

CDMTCS
 Research
 Report Series

An Adaptive Algorithm for P System Synchronization

Michael J. Dinneen
Yun-Bum Kim
Radu Nicolescu

Department of Computer Science, University of Auckland, Auckland, New Zealand

CDMTCS-404
May 2011

Centre for Discrete Mathematics and
Theoretical Computer Science

An Adaptive Algorithm for P System Synchronization

Michael J. Dinneen, Yun-Bum Kim and Radu Nicolescu
Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
\{mjd, yun, radu\}@cs.auckland.ac.nz

Abstract

We present an improved solution for the Firing Squad Synchronization Problem (FSSP) for digraph-based P systems. We improve our previous FSSP algorithm by allowing the general to delegate a more central cell in the P system to send the final command to synchronize. With e being the eccentricity of the general and r denoting the radius of the underlying digraph, our new algorithm guarantees to synchronize all cells of the system, between $e+2 r+3$ steps (for all trees structures and many digraphs) and up to $3 e+7$ steps, in the worst case for any digraph. Empirical results show our new algorithm for tree-based P systems yields at least 20% reduction in the number of steps needed to synchronize over the previous best-known algorithm.

Keywords: cellular automata, firing squad synchronization, P systems.

1 Introduction

The Firing Squad Synchronization Problem (FSSP) is one of the best studied problems for cellular automata, originally proposed by Myhill in 1957 [11]. The initial problem involves finding a cellular automaton, such that after the "firing" order is given by the general, after some finite time, all the cells in a line enter a designated firing state, simultaneously and for the first time. For an array of length n with the general at one end, minimal time $(2 n-2)$ solutions was presented by Goto [6], Waksman [18] and Balzer [2]. Several variations of the FSSP have been proposed and studied [12, 15]. The FSSP have been proposed and studied for variety of structures $[10,13,7,4]$.

In the field of membrane computing, deterministic solutions to the FSSP for a treebased P system have been presented by Bernardini et al. [3] and Alhazov et al. [1]. For digraph-based P systems, we presented a deterministic solution in [5] for the generalized FSSP (in which the general is located at an arbitrary cell of the digraph), which runs in $3 e+11$ steps, where e is the eccentricity of the general.

In this paper, we present an improved FSSP solution for tree-based P systems, where the key improvement comes in having the general delegate a more central cell, as an
alternative to itself, to broadcast the final "firing" order, to enter the firing state. We also give details on how to use this approach to improve the synchronization time of digraph-based P systems.

It is well known in cellular automata [17], where "signals" with propagating speeds $1 / 1$ and $1 / 3$ are used to find a half point of one-dimensional arrays; the signal with speed $1 / 1$ is reflected and meets the signal with speed $1 / 3$ at half point. We generalize the idea used in cellular automata to find the center of a tree that defines the membrane structure of a P system.

Let r denote the radius of the underlying graph of a digraph, where $e / 2 \leq r \leq e$. Our new algorithm is guaranteed to synchronize in t steps, where $e+2 r+3 \leq t \leq 3 e+7$. In fact, the lower bound is achieved, for all digraphs that are trees. In addition to our FSSP solution, determining a center cell has many potential real world applications, such as facility location problems and broadcasting.

The rest of the paper is organized as follows. In Section 2, we give some basic preliminary definitions including our P system model and formally introduce the synchronization problem that we solve. In Section 3, we provide a detailed P system specification for solving the FSSP for tree-based P systems. In Section 4, we provide a detailed P system specification for solving the FSSP for digraph-based P systems. Finally, in Section 5, we summarize our results and conclude with some open problems.

2 Preliminary

We assume that the reader is familiar with the basic terminology and notations, such as relations, graphs, nodes (vertices), edges, directed graphs (digraphs), directed acyclic graphs (dag), arcs, alphabets, strings and multisets.

For a digraph (X, δ), recall that Neighbor $(x)=\delta(x) \cup \delta^{-1}(x)$. The relation Neighbor is always symmetric and defines a graph structure, which will be here called the virtual communication graph defined by δ.

A special node $g \in X$ is designated as the general. For a given general g, we define the depth of a node $x, \operatorname{depth}_{g}(x) \in \mathbb{N}$, as the length of a shortest path between g and x, over the Neighbor relation. Recall that the eccentricity of a node $x \in X, \operatorname{ecc}(x)$, as the maximum length of a shortest path between x and any other node. We note $\operatorname{ecc}(g)=\max \left\{\operatorname{depth}_{g}(x) \mid x \in X\right\}$.

Recall that a (free or unrooted) tree has either one or two center nodes - any node with minimum eccentricity. We denote a tree $T=(X, A)$, rooted at node $g \in X$ by T_{g}. The height of a node x in T_{g} is denoted by height ${ }_{g}(x)$. For a tree T_{g}, we define the middle node to be the center node closest to g of the underlying tree T of T_{g}. Let $T_{g}(x)$ denote the subtree rooted at node x in T_{g}.

Given nodes x and y, if $y \in \operatorname{Neighbor}(x)$ and $\operatorname{depth}_{g}(y)=\operatorname{depth}_{g}(x)+1$, then x is a predecessor of y and y is a successor of x. Similarly, a node z is a peer of x, if $z \in \operatorname{Neighbor}(x)$ and $\operatorname{depth}_{g}(z)=\operatorname{depth}_{g}(x)$. Note that, for node x, the set of peers and the set of successors are disjoint with respect to g. For node $x \operatorname{Pred}_{g}(x)=$ $\{y \mid y$ is a predecessor of $x\}, \operatorname{Peer}_{g}(x)=\{y \mid y$ is a peer of $x\}$ and $\operatorname{Succ}_{g}(x)=\{y \mid$ y is a successor of $x\}$.

Definition 1. A P system of order n with duplex channels and cell states is a system $\Pi=(O, K, \delta)$, where:

1. O is a finite non-empty alphabet of objects;
2. $K=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ is a finite set of cells;
3. δ is an irreflexive binary relation on K, which represents a set of structural arcs between cells, with duplex communication capabilities.

Each cell, $\sigma_{i} \in K$, has the initial configuration $\sigma_{i}=\left(Q_{i}, s_{i 0}, w_{i 0}, R_{i}\right)$, and the current configuration $\sigma_{i}=\left(Q_{i}, s_{i}, w_{i}, R_{i}\right)$, where:

- Q_{i} is a finite set of states;
- $s_{i 0} \in Q_{i}$ is the initial state; $s_{i} \in Q_{i}$ is the current state;
- $w_{i 0} \in O^{*}$ is the initial content; $w_{i} \in O^{*}$ is the current content; note that, for $o \in O$, $\left|w_{i}\right|_{o}$ denotes the multiplicity of object o in the multiset w_{i};
- R_{i} is a finite ordered set of multiset rewriting rules (with promoters) of the form: $s x \rightarrow_{\alpha} s^{\prime} x^{\prime}(u)_{\beta} \mid z$, where $s, s^{\prime} \in Q, x, x^{\prime}, u \in O^{*}, z \in O^{*}$ is the promoter [9], $\alpha \in\{\min , \max \}$ and $\beta \in\{\uparrow, \downarrow, \downarrow\}$. For convenience, we also allow a rule to contain zero or more instances of $(u)_{\beta}$. For example, if $u=\lambda$, i.e. the empty multiset of objects, this rule can be abbreviated as $s x \rightarrow_{\alpha} s^{\prime} x^{\prime}$.

A cell evolves by applying one or more rules, which can change its content and state and can send objects to its neighbors. For a cell $\sigma_{i}=\left(Q_{i}, s_{i}, w_{i}, R_{i}\right)$, a rule s $x \rightarrow_{\alpha}$ $s^{\prime} x^{\prime}(u)_{\beta} \mid z \in R_{i}$ is applicable, if $s=s_{i}, x \subseteq w_{i}, z \subseteq w_{i}, \delta(i) \neq \emptyset$ for $\beta=\downarrow, \delta^{-1}(i) \neq \emptyset$ for $\beta=\uparrow$ and $\delta(i) \cup \delta^{-1}(i) \neq \emptyset$ for $\beta=\uparrow$.

The application of a rule transforms the current state s to the target state s^{\prime} transforms multiset x to x^{\prime} and sends multiset u as specified by the transfer operator β (as further described below). Note that, multisets x^{\prime} and u will not be visible to other applicable rules in this same step, but they will be visible after all the applicable rules have been applied.

The rules are applied in the weak priority order [14], i.e. (1) higher priority applicable rules are applied before lower priority applicable rules, and (2) a lower priority applicable rule is applied only if it indicates the same target state as the previously applied rules.

The rewriting operator $\alpha=\max$ indicates that an applicable rewriting rule of R_{i} is applied as many times as possible. The rewriting operator $\alpha=\min$ indicates that an applicable rewriting rule of R_{i} is applied once. If the right-hand side of a rule contains $(u)_{\beta}, \beta \in\{\uparrow, \downarrow, \downarrow\}$, then for each application of this rule, a copy of multiset u is replicated and sent to each cell $\sigma_{j} \in \delta^{-1}(i)$ if $\beta=\uparrow, \sigma_{j} \in \delta(i)$ if $\beta=\downarrow$ and $\sigma_{j} \in \delta(i) \cup \delta^{-1}(i)$ if $\beta=\uparrow$.

All applicable rules are applied in one step. An execution of a P system is a sequence of steps, that starts from the initial configuration. An execution halts if no further rules are applicable for all cells.

Problem 2. We formulate the FSSP to P systems as follows:
Input: An integer $n \geq 2$ and an integer $g, 1 \leq g \leq n$.
Output: A class \mathcal{C} of P systems that satisfies the following two conditions for any weakly connected digraph (X, A), isomorphic to the structure of a member of \mathcal{C} with $n=|X|$ cells.

1. Cell σ_{g} is the only cell with an applicable rule (i.e. σ_{g} can evolve) from its initial configuration.
2. There exists state $s_{f} \in Q_{i}$, for all $\sigma_{i} \in K$, such that during the last step of the system's execution, all cells enter state s_{f}, simultaneously and for the first time.

We want to find a general-purpose solution to the FSSP that synchronizes in the fewest number of steps, as a function of some of the natural structural properties of a weaklyconnected digraph (X, A), such as the eccentricity of node $g \in X$ in the communication graph defined by A.

(b)

Figure 1: (a) a tree with the center σ_{5}; (b) a tree with two centers σ_{3} and σ_{5}, σ_{3} being the middle cell.

3 Deterministic FSSP solution for rooted trees

We first solve Problem 2 for the subclass of weakly-connected digraphs (X, A), where the underlying graph of (X, A) is a tree. This section is organized as follow. In Section 3.1, we present the P system for solving the FSSP for trees rooted at the general. In order to help the comprehension of our FSSP algorithm, we provide a trace of the FSSP algorithm in Table 1. Phase I of our FSSP algorithm is described in Section 3.2, which finds the middle cell (i.e. a center of a tree, closest to the root) and determines the height of the middle cell. Phase II of our FSSP algorithm is described in Section 3.3, which broadcasts the "command" that prompts all cells to enter the firing state. Finally, in Section 3.4, we present some empirical results that show improvements of our algorithm over the previously best-known FSSP algorithms for tree-based P systems $[1,5]$.

Table 1: The traces of the FSSP algorithm on a P system with the membrane structure defined by the tree shown in Figure 1 (a), where the general is σ_{1} and the middle cell is σ_{5}. The step in which the Phase I ends (or the Phase II begins) is indicated by the shaded table cells.

Step	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}	σ_{7}	σ_{8}	σ_{9}	σ_{10}	σ_{11}
0	$S_{0} O$	S_{0}									
1	s_{1} ahou	$s_{0} b$	$s_{0} b$	S_{0}							
2	$s_{2} a c e^{2} h^{2}$ ou	$s_{4} a$	$s_{1} a h$	$s_{0} b$	$s_{0} b$	S_{0}	S_{0}	S_{0}	S_{0}	S_{0}	S_{0}
3	$s_{2} a e h^{3} o^{2}$	$s_{4} a$	$s_{2} a e^{2} h^{2}$	$s_{1} a h$	$s_{1} a h$	$s_{0} b$	$s_{0} b$	S_{0}	S_{0}	S_{0}	S_{0}
4	$s_{2} a^{e} h^{4} O^{3}$	$s_{4} a$	$s_{2} a e^{2} h^{3}$	$s_{2} a e h^{2}$	$s_{2} a e h^{2}$	$s_{1} a h$	$s_{1} a h$	$s_{0} b$	$s_{0} b$	S_{0}	s_{0}
5	$s_{2} a^{2} h^{4}$	$s_{4} a O$	$s_{2} a e^{2} h^{4} O$	$s_{2} a e h^{3}$	$s_{2} a e h^{3}$	$s_{2} a^{\text {aceh }}{ }^{2}$	$s_{2} a e h^{2}$	$s_{4} a$	$s_{1} a h$	$s_{0} b$	s_{0}
6	$s_{3} a h^{4}$	$s_{4} a$	$s_{2} a e^{2} h^{5} o$	s_{2} aceh 4	$s_{2} a e h^{4}$	$s_{2} a^{2} h^{2}$	$s_{2} a e h^{3}$	$s_{4} a$	$s_{2} a e h^{2}$	$s_{1} a h$	$s_{0} b$
7	$s_{4} a$	$s_{4} a$	$s_{2} a c e^{2} h^{6} o$	$s_{2} a^{2} h^{4}$	$s_{2} a e h^{5}$	$s_{3} a h^{2}$	$s_{2} a e h^{4}$	$s_{4} a$	$s_{2} a e h^{3}$	$s_{2} a^{\text {aceh }}{ }^{2}$	$s_{4} a$
8	$s_{4} a$	$s_{4} a$	$s_{2} a e h^{7} o^{2}$	$s_{3} a h^{4}$	$s_{2} a e h^{6}$	$s_{4} a$	$s_{2} a e h^{5}$	$s_{4} a$	s_{2} aceh 4	$s_{2} a^{2} h^{2}$	$s_{4} a$
9	$s_{4} a$	$s_{4} a$	$s_{2} a^{\prime 2} h^{8} O^{3}$	$s_{4} a$	$s_{2} a e h^{7}$	$s_{4} a$	s_{2} aceh 6	$s_{4} a$	$s_{2} a^{2} h^{4}$	$s_{3} a h^{2}$	$s_{4} a$
10	$s_{4} a$	$s_{4} a$	$s_{2} a^{2} h^{8}$	$s_{4} a O$	$s_{2} a^{\text {ceh }}{ }^{8}$	$s_{4} a$	$s_{2} a^{2} h^{6}$	$s_{4} a$	$s_{3} a h^{4}$	$s_{4} a$	$s_{4} a$
11	$s_{4} a$	$s_{4} a$	$s_{3} a h^{8}$	$s_{4} a$	$s_{2} a^{3} h^{8}$	$s_{4} a$	$s_{3} a h^{6}$	$s_{4} a$	$s_{4} a$	$s_{4} a$	$s_{4} a$
12	$s_{4} a$	$s_{4} a$	$s_{4} a$	$s_{4} a$	$s_{4} a h^{8}$	$s_{4} a$					
13	$s_{4} a$	$s_{4} a$	$s_{4} a v^{4}$	$S_{4} a$	$s_{5} a w^{4}$	$s_{4} a$	$s_{4} a v^{4}$	$s_{4} a$	$s_{4} a$	$s_{4} a$	$s_{4} a$
14	$s_{4} a v^{3}$	$s_{4} a$	$s_{5} a w^{3}$	$s_{4} a v^{3}$	$s_{5} a v^{6} w^{3}$	$s_{4} a$	$s_{5} a w^{3}$	$s_{4} a$	$s_{4} a v^{3}$	$s_{4} a$	$s_{4} a$
15	$s_{5} a w^{2}$	$s_{4} a v^{2}$	$s_{5} a v^{4} w^{2}$	$s_{5} a w^{2}$	$s_{5} a v^{6} w^{2}$	$s_{4} a v^{2}$	$s_{5} a v^{2} w^{2}$	$s_{4} a$	$s_{5} a w^{2}$	$s_{4} a v^{2}$	$s_{4} a$
16	$s_{5} a v w$	$s_{5} a w$	$s_{5} a v^{4} w$	$S_{5} a v w$	$s_{5} a v^{6} w$	$s_{5} a w$	$s_{5} a v^{2} w$	$s_{4} a v$	$s_{5} a v w$	$s_{5} a w$	$s_{4} a v$
17	S_{6}										

3.1 P systems for solving the FSSP for rooted trees

Given a tree (X, A) and $g \in X$, our FSSP algorithm is implemented using the P system $\Pi=(O, K, \delta)$ of order $n=|X|$, where:

1. $O=\{a, b, c, e, h, o, v, w\}$.
2. $K=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$.
3. δ is a rooted tree, with an underlying graph isomorphic to (X, A), where the general $\sigma_{g} \in K$ (the root of δ) corresponds to $g \in X$.
All cells have the same set of states, the same set of rules and start at the same initial quiescent state s_{0}, but with different initial contents. The first output condition of Problem 2 will be satisfied by our chosen set of rules.

For each cell $\sigma_{i} \in K$, its initial configuration is $\sigma_{i}=\left(Q, s_{0}, w_{i 0}, R\right)$ and its final configuration at the end of the execution is $\sigma_{i}=\left(Q, s_{6}, \emptyset, R\right)$, where:

- $Q=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right\}$, where s_{0} is the initial quiescent state and s_{6} is the firing state.
- $w_{i 0}=\left\{\begin{array}{cc}\{o\} & \text { if } \sigma_{i}=\sigma_{g}, \\ \emptyset & \text { if } \sigma_{i} \neq \sigma_{g} .\end{array}\right.$
- R is defined by the following rulesets.

Rules used in Phase I: all the rules in states $s_{0}, s_{1}, s_{2}, s_{3}$ and Rule 4.6 in state s_{4}.
Rules used in Phase II: all the rules in states s_{4} and s_{5}, except Rule 4.6.

0 . Rules in state s_{0} :

1. $s_{0} o \rightarrow_{\text {max }} s_{1}$ ahou $(b)_{\downarrow}$
2. $s_{0} b \rightarrow_{\text {max }} s_{1} a h(e)_{\uparrow}(b)_{\downarrow}$
3. $s_{0} b \rightarrow_{\text {max }} s_{4} a(c e)_{\uparrow}$
4. Rules in state s_{1} :
5. $s_{1} a \rightarrow_{\text {max }} s_{2} a h$
6. Rules in state s_{2} :
7. $s_{2} a a a \rightarrow_{\text {max }} s_{4} a$
8. $s_{2} a a \rightarrow_{\text {max }} s_{3} a$
9. s_{2} ceu $\rightarrow_{\text {max }} s_{2}$
10. $s_{2} c e \rightarrow_{\text {max }} s_{2}$
11. s_{2} aee $\rightarrow_{\text {max }} s_{2}$ aeeh
12. s_{2} aeooo $\rightarrow_{\text {max }} s_{2}$ aa $(o)_{\downarrow}$
13. s_{2} aeou $\rightarrow_{\text {max }} s_{2} a a(o)_{\downarrow}$
14. s_{2} aeo $\rightarrow_{\text {max }} s_{2}$ aehoo
15. $s_{2} a o \rightarrow_{\text {max }} s_{2} a a a$
16. $s_{2} a e \rightarrow_{\text {max }} s_{2}$ aeh
17. $s_{2} a \rightarrow_{\max } s_{2} a a(c)_{\uparrow}$
18. $s_{2} u \rightarrow_{\text {max }} s_{2}$
19. Rules in state s_{3} :
20. $s_{3} a \rightarrow_{\max } s_{4} a$
21. $s_{3} h \rightarrow_{\max } s_{4}$
22. Rules in state s_{4} :
23. $s_{4} h h \rightarrow_{\max } s_{5} w(v)_{\text {£ }}$
24. $s_{4} a v v \rightarrow_{\max } s_{5} a w(v)_{\uparrow}$
25. $s_{4} a v v \rightarrow_{\text {max }} s_{5} a w$
26. $s_{4} a v \rightarrow_{\text {max }} s_{6}$
27. $s_{4} v \rightarrow_{\max } s_{5} w(v)_{\uparrow}$
28. $s_{4} o \rightarrow_{\max } s_{4}$
29. Rules in state s_{5} :
30. $s_{5} a w w \rightarrow_{\max } s_{5} a w$
31. $s_{5} a w \rightarrow_{\text {max }} s_{6}$
32. $s_{5} v \rightarrow_{\text {max }} s_{6}$
33. $s_{5} o \rightarrow_{\max } s_{6}$

Figure 2: Propagations of symbols b, c and o, in a tree with one center. The symbols c and o meet at the middle cell σ_{5}. Cells that have sent symbol c or o are shaded. The propagation of symbol o to a shaded cell is omitted. In cell $\sigma_{j}, j \in\{1,3\},\left|w_{j}\right|_{o}-1$ represents the number of steps since σ_{j} received symbol c from all of its children but one.

Figure 3: Propagations of symbols b, c and o, in a tree with two centers. The symbols c and o meet at the middle cell σ_{3}. Cells that have sent symbol c or o are shaded. The propagation of symbol o to a shaded cell is omitted. In cell $\sigma_{j}, j \in\{1,3\},\left|w_{j}\right|_{o}-1$ represents the number of steps since σ_{j} received symbol c from all of its children but one.

3.2 Phase I: Find the middle cell of rooted trees

In this phase, a breadth-first search (BFS) is performed from the root, which propagates symbol b from the root to all other cells. When the symbol b from the BFS reaches a leaf cell, symbol c is reflected back up the tree. Starting from the root, the search for the middle cell is performed as described below, where symbol o represents the current search pivot. Note that symbol o's propagation speed is $1 / 3$ of the propagation speed of symbols b and c; intuitively, this ensures that o and c meet in the middle cell.

We provide a visual description of the propagations of symbols b, c and o in Figure 2 (for a tree with one center) and Figure 3 (for a tree with two centers).

Details of Phase I

Objective: The objective of Phase I is to find the middle cell, σ_{m}, and its height, height ${ }_{g}(m)$.
Precondition: Phase I starts with the initial configuration of P system Π, described in Section 3.1.
Postcondition: Phase I ends when σ_{m} enters state s_{4}. At the end of Phase I, the configuration of cell $\sigma_{i} \in K$ is $\left(Q, s_{4}, w_{i}, R\right)$, where $\left|w_{i}\right|_{a}=1 ;\left|w_{i}\right|_{h}=2 \cdot$ height $_{g}(i)$, if $\sigma_{i}=\sigma_{m}$.
Description: In Phase I, each cell starts in state s_{0}, transits through states s_{1}, s_{2}, s_{3}, and ends in state s_{4}; a cell in state s_{4} will ignore any symbol o that it may receive.

The behaviors of cells in this phase are described below.

- Propagation of symbol b : The root cell sends symbol b to all its children (Rule 0.1). An internal cell forwards the received symbol b to all its children (Rule 0.2) After applying Rule 0.1 or 0.2 , each of these non-leaf cells produces a copy of symbol h in each step, until it receives symbol c from all its children (Rules 1.1, 2.5 and 2.10).
- Propagation of symbol c : If a leaf cell receives symbol b, then it sends symbol c to its parent (Rule 0.3) and enters state s_{4} (the end state of Phase I). If a non-leaf cell receives symbol c from all its children, then it sends symbol c to its parent (Rule 2.11), consumes all copies of symbol h and enters state s_{4} (Rule 3.2).

Note, when a cell applies Rule 0.2 or 0.3 , it sends one copy of symbol e up to its parent. A copy of symbol e is consumed with a copy of symbol c by Rule 2.4. Hence, $\left|w_{i}\right|_{e}=k$ indicates the number of σ_{i} 's children that have not sent symbol c to σ_{i}.

- Propagation of symbol o : The root cell initially contains the symbol o. We denote σ_{j} as the current cell that contains symbol o and has not entered state s_{4}.

Assume, at step t, σ_{j} received symbol c from all but one subtree rooted at σ_{v}. Starting from step $t+1, \sigma_{j}$ produces a copy of symbol o in each step, until it receives symbol c from σ_{v} (Rule 2.8), That is, $\left|w_{j}\right|_{o}-1$ indicates the number of steps since σ_{j} received symbol c from all of its children except σ_{v}.

If σ_{j} receives symbol c from σ_{v} by step $t+2$, i.e. $\left|w_{j}\right|_{o} \leq 3$, then σ_{j} is the middle cell; σ_{j} keeps all copies of symbol h and enters state s_{4} (Rule 2.1). Otherwise, σ_{j} sends a copy of symbol o to σ_{v} at step $t+3$ (Rule 2.6 or 2.7); in the subsequent steps, σ_{j} consumes all copies of symbol h and enters state s_{4} (Rules 2.2 and 3.2). Note, using current setup, σ_{j} cannot send a symbol to a specific child; σ_{j} has to send a copy of symbol o to all its children. However, all σ_{j} 's children, except σ_{v}, would have entered state s_{4}.

Proposition 3 indicates the step in which σ_{m} receives symbol c from all its children and Proposition 4 indicates the number of steps needed to propagate symbol ofrom σ_{g} to σ_{m}.

Proposition 3. Cell σ_{m} receives the symbol c from all its children by step height $_{g}(g)+$ height (m).
Proof. Cell σ_{m} is at distance height ${ }_{g}(g)-\operatorname{height}_{g}(m)$ from σ_{g}, hence σ_{m} receives symbol b in step height $g_{g}(g)$ - $\operatorname{height}_{g}(m)$. In the subtree rooted at σ_{m}, the propagations of the symbol b from σ_{m} to its farthest leaf and the symbol c reflected from the leaf to σ_{m} take $2 \cdot$ height $_{g}(m)$ steps. Thus, σ_{m} receives symbol c from all its children by step $\operatorname{height}_{g}(g)-\operatorname{height}_{g}(m)+2 \cdot \operatorname{height}_{g}(m)=\operatorname{height}_{g}(g)+\operatorname{height}_{g}(m)$.

(a)

(b)

Figure 4: (a) k subtrees of $\sigma_{m}, T_{m}(1), T_{m}(2), \ldots, T_{m}(k)$. (b) The structure of subtree $T_{m}(j)$, which contains σ_{g}.

Proposition 4. The propagation of the symbol o from σ_{g} to σ_{m} takes at most height ${ }_{g}(g)+$ height $_{g}(m)$ steps.
Proof. For a given tree T_{g}, rooted at σ_{g}, we construct a tree T_{m}, which re-roots T_{g} at σ_{m}. Recall, $T_{m}(i)$ denotes a subtree rooted at σ_{i} in T_{m}. Assume that σ_{m} has $k \geq 2$ subtrees, $T_{m}(1), T_{m}(2), \ldots, T_{m}(k)$, such that height ${ }_{m}(1) \geq$ height $_{m}(2) \geq \cdots \geq$ height $_{m}(k)$ and height $_{m}(1)$ - height ${ }_{m}(2) \leq 1$. Figure 4 (a) illustrates the subtrees of σ_{m}.

Assume $T_{m}(i)$ is a subtree of σ_{m}, which contains σ_{g}. In $T_{m}(i)$, let z be the height of σ_{g} and $x+w \geq 0$ be the distance between σ_{g} and σ_{i}. Figure 4 (b) illustrates the z, x and w in $T_{m}(i)$.

To prove Proposition 4, we determine the number of steps needed to propagate symbol o from σ_{g} to σ_{m}. In $T_{m}(i)$, let p be a path from σ_{i} to its farthest leaf and t be the number of steps needed to propagate symbol o from σ_{g} to σ_{m}. Note, height ${ }_{m}(m)=\operatorname{height}_{g}(m)$ and $x+w+1=\operatorname{height}_{g}(g)-\operatorname{height}_{g}(m)$.

- If σ_{g} is a part of path p, then $z+x+w+1=\operatorname{height}_{m}(i)+1=\operatorname{height}_{m}(m)-j$, $j \geq 0$, and $t=2 z+3(x+w+1)$. Hence,

$$
\begin{aligned}
t & =2(z+x+w+1)+(x+w+1) \\
& =2\left(\operatorname{height}_{m}(m)-j\right)+\left(\operatorname{height}_{g}(g)-\operatorname{height}_{g}(m)\right) \\
& =\operatorname{height}_{g}(g)+\operatorname{height}_{g}(m)-2 j
\end{aligned}
$$

- If σ_{g} is not a part of p, then $z+x+w+1<v+w+1=\operatorname{height}_{m}(i)+1=$ $\operatorname{height}_{m}(m)-j, j \geq 0$, and $t=x+2 v+3(w+1)$. Hence,

$$
\begin{aligned}
t & =2(v+w+1)+(x+w+1) \\
& =2\left(\operatorname{height}_{m}(m)-j\right)+\left(\operatorname{height}_{g}(g)-\operatorname{height}_{g}(m)\right) \\
& =\operatorname{height}_{g}(g)+\operatorname{height}_{g}(m)-2 j
\end{aligned}
$$

Proposition 5. Phase I takes height ${ }_{g}(g)+$ height $_{g}(m)+2$ steps.
Proof. From Propositions 3 and 4, symbols o and c meets in σ_{m} at step height ${ }_{g}(g)+$ height (m). Cell σ_{m} enters state s_{4} by applying Rule 2.9 and 2.1, which takes two steps. Thus, Phase I takes height $g_{g}(g)+$ height $_{g}(m)+2$ steps.

3.3 Phase II: Determine the step to enter the firing state

Phase II begins immediately after Phase I. In Phase II, the middle cell broadcasts the "firing" order, which prompts receiving cells to enter the firing state. In general, the middle cell does not have direct communication channels to all cells. Thus, the firing order has to be relayed through intermediate cells, which results in some cells receiving the order before other cells. To ensure that all cells enter the firing state simultaneously, each cell needs to determine the number of steps it needs to wait, until all other cells receive the order.

The firing order is paired with a counter, which is initially set to the eccentricity of the middle cell. Propagating an order from one cell to another decrements its current counter by one. The current counter of the received order equals the number of remaining steps before all other cells receive the order. Hence, each cell waits according to the current counter, before it enters the firing state. Figure 5 illustrates the propagation of the firing order.

Details of Phase II

Objective: The objective of Phase II is to determine the step to enter the firing state, such that during the last step of Phase II, i.e. the system's execution, all cells enter the firing state, simultaneously and for the first time.

Precondition: Phase II starts with the postcondition of Phase I, described in Section 3.2.

Figure 5: Propagations of the firing order from the middle cell, σ_{5}, where the counter is represented by the multiplicity of symbol v. Cells that have propagated the order are shaded.

Postcondition: Phase II ends when all cells enter the firing state s_{6}. At the end of Phase II, the configuration of cell $\sigma_{i} \in K$ is $\left(Q, s_{6}, \emptyset, R\right)$.
Description: The behaviors of the middle cell σ_{m} and a non-middle cell, $\sigma_{i} \neq \sigma_{m}$, in this phase are as follow. We also indicate which rules accomplish the described behaviors.

- We first describe the behavior of σ_{m}. For every two copies of symbol h, σ_{m} produces one copy of symbol w and sends one copy of symbol v to all its neighbors (Rule 4.1). In the next sequence of steps, σ_{m} consumes one copy of symbol w (Rule 5.1). If σ_{m} consumes all copies of symbol w, then σ_{m} enters the firing state (Rule 5.2).
- Next, we describe the behavior of $\sigma_{i} \neq \sigma_{m}$. Let $k_{i} \geq 1$ denote the multiplicity of symbol v that σ_{i} receives for the first time. If $k_{i}=1$, then σ_{i} enters the firing state (Rule 4.4). If $k_{i} \geq 2$, then σ_{i} consumes k_{i} copies of symbol v, produces $k_{i}-1$ copies of symbol w and sends $k_{i}-1$ copies of symbol v to all its neighbors (Rules 4.2, 4.3 and 4.5); in each subsequent step, σ_{i} consumes one copy of symbol w (Rule 5.1) and σ_{i} enters the firing state (Rule 5.2), after all copies of symbol w is consumed.
 copies of symbol v to all is neighbors.

Proof. At the beginning of Phase II, σ_{m} contains $2 \cdot$ height $_{g}(m)$ copies of symbol h. As described earlier, for every two copies of the symbol h that σ_{m} consumes, σ_{m} produces one copy of symbol w and sends one copy of symbol v to all its neighbors.

Proposition 7. Cell σ_{i} receives k copies of symbol v at step t and sends $k-1$ copies of symbol v to all its neighbors at step $t+1$, where $k=\operatorname{height}_{g}(m)-\operatorname{depth}_{m}(i)+1$ and $t=\operatorname{height}_{g}(g)+\operatorname{height}_{g}(m)+\operatorname{depth}_{m}(i)+2$.
Proof. Proof by induction on $\operatorname{depth}_{m}(i) \geq 1$. First, σ_{m} sends height ${ }_{g}(m)$ copies of symbol v to all its neighbors. Thus, each cell σ_{i}, at distance 1 from σ_{m}, receives height ${ }_{g}(m)$ copies of symbol v. By Rules 4.3, 4.4, 4.7 and 4.8, σ_{i} consumes height $g_{g}(m)$ copies of symbol v, produces height ${ }_{g}(m)-1$ copies of symbol w and sends height ${ }_{g}(m)-1$ copies of symbol v to all its neighbors.

Assume that the induction hypothesis holds for each cell σ_{j} at distance $\operatorname{depth}_{m}(j)$. Consider cell σ_{i}, where $\operatorname{depth}_{m}(i)=\operatorname{depth}_{m}(j)+1$. By the induction hypothesis, cell $\sigma_{j} \in \operatorname{Neighbor}(i), \operatorname{sends}^{\operatorname{height}}(m)-\operatorname{depth}_{m}(j)=\operatorname{height}_{g}(m)-\operatorname{depth}_{m}(i)+1$ copies of symbol v, such that σ_{i} receives height ${ }_{g}(m)-\operatorname{depth}_{m}(i)+1$ copies of symbol v. By Rules 4.3, 4.4, 4.7 and 4.8, σ_{i} consumes height $g_{g}(m)-\operatorname{depth}_{m}(i)+1$ copies of symbol v, produces height $g_{g}(m)-\operatorname{depth}_{m}(i)$ copies of symbol w and sends height ${ }_{g}(m)-\operatorname{depth}_{m}(i)$ copies of symbol v to all its neighbors.

Proposition 8. Phase II takes height ${ }_{g}(m)+1$ steps .
Proof. Each cell σ_{i} receives height ${ }_{g}(m)-\operatorname{depth}_{m}(i)+1$ copies of symbol v at step $\operatorname{height}_{g}(g)+$ height $_{g}(m)+\operatorname{depth}_{m}(i)+2$. $^{\prime}$

Consider σ_{j}, where $\operatorname{depth}_{m}(j)=$ height $_{g}(m)$. Cell σ_{j} receives one copy of symbol v. As described earlier, if a cell receives one copy of symbol v, then it enters the firing state at the next step. Hence, σ_{j} enters the firing state at step height ${ }_{g}(g)+2 \cdot$ height $_{g}(m)+3$.

Consider σ_{k}, where $\operatorname{depth}_{m}(k)<\operatorname{height}_{g}(m)$. Cell σ_{k} contains height ${ }_{g}(m)-$ $\operatorname{depth}_{m}(i)$ copies of symbol w at step height ${ }_{g}(g)+\operatorname{height}_{g}(m)+\operatorname{depth}_{m}(i)+3$. Since σ_{k} consumes one copy of symbol w in each step, σ_{k} will take height ${ }_{g}(m)-\operatorname{depth}_{m}(i)$ steps to consume all copies of symbol w. Hence, σ_{j} enters the firing state at step $\left(\operatorname{height}_{g}(g)+\operatorname{height}_{g}(m)+\operatorname{depth}_{m}(i)+3\right)+\left(\operatorname{height}_{g}(m)-\operatorname{depth}_{m}(i)\right)=\operatorname{height}_{g}(g)+$ $2 \cdot$ height $_{g}(m)+3$.

Phase I ends at step height $g_{g}(g)+$ height $_{g}(m)+2$ and all cells enter the firing state at step height $g_{g}(g)+2 \cdot \operatorname{height}_{g}(m)+3$. Thus, Phase II takes height ${ }_{g}(m)+1$ steps.
Theorem 9. The synchronization time of our FSSP solution, for a P system with underlying structure of a tree, is height ${ }_{g}(g)+2 \cdot$ height $_{g}(m)+3$.
Proof. The result is obtained by summing the individual running times of Phases I and II, as given by Propositions 5 and 8: $\left(\right.$ height $_{g}(g)+$ height $\left._{g}(m)+2\right)+\left(\right.$ height $\left._{g}(m)+1\right)=$ $\operatorname{height}_{g}(g)+2 \cdot \operatorname{height}_{g}(m)+3$.

Table 2: Statistics for improvement on many random trees of various (smaller) orders.

n	average height	average radius	average 3.height	average height+2•radius	average \% gain
100	22.12	14.49	66.36	51.1	23.00
200	31.91	21.35	95.73	74.61	22.06
300	41.13	26.79	123.39	94.71	23.24
400	47.86	31.3	143.58	110.46	23.07
500	51.52	33.77	154.56	119.06	22.97
600	57.16	37.76	171.48	132.68	22.63
700	63.43	42.19	190.29	147.81	22.32
800	68.12	45.37	204.36	158.86	22.26
900	72.46	47.83	217.38	168.12	22.66
1000	79.94	52.21	239.82	184.36	23.13

3.4 Empirical results

We tested the improvement in running times over the previously best-known FSSP algorithms that synchronize tree-based P systems $[1,5]$. We wanted to see how our new running time, that is proportional to $e+2 r$, compares with the earlier value of $3 e$, where e is the eccentricity of the general (which is also the height of the tree, rooted at the general) and r is the radius of a tree. We did two tests suites; one for relatively small trees and one for larger trees as shown in Tables 2 and 3, respectively. In both cases, our empirical results show at least 20% reduction in the number of steps needed to synchronize, which we believe is significant.

For the statistics given in Table 2, we generated random (free) trees by starting from a single node and repeatedly add new leaf nodes to the partially generated tree. We then averaged over all possible locations for the general node. The "average gain" is the average difference $3 e-(e+2 r)$ and the "average \% gain" is improvement as a percentage speedup over $3 e$.

For the statistics given in Table 3, we generated random labeled trees using the wellknown Prüfer correspondence [19] (using the implementation given in Sage [16]). In these sets of trees, the first indexed vertex is randomly placed, unlike the random trees generated in our first test suite. Hence, for this test suite, we did not need to average over all possible general node locations per tree. Due to the uniform randomness of the labeled tree generator, we assumed the general is placed at the node labeled by 1. Each row in Table 3 is based on 100 random trees of that given order.

We have run both test suites several times and the results are consistent with these two tables. Hence, we are pretty confident in the practical speedup that our new synchronization algorithm provides.

Table 3: Statistics for improvement on random trees of various (larger) orders.

n	diameter	radius	average eccentricity	average gain	average \% gain
1000	21	11	16.27	10.54	21.59
2000	32	16	23.45	14.90	21.18
3000	26	13	19.97	13.95	23.27
4000	30	15	22.65	15.30	22.51
5000	35	18	26.51	17.01	21.40
6000	32	16	23.82	15.64	21.89
7000	34	17	25.29	16.58	21.85
8000	34	17	25.01	16.03	21.36
9000	40	20	28.37	16.74	19.67
10000	37	19	27.16	16.32	20.03
10000	38	19	27.36	16.72	20.37
20000	37	19	28.23	18.47	21.80
30000	43	22	31.74	19.49	20.46
40000	43	22	31.55	19.09	20.18
50000	42	21	30.81	19.63	21.23
60000	44	22	32.50	21.00	21.54
70000	48	24	34.55	21.09	20.35
80000	45	23	33.08	20.17	20.32
90000	50	25	36.00	22.01	20.37
100000	47	24	34.15	20.29	19.81

4 FSSP solution for digraphs

The key idea of FSSP solution for digraphs is as follows. For a given digraph, perform a BFS from the general on the communication graph and construct a virtual spanning tree, implemented via pointer symbols, not by changing existing arcs. If a node finds multiple parents in the BFS, then one of the parents is chosen as its spanning tree parent. In Figure 6, (a) illustrates a digraph G, (b) illustrates the underlying graph of G and (c) illustrates a spanning tree of the underlying graph of G, rooted at σ_{1}.

Using the spanning tree constructed from the BFS, the FSSP algorithm described in Section 3, is applied to achieve the synchronization.

We present the details of P system for solving the FSSP (Problem 2) for digraphs in Section 4.1. A trace of the FSSP algorithm for digraphs is given in Table 4. The details Phases I and II of this FSSP algorithm are described in Sections 4.2 and 4.3, respectively. Finally, in Section 4.4, we present some empirical results that illustrates expected improvements of our new algorithm over our previous FSSP algorithm for digraphs [5].

(a)

(b)

(c)

Figure 6: (a) A digraph G. (b) The underlying graph of G. (c) A spanning tree of the underlying graph of G, rooted at σ_{1}.

4.1 P systems for solving the FSSP for digraphs

Given a digraph (X, A) and $g \in X$, our FSSP algorithm is implemented using the P system $\Pi^{\prime}=(O, K, \delta)$ of order $n=|X|$, where:

1. $O=\{a, h, o, v, w, x, z\} \cup\left\{\iota_{k}, b_{k}, c_{k}, e_{k}, p_{k} \mid 1 \leq k \leq n\right\}$.
2. $K=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$.
3. δ is a digraph, isomorphic to (X, A), where the general $\sigma_{g} \in K$ corresponds to $g \in X$.

All cells have the same set of states and start at the same initial quiescent state s_{0}, but with different initial contents and set of rules. The first output condition of Problem 2 will be satisfied by our chosen set of rules.

In this FSSP solution, we extend the basic P system framework, described Section 2. Specifically, we assume that each cell $\sigma_{i} \in K$ has a unique cell $I D$ symbol ι_{i}, which will be used as an immutable promoter and we allow rules with a simple form of complex symbols.

To explain these additional features, consider rules 3.10 and 3.11 from the ruleset R, listed below. In this ruleset, symbols i and j are free variables (which in our case happen to match cell IDs). Symbols e_{i} and e_{j} are complex symbols. Rule 3.11 deletes all existing e_{j} symbols, regardless of the actual values matched by the free variable j. However, the preceding Rule 3.10 fires only for symbols e_{i}, with indices i matching the local cell ID, as required by the right-hand side promoter ι_{i}. Together, Rules 3.10 and 3.11, applied in a weak priority scheme, keep all symbols e_{i}, with indices i matching the local cell ID, and delete all other symbols e_{j}.

For each cell $\sigma_{i} \in K$, its initial configuration is $\sigma_{i}=\left(Q, s_{0}, w_{i 0}, R\right)$ and its final configuration at the end of the execution is $\sigma_{i}=\left(Q, s_{7},\left\{\iota_{i}\right\}, R\right)$, where:

- $Q=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}\right\}$, where s_{0} is the initial quiescent state and s_{7} is the firing state.
- $w_{i 0}=\left\{\begin{array}{cc}\left\{\iota_{g} o\right\} & \text { if } \sigma_{i}=\sigma_{g}, \\ \left\{\iota_{i}\right\} & \text { if } \sigma_{i} \neq \sigma_{g} .\end{array}\right.$
- R is defined by the following rulesets.

Rules used in Phase I: all the rules in states $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}$ and Rules 5.5 and 5.6 in state s_{5}.

Rules used in Phase II: all the rules in states s_{5} and s_{6}, except Rules 5.5 and 5.6.

0 . Rules for cells in state s_{0} :

1. $s_{0} o \rightarrow_{\text {min }} s_{1} a o\left(x b_{i}\right)_{\uparrow} \mid \iota_{i}$
2. $s_{0} x \rightarrow_{\text {min }} s_{1} a\left(x b_{i}\right)_{\uparrow} \mid \iota_{i}$
3. $s_{0} b_{j} \rightarrow_{\text {max }} s_{1} p_{j}$
4. Rules for cells in state s_{1} :
5. $s_{1} a p_{j} \rightarrow_{\text {max }} s_{2} a p_{j}\left(e_{j}\right)_{\uparrow}$
6. $s_{1} a \rightarrow_{\text {max }} s_{2} a$
7. $s_{1} p_{j} \rightarrow_{\text {max }} s_{2}$
8. Rules for cells in state s_{2} :
9. $s_{2} a \rightarrow_{\text {max }} s_{3} a$
10. $s_{2} b_{j} \rightarrow_{\text {max }} s_{3}$
11. $s_{2} x \rightarrow_{\text {max }} s_{3}$
12. Rules for cells in state s_{3} :
13. $s_{3} a a a \rightarrow_{\text {max }} s_{5} a$
14. $s_{3} a a \rightarrow_{\text {max }} s_{4} a$
15. $s_{3} c_{i} e_{i} \rightarrow_{\text {max }} s_{3} \mid \iota_{i}$
16. s_{3} aoooe $_{i} \rightarrow_{\text {max }} s_{3} a a(o)_{\uparrow} \mid \iota_{i}$
17. s_{3} aoe $_{i} e_{i} \rightarrow$ max s_{3} ahoe $_{i} e_{i} \mid \iota_{i}$
18. s_{3} aoe $_{i} \rightarrow_{\max } s_{3}$ ahooe $_{i} \mid \iota_{i}$
19. $s_{3} a o \rightarrow_{\text {max }} s_{3} a a a$
20. $s_{3} a e_{i} \rightarrow_{\text {max }} s_{3} a e_{i} h \mid \iota_{i}$
21. $s_{3} a p_{j} \rightarrow_{\text {max }} s_{3} a a\left(c_{j}\right)_{\uparrow}$
22. $s_{3} e_{i} \rightarrow_{\text {max }} s_{3} e_{i} \mid \iota_{i}$
23. $s_{3} e_{j} \rightarrow_{\text {max }} s_{3}$
24. $s_{3} p_{j} \rightarrow_{\text {max }} s_{4}$
25. $s_{3} p_{j} \rightarrow_{\text {max }} s_{5}$
26. Rules for cells in state s_{4} :
27. $s_{4} a \rightarrow_{\text {max }} s_{5}$
28. $s_{4} h \rightarrow_{\text {max }} s_{5}$
29. $s_{4} c_{j} \rightarrow_{\text {max }} s_{5}$
30. Rules for cells in state s_{5} :
31. $s_{5} a \rightarrow_{\text {max }} s_{6} a(z)_{\uparrow}$
32. $s_{5} h h \rightarrow_{\text {max }} s_{6} w(v)_{\uparrow}$
33. $s_{5} z v \rightarrow_{\text {max }} s_{6} a(z)_{\uparrow}$
34. $s_{5} v \rightarrow_{\max } s_{6} w(v)_{\uparrow}$
35. $s_{5} o \rightarrow_{\text {max }} s_{5}$
36. $s_{5} c_{j} \rightarrow_{\text {max }} s_{5}$
37. Rules for cells in state s_{6} :
38. $s_{6} a w \rightarrow_{\max } s_{6} a$
39. $s_{6} a \rightarrow_{\text {max }} s_{7}$
40. $s_{6} z \rightarrow_{\max } s_{7}$
41. $s_{6} v \rightarrow_{\text {max }} s_{7}$
Table 4: The traces of the FSSP algorithm on the digraph of Figure 6 (a), where the general is σ_{1} and the middle cell is σ_{2}. The step in which the Phase I ends (or the Phase II begins) is indicated by the shaded table cells.

Step	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}	σ_{7}	σ_{8}	σ_{9}
0	$s_{0} \iota_{1} O$	$s_{0} \iota_{2}$	$s_{0} \iota_{3}$	$s_{0} \iota_{4}$	$s_{0} \iota_{5}$	$s_{0} \iota_{6}$	$s_{0} \iota_{7}$	$s_{0} \iota_{8}$	$s_{0} \iota_{9}$
1	$s_{1} \iota_{1} a O$	$s_{0} \iota_{2} b_{1} x$	$s_{0} \iota_{3} b_{1} x$	$s_{0} \iota_{4} b_{1} x$	$s_{0} \iota_{5}$	$s_{0} \iota_{6}$	$s_{0} \iota_{7}$	$s_{0} \iota_{8}$	$s_{0} \iota_{9}$
2	$s_{2} \iota_{1} a b_{2} b_{3} b_{4} o x^{3}$	$s_{1} \iota_{2} a p_{1}$	$s_{1} \iota_{3} a p_{1}$	$s_{1} \iota_{4} a p_{1}$	$s_{0} \iota_{5} b_{2} x$	$s_{0} \iota_{6} b_{2} b_{3} x^{2}$	$s_{0} \iota_{7} b_{3} b_{4} x^{2}$	$s_{0} \iota_{8}$	$s_{0} \iota_{9}$
3	$s_{3} \iota_{1} a e_{1}^{3} o$	$s_{2} \iota_{2} a b_{5} b_{6} p_{1} x^{2}$	$s_{2} \iota_{3} a b_{6} b_{7} p_{1} x^{2}$	$s_{2} \iota_{4} a b_{7} p_{1} x$	$s_{1} \iota_{5} a e_{1} p_{2}$	$s_{1} \iota_{6} a e_{1}^{2} p_{2} p_{3} x$	$s_{1} \iota_{7} a e_{1}^{2} p_{3} p_{4} x$	$s_{0} \iota_{8} b_{5} b_{6} b_{7} x^{3}$	$s_{0} \iota_{9}$
4	$s_{3} \iota_{1} a e_{1}^{3} h o$	$s_{3} \iota_{2} a e_{2}^{2} p_{1}$	$s_{3} \iota_{3} a e_{2} e_{4} p_{1}$	$s_{3} \iota_{4} a e_{4} p_{1}$	$s_{2} \iota_{5} a b_{8} e_{1} p_{2} x$	$s_{2} \iota_{6} a b_{8} e_{1}^{2} p_{2} x^{2}$	$s_{2} \iota_{7} a b_{8} e_{1}^{2} p_{4} x^{2}$	$s_{1} \iota_{8} a e_{2}^{2} e_{4} p_{5} p_{6} p_{7} x^{2}$	$s_{0} \iota_{9} b_{8} x$
5	$s_{3} \iota_{1} a c_{1} e_{1}^{3} h^{2} o$	$s_{3} \iota_{2} a e_{2}^{2} h p_{1}$	$s_{3} \iota_{3} a^{2}$	$s_{3} \iota_{4} a e_{4} h p_{1}$	$s_{3} \iota_{5} a e_{1} e_{6} p_{2}$	$s_{3} \iota_{6} a c_{1} e_{1}^{2} e_{6} p_{2}$	$s_{3} \iota_{7} a c_{1} e_{1}^{2} e_{6} p_{4}$	$s_{2} \iota_{8} a b_{9} e_{2}^{2} e_{4} p_{6} x^{3}$	$s_{1} \iota_{9} a e_{6} p_{8}$
6	$s_{3} \iota_{1} a e_{1}^{2} h^{3} o$	$s_{3} \iota_{2} a c_{2} e_{2}^{2} h^{2} p_{1}$	$s_{4} \iota_{3} a c_{4}$	$s_{3} \iota_{4} a c_{4} e_{4} h^{2} p_{1}$	$s_{3} \iota_{5} a^{2}$	$s_{3} \iota_{6} a c_{1} e_{6} h p_{2}$	$s_{3} \iota_{7} a^{2} c_{1}$	$s_{3} \iota_{8} a c_{2} c_{4} e_{2}^{2} e_{4} e_{8} p_{6}$	$s_{2} \iota_{9} a_{6} p_{8}$
7	$s_{3} \iota_{1} a c_{1} e_{1}^{2} h^{4} o$	$s_{3} \iota_{2} a e_{2} h^{3} p_{1}$	$s_{5} \iota_{3}$	$s_{3} \iota_{4} a^{2} h^{2}$	$s_{4} \iota_{5} a$	$s_{3} \iota_{6} a c_{1} e_{6} h^{2} p_{2}$	$s_{4} \iota_{7} a c_{1}^{2}$	$s_{3} \iota_{8} a c_{2} c_{4} e_{8} h p_{6}$	$s_{3} \iota_{9} a e_{6} p_{8}$
8	$s_{3} \iota_{1} a e_{1} h^{5} o^{2}$	$s_{3} \iota_{2} a e_{2} h^{4} p_{1}$	$s_{5} \iota_{3}$	$s_{4} c_{4} a h^{2}$	$s_{5} \iota_{5}$	$s_{3} \iota_{6} a c_{1} e_{6} h^{3} p_{2}$	$s_{5} \iota_{7}$	$s_{3} \iota_{8} a c_{2} c_{4} c_{8} e_{8} h^{2} p_{6}$	$s_{3} \iota_{9} a^{2}$
9	$s_{3} \iota_{1} a e_{1} h^{6} o^{3}$	$s_{3} \iota_{2} a e_{2} h^{5} p_{1}$	$s_{5} \iota_{3}$	$s_{5} \iota_{4}$	$s_{5} \iota_{5} c_{6}$	$s_{3} \iota_{6} a c_{1} c_{6} e_{6} h^{4} p_{2}$	$s_{5} \iota_{7} c_{6}$	$s_{3} \iota_{8} a^{2} c_{2} c_{4} h^{2}$	$s_{4} \iota_{9} a c_{6}$
10	$s_{3} \iota_{1} a^{2} h^{6}$	$s_{3} \iota_{2} a c_{2} e_{2} h^{6}{ }_{0} p_{1}$	$S_{5} \iota_{3} c_{2} O$	$s_{5} \iota_{4} 0$	$s_{5} \iota_{5}$	$s_{3} \iota_{6} a^{2} c_{1} h^{4}$	$S_{5} \iota_{7}$	$s_{4} \iota_{8} a c_{2}^{2} c_{4} h^{2}$	$s_{5} \iota_{9}$
11	$s_{4} \iota_{1} a h^{6}$	$s_{3} \iota_{2} a^{3} h^{6} p_{1}$	$s_{5} \iota_{3}$	$s_{5} \iota_{4}$	$s_{5} \iota_{5}$	$s_{4} \iota_{6} a c_{1} h^{4}$	$s_{5} \iota_{7}$	$s_{5} \iota_{8}$	$s_{5} \iota_{9}$
12	$s_{5} \iota_{1}$	$s_{5} \iota_{2} a h^{6}$	$s_{5} \iota_{3}$	$s_{5} \iota_{4}$	$s_{5} \iota_{5}$	$s_{5} \iota_{6}$	$s_{5} \iota_{7}$	$s_{5} \iota_{8}$	$s_{5} \iota_{9}$
13	$s_{5} \iota_{1} v^{3} z$	$s_{6} \iota_{2} a w^{3}$	$s_{5} \iota_{3}$	$s_{5} \iota_{4}$	$s_{5} \iota_{5} v^{3} z$	$s_{5} \iota_{6} v^{3} z$	$s_{5} \iota_{7}$	$S_{5} \iota_{8}$	$s_{5} \iota_{9}$
14	$s_{6} \iota_{1} a w^{2}$	$s_{6} \iota_{2} a v^{6} w^{2} z^{3}$	$s_{5} \iota_{3} v^{4} z^{2}$	$s_{5} \iota_{4} v^{2} z$	$s_{6} \iota_{5} a w^{2}$	$s_{6} \iota_{6} a w^{2}$	$s_{5} \iota_{7}$	$s_{5} \iota_{8} v^{4} z^{2}$	$s_{5} \iota_{9}$
15	$s_{6} \iota_{1} a v^{3} w z^{3}$	$s_{6} \iota_{2} a v^{6} w z^{3}$	$s_{6} \iota_{3} a^{2} w^{2}$	$s_{6} \iota_{4} a w$	$s_{6} \iota_{5} a v^{2} w z^{2}$	$s_{6} \iota_{6} a v^{4} w z^{4}$	$s_{5} \iota_{7} v^{5} z^{5}$	$s_{6} \iota_{8} a^{2} w^{2}$	$s_{5} \iota_{9} v^{2} z^{2}$
16	$s_{6} \iota_{1} a v^{3} z^{3}$	$s_{6} \iota_{2} a v^{6} z^{3}$	$s_{6} \iota_{3} a^{2} z^{5}$	$s_{6} \iota_{4} a z^{5}$	$s_{6} \iota_{5} a v^{2} z^{2}$	$s_{6} \iota_{6} a v^{4} z^{4}$	$s_{6} \iota_{7} a^{5}$	$s_{6} \iota_{8} a^{2} z^{7}$	$s_{6} \iota_{9} a^{2}$
17	$s_{7} \iota_{1}$	$s_{7} \iota_{2}$	$s_{7} \iota_{3}$	$s_{7} \iota_{4}$	$s_{7} \iota_{5}$	$s_{7} \iota_{6}$	$s_{7} \iota_{7}$	${ }_{57} \iota_{8}$	$s_{7} \iota_{9}$

4.2 Phase I: Find the middle cell of a BFS spanning tree

For a given digraph-based P system, a (virtual) spanning tree is constructed by a standard BFS originated from the general, where the tree parent of each cell is one of its BFS parents (randomly chosen). Each cell keeps the track of its spanning tree parent and this is achieved by the use of cell IDs (unique identifier ID), e.g., i is the cell ID of σ_{i}.

Details of Phase I

Objective: The objective of Phase I is to find the middle cell, σ_{m}, and its height, height $_{g}(m)$.
Precondition: Phase I starts with the initial configuration of P system Π, described in Section 4.1.
Postcondition: Phase I ends when σ_{m} enters state s_{5}. At the end of Phase I, the configuration of cell $\sigma_{i} \in K$ is $\left(Q, s_{5}, w_{i}, R\right)$, where $\left|w_{i}\right|_{\iota_{i}}=1 ;\left|w_{i}\right|_{a}=1$ and $\left|w_{i}\right|_{h}=$ $2 \cdot$ height $_{g}(i)$, if $\sigma_{i}=\sigma_{m}$.
Description: We describe below the details of the BFS spanning tree construction and the propagation of the reflected symbol in the BFS tree. The symbol o, starting from the general, propagates from a tree parent to one of its children, as described in the FSSP solution for tree-based P systems (Section 3.2). Hence, the details of symbol o propagation are not given here.

- The details of the BFS spanning tree construction:

A BFS starts from the general. When the search reaches cell σ_{i}, σ_{i} will send a copy of symbol b_{i} to all its neighbors (Rule 0.1 or 0.2).
From the BFS, cell σ_{i} receives a copy of symbol b_{j} from each $\sigma_{j} \in \operatorname{Pred}_{g}(i)$, where σ_{j} is a BFS dag parent of σ_{i}. Cell σ_{i} temporarily stores all of its BFS dag parents by transforming each received symbol b_{j} to symbol p_{j} (Rule 0.3). Note, σ_{i} will also receive a copy of symbol b_{k} from each $\sigma_{k} \in \operatorname{Peer}_{g}(i) \cup \operatorname{Succ}_{g}(i)$; however, σ_{i} will discard each received symbol b_{k}.
Each cell selects one of its BFS dag parents as its tree parent. If cell σ_{i} has chosen σ_{j} as its tree parent, then σ_{i} will discards each p_{k}, where $\sigma_{k} \in \operatorname{Pred}_{g}(i) \backslash\left\{\sigma_{j}\right\}$ (Rule 1.3). Additionally, σ_{i} will send a copy of symbol e_{j} to all its neighbors, which will be discarded by all σ_{i} 's neighbors, except σ_{j} (Rule 1.1).
Hence, in each cell σ_{i}, the multiplicity of symbol e_{i} will indicate the number of σ_{i} 's tree children and symbol p_{j} will indicate that σ_{j} is the tree parent of σ_{i}; also, symbol p_{j} will later be used to propagate the reflected symbol back up the tree.

- The details of reflected symbol propagation:

To replicate the propagation of a reflected symbol up the BFS tree, each internal cell of the BFS tree needs to check if the received a reflected symbol came from one of its BFS tree children.
Let σ_{i} be a BFS tree child of σ_{j}, where $\left|w_{i}\right|_{e_{i}}=0$. Recall that, in such case, cell σ_{i} contains symbol p_{j}, where the subscript j is the ID of its BFS tree parent, and σ_{j} contains symbol e_{j}, such that $\left|w_{j}\right|_{e_{j}}$ is the number of σ_{j} 's BFS tree children.

Guided by symbol p_{j}, σ_{i} sends symbol c_{j} to all its neighbors (Rule 3.9). Cell σ_{j} consumes a copy of symbol e_{j} with a copy of symbol c_{j} by Rule 3.3; σ_{j} cannot consume symbol e_{j} with symbol c_{k}, where $j \neq k$. If σ_{j} receives symbol c_{j} from all its BFS tree children, then all copies of symbol e_{j} will be consumed, i.e. $\left|w_{j}\right|_{e_{j}}=0$.

Proposition 10 indicates the step in which the BFS reaches cell σ_{i} and σ_{i} receives symbol b_{j} from each $\sigma_{j} \in \operatorname{Pred}_{g}(i)$. Proposition 11 indicates the step in which σ_{i} receives symbol e_{i} from its tree child.

Proposition 10. Cell σ_{i} receives symbol b_{j} from each $\sigma_{j} \in \operatorname{Pred}_{g}(i)$ at step $\operatorname{depth}_{g}(i)$ and sends symbol b_{i} to all its neighbors at step $\operatorname{depth}_{g}(i)+1$.
Proof. Proof by induction, on $d=\operatorname{depth}_{g}(i) \geq 1$. At step 1 , the general σ_{g} sends symbol b_{g} to all its neighbors by Rule 0.1. Hence, at step 1 , each cell σ_{k} at depth 1 receives symbol b_{g}. Then, at step 2, by Rule $0.2, \sigma_{k}$ sends symbol b_{k} to each of its neighbors.

Assume that the induction hypothesis holds for each cell σ_{j} at depth d. Consider cell σ_{i} at $\operatorname{depth}_{g}(i)=m+1=\operatorname{depth}_{g}(j)+1$. By induction hypothesis, at step $\operatorname{depth}_{g}(j)+1$, each $\sigma_{j} \in \operatorname{Pred}_{g}(i)$ sends symbol b_{j} to all its neighbors. Thus, at step $\operatorname{depth}_{g}(j)+1=\operatorname{depth}_{g}(i), \sigma_{i}$ receives symbol b_{j}. At step depth ${ }_{g}(i)+1$, by Rule $0.2, \sigma_{i}$ sends symbol b_{i} to all its neighbors.

Proposition 11. Cell σ_{i} receives a copy of symbol e_{i} from each of its tree children at step depth $_{g}(i)+3$.
Proof. Assume that cell $\sigma_{j} \in \operatorname{Succ}_{g}(i)$ has chosen σ_{i} as its tree parent. From Proposition 10, cell σ_{j} receives symbol b_{i} at step $\operatorname{depth}_{g}(j)=\operatorname{depth}_{g}(i)+1$. According to the description, σ_{j} will send symbol e_{i} at step $\operatorname{depth}_{g}(j)+2$. Thus, σ_{i} will receive symbol e_{i} at step $\operatorname{depth}_{g}(i)+3$.

Remark 12. From Proposition 11, σ_{i} receives symbol e_{i} from its tree child at step $\operatorname{depth}_{g}(i)+3$. If σ_{i} does not receive symbol e_{i} at step $\operatorname{depth}_{g}(i)+3$, then σ_{i} can recognize itself as a tree leaf and send a reflected symbol to its tree parent at step $\operatorname{depth}_{g}(i)+4$. That is, once a leaf cell is reached by the BFS, it will take three additional steps to send reflected symbol to its tree parent. Recall, in the FSSP algorithm for tree-based P systems, a leaf cell sends reflected symbol to its parent, one step after reached by the BFS. Thus, this FSSP algorithm for digraph-based P systems takes three additional steps to send the reflected symbol than the FSSP algorithm for tree-based P systems.

4.3 Phase II: Determine the step to enter the firing state

Similar to the Phase II described in Section 3.3, the firing order is broadcasted from the middle cell σ_{m}. The order is paired with a counter, which is initially set to the eccentricity of σ_{m} and decrements by one in each step of this broadcast operation.

Details of Phase II

Objective: The objective of Phase II is to determine the step to enter the firing state, such that during the last step of Phase II, i.e. the system's execution, all cells enter the firing state, simultaneously and for the first time.

Precondition: Phase II starts with the postcondition of Phase I, described in Section 4.2.
Postcondition: Phase II ends when all cells enter the firing state s_{7}. At the end of Phase II, the configuration of cell $\sigma_{i} \in K$ is $\left(Q, s_{7},\left\{\iota_{i}\right\}, R\right)$.
Description: The order arrives in σ_{i}, along every shortest paths from σ_{m} to σ_{i}. Hence, to compute the correct step to enter the firing state, cell σ_{i} decrements, in each step, the sum of all received counter by the number of shortest paths from σ_{m} to σ_{i} and σ_{i} enters the firing state if the sum of all received counter becomes 0 . The number of shortest paths from σ_{m} to σ_{i} is determined as follows. Cell σ_{m} sends a copy of symbol z. Each cell σ_{i} forwards symbol z, received from each $\sigma_{j} \in \operatorname{Pred}_{m}(i)$. The number of shortest paths from σ_{m} to σ_{i} is the sum of all copies of symbol z that σ_{i} receives from each $\sigma_{j} \in \operatorname{Pred}_{m}(i)$.

Let t be the current counter and k be the number of shortest paths from σ_{m} to the current cell. In the FSSP solution for tree-based P systems, the condition for entering the firing state in the next step is when $t=1$ (note $k=1$). However, the FSSP solution, as implemented in this section, cannot directly detect if $t=k$, since $k \geq 1$ Instead, a cell enters the firing state after $t=0$ is detected. Thus, the FSSP algorithm for digraph-based P systems requires one additional step in Phase II.

Theorem 13. The synchronization time of the FSSP solution for digraph-based P systems is ecc $(g)+2 \cdot \operatorname{ecc}(m)+7$.
Proof. This FSSP algorithm for digraph-based P systems requires four additional overhead steps than the FSSP algorithm for tree-based P systems. Three of these four overhead steps are described in Remark 12 and the remaining overhead step is mentioned in Section 4.3.

We end this section with a comment regarding improving the communication requirements of our FSSP solution. Currently, there may be an exponential number of broadcast objects generated since a given cell currently receives a copy of the counter from every possible shortest path from the middle cell. We can reduce number of broadcasted counters from an exponential to a polynomial as follows. Assume that, a counter, sent or forwarded from a cell, is annotated with the cell's ID. In Phase II, if a cell receives counter from its BFS tree neighbor (from a BFS tree child for cells on the path from the general to the middle cell, otherwise from its original BFS tree parent), then it broadcasts the reduced-by-one counter, now annotated with its own ID, to all its neighbors. The total number of steps of this revised algorithm would still be the same as given in Theorem 13.

4.4 Empirical results

We also tested the improvement in running times over our previous FSSP algorithm on digraph-based P systems. The rate of improvement drops off as the number of edges increase over $n-1$, the size of trees of order n. But for several sparse digraph structured P systems the improvement is still worthwhile.

We did two tests suites; one for relatively small digraphs (illustrated in Figure 7) and one for larger digraphs as shown in Table 5. The graphs used in our empirical tests were generated using NetworkX [8].

For the statistics given in Table 5, we first generated connected random graphs of order n and size m. We then averaged over all possible locations for the general node. To model the parallel nature of P systems, we needed to generate a random BFS tree originating at the general. This was created by first performing a BFS from the general to constructing the BFS dag then randomly picking (for each non-general node) one parent within the dag structure as the parent for the BFS tree. The code for constructing a BFS tree from a dag structure is displayed in Figure 8.

For this BFS tree, with e denoting the eccentricity of the general and r denoting the radius of the BFS tree, the "average gain" is the average difference of $3 e-(e+2 r)$ and the "average $\%$ gain" is the average of the $(3 e-(e+2 r)) /(3 e)$ values. From our empirical results, we can observe that the radius of the BFS spanning trees seems to be close to the actual radius of the given virtual communication graphs.

For the statistics given in the three dimensional plots of Figure 7 (generated using Gnuplot [20]), we generated 100 random connected (n, m)-graphs, for each order $n, 20 \leq$ $n \leq 40$, and size $m=(n-1)+2 k$, where $0 \leq k \leq 20$. Note, the integer value of $2 k$ represents the number of edges added to a tree. We then averaged over all possible general starting positions. The vertical axis is the average percentage speedup of our new algorithm over our previous synchronization algorithm. One can also observe from this plot, at least 20% improvements (i.e. reduction in number of steps needed to synchronize), is maintained for $k=0$ (i.e. the graph is a tree). However, as the graphs become less sparse, the expected improvement drops to near zero, when as few as 40 edges are added to the trees. In general, for fixed k, the expected improvement in performance, for ($n, n+k$) digraphs slightly increases as n increases. However, for fixed n, the expected improvement in performance drops drastically as k increases.

Figure 7: Discrete 3-dimensional plot of expected synchronization improvements for a small range of random connected (n, m)-graph structures, with $m=(n-1)+k$ edges.

Table 5: Statistics for reduction in number of steps needed to synchronize on a few random (n, m)-graphs.

n	m	graph radius	avg tree radius	average gain	average gain \%
100	100	15	15.68	16.7	23.16
100	110	9	11.47	3.14	8.02
100	120	7	8.97	1.6	5.45
100	130	7	8.13	1.0	3.86
100	140	6	7.33	0.72	3.12
200	200	20	20.73	17.91	20.10
200	210	16	19.12	5.08	7.81
200	220	13	15.74	3.9	7.34
200	230	9	11.24	2.24	6.04
200	240	9	11.41	2.13	5.68
300	300	25	25.00	22.32	20.57
300	310	17	18.95	7.95	11.56
300	320	16	18.61	8.29	12.14
300	330	12	15.0	3.37	6.73
300	340	12	14.03	2.46	5.37
400	400	24	24.56	24.10	21.94
400	410	22	24.79	7.73	8.99
400	420	19	21.91	7.12	9.31
400	430	15	17.85	2.78	4.81
400	440	13	15.86	2.29	4.48
500	500	28	29.14	23.30	19.04
500	510	24	27.28	9.68	10.04
500	520	19	23.17	8.72	10.56
500	530	16	19.87	5.68	8.34
500	540	16	19.25	5.70	8.60
600	600	28	30.99	22.35	17.66
600	610	25	28.78	14.63	13.51
600	620	22	24.965	5.39	6.49
600	630	19	22.065	5.72	7.64
600	640	17	20.32	4.15	6.18

n	m	graph radius	avg tree radius	average gain	average gain $\%$
700	700	35	38.68	25.58	16.56
700	710	23	29.55	10.09	9.72
700	720	23	26.59	8.39	9.08
700	730	21	24.69	7.70	9.00
700	740	20	25.11	7.50	8.66
800	800	40	42.66	26.93	15.99
800	810	28	32.50	13.08	11.16
800	820	29	33.91	9.13	7.91
800	830	23	26.36	8.06	8.84
800	840	20	25.19	7.80	8.93
900	900	53	60.73	25.92	11.72
900	910	35	39.23	12.94	9.44
900	920	24	30.37	7.44	7.27
900	930	25	29.23	7.42	7.50
900	940	21	24.90	5.74	6.88
1000	1000	60	66.96	26.72	11.09
1000	1010	33	37.43	20.27	14.20
1000	1020	26	31.19	8.64	8.11
1000	1030	25	29.63	7.87	7.81
1000	1040	26	30.32	11.41	10.55
1000	1000	46	48.45	26.58	14.35
1000	1010	31	34.77	20.07	14.93
1000	1020	28	32.98	11.91	10.19
1000	1030	24	29.30	9.23	9.07
1000	1040	23	27.62	6.66	7.17
2000	2000	76	76.07	85.98	24.07
2000	2010	55	61.33	30.50	13.27
2000	2020	39	44.73	18.55	11.45
2000	2030	33	42.11	11.21	7.83
2000	2040	32	39.78	13.68	9.78

\#!/usr/bin/python

```
import networkx as nx
import random, Queue
def bfsdag(G, g):
    " Computes bfs dag for graph G and starting node g "
    n = G.order()
    pred = [set() for i in range(n)]
    dist = [-1]*n
    dist[g] = 0
    q = Queue.Queue()
    q.put(g)
    while not q.empty():
        cParent = q.get()
        for nextChild in G[cParent]:
            if dist[nextChild] < 0:
                pred[nextChild].add(cParent)
                dist[nextChild] = dist[cParent]+1
                q.put(nextChild)
            elif dist[nextChild] == dist[cParent]+1:
                pred[nextChild].add(cParent)
    return (pred, dist)
def virtualBFS(G, g):
    " Computes random bfs virtual tree for graph G and starting node g "
    pred,dist = bfsdag(G,g)
    T=nx.empty_graph(G.order(),create_using=nx.Graph())
    for v in range(n):
        if v==g: continue
        rP = random. randint(0, len(pred[v])-1)
        T.add_edge(v,list(pred[v])[rP])
    return T
```

Figure 8: Python code for generating a BFS dag from a given graph and constructing a BFS tree from the BFS dag.

5 Conclusions and future works

In this paper, we explicitly presented an improved solution to the FSSP for tree-based P systems. We improved our previous FSP algorithm [5] by allowing the general to delegate a more central cell in the tree structure, as an alternative to itself, to send the final "firing" command. This procedure for trees-based P systems was extended to digraph-based P systems. Here we use a virtual spanning BFS tree (rooted at the general) in the digraph and use our tree-based middle-cell algorithm for that tree to improve the synchronization time. Alternatively, we would like to develop a way to compute a center of an arbitrary graph since the radius of the graph may be less than the radius of a particular BFS spanning tree. Thus this future work may possibly provide even more guaranteed improvements in synchronization time.

We summarize our work as follows. With e being the eccentricity of the general and r denoting the radius of the graph, where $e / 2 \leq r \leq e$, we note the radius r^{\prime} of the spanning BFS tree satisfies $e / 2 \leq r \leq r^{\prime} \leq e$. Thus, we have the following results:

- If the membrane structure of a considered P system is a tree, then synchronization time is $e+2 r+3$.
- If the membrane structure of a considered P system is a digraph, then synchronization time t is $e+2 r+7 \leq t \leq 3 e+7$.

Our empirical work shows that the radius of the BFS spanning tree is often as small as the radius of its host graph and we expect, more often than not, the synchronization time to be closer to $e+2 r+7$ than to $3 e+7$ for arbitrary digraph-based P systems.

Finally, we mention a couple open problems for the future. We would like a theoretical proof based on properties of random trees of why it seems that the our gain in performance is independent of the order of the trees considered. The current FSSP solution is designed for digraph-based P systems with duplex channels. Another remaining open problem is to obtain an efficient FSSP solution that synchronizes strongly connected digraphs using simplex channels.

Acknowledgments

The authors wish to thank Ionuţ-Mihai Niculescu for providing us with some early empirical statistics on random graphs and to acknowledge the University of Auckland FRDF grant 9843/3626216 to assist our research.

References

[1] A. Alhazov, M. Margenstern, and S. Verlan. Fast synchronization in P systems. In D. W. Corne, P. Frisco, G. Păun, G. Rozenberg, and A. Salomaa, editors, Workshop on Membrane Computing, volume 5391 of Lecture Notes in Computer Science, pages 118-128. Springer, 2008.
[2] R. Balzer. An 8-state minimal time solution to the firing squad synchronization problem. Information and Control, 10(1):22-42, 1967.
[3] F. Bernardini, M. Gheorghe, M. Margenstern, and S. Verlan. How to synchronize the activity of all components of a P system? Int. J. Found. Comput. Sci., 19(5):11831198, 2008.
[4] A. Berthiaume, T. Bittner, L. Perkovic, A. Settle, and J. Simon. Bounding the firing synchronization problem on a ring. Theor. Comput. Sci., 320(2-3):213-228, 2004.
[5] M. J. Dinneen, Y.-B. Kim, and R. Nicolescu. Faster synchronization in P systems. International Journal of Natural Computing, pages 1-15, 2011.
[6] E. Goto. A minimal time solution of the firing squad problem. Course notes for Applied Mathematics 298, pages 52-59, Harvard University, 1962.
[7] J. J. Grefenstette. Network structure and the firing squad synchronization problem. J. Comput. Syst. Sci., 26(1):139-152, 1983.
[8] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), pages 11-15, Pasadena, CA USA, Aug 2008.
[9] M. Ionescu and D. Sburlan. On P systems with promoters/inhibitors. J. UCS, 10(5):581-599, 2004.
[10] K. Kobayashi. The firing squad synchronization problem for a class of polyautomata networks. J. Comput. Syst. Sci., 17(3):300-318, 1978.
[11] E. F. Moore. The firing squad synchronization problem. In E. Moore, editor, Sequential Machines, Selected Papers, pages 213-214. Addison-Wesley, Reading MA., 1964.
[12] F. R. Moore and G. G. Langdon. A generalized firing squad problem. Information and Control, 12(3):212-220, 1968.
[13] Y. Nishitani and N. Honda. The firing squad synchronization problem for graphs. Theor. Comput. Sci., 14:39-61, 1981.
[14] G. Păun. Introduction to membrane computing. In G. Ciobanu, M. J. Pérez-Jiménez, and G. Păun, editors, Applications of Membrane Computing, Natural Computing Series, pages 1-42. Springer-Verlag, 2006.
[15] H. Schmid and T. Worsch. The firing squad synchronization problem with many generals for one-dimensional CA. In J.-J. Lévy, E. W. Mayr, and J. C. Mitchell, editors, IFIP TCS, pages 111-124. Kluwer, 2004.
[16] W. A. Stein et al. Sage Mathematics Software (Version 4.6). The Sage Development Team, 2010. http://www. sagemath.org.
[17] H. Umeo, N. Kamikawa, K. Nishioka, and S. Akiguchi. Generalized firing squad synchronization protocols for one-dimensional cellular automata-a survey. Acta Physica Polonica B Proceedings Supplement, 3(2):267-289, 2010.
[18] A. Waksman. An optimum solution to the firing squad synchronization problem. Information and Control, 9(1):66-78, 1966.
[19] E. W. Weisstein. Prüfer code, from MathWorld-a Wolfram web resource. http: //mathworld.wolfram.com/PrueferCode.html, [Online; accessed 8-April-2011].
[20] T. Williams, C. Kelley, and many others. Gnuplot 4.2: an interactive plotting program. http://gnuplot.sourceforge.net/, March 2009.

