http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence.

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.
Factors associated with vaccine reactogenicity in school aged children and young adults following administration of two protein-based vaccines

Helen Aspasia Petousis-Harris

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy, The University of Auckland, 2011
Abstract

Aim To identify or exclude factors associated with injection site reactions following immunisation.

Methods Literature review identifying key factors of gender, psychological stress, and exercise and injection technique. Study conducted involving secondary analyses of existing data from a clinical trial of outer membrane vesicle meningococcal (OMV) vaccines in children aged eight to 12 years including examination of factors associated with perceived pain at the time of injection, followed by a randomised trial of three injection techniques used to deliver the quadrivalent human papillomavirus vaccine in females aged 14-45 years and males aged 14-26 years. Data collected included stress variables and blood samples for evaluation of cytokines.

Findings In the first study vaccinator was the variable with largest effect on reactogenicity outcomes of injection site pain, erythema and induration. Ethnicity had an effect on injection site pain and erythema. Body mass index was associated with injection site pain. Baseline antibody did not affect injection site reactions but reactogenicity effected antibody levels measured after dose two. Perceived pain on injection was most strongly effected by vaccinator and vaccine formulation. These outcomes informed the design for the prospective study.

This trial found the three injection techniques did not affect injection site reactogenicity. Females tended to experience more reactogenicity. Perceived stress, social support and atopy were not associated with reactogenicity outcomes and exercise showed little effect. No cytokine functional groups nor individual cytokines were associated with reactogenicity outcomes. No variables, including injection technique, were associated with wide variation in perceived pain on injection. Case-by-case observational data suggest some variations in anatomical site may be important.

Conclusions This thesis demonstrated factors that can ameliorate both reactogenicity and pain on injection. Injection technique plays an important role in both reactogenicity and perceived pain on injection following OMV vaccines. Why vaccinator effects on pain on injection was not elucidated from the trial but anatomical site may be a factor, which has implications for vaccinator education. Ethnic differences in injection site reactions requires further research. Calling reactogenicity an adverse event may be a
misnomer since it correlates positively with antibody response, a finding which could improve confidence in immunisation.
Dedication

I would like to dedicate this work to my Mother for her unconditional love and support throughout all my endeavours, and who is not here to see the finish of this one.
Acknowledgements

This thesis would not have been possible without the following people.

Thank you to my supervisors and advisors who have each brought their unique skills and experience to the table. Gregor Coster who guided me through the complex administrative process and always provided supportive and encouraging words, this would never have got off the ground without him; Diana Lennon who provided her experience with the Meningococcal B studies and brilliance, and provided permission to use the NZ meningococcal B clinical trial data; Felicity Goodyear-Smith who picked up where Gregor left off and brought her fabulous academic rigor and editorial skills as well as friendship, and Joanna Stewart who provided statistical guidance with the patience of a saint. Special thanks to Sarah Young who provided advice for the cytokines and who supervised the assays.

Special thanks to my dear friend Nikki Turner who insisted I should do a PhD and held my hand enthusiastically all the way.

Thank you to all of those, of whom there are many, who contributed to the meningococcal B school based trials and provided the data for the secondary analysis presented in this thesis. In particular thank you to Catherine Jackson who assisted in the provision of information and provided excellent advice and helpful feedback.

The FAR trial could not have happened without the innovation, passion and fantastic skills of Tracey Poole who did everything humanly possible to find and recruit participants and for efficiently coordinating so much of the collection and management of the data. You gave so much more than I could ever have asked for.

Thank you to the Immunisation Advisory Centre (IMAC) for supporting me throughout this thesis as I continued to work full time. You are a most special and treasured organisation.

Also, to all the IMAC staff vaccinators who gave their time freely: Brenda Gerard, Ben Soe, Karin Batty, Leeann Knight, Lisbeth Alley, Gary Reynolds, Meri Ormsby, Linda Hill, Michelle Tanner and Nikki Turner. Also special thanks to Linda O'Conner. Thanks to Erin Lockett who meticulously arranged the FAR trial procedural documents and negotiated the administrative network.
I am indebted to all of the participants in the FAR trial who were such a willing and
great bunch of people.

Thanks to the generosity of the sponsors who donated prizes and gifts for the FAR trial
participants: New Zealand Jewellers, Hell Pizza, Napoleon Perdis Cosmetics, CSL,
Angela Daniel Jewellery, Teddytime, Silver Ribbon Foundation, Dymock, Hoytes, U by
Kotex, and Vodafone NZ.

Finally, much love and thanks to my family Vaughan, Jason, Danyon and Alexander for
their continuing support and who have endured my end of thesis absences without
complaint.
Publications and presentations arising from this research

Published paper

Oral presentations

Further articles

The following article is in preparation
Helen Petousis-Harris, Catherine Jackson, Joanna Stewart, Gregor Coster, Nikki Turner, Diana Lennon. Vaccinator matters: Factors associated with reactogenicity to an OMV meningococcal B vaccine in children aged 8-12 years.

Further manuscripts are planned on other aspects of this thesis, in particular:

- injection site and perceived pain on injection
- the reactogenicity of quadrivalent human papillomavirus vaccine following administration with three different injection techniques
- stress, social support and associations with cytokines.
Research contribution

The first study presented in this thesis is a secondary analysis of existing data. I was responsible for obtaining ethical approval, management of all data and the analysis and interpretation. Joanna Stewart provided statistical guidance.

The second study is a prospective clinical trial. I was responsible for study design, obtaining ethical approval and study conduct. The day to day coordination and ongoing data collection was undertaken by Tracey Poole. The vaccinations were delivered by authorised vaccinators. Phlebotomy was undertaken by the vaccinators, Tracey Poole and I. The cytokine assays were undertaken by Immunologists at the University of Otago department of Pathology in Dunedin. The FAR trial analyses were undertaken by me with the exception of the logistic regression with repeated measures which was provided by Joanna Stewart. The follow up of participants with induration and swelling was carried out by clinician Dr Alison Vogel.
Table of Contents

ABSTRACT .. I
DEDICATION .. III
ACKNOWLEDGEMENTS .. IV
PUBLICATIONS AND PRESENTATIONS ARISING FROM THIS RESEARCH VI
RESEARCH CONTRIBUTION ... VII
TABLE OF CONTENTS .. VIII
LIST OF TABLES .. X
LIST OF FIGURES .. XIII
LIST OF APPENDICES .. XVI
ABBREVIATIONS .. XVII
GLOSSARY .. XX

CHAPTER 1. INTRODUCTION .. 1
1.1 BACKGROUND TO RESEARCH .. 1
1.2 RESEARCH AIMS AND OBJECTIVES ... 8
1.3 OUTLINE OF THESIS .. 10

CHAPTER 2. LITERATURE REVIEW .. 13
2.1 VACCINE FORMULATION AND REACTOGENICITY .. 14
2.2 VACCINE DELIVERY FACTORS AND REACTOGENICITY 34
2.3 HOST FACTORS AND POTENTIAL FOR REACTOGENICITY 44
2.4 DEFINING AND DESCRIBING LOCAL VACCINE REACTOGENICITY 108
2.5 CONCLUSIONS FROM THE REVIEW OF LITERATURE ... 119

CHAPTER 3. SECONDARY ANALYSIS OF THE NZ MENINGOCOCCAL B VACCINE SCHOOL-BASED CLINICAL TRIAL .. 123
3.1 RATIONALE .. 123
3.2 STUDY DESIGN AND DATA ... 125
3.3 METHOD FOR SECONDARY ANALYSES ... 132

CHAPTER 4. RESULTS FROM SECONDARY ANALYSES OF MENINGOCOCCAL B TRIAL DATA 135
4.1 SAMPLE POPULATION ... 135
4.2 INJECTION PAIN AND REACTOGENICITY OUTCOMES ... 139
4.3 CONSIDERATION OF FINDINGS FROM SECONDARY ANALYSIS OF MENINGOCOCCAL B TRIAL DATA ... 155

CHAPTER 5. FACTORS ASSOCIATED WITH REACTOGENICITY - THE FAR TRIAL 157
5.1 RATIONALE FOR APPROACH FOR THE FAR TRIAL .. 158
5.2 AIM, HYPOTHESES AND OBJECTIVES OF THE FAR TRIAL 160
5.3 STUDY POPULATION AND SAMPLE ... 161
List of Tables

Table 2-1 Comparison of two meningococcal vaccines and HPV vaccines with aluminium adjuvant alone .. 27
Table 2-2 Comparison of the reactogenicity and antigen content between two influenza vaccines vaccines in adults .. 31
Table 2-3 Comparison of the reactogenicity and antigen content between two influenza vaccines in children ... 32
Table 2-4 Comparison of the reactogenicity profiles of MF59 adjuvanted and non-adjuvanted influenza vaccine ... 32
Table 2-5 Comparison of reactogenicity and antibody titre between two human papillomavirus vaccines with different adjuvants .. 33
Table 2-6 Various recommendations for intramuscular injection as at 2007 .. 35
Table 2-7 Studies summarising intramuscular vs. subcutaneous administration and reactogenicity .. 36
Table 2-8 Studies reporting reactogenicity in buttock vs. thigh vaccine administration .. 38
Table 2-9 Studies reporting needle length and reliability of muscle penetration .. 39
Table 2-10 Studies reporting needle length and local reactions .. 40
Table 2-11 Gender and immunogenicity trends for some vaccines .. 58
Table 2-12 Gender and reactogenicity of some vaccines .. 61
Table 2-13 Ethnicity question asked on the NZ 2006 census form .. 65
Table 2-14 Variation in circulating inflammatory cytokine levels between three major ethnic groups in the United States .. 68
Table 2-15 Factors associated with acute pain perception following a cognitive stressor .. 86
Table 2-16 Selected plasma and cell derived mediators and some of their functions in the inflammatory process .. 92
Table 2-17 Summary of selected mediators and their role in nociception and hyperalgesia

Table 2-18 Gene haplotype and association with fever following smallpox vaccination in naive and non-naive individuals

Table 2-19 Gene haplotype and association with fever following smallpox vaccination in non-naive individuals

Table 2-20 Summary of Brighton Collaboration guidelines for collection of information on local reactions

Table 2-21 Summary of Brighton Collaboration guidelines for analysis of local reactions data

Table 2-22 Summary of Brighton Collaboration guidelines for presentation of local reaction data

Table 3-1 Formulation of the three meningococcal B OMV vaccines in trial

Table 4-1 Study cohort and vaccines received

Table 4-2 Demographics of trial participants

Table 4-3 Vaccinators and number of doses administered

Table 4-4 Summary of reactogenicity and severity for all doses, all vaccines as per trial definitions

Table 4-5 Pain on injection and vaccine

Table 4-6 Pain on injection and individual vaccinator

Table 4-7 Pain on injection and ethnicity

Table 4-8 Injection site pain by ethnicity

Table 4-9 Injection site pain by vaccinator

Table 4-10 Injection site erythema and ethnicity

Table 4-11 Injection site erythema and vaccinator

Table 4-12 Injection site swelling and vaccinator

Table 4-13 Injection site induration and vaccinator
Table 4-14 Mean logged total IgG and SBA antibody titres by ethnicity at baseline and post dose three ... 152
Table 4-15 Odds Ratios for variables associated with the reporting of pain on injection, pain following injection and erythema following dose one of NZ meningococcal B vaccine.. 153
Table 5-1 Gardasil® vaccine components ... 164
Table 5-2 Variables which were re-coded for analysis... 175
Table 6-1 Summary of numbers for each injection technique and dose 183
Table 6-2 Baseline characteristics of study participants ... 184
Table 6-3 Characteristics of participants in each technique group, as originally allocated.. 185
Table 6-4 Distribution of vaccine doses per vaccinator ... 186
Table 6-5 Variables and their associations with perceived pain on injection 192
Table 6-6 Summary of local reactions present on day one for all doses 193
Table 6-7 Results from generalised linear mixed model evaluating factors associated with injection site pain ... 195
Table 6-8 Results from generalised linear mixed model evaluating factors associated with injection site erythema ... 197
Table 6-9 Results from generalised linear mixed model evaluating factors associated with injection site swelling ... 199
Table 6-10 Results from generalised linear mixed model evaluating factors associated with injection site induration .. 201
Table 6-11 Day two reactogenicity outcomes and correlations with cytokines 202
Table 6-12 Results of ordinal regression for functional cytokine groups 203
Table 6-13 Associations between individual cytokines and social support 211
Table 6-14 Associations between individual cytokines and exercise 212
Table 6-15 Correlations between individual cytokines and atopic score 212
List of Figures

Figure 1-1 Engravings by George Kirtland (c. 1802) ... 2
Figure 1-2 The Cow-Pock, or, the Wonderful Effects of the New Inoculation! 3
Figure 1-3 General flow of thesis .. 11
Figure 2-1 Structure and flow of chapter two, review of the literature 14
Figure 2-2 Summary of the effect of acute psychological stress on immune cell distribution – an adaptive feature ... 76
Figure 2-3 Stress-associated modulation of the hormone response by the central nervous system ... 77
Figure 2-4 Different environmental stressors and circulating inflammatory factors and innate activity. ... 79
Figure 2-5 Psychological factors shown to be associated with decreased humoral response to protein vaccines ... 83
Figure 2-6 Summary of mediators of innate immunity under acute stress conditions over time .. 85
Figure 2-7 Ex-libris of the International Inflammation Club ... 90
Figure 2-8 Mechanisms for activation of inflammatory processes by vaccine components .. 91
Figure 2-9 Basic Visual Analogue Scale for pain ... 101
Figure 2-10 Comparison of features of induration and swelling 115
Figure 2-11 Extensive injection site swelling .. 116
Figure 2-12 Induration with erythema ... 117
Figure 2-13 Model of factors that may be associated with injection site reactions based on existing literature .. 121
Figure 2-14 Structure of chapters three, four and five ... 122
Figure 3-1 Outline of the structure and flow of chapter three 123
Figure 4-1 Structure and flow of chapter four .. 135
Figure 6-11 Cytokine profile participant #154 after 25mm erythema post dose one...207
Figure 6-12 Cytokine profile participant #026 after 25mm induration post dose one..208
Figure 6-13 Cytokine profile for participant #102 after reporting 20mm erythema post
dose one ...209
Figure 6-14 Cytokine profile for participant #110 after 25mm swelling post dose one210
Figure 7-1 Structure and flow of chapter seven, do local reactions enhance
immunogenicity? ..214
Figure 7-2 Timing of blood tests and administration of vaccine doses during the
MeNZB™ trials ...216
Figure 8-1 Structure and flow of chapter eight, thesis discussion..............................219
Figure 8-2 Outline of discussion on factors associated with perceived pain on injection
and injection site reactogenicity ..225
Figure 8-3 Suprascapular and axillary nerves of right side, seen from behind.228
Figure 8-4 Locating the site for injection and location of the axillary nerve..............229
Figure 8-5 Locating the deltoid region or IM injection in the 2006 NZ Immunisation
Handbook ...230
Figure 8-6 Locating the deltoid region or IM injection in the 2011 NZ Immunisation
Handbook ...231
Figure 8-7 Model of factors that may be associated with vaccine injection site reactions
..243
List of Appendices

Appendix 1 Standard operating procedures for vaccine administration for the NZ meningococcal B vaccine clinical trial ... 249
Appendix 2 Participant held diary card for MeNZB™ clinical trial 251
Appendix 3 Ethical approval to conduct secondary analyses of MeNZB trial data 255
Appendix 4 FAR trial participant demographic questionnaire 257
Appendix 5 Perceived Stress Scale (PSS) and Single Item Social Support (SISS) question ... 260
Appendix 6 FAR trial participant held diary card ... 261
Appendix 7 FAR trial Visual Analogue of Pain Perception 265
Appendix 8 Far trial recruitment poster .. 266
Appendix 9 Recruitment advertisement on Sliver ribbon website 267
Appendix 10 Recruitment advertisement on Get Participants website 268
Appendix 11 Letter of support for FAR trial from the University of Auckland Tumuaki 269
Appendix 12 Ethics approval letter with amendments for FAR trial 270
Appendix 13 Box plots of 14 key cytokines .. 271
Appendix 14 Day two local reactions and correlations with cytokines 278
Appendix 15 Perceived stress score and associations with cytokines 279
Appendix 16 Social support and associations with cytokines 280
Appendix 17 Exercise and associations with cytokines 281
Appendix 18 Atopic score and associations with cytokines 282
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCC</td>
<td>Antibody Dependant Cellular Cytotoxicity</td>
</tr>
<tr>
<td>AEFI</td>
<td>Adverse Event Following Immunisation</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen Presenting Cell</td>
</tr>
<tr>
<td>AS03</td>
<td>Adjuvant System 03 GSKs proprietary oil-in-water emulsion adjuvant</td>
</tr>
<tr>
<td>AS04</td>
<td>Adjuvant System 04 GSKs proprietary adjuvant</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>CDC</td>
<td>Centres for Disease Control</td>
</tr>
<tr>
<td>CGRP</td>
<td>Calcitonin gene related product</td>
</tr>
<tr>
<td>CIOMS</td>
<td>Council for International Organizations of Medical Sciences</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalovirus</td>
</tr>
<tr>
<td>CONSORT</td>
<td>Consolidated Standards of Reporting Trials</td>
</tr>
<tr>
<td>COSTART</td>
<td>Coding Symbols for a Thesaurus of Adverse Reaction Terms</td>
</tr>
<tr>
<td>CV</td>
<td>Chiron Vaccine</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular Disease</td>
</tr>
<tr>
<td>DAMP</td>
<td>Damage Associated Molecular Patterns</td>
</tr>
<tr>
<td>DT</td>
<td>Diphtheria-Tetanus</td>
</tr>
<tr>
<td>DTH</td>
<td>Delayed-type Hypersensitivity</td>
</tr>
<tr>
<td>DTP</td>
<td>Diphtheria-Tetanus-Pertussis</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>FDA</td>
<td>US Food and Drug Administration</td>
</tr>
<tr>
<td>GMT</td>
<td>Geometric Mean Titre</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C Virus</td>
</tr>
<tr>
<td>HPA</td>
<td>Hypothalamic-Pituitary-Adrenal</td>
</tr>
<tr>
<td>HPV</td>
<td>Human Papillomavirus</td>
</tr>
<tr>
<td>ICH</td>
<td>International Conference on Harmonization of Technical Requirements for Registration for Pharmaceuticals for Human Use</td>
</tr>
<tr>
<td>IFNγ</td>
<td>Interferon Gamma</td>
</tr>
<tr>
<td>IgE</td>
<td>Immunoglobulin E</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IM</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>IPV</td>
<td>Inactivated Polio Vaccine</td>
</tr>
</tbody>
</table>
ISR Injection Site Reaction
LPS Lipopolysaccharide
MedDRA Medical Dictionary for Regulatory Activities
MeNZB™ New Zealand tailor made meningococcal B vaccine
MF59 Novartis' proprietary oil-in-water emulsion adjuvant
MHC Major Histocompatibility Complex
MMF Macrophagic myofasiiitis
MMR Measles Mumps and Rubella
MoH Ministry of Health
MOOSE Meta-analysis of Observational Studies in Epidemiology
mRNA Messenger RNA
NGF Nerve Growth Factor
NIH National Institutes of Health
NIPH National Institute of Public Health (Norway)
NIR National Immunisation Register
NK Natural Killer
NO Nitrous Oxide
OMP Outer Membrane Protein
OMV Outer Membrane Vesicle
PAMP Pathogen Associated Molecular Patterns
PBMC Peripheral Blood Mononuclear Cells
PCR Polymerase Chain Reaction
PMN Polymorphonuclear granulocytes
PSQ Perceived Stress Questionnaire
PSS Perceived Stress Scale
QUORUM Improving the Quality of Reports of Meta-Analysis of Randomized Controlled Trials
ROS Reactive Oxygen Species
RSV Respiratory Syncytial Virus
SAS Statistical Analysis Software
SBA Serum Bactericidal Antibody
SC Subcutaneous
SES Socioeconomic Status
SISS Single Item Social Support
SLE Systemic Lupus Erythematosus
TGF Transforming Growth Factor
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th1</td>
<td>T-helper cell type 1</td>
</tr>
<tr>
<td>Th2</td>
<td>T-helper cell type 2</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll like receptor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour Necrosis Factor</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual Analogue Scale</td>
</tr>
<tr>
<td>VLP</td>
<td>Viral-like particle</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WHO-ART</td>
<td>World Health Organization Adverse Events Reaction Terminology</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjuvant</td>
<td>Substance that enhances immunogenicity. Until the late 1990’s Aluminium salts were the only adjuvants licensed for human use.</td>
</tr>
<tr>
<td>Antibody</td>
<td>Protein produced by B-plasma cells specific for single molecular shape. Also called immunoglobulin or Ig. Part of adaptive immunity.</td>
</tr>
<tr>
<td>Antigen</td>
<td>Usually protein or sugar that initiates a specific immune response.</td>
</tr>
<tr>
<td>B-cell</td>
<td>Belong to group of white blood cells called lymphocytes. Part of specific immunity.</td>
</tr>
<tr>
<td>Chemokines</td>
<td>Small peptides that facilitate leukocyte trafficking into tissues</td>
</tr>
<tr>
<td>Cytokines</td>
<td>Key mediators in the control of the inflammatory response.</td>
</tr>
<tr>
<td>Dendritic cells</td>
<td>Antigen presenting cells. Activated after uptake of foreign material and migrate to lymph nodes to present antigen to T and B cells.</td>
</tr>
<tr>
<td>Eccentric exercise</td>
<td>External resistance resulting in lengthening of muscle</td>
</tr>
<tr>
<td>Granuloma</td>
<td>Spherical mass of cells, usually walling off foreign substances. Consist largely of macrophages.</td>
</tr>
<tr>
<td>IL-10</td>
<td>Activator of B-cells and anti-inflammatory.</td>
</tr>
<tr>
<td>IL-13</td>
<td>Activator of B-cells and anti-inflammatory.</td>
</tr>
<tr>
<td>IL-1α and β</td>
<td>Produced mainly by monocytes and macrophages, but also by endothelial cells, fibroblasts and epidermal cells in response to stimuli such as bacterial lipopolysaccaride (LPS) and other microbial products. Secreted IL-1 is involved in inflammation with associated vasodilation, and cramps.</td>
</tr>
<tr>
<td>IL-4</td>
<td>Potent activator of B-cells. Anti-inflammatory cytokine, suppresses pro-inflammatory cytokines such as IL-1 and TNF.</td>
</tr>
</tbody>
</table>
IL-6 Pro-inflammatory cytokine secreted by T cells and macrophages, often in response to trauma. Becomes elevated in response to muscle contraction. Important mediator of fever and of the acute phase response. IL-6 can be secreted by macrophages in response to specific microbial molecules.

IL-8 A chemokine, attracts neutrophils.

Innate Cells and mechanism that protect host in a non-specific manner, discriminates 'self' from 'non-self'

Lymphocyte White blood cells that include the T-cell, B-cells and natural killer cells

Macrophage “Big eaters” Large white blood cells derived from monocytes. They have phagocytic functions and stimulate both innate and adaptive immunity.

Monocytes White blood cells capable of differentiating into macrophage and dendritic cells

Phagocyte “eating” cell - white blood cells that ingest cellular debris and foreign material. Include neutrophils, monocytes, macrophage, dendritic cells and mast cells.

T-cell Belong to group of white blood cells called lymphocytes. Part of specific immunity

TGF-β Affects processes that include cellular differentiation and growth to inflammation and wound healing. TGF-β can act both synergistically and antagonistically with other cytokines depending on the context.

TNF-α Primarily produced by macrophages and promotes inflammation. It attracts neutrophils, stimulates phagocytosis, and production of inflammatory agents. A local increase in TNF concentration causes the key symptoms of inflammation to occur - heat, swelling, redness and pain. It attracts monocytes and neutrophils. TNF-α is produced at all inflammatory sites.

Toxoid A bacterial toxin that has been chemically modified to remove toxicity.