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Abstract

We present an improved solution for the Firing Squad Synchronization Problem
(FSSP) for digraph-based P systems. We improve our previous FSSP algorithm
by allowing the general to delegate a more central cell in the P system to send the
final command to synchronize. With e being the eccentricity of the general and
r denoting the radius of the underlying digraph, our new algorithm guarantees to
synchronize all cells of the system, between e+ 2r+ 3 steps (for all trees structures
and many digraphs) and up to 3e + 7 steps, in the worst case for any digraph.
Empirical results show our new algorithm for tree-based P systems yields at least
20% reduction in the number of steps needed to synchronize over the previous
best-known algorithm.

Keywords: cellular automata, firing squad synchronization, P systems.

1 Introduction

The Firing Squad Synchronization Problem (FSSP) is one of the best studied problems
for cellular automata, originally proposed by Myhill in 1957 [11]. The initial problem
involves finding a cellular automaton, such that after the “firing” order is given by the
general, after some finite time, all the cells in a line enter a designated firing state,
simultaneously and for the first time. For an array of length n with the general at one
end, minimal time (2n − 2) solutions was presented by Goto [6], Waksman [18] and
Balzer [2]. Several variations of the FSSP have been proposed and studied [12, 15]. The
FSSP have been proposed and studied for variety of structures [10, 13, 7, 4].

In the field of membrane computing, deterministic solutions to the FSSP for a tree-
based P system have been presented by Bernardini et al. [3] and Alhazov et al. [1]. For
digraph-based P systems, we presented a deterministic solution in [5] for the generalized
FSSP (in which the general is located at an arbitrary cell of the digraph), which runs in
3e+ 11 steps, where e is the eccentricity of the general.

In this paper, we present an improved FSSP solution for tree-based P systems, where
the key improvement comes in having the general delegate a more central cell, as an

1



alternative to itself, to broadcast the final “firing” order, to enter the firing state. We
also give details on how to use this approach to improve the synchronization time of
digraph-based P systems.

It is well known in cellular automata [17], where “signals” with propagating speeds
1/1 and 1/3 are used to find a half point of one-dimensional arrays; the signal with speed
1/1 is reflected and meets the signal with speed 1/3 at half point. We generalize the idea
used in cellular automata to find the center of a tree that defines the membrane structure
of a P system.

Let r denote the radius of the underlying graph of a digraph, where e/2 ≤ r ≤ e. Our
new algorithm is guaranteed to synchronize in t steps, where e+ 2r+ 3 ≤ t ≤ 3e+ 7. In
fact, the lower bound is achieved, for all digraphs that are trees. In addition to our FSSP
solution, determining a center cell has many potential real world applications, such as
facility location problems and broadcasting.

The rest of the paper is organized as follows. In Section 2, we give some basic prelimi-
nary definitions including our P system model and formally introduce the synchronization
problem that we solve. In Section 3, we provide a detailed P system specification for
solving the FSSP for tree-based P systems. In Section 4, we provide a detailed P system
specification for solving the FSSP for digraph-based P systems. Finally, in Section 5, we
summarize our results and conclude with some open problems.

2 Preliminary

We assume that the reader is familiar with the basic terminology and notations, such
as relations, graphs, nodes (vertices), edges, directed graphs (digraphs), directed acyclic
graphs (dag), arcs, alphabets, strings and multisets.

For a digraph (X, δ), recall that Neighbor(x) = δ(x)∪δ−1(x). The relation Neighbor

is always symmetric and defines a graph structure, which will be here called the virtual
communication graph defined by δ.

A special node g ∈ X is designated as the general. For a given general g, we define
the depth of a node x, depthg(x) ∈ N, as the length of a shortest path between g and
x, over the Neighbor relation. Recall that the eccentricity of a node x ∈ X, ecc(x),
as the maximum length of a shortest path between x and any other node. We note
ecc(g) = max{depthg(x) | x ∈ X}.

Recall that a (free or unrooted) tree has either one or two center nodes—any node
with minimum eccentricity. We denote a tree T = (X,A), rooted at node g ∈ X by Tg.
The height of a node x in Tg is denoted by heightg(x). For a tree Tg, we define the
middle node to be the center node closest to g of the underlying tree T of Tg. Let Tg(x)
denote the subtree rooted at node x in Tg.

Given nodes x and y, if y ∈ Neighbor(x) and depthg(y) = depthg(x) + 1, then
x is a predecessor of y and y is a successor of x. Similarly, a node z is a peer of x,
if z ∈ Neighbor(x) and depthg(z) = depthg(x). Note that, for node x, the set of
peers and the set of successors are disjoint with respect to g. For node x, Predg(x) =
{y | y is a predecessor of x}, Peerg(x) = {y | y is a peer of x} and Succg(x) = {y |
y is a successor of x}.
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Definition 1. A P system of order n with duplex channels and cell states is a system
Π = (O,K, δ), where:

1. O is a finite non-empty alphabet of objects ;

2. K = {σ1, σ2, . . . , σn} is a finite set of cells ;

3. δ is an irreflexive binary relation on K, which represents a set of structural arcs
between cells, with duplex communication capabilities.

Each cell, σi ∈ K, has the initial configuration σi = (Qi, si0, wi0, Ri), and the current
configuration σi = (Qi, si, wi, Ri), where:

• Qi is a finite set of states ;

• si0 ∈ Qi is the initial state; si ∈ Qi is the current state;

• wi0 ∈ O∗ is the initial content ; wi ∈ O∗ is the current content ; note that, for o ∈ O,
|wi|o denotes the multiplicity of object o in the multiset wi;

• Ri is a finite ordered set of multiset rewriting rules (with promoters) of the form:
s x →α s

′ x′ (u)β | z, where s, s′ ∈ Q, x, x′, u ∈ O∗, z ∈ O∗ is the promoter [9],
α ∈ {min, max} and β ∈ {↑, ↓, l}. For convenience, we also allow a rule to contain
zero or more instances of (u)β. For example, if u = λ, i.e. the empty multiset of
objects, this rule can be abbreviated as s x→α s

′ x′.

A cell evolves by applying one or more rules, which can change its content and state
and can send objects to its neighbors. For a cell σi = (Qi, si, wi, Ri), a rule s x →α

s′ x′ (u)β | z ∈ Ri is applicable, if s = si, x ⊆ wi, z ⊆ wi, δ(i) 6= ∅ for β =↓, δ−1(i) 6= ∅
for β =↑ and δ(i) ∪ δ−1(i) 6= ∅ for β =l.

The application of a rule transforms the current state s to the target state s′ transforms
multiset x to x′ and sends multiset u as specified by the transfer operator β (as further
described below). Note that, multisets x′ and u will not be visible to other applicable
rules in this same step, but they will be visible after all the applicable rules have been
applied.

The rules are applied in the weak priority order [14], i.e. (1) higher priority applicable
rules are applied before lower priority applicable rules, and (2) a lower priority applicable
rule is applied only if it indicates the same target state as the previously applied rules.

The rewriting operator α = max indicates that an applicable rewriting rule of Ri is
applied as many times as possible. The rewriting operator α = min indicates that an
applicable rewriting rule of Ri is applied once. If the right-hand side of a rule contains
(u)β, β ∈ {↑, ↓, l}, then for each application of this rule, a copy of multiset u is replicated
and sent to each cell σj ∈ δ−1(i) if β =↑, σj ∈ δ(i) if β =↓ and σj ∈ δ(i)∪ δ−1(i) if β =l.

All applicable rules are applied in one step. An execution of a P system is a sequence
of steps, that starts from the initial configuration. An execution halts if no further rules
are applicable for all cells.
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Problem 2. We formulate the FSSP to P systems as follows:
Input: An integer n ≥ 2 and an integer g, 1 ≤ g ≤ n.
Output: A class C of P systems that satisfies the following two conditions for any weakly
connected digraph (X,A), isomorphic to the structure of a member of C with n = |X|
cells.

1. Cell σg is the only cell with an applicable rule (i.e. σg can evolve) from its initial
configuration.

2. There exists state sf ∈ Qi, for all σi ∈ K, such that during the last step of the
system’s execution, all cells enter state sf , simultaneously and for the first time.

We want to find a general-purpose solution to the FSSP that synchronizes in the fewest
number of steps, as a function of some of the natural structural properties of a weakly-
connected digraph (X,A), such as the eccentricity of node g ∈ X in the communication
graph defined by A.

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

(a) (b)

Figure 1: (a) a tree with the center σ5; (b) a tree with two centers σ3 and σ5, σ3 being
the middle cell.

3 Deterministic FSSP solution for rooted trees

We first solve Problem 2 for the subclass of weakly-connected digraphs (X,A), where the
underlying graph of (X,A) is a tree. This section is organized as follow. In Section 3.1,
we present the P system for solving the FSSP for trees rooted at the general. In order to
help the comprehension of our FSSP algorithm, we provide a trace of the FSSP algorithm
in Table 1. Phase I of our FSSP algorithm is described in Section 3.2, which finds the
middle cell (i.e. a center of a tree, closest to the root) and determines the height of the
middle cell. Phase II of our FSSP algorithm is described in Section 3.3, which broadcasts
the “command” that prompts all cells to enter the firing state. Finally, in Section 3.4,
we present some empirical results that show improvements of our algorithm over the
previously best-known FSSP algorithms for tree-based P systems [1, 5].
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3.1 P systems for solving the FSSP for rooted trees

Given a tree (X,A) and g ∈ X, our FSSP algorithm is implemented using the P system
Π = (O,K, δ) of order n = |X|, where:

1. O = {a, b, c, e, h, o, v, w}.
2. K = {σ1, σ2, . . . , σn}.
3. δ is a rooted tree, with an underlying graph isomorphic to (X,A), where the general
σg ∈ K (the root of δ) corresponds to g ∈ X.

All cells have the same set of states, the same set of rules and start at the same
initial quiescent state s0, but with different initial contents. The first output condition
of Problem 2 will be satisfied by our chosen set of rules.

For each cell σi ∈ K, its initial configuration is σi = (Q, s0, wi0, R) and its final
configuration at the end of the execution is σi = (Q, s6, ∅, R), where:

• Q = {s0, s1, s2, s3, s4, s5, s6}, where s0 is the initial quiescent state and s6 is the
firing state.

• wi0 =

{
{o} if σi = σg,
∅ if σi 6= σg.

• R is defined by the following rulesets.

Rules used in Phase I: all the rules in states s0, s1, s2, s3 and Rule 4.6 in state
s4.

Rules used in Phase II: all the rules in states s4 and s5, except Rule 4.6.

0. Rules in state s0:

1. s0 o→max s1 ahou (b)↓

2. s0 b→max s1 ah (e)↑ (b)↓

3. s0 b→max s4 a (ce)↑

1. Rules in state s1:

1. s1 a→max s2 ah

2. Rules in state s2:

1. s2 aaa→max s4 a

2. s2 aa→max s3 a

3. s2 ceu→max s2

4. s2 ce→max s2

5. s2 aee→max s2 aeeh

6. s2 aeooo→max s2 aa (o)↓

7. s2 aeou→max s2 aa (o)↓

8. s2 aeo→max s2 aehoo

9. s2 ao→max s2 aaa

10. s2 ae→max s2 aeh

11. s2 a→max s2 aa (c)↑

12. s2 u→max s2

3. Rules in state s3:

1. s3 a→max s4 a

2. s3 h→max s4

4. Rules in state s4:

1. s4 hh→max s5 w (v)l

2. s4 avv →max s5 aw (v)l

3. s4 avv →max s5 aw

4. s4 av →max s6

5. s4 v →max s5 w (v)l

6. s4 o→max s4

5. Rules in state s5:

1. s5 aww →max s5 aw

2. s5 aw →max s6

3. s5 v →max s6

4. s5 o→max s6
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Figure 2: Propagations of symbols b, c and o, in a tree with one center. The symbols c
and o meet at the middle cell σ5. Cells that have sent symbol c or o are shaded. The
propagation of symbol o to a shaded cell is omitted. In cell σj, j ∈ {1, 3}, |wj|o − 1
represents the number of steps since σj received symbol c from all of its children but one.
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Figure 3: Propagations of symbols b, c and o, in a tree with two centers. The symbols
c and o meet at the middle cell σ3. Cells that have sent symbol c or o are shaded. The
propagation of symbol o to a shaded cell is omitted. In cell σj, j ∈ {1, 3}, |wj|o − 1
represents the number of steps since σj received symbol c from all of its children but one.
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3.2 Phase I: Find the middle cell of rooted trees

In this phase, a breadth-first search (BFS) is performed from the root, which propagates
symbol b from the root to all other cells. When the symbol b from the BFS reaches a
leaf cell, symbol c is reflected back up the tree. Starting from the root, the search for
the middle cell is performed as described below, where symbol o represents the current
search pivot. Note that symbol o’s propagation speed is 1/3 of the propagation speed of
symbols b and c; intuitively, this ensures that o and c meet in the middle cell.

We provide a visual description of the propagations of symbols b, c and o in Figure 2
(for a tree with one center) and Figure 3 (for a tree with two centers).

Details of Phase I

Objective: The objective of Phase I is to find the middle cell, σm, and its height,
heightg(m).

Precondition: Phase I starts with the initial configuration of P system Π, described in
Section 3.1.

Postcondition: Phase I ends when σm enters state s4. At the end of Phase I, the
configuration of cell σi ∈ K is (Q, s4, wi, R), where |wi|a = 1; |wi|h = 2 · heightg(i), if
σi = σm.

Description: In Phase I, each cell starts in state s0, transits through states s1, s2, s3,
and ends in state s4; a cell in state s4 will ignore any symbol o that it may receive.

The behaviors of cells in this phase are described below.

• Propagation of symbol b: The root cell sends symbol b to all its children (Rule
0.1). An internal cell forwards the received symbol b to all its children (Rule 0.2)
After applying Rule 0.1 or 0.2, each of these non-leaf cells produces a copy of symbol
h in each step, until it receives symbol c from all its children (Rules 1.1, 2.5 and
2.10).

• Propagation of symbol c: If a leaf cell receives symbol b, then it sends symbol c
to its parent (Rule 0.3) and enters state s4 (the end state of Phase I). If a non-leaf
cell receives symbol c from all its children, then it sends symbol c to its parent
(Rule 2.11), consumes all copies of symbol h and enters state s4 (Rule 3.2).

Note, when a cell applies Rule 0.2 or 0.3, it sends one copy of symbol e up to its
parent. A copy of symbol e is consumed with a copy of symbol c by Rule 2.4. Hence,
|wi|e = k indicates the number of σi’s children that have not sent symbol c to σi.

• Propagation of symbol o: The root cell initially contains the symbol o. We
denote σj as the current cell that contains symbol o and has not entered state s4.

Assume, at step t, σj received symbol c from all but one subtree rooted at σv.
Starting from step t + 1, σj produces a copy of symbol o in each step, until it
receives symbol c from σv (Rule 2.8), That is, |wj|o − 1 indicates the number of
steps since σj received symbol c from all of its children except σv.
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If σj receives symbol c from σv by step t + 2, i.e. |wj|o ≤ 3, then σj is the middle
cell; σj keeps all copies of symbol h and enters state s4 (Rule 2.1). Otherwise, σj
sends a copy of symbol o to σv at step t + 3 (Rule 2.6 or 2.7); in the subsequent
steps, σj consumes all copies of symbol h and enters state s4 (Rules 2.2 and 3.2).
Note, using current setup, σj cannot send a symbol to a specific child; σj has to
send a copy of symbol o to all its children. However, all σj’s children, except σv,
would have entered state s4.

Proposition 3 indicates the step in which σm receives symbol c from all its children
and Proposition 4 indicates the number of steps needed to propagate symbol o from σg
to σm.

Proposition 3. Cell σm receives the symbol c from all its children by step heightg(g) +
heightg(m).
Proof. Cell σm is at distance heightg(g)− heightg(m) from σg, hence σm receives sym-
bol b in step heightg(g) − heightg(m). In the subtree rooted at σm, the propagations
of the symbol b from σm to its farthest leaf and the symbol c reflected from the leaf to
σm take 2 · heightg(m) steps. Thus, σm receives symbol c from all its children by step
heightg(g)− heightg(m) + 2 · heightg(m) = heightg(g) + heightg(m).

σm

σg

w

x

z

σiσ1 σ2 σk

(a) (b)

Tm(1) Tm(2)

Tm(k)

σm
1

v

Figure 4: (a) k subtrees of σm, Tm(1), Tm(2), . . . , Tm(k). (b) The structure of subtree
Tm(j), which contains σg.

Proposition 4. The propagation of the symbol o from σg to σm takes at most heightg(g)+
heightg(m) steps.
Proof. For a given tree Tg, rooted at σg, we construct a tree Tm, which re-roots Tg at σm.
Recall, Tm(i) denotes a subtree rooted at σi in Tm. Assume that σm has k ≥ 2 subtrees,
Tm(1), Tm(2), . . . , Tm(k), such that heightm(1) ≥ heightm(2) ≥ · · · ≥ heightm(k) and
heightm(1)− heightm(2) ≤ 1. Figure 4 (a) illustrates the subtrees of σm.

Assume Tm(i) is a subtree of σm, which contains σg. In Tm(i), let z be the height of
σg and x + w ≥ 0 be the distance between σg and σi. Figure 4 (b) illustrates the z, x
and w in Tm(i).

To prove Proposition 4, we determine the number of steps needed to propagate symbol
o from σg to σm. In Tm(i), let p be a path from σi to its farthest leaf and t be the number
of steps needed to propagate symbol o from σg to σm. Note, heightm(m) = heightg(m)
and x+ w + 1 = heightg(g)− heightg(m).
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• If σg is a part of path p, then z + x+ w + 1 = heightm(i) + 1 = heightm(m)− j,
j ≥ 0, and t = 2z + 3(x+ w + 1). Hence,

t = 2(z + x+ w + 1) + (x+ w + 1)

= 2(heightm(m)− j) + (heightg(g)− heightg(m))

= heightg(g) + heightg(m)− 2j

• If σg is not a part of p, then z + x + w + 1 < v + w + 1 = heightm(i) + 1 =
heightm(m)− j, j ≥ 0, and t = x+ 2v + 3(w + 1). Hence,

t = 2(v + w + 1) + (x+ w + 1)

= 2(heightm(m)− j) + (heightg(g)− heightg(m))

= heightg(g) + heightg(m)− 2j

Proposition 5. Phase I takes heightg(g) + heightg(m) + 2 steps.

Proof. From Propositions 3 and 4, symbols o and c meets in σm at step heightg(g) +
heightg(m). Cell σm enters state s4 by applying Rule 2.9 and 2.1, which takes two steps.
Thus, Phase I takes heightg(g) + heightg(m) + 2 steps.

3.3 Phase II: Determine the step to enter the firing state

Phase II begins immediately after Phase I. In Phase II, the middle cell broadcasts the
“firing” order, which prompts receiving cells to enter the firing state. In general, the
middle cell does not have direct communication channels to all cells. Thus, the firing
order has to be relayed through intermediate cells, which results in some cells receiving
the order before other cells. To ensure that all cells enter the firing state simultaneously,
each cell needs to determine the number of steps it needs to wait, until all other cells
receive the order.

The firing order is paired with a counter, which is initially set to the eccentricity of the
middle cell. Propagating an order from one cell to another decrements its current counter
by one. The current counter of the received order equals the number of remaining steps
before all other cells receive the order. Hence, each cell waits according to the current
counter, before it enters the firing state. Figure 5 illustrates the propagation of the firing
order.

Details of Phase II

Objective: The objective of Phase II is to determine the step to enter the firing state,
such that during the last step of Phase II, i.e. the system’s execution, all cells enter the
firing state, simultaneously and for the first time.

Precondition: Phase II starts with the postcondition of Phase I, described in Sec-
tion 3.2.
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Figure 5: Propagations of the firing order from the middle cell, σ5, where the counter is
represented by the multiplicity of symbol v. Cells that have propagated the order are
shaded.

Postcondition: Phase II ends when all cells enter the firing state s6. At the end of
Phase II, the configuration of cell σi ∈ K is (Q, s6, ∅, R).

Description: The behaviors of the middle cell σm and a non-middle cell, σi 6= σm, in
this phase are as follow. We also indicate which rules accomplish the described behaviors.

• We first describe the behavior of σm. For every two copies of symbol h, σm produces
one copy of symbol w and sends one copy of symbol v to all its neighbors (Rule
4.1). In the next sequence of steps, σm consumes one copy of symbol w (Rule 5.1).
If σm consumes all copies of symbol w, then σm enters the firing state (Rule 5.2).

• Next, we describe the behavior of σi 6= σm. Let ki ≥ 1 denote the multiplicity of
symbol v that σi receives for the first time. If ki = 1, then σi enters the firing state
(Rule 4.4). If ki ≥ 2, then σi consumes ki copies of symbol v, produces ki−1 copies
of symbol w and sends ki− 1 copies of symbol v to all its neighbors (Rules 4.2, 4.3
and 4.5); in each subsequent step, σi consumes one copy of symbol w (Rule 5.1)
and σi enters the firing state (Rule 5.2), after all copies of symbol w is consumed.
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Proposition 6. Cell σm produces heightg(m) copies of symbol w and sends heightg(m)
copies of symbol v to all is neighbors.

Proof. At the beginning of Phase II, σm contains 2 · heightg(m) copies of symbol h. As
described earlier, for every two copies of the symbol h that σm consumes, σm produces
one copy of symbol w and sends one copy of symbol v to all its neighbors.

Proposition 7. Cell σi receives k copies of symbol v at step t and sends k− 1 copies of
symbol v to all its neighbors at step t + 1, where k = heightg(m) − depthm(i) + 1 and
t = heightg(g) + heightg(m) + depthm(i) + 2.

Proof. Proof by induction on depthm(i) ≥ 1. First, σm sends heightg(m) copies of sym-
bol v to all its neighbors. Thus, each cell σi, at distance 1 from σm, receives heightg(m)
copies of symbol v. By Rules 4.3, 4.4, 4.7 and 4.8, σi consumes heightg(m) copies of
symbol v, produces heightg(m)−1 copies of symbol w and sends heightg(m)−1 copies
of symbol v to all its neighbors.

Assume that the induction hypothesis holds for each cell σj at distance depthm(j).
Consider cell σi, where depthm(i) = depthm(j) + 1. By the induction hypothesis, cell
σj ∈ Neighbor(i), sends heightg(m)− depthm(j) = heightg(m)− depthm(i) + 1 copies
of symbol v, such that σi receives heightg(m) − depthm(i) + 1 copies of symbol v. By
Rules 4.3, 4.4, 4.7 and 4.8, σi consumes heightg(m)− depthm(i) + 1 copies of symbol v,
produces heightg(m)−depthm(i) copies of symbol w and sends heightg(m)−depthm(i)
copies of symbol v to all its neighbors.

Proposition 8. Phase II takes heightg(m) + 1 steps.

Proof. Each cell σi receives heightg(m) − depthm(i) + 1 copies of symbol v at step
heightg(g) + heightg(m) + depthm(i) + 2.

Consider σj, where depthm(j) = heightg(m). Cell σj receives one copy of symbol v.
As described earlier, if a cell receives one copy of symbol v, then it enters the firing state
at the next step. Hence, σj enters the firing state at step heightg(g)+2 ·heightg(m)+3.

Consider σk, where depthm(k) < heightg(m). Cell σk contains heightg(m) −
depthm(i) copies of symbol w at step heightg(g) + heightg(m) + depthm(i) + 3. Since
σk consumes one copy of symbol w in each step, σk will take heightg(m) − depthm(i)
steps to consume all copies of symbol w. Hence, σj enters the firing state at step
(heightg(g)+heightg(m)+depthm(i)+3)+(heightg(m)−depthm(i)) = heightg(g)+
2 · heightg(m) + 3.

Phase I ends at step heightg(g) + heightg(m) + 2 and all cells enter the firing state
at step heightg(g) + 2 · heightg(m) + 3. Thus, Phase II takes heightg(m) + 1 steps.

Theorem 9. The synchronization time of our FSSP solution, for a P system with un-
derlying structure of a tree, is heightg(g) + 2 · heightg(m) + 3.

Proof. The result is obtained by summing the individual running times of Phases I and
II, as given by Propositions 5 and 8: (heightg(g)+heightg(m)+2)+(heightg(m)+1) =
heightg(g) + 2 · heightg(m) + 3.
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Table 2: Statistics for improvement on many random trees of various (smaller) orders.

average average average average average %
n height radius 3·height height+2·radius gain

100 22.12 14.49 66.36 51.1 23.00

200 31.91 21.35 95.73 74.61 22.06

300 41.13 26.79 123.39 94.71 23.24

400 47.86 31.3 143.58 110.46 23.07

500 51.52 33.77 154.56 119.06 22.97

600 57.16 37.76 171.48 132.68 22.63

700 63.43 42.19 190.29 147.81 22.32

800 68.12 45.37 204.36 158.86 22.26

900 72.46 47.83 217.38 168.12 22.66

1000 79.94 52.21 239.82 184.36 23.13

3.4 Empirical results

We tested the improvement in running times over the previously best-known FSSP al-
gorithms that synchronize tree-based P systems [1, 5]. We wanted to see how our new
running time, that is proportional to e+ 2r, compares with the earlier value of 3e, where
e is the eccentricity of the general (which is also the height of the tree, rooted at the gen-
eral) and r is the radius of a tree. We did two tests suites; one for relatively small trees
and one for larger trees as shown in Tables 2 and 3, respectively. In both cases, our em-
pirical results show at least 20% reduction in the number of steps needed to synchronize,
which we believe is significant.

For the statistics given in Table 2, we generated random (free) trees by starting from
a single node and repeatedly add new leaf nodes to the partially generated tree. We
then averaged over all possible locations for the general node. The “average gain” is the
average difference 3e− (e+2r) and the “average % gain” is improvement as a percentage
speedup over 3e.

For the statistics given in Table 3, we generated random labeled trees using the well-
known Prüfer correspondence [19] (using the implementation given in Sage [16]). In
these sets of trees, the first indexed vertex is randomly placed, unlike the random trees
generated in our first test suite. Hence, for this test suite, we did not need to average
over all possible general node locations per tree. Due to the uniform randomness of the
labeled tree generator, we assumed the general is placed at the node labeled by 1. Each
row in Table 3 is based on 100 random trees of that given order.

We have run both test suites several times and the results are consistent with these
two tables. Hence, we are pretty confident in the practical speedup that our new syn-
chronization algorithm provides.
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Table 3: Statistics for improvement on random trees of various (larger) orders.

average average average %
n diameter radius eccentricity gain gain

1000 21 11 16.27 10.54 21.59

2000 32 16 23.45 14.90 21.18

3000 26 13 19.97 13.95 23.27

4000 30 15 22.65 15.30 22.51

5000 35 18 26.51 17.01 21.40

6000 32 16 23.82 15.64 21.89

7000 34 17 25.29 16.58 21.85

8000 34 17 25.01 16.03 21.36

9000 40 20 28.37 16.74 19.67

10000 37 19 27.16 16.32 20.03

10000 38 19 27.36 16.72 20.37

20000 37 19 28.23 18.47 21.80

30000 43 22 31.74 19.49 20.46

40000 43 22 31.55 19.09 20.18

50000 42 21 30.81 19.63 21.23

60000 44 22 32.50 21.00 21.54

70000 48 24 34.55 21.09 20.35

80000 45 23 33.08 20.17 20.32

90000 50 25 36.00 22.01 20.37

100000 47 24 34.15 20.29 19.81

4 FSSP solution for digraphs

The key idea of FSSP solution for digraphs is as follows. For a given digraph, perform a
BFS from the general on the communication graph and construct a virtual spanning tree,
implemented via pointer symbols, not by changing existing arcs. If a node finds multiple
parents in the BFS, then one of the parents is chosen as its spanning tree parent. In
Figure 6, (a) illustrates a digraph G, (b) illustrates the underlying graph of G and (c)
illustrates a spanning tree of the underlying graph of G, rooted at σ1.

Using the spanning tree constructed from the BFS, the FSSP algorithm described in
Section 3, is applied to achieve the synchronization.

We present the details of P system for solving the FSSP (Problem 2) for digraphs in
Section 4.1. A trace of the FSSP algorithm for digraphs is given in Table 4. The details
Phases I and II of this FSSP algorithm are described in Sections 4.2 and 4.3, respec-
tively. Finally, in Section 4.4, we present some empirical results that illustrates expected
improvements of our new algorithm over our previous FSSP algorithm for digraphs [5].
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Figure 6: (a) A digraph G. (b) The underlying graph of G. (c) A spanning tree of the
underlying graph of G, rooted at σ1.

4.1 P systems for solving the FSSP for digraphs

Given a digraph (X,A) and g ∈ X, our FSSP algorithm is implemented using the
P system Π′ = (O,K, δ) of order n = |X|, where:

1. O = {a, h, o, v, w, x, z} ∪ {ιk, bk, ck, ek, pk | 1 ≤ k ≤ n}.

2. K = {σ1, σ2, . . . , σn}.

3. δ is a digraph, isomorphic to (X,A), where the general σg ∈ K corresponds to
g ∈ X.

All cells have the same set of states and start at the same initial quiescent state s0, but
with different initial contents and set of rules. The first output condition of Problem 2
will be satisfied by our chosen set of rules.

In this FSSP solution, we extend the basic P system framework, described Section 2.
Specifically, we assume that each cell σi ∈ K has a unique cell ID symbol ιi, which will
be used as an immutable promoter and we allow rules with a simple form of complex
symbols.

To explain these additional features, consider rules 3.10 and 3.11 from the ruleset R,
listed below. In this ruleset, symbols i and j are free variables (which in our case happen
to match cell IDs). Symbols ei and ej are complex symbols. Rule 3.11 deletes all existing
ej symbols, regardless of the actual values matched by the free variable j. However, the
preceding Rule 3.10 fires only for symbols ei, with indices i matching the local cell ID,
as required by the right-hand side promoter ιi. Together, Rules 3.10 and 3.11, applied
in a weak priority scheme, keep all symbols ei, with indices i matching the local cell ID,
and delete all other symbols ej.

For each cell σi ∈ K, its initial configuration is σi = (Q, s0, wi0, R) and its final
configuration at the end of the execution is σi = (Q, s7, {ιi}, R), where:

• Q = {s0, s1, s2, s3, s4, s5, s6, s7}, where s0 is the initial quiescent state and s7 is the
firing state.

• wi0 =

{
{ιgo} if σi = σg,
{ιi} if σi 6= σg.
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• R is defined by the following rulesets.

Rules used in Phase I: all the rules in states s0, s1, s2, s3, s4 and Rules 5.5 and
5.6 in state s5.

Rules used in Phase II: all the rules in states s5 and s6, except Rules 5.5 and
5.6.

0. Rules for cells in state s0:

1. s0 o→min s1 ao (xbi)l | ιi
2. s0 x→min s1 a (xbi)l | ιi
3. s0 bj →max s1 pj

1. Rules for cells in state s1:

1. s1 apj →max s2 apj (ej)l

2. s1 a→max s2 a

3. s1 pj →max s2

2. Rules for cells in state s2:

1. s2 a→max s3 a

2. s2 bj →max s3

3. s2 x→max s3

3. Rules for cells in state s3:

1. s3 aaa→max s5 a

2. s3 aa→max s4 a

3. s3 ciei →max s3 | ιi
4. s3 aoooei →max s3 aa (o)l | ιi
5. s3 aoeiei →max s3 ahoeiei | ιi
6. s3 aoei →max s3 ahooei | ιi
7. s3 ao→max s3 aaa

8. s3 aei →max s3 aeih | ιi
9. s3 apj →max s3 aa (cj)l

10. s3 ei →max s3 ei | ιi
11. s3 ej →max s3

12. s3 pj →max s4

13. s3 pj →max s5

4. Rules for cells in state s4:

1. s4 a→max s5

2. s4 h→max s5

3. s4 cj →max s5

5. Rules for cells in state s5:

1. s5 a→max s6 a (z)l

2. s5 hh→max s6 w (v)l

3. s5 zv →max s6 a (z)l

4. s5 v →max s6 w (v)l

5. s5 o→max s5

6. s5 cj →max s5

6. Rules for cells in state s6:

1. s6 aw →max s6 a

2. s6 a→max s7

3. s6 z →max s7

4. s6 v →max s7
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4.2 Phase I: Find the middle cell of a BFS spanning tree

For a given digraph-based P system, a (virtual) spanning tree is constructed by a standard
BFS originated from the general, where the tree parent of each cell is one of its BFS
parents (randomly chosen). Each cell keeps the track of its spanning tree parent and this
is achieved by the use of cell IDs (unique identifier ID), e.g., i is the cell ID of σi.

Details of Phase I

Objective: The objective of Phase I is to find the middle cell, σm, and its height,
heightg(m).

Precondition: Phase I starts with the initial configuration of P system Π, described in
Section 4.1.

Postcondition: Phase I ends when σm enters state s5. At the end of Phase I, the
configuration of cell σi ∈ K is (Q, s5, wi, R), where |wi|ιi = 1; |wi|a = 1 and |wi|h =
2 · heightg(i), if σi = σm.

Description: We describe below the details of the BFS spanning tree construction and
the propagation of the reflected symbol in the BFS tree. The symbol o, starting from
the general, propagates from a tree parent to one of its children, as described in the
FSSP solution for tree-based P systems (Section 3.2). Hence, the details of symbol o
propagation are not given here.

• The details of the BFS spanning tree construction:

A BFS starts from the general. When the search reaches cell σi, σi will send a copy
of symbol bi to all its neighbors (Rule 0.1 or 0.2).

From the BFS, cell σi receives a copy of symbol bj from each σj ∈ Predg(i), where
σj is a BFS dag parent of σi. Cell σi temporarily stores all of its BFS dag parents
by transforming each received symbol bj to symbol pj (Rule 0.3). Note, σi will also
receive a copy of symbol bk from each σk ∈ Peerg(i) ∪ Succg(i); however, σi will
discard each received symbol bk.

Each cell selects one of its BFS dag parents as its tree parent. If cell σi has chosen
σj as its tree parent, then σi will discards each pk, where σk ∈ Predg(i)\{σj} (Rule
1.3). Additionally, σi will send a copy of symbol ej to all its neighbors, which will
be discarded by all σi’s neighbors, except σj (Rule 1.1).

Hence, in each cell σi, the multiplicity of symbol ei will indicate the number of
σi’s tree children and symbol pj will indicate that σj is the tree parent of σi; also,
symbol pj will later be used to propagate the reflected symbol back up the tree.

• The details of reflected symbol propagation:

To replicate the propagation of a reflected symbol up the BFS tree, each internal
cell of the BFS tree needs to check if the received a reflected symbol came from one
of its BFS tree children.

Let σi be a BFS tree child of σj, where |wi|ei = 0. Recall that, in such case, cell σi
contains symbol pj, where the subscript j is the ID of its BFS tree parent, and σj
contains symbol ej, such that |wj|ej is the number of σj’s BFS tree children.
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Guided by symbol pj, σi sends symbol cj to all its neighbors (Rule 3.9). Cell σj
consumes a copy of symbol ej with a copy of symbol cj by Rule 3.3; σj cannot
consume symbol ej with symbol ck, where j 6= k. If σj receives symbol cj from all
its BFS tree children, then all copies of symbol ej will be consumed, i.e. |wj|ej = 0.

Proposition 10 indicates the step in which the BFS reaches cell σi and σi receives
symbol bj from each σj ∈ Predg(i). Proposition 11 indicates the step in which σi receives
symbol ei from its tree child.

Proposition 10. Cell σi receives symbol bj from each σj ∈ Predg(i) at step depthg(i)
and sends symbol bi to all its neighbors at step depthg(i) + 1.

Proof. Proof by induction, on d = depthg(i) ≥ 1. At step 1, the general σg sends symbol
bg to all its neighbors by Rule 0.1. Hence, at step 1, each cell σk at depth 1 receives
symbol bg. Then, at step 2, by Rule 0.2, σk sends symbol bk to each of its neighbors.

Assume that the induction hypothesis holds for each cell σj at depth d. Consider
cell σi at depthg(i) = m + 1 = depthg(j) + 1. By induction hypothesis, at step
depthg(j) + 1, each σj ∈ Predg(i) sends symbol bj to all its neighbors. Thus, at step
depthg(j) + 1 = depthg(i), σi receives symbol bj. At step depthg(i) + 1, by Rule 0.2, σi
sends symbol bi to all its neighbors.

Proposition 11. Cell σi receives a copy of symbol ei from each of its tree children at
step depthg(i) + 3.

Proof. Assume that cell σj ∈ Succg(i) has chosen σi as its tree parent. From Proposi-
tion 10, cell σj receives symbol bi at step depthg(j) = depthg(i) + 1. According to the
description, σj will send symbol ei at step depthg(j) + 2. Thus, σi will receive symbol ei
at step depthg(i) + 3.

Remark 12. From Proposition 11, σi receives symbol ei from its tree child at step
depthg(i)+3. If σi does not receive symbol ei at step depthg(i)+3, then σi can recognize
itself as a tree leaf and send a reflected symbol to its tree parent at step depthg(i) + 4.
That is, once a leaf cell is reached by the BFS, it will take three additional steps to send
reflected symbol to its tree parent. Recall, in the FSSP algorithm for tree-based P systems,
a leaf cell sends reflected symbol to its parent, one step after reached by the BFS. Thus,
this FSSP algorithm for digraph-based P systems takes three additional steps to send the
reflected symbol than the FSSP algorithm for tree-based P systems.

4.3 Phase II: Determine the step to enter the firing state

Similar to the Phase II described in Section 3.3, the firing order is broadcasted from the
middle cell σm. The order is paired with a counter, which is initially set to the eccentricity
of σm and decrements by one in each step of this broadcast operation.

Details of Phase II

Objective: The objective of Phase II is to determine the step to enter the firing state,
such that during the last step of Phase II, i.e. the system’s execution, all cells enter the
firing state, simultaneously and for the first time.
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Precondition: Phase II starts with the postcondition of Phase I, described in Sec-
tion 4.2.

Postcondition: Phase II ends when all cells enter the firing state s7. At the end of
Phase II, the configuration of cell σi ∈ K is (Q, s7, {ιi}, R).

Description: The order arrives in σi, along every shortest paths from σm to σi. Hence,
to compute the correct step to enter the firing state, cell σi decrements, in each step, the
sum of all received counter by the number of shortest paths from σm to σi and σi enters
the firing state if the sum of all received counter becomes 0. The number of shortest paths
from σm to σi is determined as follows. Cell σm sends a copy of symbol z. Each cell σi
forwards symbol z, received from each σj ∈ Predm(i). The number of shortest paths from
σm to σi is the sum of all copies of symbol z that σi receives from each σj ∈ Predm(i).

Let t be the current counter and k be the number of shortest paths from σm to the
current cell. In the FSSP solution for tree-based P systems, the condition for entering
the firing state in the next step is when t = 1 (note k = 1). However, the FSSP solution,
as implemented in this section, cannot directly detect if t = k, since k ≥ 1 Instead, a cell
enters the firing state after t = 0 is detected. Thus, the FSSP algorithm for digraph-based
P systems requires one additional step in Phase II.

Theorem 13. The synchronization time of the FSSP solution for digraph-based P sys-
tems is ecc(g) + 2 · ecc(m) + 7.
Proof. This FSSP algorithm for digraph-based P systems requires four additional over-
head steps than the FSSP algorithm for tree-based P systems. Three of these four over-
head steps are described in Remark 12 and the remaining overhead step is mentioned in
Section 4.3.

We end this section with a comment regarding improving the communication require-
ments of our FSSP solution. Currently, there may be an exponential number of broadcast
objects generated since a given cell currently receives a copy of the counter from every
possible shortest path from the middle cell. We can reduce number of broadcasted coun-
ters from an exponential to a polynomial as follows. Assume that, a counter, sent or
forwarded from a cell, is annotated with the cell’s ID. In Phase II, if a cell receives
counter from its BFS tree neighbor (from a BFS tree child for cells on the path from the
general to the middle cell, otherwise from its original BFS tree parent), then it broad-
casts the reduced-by-one counter, now annotated with its own ID, to all its neighbors.
The total number of steps of this revised algorithm would still be the same as given in
Theorem 13.

4.4 Empirical results

We also tested the improvement in running times over our previous FSSP algorithm on
digraph-based P systems. The rate of improvement drops off as the number of edges
increase over n− 1, the size of trees of order n. But for several sparse digraph structured
P systems the improvement is still worthwhile.

We did two tests suites; one for relatively small digraphs (illustrated in Figure 7) and
one for larger digraphs as shown in Table 5. The graphs used in our empirical tests were
generated using NetworkX [8].
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For the statistics given in Table 5, we first generated connected random graphs of
order n and size m. We then averaged over all possible locations for the general node.
To model the parallel nature of P systems, we needed to generate a random BFS tree
originating at the general. This was created by first performing a BFS from the general to
constructing the BFS dag then randomly picking (for each non-general node) one parent
within the dag structure as the parent for the BFS tree. The code for constructing a
BFS tree from a dag structure is displayed in Figure 8.

For this BFS tree, with e denoting the eccentricity of the general and r denoting the
radius of the BFS tree, the “average gain” is the average difference of 3e− (e+ 2r) and
the “average % gain” is the average of the (3e−(e+2r))/(3e) values. From our empirical
results, we can observe that the radius of the BFS spanning trees seems to be close to
the actual radius of the given virtual communication graphs.

For the statistics given in the three dimensional plots of Figure 7 (generated using
Gnuplot [20]), we generated 100 random connected (n,m)-graphs, for each order n, 20 ≤
n ≤ 40, and size m = (n − 1) + 2k, where 0 ≤ k ≤ 20. Note, the integer value of
2k represents the number of edges added to a tree. We then averaged over all possible
general starting positions. The vertical axis is the average percentage speedup of our new
algorithm over our previous synchronization algorithm. One can also observe from this
plot, at least 20% improvements (i.e. reduction in number of steps needed to synchronize),
is maintained for k = 0 (i.e. the graph is a tree). However, as the graphs become less
sparse, the expected improvement drops to near zero, when as few as 40 edges are added
to the trees. In general, for fixed k, the expected improvement in performance, for
(n, n + k) digraphs slightly increases as n increases. However, for fixed n, the expected
improvement in performance drops drastically as k increases.
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Figure 7: Discrete 3-dimensional plot of expected synchronization improvements for a
small range of random connected (n,m)-graph structures, with m = (n− 1) + k edges.
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Table 5: Statistics for reduction in number of steps needed to synchronize on a few
random (n,m)-graphs.

graph avg tree average average
n m radius radius gain gain %

100 100 15 15.68 16.7 23.16

100 110 9 11.47 3.14 8.02

100 120 7 8.97 1.6 5.45

100 130 7 8.13 1.0 3.86

100 140 6 7.33 0.72 3.12

200 200 20 20.73 17.91 20.10

200 210 16 19.12 5.08 7.81

200 220 13 15.74 3.9 7.34

200 230 9 11.24 2.24 6.04

200 240 9 11.41 2.13 5.68

300 300 25 25.00 22.32 20.57

300 310 17 18.95 7.95 11.56

300 320 16 18.61 8.29 12.14

300 330 12 15.0 3.37 6.73

300 340 12 14.03 2.46 5.37

400 400 24 24.56 24.10 21.94

400 410 22 24.79 7.73 8.99

400 420 19 21.91 7.12 9.31

400 430 15 17.85 2.78 4.81

400 440 13 15.86 2.29 4.48

500 500 28 29.14 23.30 19.04

500 510 24 27.28 9.68 10.04

500 520 19 23.17 8.72 10.56

500 530 16 19.87 5.68 8.34

500 540 16 19.25 5.70 8.60

600 600 28 30.99 22.35 17.66

600 610 25 28.78 14.63 13.51

600 620 22 24.965 5.39 6.49

600 630 19 22.065 5.72 7.64

600 640 17 20.32 4.15 6.18

graph avg tree average average
n m radius radius gain gain %

700 700 35 38.68 25.58 16.56

700 710 23 29.55 10.09 9.72

700 720 23 26.59 8.39 9.08

700 730 21 24.69 7.70 9.00

700 740 20 25.11 7.50 8.66

800 800 40 42.66 26.93 15.99

800 810 28 32.50 13.08 11.16

800 820 29 33.91 9.13 7.91

800 830 23 26.36 8.06 8.84

800 840 20 25.19 7.80 8.93

900 900 53 60.73 25.92 11.72

900 910 35 39.23 12.94 9.44

900 920 24 30.37 7.44 7.27

900 930 25 29.23 7.42 7.50

900 940 21 24.90 5.74 6.88

1000 1000 60 66.96 26.72 11.09

1000 1010 33 37.43 20.27 14.20

1000 1020 26 31.19 8.64 8.11

1000 1030 25 29.63 7.87 7.81

1000 1040 26 30.32 11.41 10.55

1000 1000 46 48.45 26.58 14.35

1000 1010 31 34.77 20.07 14.93

1000 1020 28 32.98 11.91 10.19

1000 1030 24 29.30 9.23 9.07

1000 1040 23 27.62 6.66 7.17

2000 2000 76 76.07 85.98 24.07

2000 2010 55 61.33 30.50 13.27

2000 2020 39 44.73 18.55 11.45

2000 2030 33 42.11 11.21 7.83

2000 2040 32 39.78 13.68 9.78
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Figure 8: Python code for generating a BFS dag from a given graph and constructing a
BFS tree from the BFS dag.
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5 Conclusions and future works

In this paper, we explicitly presented an improved solution to the FSSP for tree-based
P systems. We improved our previous FSP algorithm [5] by allowing the general to
delegate a more central cell in the tree structure, as an alternative to itself, to send
the final “firing” command. This procedure for trees-based P systems was extended to
digraph-based P systems. Here we use a virtual spanning BFS tree (rooted at the general)
in the digraph and use our tree-based middle-cell algorithm for that tree to improve the
synchronization time. Alternatively, we would like to develop a way to compute a center
of an arbitrary graph since the radius of the graph may be less than the radius of a
particular BFS spanning tree. Thus this future work may possibly provide even more
guaranteed improvements in synchronization time.

We summarize our work as follows. With e being the eccentricity of the general and
r denoting the radius of the graph, where e/2 ≤ r ≤ e, we note the radius r′ of the
spanning BFS tree satisfies e/2 ≤ r ≤ r′ ≤ e. Thus, we have the following results:

• If the membrane structure of a considered P system is a tree, then synchronization
time is e+ 2r + 3.

• If the membrane structure of a considered P system is a digraph, then synchroniza-
tion time t is e+ 2r + 7 ≤ t ≤ 3e+ 7.

Our empirical work shows that the radius of the BFS spanning tree is often as small
as the radius of its host graph and we expect, more often than not, the synchronization
time to be closer to e+ 2r + 7 than to 3e+ 7 for arbitrary digraph-based P systems.

Finally, we mention a couple open problems for the future. We would like a theoretical
proof based on properties of random trees of why it seems that the our gain in performance
is independent of the order of the trees considered. The current FSSP solution is designed
for digraph-based P systems with duplex channels. Another remaining open problem is
to obtain an efficient FSSP solution that synchronizes strongly connected digraphs using
simplex channels.
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