
CDMTCS

Research

Report

Series

The Complexity of Euler’s

Integer Partition Theorem

Cristian S. Calude,

1

Elena Calude

2

1

University of Auckland, NZ

2

Massey University at Auckland, NZ

CDMTCS-409

November 2011

Centre for Discrete Mathematics and

Theoretical Computer Science

THE COMPLEXITY OF EULER’S INTEGER PARTITION
THEOREM

CRISTIAN S. CALUDE AND ELENA CALUDE

Abstract. Euler’s integer partition theorem stating that the number of par-

titions of an integer into odd integers is equal to the number of partitions into

distinct integers ranks 16 in Wells’ list of the most beautiful theorems [17]. In
this paper we use the algorithmic method to evaluate the complexity of mathe-
matical statements developed in [3, 4, 5] to show that Euler’s theorem is in class
CU,7, the most complex mathematical statement studied to date.

1. Euler’s integer partition theorem

The number of ways of writing the integer as a sum of n positive integers,
where the order of addends is ignored, is denoted by P (n). By P (n|odd parts) and
P (n|distinct parts) we denote the number of ways of writing the integer as a sum
of n odd/distinct positive integers. By convention, partitions are usually ordered
from largest to smallest. Some examples are presented in the following table:

n odd parts P (n|odd parts) distinct parts P (n|distinct parts)
1 1 1 1 1
2 1 + 1 1 2 1
3 1 + 1 + 1 3

3 2 2 + 1 2
4 1 + 1 + 1 + 1 + 1 4

3 + 1 2 3 + 1 2
5 1 + 1 + 1 + 1 + 1 5

3 + 1 + 1 4 + 1
5 3 3 + 2 3

6 1 + 1 + 1 + 1 + 1 + 1 6
3 + 1 + 1 + 1 5 + 1
3 + 3 4 + 2
5 + 1 4 3 + 2 + 1 4

Table 1. Integer partitions into odd integers vs.
integer partitions into distinct integers

Leonhard Euler is credited (cf. [1] p.2) to have proved in 1748 the theorem
bearing his name: no matter how long we extend the Table 1, there will always be
as many items in the left column as in the right one. In other terms, the number of

partitions of an integer into odd integers is equal to the number of partitions into

distinct integers.

Euler’s integer partition theorem is a ⇧
1

–statement, i.e. a statement of the form
8nP (n), where P (n) is a unary computable predicate, hence its complexity can
be evaluated with the method developed in [3, 4, 5].

1

2 CRISTIAN S. CALUDE AND ELENA CALUDE

2. The complexity measure

The complexity measure for ⇧
1

-statements is defined by means of register ma-
chine programs which implement a universal self-delimiting Turing machine U .
The machine U (which is fully described in [5]) has to be minimal in the sense
that none of its instructions can be simulated by a program for U written with the
remaining instructions.

To every ⇧
1

–problem ⇡ = 8mP (m) we associate the algorithm ⇧
P

= inf{n :
P (n) = false} which systematically searches for a counter-example for ⇡. There
are many programs (for U) which implement ⇧

P

; without loss of generality, any
such program will be denoted also by ⇧

P

. Note that ⇡ is true i↵ U(⇧
P

) never
halts.

Motivated by Occam’s Razor principle of parsimony we define the complexity
(with respect to U) of a ⇧

1

–problem ⇡ to be the length of the smallest-length
program (for U) ⇧

P

—defined as above—where minimisation is calculated for all
possible representations of ⇡ as ⇡ = 8nP (n):1

C

U

(⇡) = min{|⇧
P

| : ⇡ = 8nP (n)}.

Because the complexity C

U

is incomputable, we work with upper bounds for C
U

.
As the exact value of C

U

is not important, following [5] we classify ⇧
1

–problems
into the following classes:

C
U,n

= {⇡ : ⇡ is a ⇧
1

–problem, C

U

(⇡)  n kbit}.

3. A universal prefix-free binary Turing machine

We briefly describe the syntax and the semantics of a register machine language
which implements a (natural) minimal universal prefix-free binary Turing machine
U ; it is a refinement, constructed in [5], of the languages in [3].

Any register program (machine) uses a finite number of registers, each of which
may contain an arbitrarily large non-negative integer.

By default, all registers, named with a string of lower or upper case letters, are
initialised to 0. Instructions are labeled by default with 0,1,2,. . .

The register machine instructions are listed below. Note that in all cases R2
and R3 denote either a register or a non-negative integer, while R1 must be a
register. When referring to R we use, depending upon the context, either the
name of register R or the non-negative integer stored in R.

=R1,R2,R3

If the contents of R1 and R2 are equal, then the execution continues at the R3-
th instruction of the program. If the contents of R1 and R2 are not equal, then
execution continues with the next instruction in sequence. If the content of R3 is
outside the scope of the program, then we have an illegal branch error.

&R1,R2

1For CU it is irrelevant whether ⇡ is known to be true or false. In particular, the program
containing the single instruction halt is not a ⇧P program, for any P .

THE COMPLEXITY OF EULER’S INTEGER PARTITION THEOREM 3

The contents of register R1 is replaced by R2.

+R1,R2

The contents of register R1 is replaced by the sum of the contents of R1 and R2.

!R1

One bit is read into the register R1, so the contents of R1 becomes either 0 or 1.
Any attempt to read past the last data-bit results in a run-time error.

%

This is the last instruction for each register machine program before the input
data. It halts the execution in two possible states: either successfully halts or it
halts with an under-read error.

A register machine program consists of a finite list of labeled instructions from
the above list, with the restriction that the halt instruction appears only once, as
the last instruction of the list. The input data (a binary string) follows immediately
after the halt instruction. A program not reading the whole data or attempting to
read past the last data-bit results in a run-time error. Some programs (as the ones
presented in this paper) have no input data; these programs cannot halt with an
under-read error.

The instruction =R,R,n is used for the unconditional jump to the n-th instruction
of the program. For Boolean data types we use integers 0 = false and 1 = true.

For longer programs it is convenient to distinguish between the main program
and some sets of instructions called “routines” which perform specific tasks for
another routine or the main program. The call and call-back of a routine are
executed with unconditional jumps.

4. Binary coding of programs

In this section we develop a systematic e�cient method to uniquely code in
binary the register machine programs. To this aim we use a prefix-free coding as
follows.

The binary coding of special characters (instructions and comma) is the following
(" is the empty string):

special characters code special characters code
, " + 111
& 01 ! 110
= 00 % 100

Table 2. Special characters

For registers we use the prefix-free code code
1

= {0|x|1x | x 2 {0, 1}⇤}. The
register names are chosen to optimise the length of the program, i.e. the most
frequent registers have the smallest code

1

length. For non-negative integers we use
the prefix-free code code

2

= {1|x|0x | x 2 {0, 1}⇤}. The instructions are coded by
self-delimiting binary strings as follows:

4 CRISTIAN S. CALUDE AND ELENA CALUDE

(1) & R1,R2 is coded in two di↵erent ways depending on R2:2

01code
1

(R1)code
i

(R2),

where i = 1 if R2 is a register and i = 2 if R2 is an integer.
(2) + R1,R2 is coded in two di↵erent ways depending on R2:

111code
1

(R1)code
i

(R2),

where i = 1 if R2 is a register and i = 2 if R2 is an integer.
(3) = R1,R2,R3 is coded in four di↵erent ways depending on the data types of

R2 and R3:

00code
1

(R1)code
i

(R2)code
j

(R3),

where i = 1 if R2 is a register and i = 2 if R2 is an integer, j = 1 if R3 is
a register and j = 2 if R3 is an integer.

(4) !R1 is coded by
110code

1

(R1).

(5) % is coded by
100.

All codings for instruction names, special symbol comma, registers and non-
negative integers are self-delimiting; the prefix-free codes used for registers and
non-negative integers are disjoint. The code of any instruction is the concatenation
of the codes of the instruction name and the codes (in order) of its components,
hence the set of codes of instructions is prefix-free. The code of a program is the
concatenation of the codes of its instructions, so the set of codes of all programs
is prefix-free too.

5. The counting algorithm

We use the algorithm 7 in [15], p. 13, which generates all integer partitions:
for each of them we test whether the partition uses odd or distinct integers, and
count accordingly. Other possible algorithms for generating all integer partitions
are discussed in [13, 14, 16].

6. Routines

There are two types of routines: a) 1-routines, that is routines that do not use
any other routines, b) 2-routines, that is routines that call other routines. All
unary routines use the register a for input and all binary routines use a and b
for input, they all use c for keeping track of returning to the calling environment
and d for storing the result. As the values in the registers a, b, and c have to
be unchanged on exit from any routine, a copying-restoring-initial-values process
takes place inside some routines.

As the registers used in the following programs are shared between the main
program, 1-routines and 2-routines care must be taken so the content of a register
is not changed inadvertently. There are various ways to deal with this problem.
One is to reserve the letters from a to h to 1-routines and to use aa, ab, ac, . . . in
2-routines or the main program (see [12]). The approach used in the following
examples is that 1-routines use single letters name, 2-routines use double letter

2As x" = "x = x, for every string x 2 {0, 1}⇤, in what follows we omit ".

THE COMPLEXITY OF EULER’S INTEGER PARTITION THEOREM 5

names, where the second letter comes from the first letter of the routine, and the
main program uses capital letters for registers. As all 2-routines have di↵erent
first-letter-names, there is no danger of using the same register in a routine that
calls another routine using the same register name. The upside of this approach
is the guarantee that the values in registers are the correct ones; the downside is
that the number of necessary registers is bigger (this fact can be mitigated at the
end by safely reusing a few registers).

The multiplication routine MUL takes as input two non-negative integers, stored
in registers a and b, and produces its result a*b in register d:

label instruction
MUL: &d, 0

&e, 0
LM1: =e, b, c

+d, a
+e, 1
=a, a, LM1

Table 3. Multiplication

The compare routine CMP takes as input two non-negative integers, stored in
registers a and b, and produces its result in register d according to the formula:
d = CMP(a, b) = 1 if a < b, 0 if a = b, and 2 if a > b:

label instruction
CMP: &d, 0

=a ,b LCP3
&d, 1
&e, 0

LCP1: =a, e, LCP3
=b, e, LCP2
+e, 1
=a, a, LCP1

LCP2: +d, 1
LCP3: =a, a, c

Table 4. Comparison

The subtraction routine SUBT takes two non-negative integers, stored in regis-
ters a and b with a � b, as input and produces its result a-b in register d:

label instruction
SUBT: &e, b

&d, 0
LS1: =e, a, c

+e, 1
+d, 1
=a, a, LS1

Table 5. Subtraction

6 CRISTIAN S. CALUDE AND ELENA CALUDE

The function T (a) = max{t | t(t + 1)  2a}, 0  t  a, is implemented by the
routine TFC, which uses the 1-routines multiplication, subtraction and compare:

label instruction label instruction label instruction
TFC &at, a &b, ft LT4 &c, LT5

&bt, b +b, 1 &a, ft
&ct, c =a, a, MUL &b, 1
&ft, 0 LT2 &a, d =a, a, SUBT
&d, 0 &c, LT3 LT5 &a, at
=a, 0, c &b, et &b, bt
&et, a =a, a, CMP &c, ct
+et, a LT3 =d, 2, LT4 =a, a, c

LT1 &c, LT2 +ft, 1
&a, ft =a, a, LT1

Table 6. Function T

The routine KFC encodes the function K(a) = a� T (a)T (a+ 1)/2, a � 0:

label instruction label instruction label instruction
KFC &bk, b &b, fk =fk, 2, LK5

&ck, c =a, a, MUL =a, a, LK4
&ak, a LK3 &ek, d LK5 &fk, 0
&c, LK1 &b, 0 +b, 1
=a, a, TFC =ek, 0, LK6 =a, a, LK4

LK1 &ek, d =ek, 1, LK6 LK6 &a, ak
&c, LK2 &b, 1 &c, LK7
+a, 1 &fk, 0 =a, a, SUBT
=a, a, TFC &gk, 2 LK7 &b, bk

LK2 &fk, d LK4 =ek, gk, LK6 &c, ck
&c, LK3 +gk, 1 =a, a, c
&a, ek + fk 1

Table 7. Function K

The routine LFC encodes the function L(a) = T (a)�K(a), a � 0:

label instruction label instruction label instruction
LFC &al, a LL1 &b, d =a, a, SUBT

&bl, b &c, LL2 LL3 &a, al
&cl, c = a, a, TFC &b, bl
&c, LL1 LL2 &a, d &c, cl
=a, a, KFC &c, LL3 =a, a, c

Table 8. Function L

7. Register machine language implementation of arrays

In this section we present a method of implementation in the register machine
language for arrays using Cantor’s bijection which maps (codes) a pair of non-
negative integers a, b into a single non-negative integer ha, bi = (a + b)(a + b +
1)/2 + a.This function can be iterated to a bijection ha

1

, a

2

, . . . , a

k

i between Nk

andN, for every k > 1; we shall adopt, by convention, the left-associative iteration.

THE COMPLEXITY OF EULER’S INTEGER PARTITION THEOREM 7

For example, to work with arrays in register machine programs we need to code
(finite) sequences of non-negative integers into a single non-negative integer. In
what follows we use Cantor’s bijection for such codings; for a di↵erent coding
see [12].

For example the 4-element sequence [2, 1, 1, 0] is encoded by 1484 as
hhh2, 1i, 1i, 0i = 1484. The reverse process allows to convert, for each given k � 1,
any non-negative integer into a unique k-element sequence of non-negative inte-
gers. For example, the number 5564 can be converted to the 4-element sequence
[3, 1, 0, 0] and the 2-element sequence [104, 0].

We can compute Cantor’s bijection using the formula ha, bi = 1+ 2+ · · ·+ (a+
b) + a:

label instruction
CFC: &e, a

+e, b
&d, 0
=e, 0, LCF2
&f, 1

LCF1: +d, f
=e, f, LCF2
+f, 1
=a, a, LCF1

LCF2 +d, a
=a, a, c

Table 9: Cantor’s bijection

We are now using the Cantor’s bijection for the routine ELM encoding the
function ELM(A, b,N) = the bth element in the N -element array representation
of A:

label instruction label instruction label instruction
ELM &ae, a &a, A &a, d

be, b &ge, 1 LE3 &c, LE4
&ce, c &c, LE10 =a, a, LFC
&a, A =a, a, KFC LE4 &a, ae
=N, 2, LE1 LE10 =he, 1, LE8 &c, ce
=b, 1, LE3 LE13 +ge, 1 =a, a, c
&c, LE6 &a, d LE5 =a, a, LE3
&a, b &c, LE12 LE1 =N, b, LE2
&b, 1 =a, a, KFC =a, a, LE3
=a, a, SUBT LE12 =he, ge, LE8 LE2 &c, LE4

LE6 &he, d =a, a, LE13 =a, a, KFC
&b, be LE8 =N, b, LE4

Table 10. Function ELM

The routine RPL uses the iteration of Cantor’s bijection to encode the func-
tion which replaces the ath element of the array A by b, RPL(A, a, b,N) =
hx

N

, x

N�1

, . . . , x

a+1

, b, x

a�1

, . . . , x

1

i, where A = hx
N

, x

N�1

, . . . , x

a

, . . . , x

1

i:

8 CRISTIAN S. CALUDE AND ELENA CALUDE

label instruction label instruction label instruction
RPL &ar, a =a, a, SUBT LR6 &dr, d

&br, b LR2 &er, d =a, a, LR9
&cr, c =er, 0, LR8 LR3 &fr, b
&er, N =er, a, LR3 =a, a, LR5
=a, N, LR7 &c, LR4 LR7 &dr, b
&b, N &b, er =a, a, LR9
&c, LR1 =a, a, ELM LR8 &d, dr
= a, a, ELM LR4 &fr, d &a, ar

LR1 &dr, d LR5 &c, LR6 &b, br
LR9 &c, LR2 &a, dr &c, cr

&a, er &b, fr =a, a, c
&b, 1 =a, a, CFC

Table 11. Function RPL

8. The program ⇧
IntegerPartition

We are now ready to present the main program ⇧
IntegerPartition

.

label instruction label instruction label instruction
MAIN &N, 2 +I, 1 &c, L44
L1 &P, 0 &J, N =a, a, SUBT

&R, 0 +J, 1 L44 &a, I
&I, N =I, J, L2 &b, d
&A, N =a, a, L25 &c, L45

L11 &a, I L28 &a, H =a, a, RPL
&b, 1 &b, 1 L45 &A, d
&c, L9 &c, L29 &a, I
=a, a, SUBT =a, a, SUBT &b, 1

L9 &I, d L29 &a, I &c L46
=I, 0, L2 &b, d =a, a, SUBT
&a, A &c, L30 L46 &a, d
&b, 0 =a, a, RPL &b, 1
&c, L10 L30 &A, d &c, L47
=a, a, CFC &a, I =a, a, RPL

L10 &A, d &b, 1 L47 &A, d
=a, a, L11 &c, L31 =a, a, L2

L2 &I, 1 =a, a, SUBT L48 +I, 1
L17 &J, I L31 &a, d & J N

+J, 1 &J, V +J, 1
L16 &b, I +J, 1 =I, J, L2

&c, L12 &b, J =a, a, L42
=a, a, ELM &c, L32 L4 &I, 1

L12 &H, d =a, a, RPL L49 &b, I
&b, J L32 &A, d &c, L53

THE COMPLEXITY OF EULER’S INTEGER PARTITION THEOREM 9

label instruction label instruction label instruction
&c, L13 &J, 0 =a, a, ELM
=a, a, ELM L34 +J, 1 L53 & H d

L13 &G, d =J, I, L2 =H, 0, L50
&a, H &a, J =H, 1, L50
&b, G &b, 0 &F, 0
&c, L14 &c, L33 L51 &E, 0
=a, a, CMP =a, a, RPL =H, F, L52

L14 =d, 2, L3 L33 &A, d +F, 1
+J, 1 =a, a, L34 +E, 1
&V, N L23 &I, 1 =E, 2, L51
+V, 1 L35 &c, L36 =a, a, L52
=J, V, L15 &b, I L54 = E, 0, L6
=a, a, L16 =a, a, ELM L50 +I, 1

L15 +I, 1 L36 &H, d &J, N
=I, N, L4 =H, 1, L37 +J, 1
=a, a, L17 +I, 1 =I, J, L7

L3 &V, 0 =a, a, L35 =a, a, L49
&I, 1 L37 &a, I L6 &I, 1

L21 &b, I &b, 2 L55 &b, I
&c, L18 &c, L38 &c, L56
=a, a, ELM =a, a, RPL =a, a, ELM

L18 &H, d L38 &A, d L56 &H, d
=H, 0, L19 +I, 1 =H, 0, L58
=H, 1, L20 &b, I &J, I
=a, a, L8 &c, L39 +J, 1

L20 +V, 1 =a, a, ELM &b, J
L19 +I, 1 L39 &a, d &c, L57

&J, N &b, 1 =a, a, ELM
+J, 1 &c, L40 L57 &G, d
=I, J, L8 =a, a, SUBT =H, G, L3
=a, a, L21 L40 &b, d +I, 1

L8 =V, 0, L22 &a, I =I, N, L5
=V, 1, L23 &c, L41 =a, a, L55
=V, N, L24 =a, a, RPL L58 +I, 1
&I, 1 L41 &A, d =a, a, L55

L25 &b, I =a, a, L2 L7 +P, 1
&c, L26 L22 &I, 1 =a, a, L6
=a, a, ELM L42 &b, I L5 +R, 1

L26 &H, d &c, L43 =a, a, L3
&c, L27 =a, a, ELM L24 =P, R, L59
&a, H L43 &H, d =a, a, L60
&b, 1 =H, 0, L48 L59 +N, 1
=a, a, CMP &a, H =a, a, L1

L27 =d, 2, L28 &b, 1 L60 STOP

Table 12. The program ⇧
IntegerPartition

The register machine program for Euler’s integer partition theorem consists of
389 instructions having a total length of 6,417 bits, hence it is in C

U,7

. In this way
this theorem is the more complex problem studied to date: the Riemann hypothesis

10 CRISTIAN S. CALUDE AND ELENA CALUDE

is in C
U,3

[10] and the four colour theorem is in C
U,4

[6]. The most likely reason for
this high complexity reason is the complexity of processing arrays in the register
machine language (see [12] for a di↵erent approach).

9. Final comments

Occam’s Razor principle motivates the complexity of ⇧
1

–statements used in this
paper. The same principle leads, under some general assumptions, to a learning
algorithm which produces hypotheses that with high probability will be predictive
of future observations [2]. Is there any relation between the complexity of ⇧

1

–
statement and its learnability? Can the use of di↵erent algorithms (see [13, 14, 16])
and codifications for arrays (see [12]) reduce the estimated complexity of the Euler’s
integer partition theorem?

References

[1] G. E. Andrews, K. Eriksson. Integer Partitions, Cambridge University Press, 2004.
[2] A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth. Occam’s Razor, Information

Processing Letters 24, 6 (1987), 377–380.
[3] C. S. Calude, E. Calude, M. J. Dinneen. A new measure of the di�culty of problems,

Journal for Multiple-Valued Logic and Soft Computing 12 (2006), 285–307.
[4] C. S. Calude, E. Calude. Evaluating the complexity of mathematical problems. Part 1

Complex Systems, 18-3 (2009), 267–285.
[5] C. S. Calude, E. Calude. Evaluating the complexity of mathematical problems. Part 2

Complex Systems, 18-4, (2010), 387–401.
[6] C. S. Calude, E. Calude. The complexity of the Four Colour Theorem, LMS J. Comput.

Math. 13 (2010), 414–425.
[7] C. S. Calude, E. Calude and K. Svozil. The complexity of proving chaoticity and the

Church-Turing Thesis, Chaos 20 037103 (2010), 1–5.
[8] C. S. Calude, M. J. Dinneen. Exact approximations of omega numbers, Int. Journal of

Bifurcation & Chaos 17, 6 (2007), 1937–1954.
[9] C. S. Calude, M. J. Dinneen and C.-K. Shu. Computing a glimpse of randomness, Experi-

mental Mathematics 11, 2 (2002), 369–378.
[10] E. Calude. The complexity of Riemann’s Hypothesis, Journal for Multiple-Valued Logic and

Soft Computing, (2012). (to appear)
[11] E. Calude. Fermat’s Last Theorem and chaoticity, Natural Computing, (2011), DOI:

10.1007/s11047-011-9282-9.
[12] M. J. Dinneen. A program-size complexity measure for mathematical problems and conjec-

tures, in M. J. Dinneen, B. Khoussainov, A. Nies (eds.). Computation, Physics and Beyond,
Springer, Heidelberg, 2012. (to appear)

[13] J. Kelleher. Encoding Partitions as Ascending Compositions, PhD Thesis, University Col-
lege Cork, 2006.

[14] D. Knuth. The Art of Computer Programming, Pre-Fascicle 3b: Generating all partitions,
http://www-cs-faculty.stanford.edu/%7Eknuth/fasc3b.ps.gz,(version of 10 Decem-
ber 2004).

[15] D. Stanton, D. White. Constructive Combinatorics, Springer-Verlag, New York, 1986.
[16] A. Zoghbi, I. Stojmenovic. Fast algorithms for generating integer partitions, International

Journal of Computer Mathematics 70 (1998), 319–332.
[17] D. Wells. Are these the most beautiful? The Mathematical Intelligencer 12, 3 (1990), 37–41.

Department of Computer Science, The University of Auckland, New Zealand,

www.cs.auckland.ac.nz/~cristian.
Institute of Information and Mathematical Sciences, Massey University at

Auckland, New Zealand, http://www.massey.ac.nz/~ecalude.

