os L7 Os 97 Os 97 Os ¥1 Os €1 Os ¢1 Os ol1 Os 0

60 80 Lo 90 So Vo €0 o To | deig

20 S1 [[00 S[PPI AU} pue

"S[[99 9B} POPRYS o1} Aq pajyesrpul

ST (sur8aq [T @sey o} I0) Spus [aseyJ
Lo ST [e1oua8 oY) oloym ‘() 9 omS81, Jo ydeIip oY) uo WILIOSR JSS, oY) JO SeorI) o], 7 9[qR],

oy YOI ut dogs oy,

18

4.2 Phase I: Find the middle cell of a BFS spanning tree

For a given digraph-based P system, a (virtual) spanning tree is constructed by a standard
BFS originated from the general, where the tree parent of each cell is one of its BFS
parents (randomly chosen). Each cell keeps the track of its spanning tree parent and this
is achieved by the use of cell IDs (unique identifier ID), e.g., 7 is the cell ID of o;.

Details of Phase 1

Objective: The objective of Phase I is to find the middle cell, o,,, and its height,
height (m).

Precondition: Phase I starts with the initial configuration of P system II, described in
Section 4.1.

Postcondition: Phase I ends when o,, enters state s;. At the end of Phase I, the
configuration of cell o; € K is (Q, s5,w;, R), where |w;|,, = 1; |wi|, = 1 and |w;|p, =
2 -height (i), if 0; = o

i

Description: We describe below the details of the BFS spanning tree construction and
the propagation of the reflected symbol in the BFS tree. The symbol o, starting from
the general, propagates from a tree parent to one of its children, as described in the
FSSP solution for tree-based P systems (Section 3.2). Hence, the details of symbol o
propagation are not given here.

e The details of the BFS spanning tree construction:

A BFS starts from the general. When the search reaches cell g;, o; will send a copy
of symbol b; to all its neighbors (Rule 0.1 or 0.2).

From the BFS, cell o; receives a copy of symbol b; from each o; € Pred,(i), where
o; is a BFS dag parent of o;. Cell 0; temporarily stores all of its BFS dag parents
by transforming each received symbol b; to symbol p; (Rule 0.3). Note, o; will also
receive a copy of symbol b, from each oy € Peery(i) U Succ,(i); however, o; will
discard each received symbol by.

Each cell selects one of its BF'S dag parents as its tree parent. If cell o; has chosen
0; as its tree parent, then o; will discards each py, where o, € Pred, (i) \ {o;} (Rule
1.3). Additionally, o; will send a copy of symbol e; to all its neighbors, which will
be discarded by all o;’s neighbors, except o; (Rule 1.1).

Hence, in each cell o;, the multiplicity of symbol e; will indicate the number of
o;’s tree children and symbol p; will indicate that o; is the tree parent of o;; also,
symbol p; will later be used to propagate the reflected symbol back up the tree.

e The details of reflected symbol propagation:

To replicate the propagation of a reflected symbol up the BFS tree, each internal
cell of the BES tree needs to check if the received a reflected symbol came from one
of its BF'S tree children.

Let 0; be a BFS tree child of o;, where |w;|., = 0. Recall that, in such case, cell o;
contains symbol p;, where the subscript j is the ID of its BF'S tree parent, and o;
contains symbol e;, such that |w;|., is the number of ¢;’s BFS tree children.

19

Guided by symbol p;, o; sends symbol ¢; to all its neighbors (Rule 3.9). Cell o;
consumes a copy of symbol e; with a copy of symbol ¢; by Rule 3.3; o; cannot
consume symbol e; with symbol ¢, where j # k. If o, receives symbol ¢; from all
its BE'S tree children, then all copies of symbol e; will be consumed, i.e. |wj|c, = 0.

Proposition 10 indicates the step in which the BFS reaches cell o; and o; receives
symbol b; from each o; € Pred,(i). Proposition 11 indicates the step in which o; receives
symbol e; from its tree child.

Proposition 10. Cell o; receives symbol b; from each o; € Predy(i) at step depth, (i)
and sends symbol b; to all its neighbors at step depth, (i) + 1.

Proof. Proof by induction, on d = depthg(i) > 1. At step 1, the general o, sends symbol
b, to all its neighbors by Rule 0.1. Hence, at step 1, each cell o at depth 1 receives
symbol b,. Then, at step 2, by Rule 0.2, 0}, sends symbol b;, to each of its neighbors.
Assume that the induction hypothesis holds for each cell o; at depth d. Consider
cell 0; at depth (i) = m + 1 = depth,(j) + 1. By induction hypothesis, at step
depth,(j) + 1, each 0; € Pred,(i) sends symbol b; to all its neighbors. Thus, at step
depth,(j) + 1 = depth, (i), 0; receives symbol b;. At step depth (i) + 1, by Rule 0.2, o;
sends symbol b; to all its neighbors. O

Proposition 11. Cell o; receives a copy of symbol e; from each of its tree children at
step depth, (i) + 3.

Proof. Assume that cell 0; € Succy(i) has chosen o; as its tree parent. From Proposi-
tion 10, cell o; receives symbol b; at step depth,(j) = depth (i) + 1. According to the
description, o; will send symbol e; at step depth, (7) + 2. Thus, o; will receive symbol e;
at step depth, (i) + 3. O

Remark 12. From Proposition 11, o; receives symbol e; from its tree child at step
depth, (i) +3. If o; does not receive symbol e; at step depth, (i) +3, then o; can recognize
itself as a tree leaf and send a reflected symbol to its tree parent at step depthg(z') + 4.
That is, once a leaf cell is reached by the BES, it will take three additional steps to send
reflected symbol to its tree parent. Recall, in the FSSP algorithm for tree-based P systems,
a leaf cell sends reflected symbol to its parent, one step after reached by the BFS. Thus,
this FSSP algorithm for digraph-based P systems takes three additional steps to send the
reflected symbol than the FSSP algorithm for tree-based P systems.

4.3 Phase II: Determine the step to enter the firing state

Similar to the Phase II described in Section 3.3, the firing order is broadcasted from the
middle cell o,,. The order is paired with a counter, which is initially set to the eccentricity
of o, and decrements by one in each step of this broadcast operation.

Details of Phase I1

Objective: The objective of Phase II is to determine the step to enter the firing state,
such that during the last step of Phase I, i.e. the system’s execution, all cells enter the
firing state, simultaneously and for the first time.

20

Precondition: Phase II starts with the postcondition of Phase I, described in Sec-
tion 4.2.

Postcondition: Phase II ends when all cells enter the firing state s;. At the end of
Phase II, the configuration of cell o; € K is (Q, s7,{¢;}, R).

Description: The order arrives in ¢;, along every shortest paths from o, to o;. Hence,
to compute the correct step to enter the firing state, cell o; decrements, in each step, the
sum of all received counter by the number of shortest paths from o, to o; and o; enters
the firing state if the sum of all received counter becomes 0. The number of shortest paths
from o, to o; is determined as follows. Cell o, sends a copy of symbol z. Each cell o;
forwards symbol z, received from each o; € Pred,, (7). The number of shortest paths from
o to 0; is the sum of all copies of symbol z that o; receives from each o; € Pred,, (7).

Let t be the current counter and k£ be the number of shortest paths from o,, to the
current cell. In the FSSP solution for tree-based P systems, the condition for entering
the firing state in the next step is when t = 1 (note k = 1). However, the FSSP solution,
as implemented in this section, cannot directly detect if ¢ = k, since k > 1 Instead, a cell
enters the firing state after ¢ = 0 is detected. Thus, the FSSP algorithm for digraph-based
P systems requires one additional step in Phase II.

Theorem 13. The synchronization time of the FSSP solution for digraph-based P sys-
tems is ecc(g) +2 - ecc(m) + 7.
Proof. This FSSP algorithm for digraph-based P systems requires four additional over-
head steps than the FSSP algorithm for tree-based P systems. Three of these four over-
head steps are described in Remark 12 and the remaining overhead step is mentioned in
Section 4.3. O
We end this section with a comment regarding improving the communication require-
ments of our FSSP solution. Currently, there may be an exponential number of broadcast
objects generated since a given cell currently receives a copy of the counter from every
possible shortest path from the middle cell. We can reduce number of broadcasted coun-
ters from an exponential to a polynomial as follows. Assume that, a counter, sent or
forwarded from a cell, is annotated with the cell’s ID. In Phase II, if a cell receives
counter from its BFS tree neighbor (from a BFS tree child for cells on the path from the
general to the middle cell, otherwise from its original BFS tree parent), then it broad-
casts the reduced-by-one counter, now annotated with its own ID, to all its neighbors.
The total number of steps of this revised algorithm would still be the same as given in
Theorem 13.

4.4 Empirical results

We also tested the improvement in running times over our previous FSSP algorithm on
digraph-based P systems. The rate of improvement drops off as the number of edges
increase over n — 1, the size of trees of order n. But for several sparse digraph structured
P systems the improvement is still worthwhile.

We did two tests suites; one for relatively small digraphs (illustrated in Figure 7) and
one for larger digraphs as shown in Table 5. The graphs used in our empirical tests were
generated using NetworkX [8].

21

For the statistics given in Table 5, we first generated connected random graphs of
order n and size m. We then averaged over all possible locations for the general node.
To model the parallel nature of P systems, we needed to generate a random BFS tree
originating at the general. This was created by first performing a BFS from the general to
constructing the BFS dag then randomly picking (for each non-general node) one parent
within the dag structure as the parent for the BF'S tree. The code for constructing a
BFS tree from a dag structure is displayed in Figure 8.

For this BF'S tree, with e denoting the eccentricity of the general and r denoting the
radius of the BFS tree, the “average gain” is the average difference of 3e — (e 4 2r) and
the “average % gain” is the average of the (3¢ — (e+2r))/(3e) values. From our empirical
results, we can observe that the radius of the BFS spanning trees seems to be close to
the actual radius of the given virtual communication graphs.

For the statistics given in the three dimensional plots of Figure 7 (generated using
Gnuplot [20]), we generated 100 random connected (n, m)-graphs, for each order n, 20 <
n < 40, and size m = (n — 1) + 2k, where 0 < k < 20. Note, the integer value of
2k represents the number of edges added to a tree. We then averaged over all possible
general starting positions. The vertical axis is the average percentage speedup of our new
algorithm over our previous synchronization algorithm. One can also observe from this
plot, at least 20% improvements (i.e. reduction in number of steps needed to synchronize),
is maintained for £ = 0 (i.e. the graph is a tree). However, as the graphs become less
sparse, the expected improvement drops to near zero, when as few as 40 edges are added
to the trees. In general, for fixed k, the expected improvement in performance, for
(n,n + k) digraphs slightly increases as n increases. However, for fixed n, the expected
improvement in performance drops drastically as k increases.

25

20
%speedup +
15 1%

Figure 7: Discrete 3-dimensional plot of expected synchronization improvements for a
small range of random connected (n, m)-graph structures, with m = (n — 1) + k edges.

22

Table 5: Statistics for reduction in number of steps needed to synchronize on a few
random (n, m)-graphs.

graph |avg tree|average average graph |avg tree|average|average
n | m |radius| radius | gain |gain % || n | m |radius| radius | gain |gain %

100/100| 15 15.68 | 16.7 | 23.16 || 700 | 700 | 35 | 38.68 | 25.58 | 16.56
100|110 9 1147 | 3.14 | 802 || 700|710 | 23 | 29.55 | 10.09 | 9.72
100(120| 7 8.97 1.6 5.45 || 700|720 23 | 26.59 | 839 | 9.08
100(130| 7 8.13 1.0 3.86 || 700|730 | 21 24.69 | 7.70 | 9.00
100(140| 6 7.33 0.72 3.12 || 700 | 740 | 20 | 25.11 | 7.50 | 8.66
200(200{ 20 | 20.73 | 17.91 | 20.10 || 800 | 800 | 40 | 42.66 | 26.93 | 15.99
200(210| 16 19.12 | 5.08 7.81 || 800|810 | 28 | 32.50 | 13.08 | 11.16
200(220f 13 15.74 3.9 7.34 || 800|820 29 | 3391 | 9.13 7.91
200(230f 9 11.24 | 224 | 6.04 || 800|830 | 23 | 26.36 | 8.06 | 8.84
200(240(9 1141 | 2.13 5.68 || 800|840 | 20 | 25.19 | 7.80 | 8.93
300(300{ 25 | 25.00 | 22.32 | 20.57 [{ 900|900 | 53 | 60.73 | 25.92 | 11.72
300310 17 1895 | 7.95 | 11.56] 900 910 | 35 | 39.23 | 12.94 | 9.44
300320 16 18.61 | 829 | 12.14 || 900|920 | 24 | 30.37 | 7.44 7.27
300330 12 15.0 3.37 | 6.73 |]900 {930 | 25 | 29.23 | T7.42 7.50
300(340 12 14.03 | 2.46 5.37 11900940 | 21 2490 | 5.74 | 6.88
4001400| 24 | 24.56 | 24.10 | 21.94 [/1000|1000| 60 | 66.96 | 26.72 | 11.09
400(410| 22 | 24.79 | 7.73 8.99 |[1000{1010f 33 | 37.43 | 20.27 | 14.20
400({420| 19 | 2191 | 7.12 9.31 ||1000{1020] 26 | 31.19 | 8.64 | 8.11
4001430 15 17.85 | 2.78 | 4.81 ||1000{1030f 25 | 29.63 | 7.87 | 7.81
400|440 13 15.86 | 2.29 | 4.48 |[[1000{1040| 26 | 30.32 | 11.41 | 10.55
500(500{ 28 | 29.14 | 23.30 | 19.04 [{1000{1000| 46 | 48.45 | 26.58 | 14.35
500(510f 24 | 27.28 | 9.68 | 10.04 |{1000{1010| 31 34.77 | 20.07 | 14.93
500(520{ 19 | 23.17 | 8.72 | 10.56 [|1000{1020| 28 | 32.98 | 11.91 | 10.19
200(530(16 19.87 | 5.68 8.34 |[1000{1030(24 | 29.30 | 9.23 | 9.07
500(540| 16 19.25 | 5.70 8.60 [|1000{1040f 23 | 27.62 | 6.66 7.17
600(600| 28 | 30.99 | 22.35 | 17.66 ||2000{2000| 76 | 76.07 | 85.98 | 24.07
600(610| 25 | 28.78 | 14.63 | 13.51 ||2000{2010| 55 | 61.33 | 30.50 | 13.27
600(620| 22 | 24.965 | 5.39 6.49 []/2000/2020{ 39 | 44.73 | 18.55 | 11.45
600(630| 19 | 22.065 | 5.72 7.64 1/2000/2030| 33 | 42.11 | 11.21 | 7.83
600[640{ 17 | 20.32 | 4.15 6.18 []/20002040| 32 | 39.78 | 13.68 | 9.78

23

#!/usr/bin/python

import networkx as nx
import random, Queue

def bfsdag(G, g):
" Computes bfs dag for graph G and starting node g "

n = G.order()
pred = [set() for i in range(n)]
dist = [-1]*n

dist[g] = @
g = Queue.Queue()
g.put(g)

while not g.empty():
cParent = g.get()
for nextChild in G[cParent]:
if dist[nextChild] < @:
pred[nextChild].add(cParent)
dist[nextChild] = dist[cParent]+1
q.put(nextChild)
elif dist[nextChild] == dist[cParent]+1:
pred[nextChild].add(cParent)

return (pred, dist)

def virtualBFS(G, g):
" Computes random bfs virtual tree for graph G and starting node g "

pred,dist = bfsdag(G,qg)
T=nx.empty_graph(G.order(),create_using=nx.Graph())
for v in range(n):
if v==g: continue
rP = random.randint(@, len(pred[v])-1)
T.add_edge(v, list(pred[v]) [rP])
return T

Figure 8: Python code for generating a BFS dag from a given graph and constructing a
BFS tree from the BFS dag.

24

5 Conclusions and future works

In this paper, we explicitly presented an improved solution to the FSSP for tree-based
P systems. We improved our previous FSP algorithm [5] by allowing the general to
delegate a more central cell in the tree structure, as an alternative to itself, to send
the final “firing” command. This procedure for trees-based P systems was extended to
digraph-based P systems. Here we use a virtual spanning BF'S tree (rooted at the general)
in the digraph and use our tree-based middle-cell algorithm for that tree to improve the
synchronization time. Alternatively, we would like to develop a way to compute a center
of an arbitrary graph since the radius of the graph may be less than the radius of a
particular BFS spanning tree. Thus this future work may possibly provide even more
guaranteed improvements in synchronization time.

We summarize our work as follows. With e being the eccentricity of the general and
r denoting the radius of the graph, where ¢/2 < r < e, we note the radius 7’ of the
spanning BFS tree satisfies /2 < r <1’ < e. Thus, we have the following results:

e [f the membrane structure of a considered P system is a tree, then synchronization
time is e 4+ 2r + 3.

e [f the membrane structure of a considered P system is a digraph, then synchroniza-
tiontimetise+2r+7<t<3e+47.

Our empirical work shows that the radius of the BFS spanning tree is often as small
as the radius of its host graph and we expect, more often than not, the synchronization
time to be closer to e + 2r 4+ 7 than to 3e + 7 for arbitrary digraph-based P systems.

Finally, we mention a couple open problems for the future. We would like a theoretical
proof based on properties of random trees of why it seems that the our gain in performance
is independent of the order of the trees considered. The current FSSP solution is designed
for digraph-based P systems with duplez channels. Another remaining open problem is
to obtain an efficient FSSP solution that synchronizes strongly connected digraphs using
simplex channels.

Acknowledgments

The authors wish to thank Ionut-Mihai Niculescu for providing us with some early empir-
ical statistics on random graphs and to acknowledge the University of Auckland FRDF
grant 9843/3626216 to assist our research.

References

[1] A. Alhazov, M. Margenstern, and S. Verlan. Fast synchronization in P systems. In
D. W. Corne, P. Frisco, G. Paun, G. Rozenberg, and A. Salomaa, editors, Workshop
on Membrane Computing, volume 5391 of Lecture Notes in Computer Science, pages
118-128. Springer, 2008.

25

2]

3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Balzer. An 8-state minimal time solution to the firing squad synchronization
problem. Information and Control, 10(1):22-42, 1967.

F. Bernardini, M. Gheorghe, M. Margenstern, and S. Verlan. How to synchronize the
activity of all components of a P system? Int. J. Found. Comput. Sci., 19(5):1183~
1198, 2008.

A. Berthiaume, T. Bittner, L. Perkovic, A. Settle, and J. Simon. Bounding the firing
synchronization problem on a ring. Theor. Comput. Sci., 320(2-3):213-228, 2004.

M. J. Dinneen, Y.-B. Kim, and R. Nicolescu. Faster synchronization in P systems.
International Journal of Natural Computing, pages 1-15, 2011.

E. Goto. A minimal time solution of the firing squad problem. Course notes for
Applied Mathematics 298, pages 52-59, Harvard University, 1962.

J. J. Grefenstette. Network structure and the firing squad synchronization problem.
J. Comput. Syst. Sci., 26(1):139-152, 1983.

A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dy-
namics, and function using NetworkX. In Proceedings of the 7th Python in Science
Conference (SciPy2008), pages 11-15, Pasadena, CA USA, Aug 2008.

M. Ionescu and D. Sburlan. On P systems with promoters/inhibitors. J. UCS,
10(5):581-599, 2004.

K. Kobayashi. The firing squad synchronization problem for a class of polyautomata
networks. J. Comput. Syst. Sci., 17(3):300-318, 1978.

E. F. Moore. The firing squad synchronization problem. In E. Moore, editor, Se-
quential Machines, Selected Papers, pages 213-214. Addison-Wesley, Reading MA.,
1964.

F. R. Moore and G. G. Langdon. A generalized firing squad problem. Information
and Control, 12(3):212-220, 1968.

Y. Nishitani and N. Honda. The firing squad synchronization problem for graphs.
Theor. Comput. Sci., 14:39-61, 1981.

G. Paun. Introduction to membrane computing. In G. Ciobanu, M. J. Pérez-Jiménez,
and G. Paun, editors, Applications of Membrane Computing, Natural Computing
Series, pages 1-42. Springer-Verlag, 2006.

H. Schmid and T. Worsch. The firing squad synchronization problem with many
generals for one-dimensional CA. In J.-J. Lévy, E. W. Mayr, and J. C. Mitchell,
editors, IFIP TCS, pages 111-124. Kluwer, 2004.

W. A. Stein et al. Sage Mathematics Software (Version 4.6). The Sage Development
Team, 2010. http://www.sagemath.org.

26

[17] H. Umeo, N. Kamikawa, K. Nishioka, and S. Akiguchi. Generalized firing squad
synchronization protocols for one-dimensional cellular automata—a survey. Acta
Physica Polonica B Proceedings Supplement, 3(2):267-289, 2010.

[18] A. Waksman. An optimum solution to the firing squad synchronization problem.
Information and Control, 9(1):66-78, 1966.

[19] E. W. Weisstein. Priifer code, from MathWorld—a Wolfram web resource. http:
//mathworld.wolfram.com/PrueferCode.html, [Online; accessed 8-April-2011].

[20] T. Williams, C. Kelley, and many others. Gnuplot 4.2: an interactive plotting
program. http://gnuplot.sourceforge.net/, March 2009.

27

