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Abstract

Models for N -body gravitational simulations of the Solar System vary from small simula-

tions of two bodies over short intervals of time to simulations of large numbers of bodies

over long-term integration. Most simulations require the numerical solution of an initial

value problem (IVP) of second-order ordinary differential equation. We present new in-

tegration methods intended for accurate simulations that are more efficient than existing

methods.

In the first part of the thesis, we present new higher-order explicit Runge–Kutta

Nyström pairs. These new pairs are searched using a simulated annealing algorithm

based on optimisation. The new pairs are up to approximately 60% more efficient than

the existing ones. We implement these new pairs for a variety of gravitational problems

and investigate the growth of global error in position for these problems along with relative

error in conserved quantities.

The second part consists of the implementation of the Gauss Implicit Runge–Kutta

methods in an efficient way such that the error growth satisfies Brouwer’s Law. Numerical

experiments show that using the new way of implementation reduces the integration cost

up to 20%. We also implement continuous extensions for the Gauss implicit Runge–Kutta

methods, using interpolation polynomials at nodal points.
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1
Introduction

1.1 Introduction

Many physical phenomena in science and engineering are described through the process

of mathematical modelling. These models include those in climatology, mathematical

biology, computational finance and dynamical astronomy. The models are often expressed

in terms of the unknown quantities and their derivatives in the form of ordinary and partial

differential equations. In this thesis, we are concerned with the solution of ordinary

differential equations (ODEs) that arise when doing N -body gravitational simulations of

the Solar System. The solution of these differential equations give valuable insight into the

evolution of the Solar System. In some cases, these equations can be solved analytically,

but most of the differential equations are too complicated to possess analytical solutions.

This necessitates the use of approximation techniques to find the numerical solutions. The

main goal of this thesis is to present new efficient methods for doing accurate simulations.

1



2 Introduction

N -body gravitational simulations of the Solar System vary from small simulations

of two bodies over short intervals of time to simulations of large numbers of bodies over

long intervals. Most simulations require the numerical solution of an initial value problem

(IVP) of second order ordinary differential equation. The IVP often takes the form

y′′(x) = f(x, y(x)), y(x0) = y0, y′(x0) = y′0, (1.1.1)

where ′ denotes the differentiation with respect to time x and f : R× R
n −→ R

n, where

n is the dimension of the problem. These IVPs are usually in the autonomous form

y′′(x) = f(y(x)), y(x0) = y0, y′(x0) = y′0, (1.1.2)

where f : Rn −→ R
n.

Physical systems often have conserved quantities. These include the total energy H,

the angular momentum L, and position and velocity of the center of mass of the bodies.

The quantities will usually not be conserved exactly by the numerical solution and the

error provides insight about the accuracy of the solution.

1.2 Kepler’s two-body problem

One of the simplest models is Kepler’s two-body problem. It is a commonly used problem

for planetary orbital problems because it has an analytical solution. Kepler’s problem

defines the motion of one body orbiting another. The equations of motion can be written

as

y′′1 = −y1/r3,
y′′2 = −y2/r3,

(1.2.1)

where y1 and y2 are the coordinates of one body relative to the other, r =
√

y21 + y22, and

the initial conditions are y1(0) = 1−e, y′1(0) = 0, y2(0) = 0 and y′2(0) = (1+e)1/2(1−e)−1/2.

The parameter e is the orbital eccentricity (0 ≤ e < 1). The exact solution of the above

equations (1.2.1) is

y1 = cos(E)− e, y2 =
√
1− e2 sin(E),
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and

y′1 = − sin(E)(1− e cos(E))−1, y′2 =
√

(1− e2) cos(E)(1− e cos(E))−1,

where the eccentric anomaly E satisfies Kepler’s equation x = E−e sin(E). Since Kepler’s

equation is implicit in E, the equation is usually solved using a non-linear equation solver,

although useful analytical approximations can be found for smaller eccentricity.

The total energy, also called the Hamiltonian H, and the angular momentum L for

Kepler’s problem are

H =
y′21 + y′22

2
− 1
√

y21 + y22
, (1.2.2)

L = y1y
′
2 − y2y

′
1. (1.2.3)

Methods that attempt to conserve the Hamiltonian and other properties are discussed

later in Chapter 2.

More realistic models are obtained by increasing the number of bodies. This in-

creased realism comes at the cost of usually having to find the solution numerically. We

now describe four such problems. These will be used later in the thesis as test problems.

1.3 Jovian Problem

The Jovian Problem models the orbital motion of the Sun and the four gas giants Jupiter,

Saturn, Uranus and Neptune when these bodies are treated as point masses. Let ri, i =

1, . . . , 5, denote the position of the ith body in three-dimensional Cartesian coordinates

with the origin at the barycentre (centre of mass) of the bodies. The equations of motion

of the bodies can be written as

r′′i (x) =
5
∑

j=1,j 6=i

µj(rj(x)− ri(x))

‖rj(x)− ri(x)‖32
, i = 1, . . . , 5, (1.3.1)

where ‖.‖2 denotes the L2 norm, µj = Gmj, G being the gravitational constant and mj

the mass of the jth body. The value of the µj are given in Appendix A. The independent
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variable x is in units of days. Throughout the thesis we will assume that the bodies are

ordered Sun, Jupiter, Saturn, Uranus and Neptune.

The initial conditions we use are given in Appendix A and are taken from Sharp

(private communication). The initial conditions were chosen so that the barycentre is at

the origin and has zero velocity at x = 0. The analytical solution will then satisfy

5
∑

i=1

µiri = 0,
5
∑

i=1

µir
′
i = 0.

The Hamiltonian H and angular momentum L for the analytical solution are given by

the expressions

H =
1

2

5
∑

i=1

mir
′
i · r′i −G

5
∑

i=1,j 6=i

5
∑

j=1

mimj

‖rj(x)− ri(x)‖2
, (1.3.2)

L =
5
∑

i=1

µi(ri × r′i). (1.3.3)

Simulations of these bodies are of significant importance as they have a prime role

in the dynamics of the Solar System. For example, Jupiter, by sweeping up debris which

could have bombarded the Earth, was crucial to the evolution of life on Earth [80].

The numerical integrations of the Jovian Problem were first done by Cohen and

Hubard [15], Kinoshita and Nikai [57], Applegate et al. [3] and Sussman and Wisdom

[88]. Afterwards Grazier et al. [39], Sussman and Wisdom [89], Laskar [64] and Sharp

[81] integrated for larger time scales. These long-term integrations provided insight into

the Solar System dynamics that went further than that given by analytical theories.

1.4 Nine Planets Problem

The Nine Planets Problem is the Jovian Problem with the addition of the terrestrial

planets Mercury, Venus, Earth, Mars and the dwarf planet Pluto. The equations of

motion and the expressions for the conserved quantities are the same as for the Jovian

Problems except the number of bodies is ten and not five. The initial conditions and the
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Planet Orbital period Eccentricity Semi-major axis (AU) Mass
Mercury 1.00 0.206 0.3075 1.00
Venus 2.55 0.007 0.723 14.74
Earth 4.15 0.017 1.000 18.08

Mars 7.81 0.093 1.523 1.94
Jupiter 49.25 0.048 5.204 5723.8
Saturn 122.308 0.056 9.582 1720.1

Uranus 348.81 0.047 19.229 202.3
Neptune 684.21 0.009 30.103 308.9
Pluto 1029.32 0.248 39.481 0.039

Table 1.1: Some orbital and physical data for the eight planets and Pluto. The semi-major axis is in
astronomical units (AU) and the mass in units of Mercury’s mass.

values of µ for the extra five bodies are given in Appendix A.

Table 1.1 lists some orbital and physical data for the planets in the Nine Planets

Problem. The orbital period and mass are expressed in units of Mercury’s orbital period

and mass, and the semi-major axis of the orbits are in astronomical units (a standardised

value for the distance of Earth from the Sun). We observe from the table that the ratio

of the longest to shortest orbital period is over 1000, and that the eccentricity varies from

the near-circular value 0.007 for Venus to the eccentric value of 0.248 for Pluto. We also

observe that the four gas giants are at least 10 times as massive as Earth.

Richardson and Walker [74], Quinn et al. [73] and Laskar [63, 64] among others have

integrated the Nine Planets Problem. The shortest orbital period for the problem is 88

days for Mercury. This is approximately 50 times smaller than the shortest orbital period

of the Jovian Problem. So the average step-size for the Nine Planets Problem should be

about 50 times smaller than that used for integration of the Jovian Problem [81].

We use the Earth-Moon system in place of Earth i.e. including the mass of Moon

with that of Earth and take the Earth-Moon barycenter as the position of Earth to make

the problem more realistic and consistent with Sharp [81].



6 Introduction

1.5 Helin-Roman-Crockett Problem

The Helin-Roman-Crockett (HRC) problem models a comet having multiple close ap-

proaches with Jupiter. The equations of motion are the same as those for the Jovian

Problem with the addition of the following equations for the position r6 of the comet

r′′6(x) =
5
∑

j=1,j 6=i

µj(rj(x)− r6(x))

‖rj(x)− r6(x)‖32
. (1.5.1)

The initial conditions for the comet are given in Appendix A.

In this problem, the comet has five close approaches with the Jupiter over an interval

of approximately 5600 days. Figures 1.1 and 1.2 are produced doing a simulation for an

interval of 7000 days. Figure 1.1 is a phase-plane plot in the two dimensional y1 − y2

plane of the position of the comet relative to Jupiter for x = 1000 days to x = 8000. This

plot is sometimes called the tulip diagram because of its similarities to the petals of a

tulip. Figure 1.2 gives the graph of the distance of the comet from Jupiter for the same

interval of x. This clearly shows the five close approaches. There is also a sixth time

where the distance is a local minimum. The distance from Jupiter at this local minimum

is significantly larger than that for the first five local minima. For this reason, the sixth

local minimum is often not regarded as a close approach.

The close approach of the comet necessitates the use of smaller step-size at the time

of close approach. Figure 1.3 contains the graph of the average step-size versus time for

the explicit Runge–Kutta Nyström pairs of Dormand et al. [20, 21] having orders 4-6, 6-8

and 10-12. The interval of integration is 8000 days. We observe from the Figure 1.3 that

the average step-size decreases significantly as the comet makes a close approach with the

Jupiter. The red, green and blue graphs were obtained using the explicit Runge–Kutta

Nyström 4-6, 6-8 and 10-12 pairs respectively. The integrations were performed in double

precision using the severe local error tolerances of 10−14.1

1We are not advocating that the 4-6 pair be used for such severe tolerances. We have done so here to
help illustrate the effect of close approaches on the step-size.
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Figure 1.1: The phase-plane plot in the y1 − y2 plane of the position of the comet relative to Jupiter for
the HRC Problem. The plot spans the time from x = 1000 days (A) to x = 8000 days (B).
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Figure 1.2: The distance from Jupiter to the comet in the HRC Problem. The comet makes five close
approaches to Jupiter over approximately 4000 days, clearly shown in between 2000 and
6000 days.
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1.6 Saturnian Satellites Problem

To widen the diversity of the problems simulated, we include simulations of some Satur-

nian satellites. These satellites consist of Titan, Hyperion and Iapetus, the first and the

last of which are the largest and third largest moons of Saturn, while Hyperion is the

largest known irregular body in the Solar System. The eccentricities, masses and orbital

periods of the Saturnian Satellites are listed in Table 1.2.

Sinclair and Taylor [84] used numerical integration to analyse the orbits of these

satellites. The equations of motion included perturbations from the Sun and Saturn’s

inner satellite Rhea. It also involves terms modelling the effect of Saturn’s oblateness.

Let r1, r2, r3 and r4 denote the position of Titan, Hyperion, Iapetus and Rhea at time

x, the coordinates being the Cartesian with origin at the center of mass of Saturn and its

inner satellites (excluding Rhea). The equations of motion of the satellites for i = 1, 2, 3,

are (the position of Rhea is discussed below)

r′′i =− GM(1 +mi)ri
r3i

+
4
∑

j=1,j 6=i

GMmj

(

rj − ri

r3ij
− rj

r3j

)

+GMs

(

rs − ri

r3is
− rs

r3s

)

+∇iRi +
3
∑

l=1

ml∇lRl,

(1.6.1)

where rj is the position vector of the jth satellite and mj is the mass of the jth satellite

divided by the mass of Saturn (M), G is the gravitational constant, and Ms and rs are

the mass and position of the Sun respectively. The term ∇iRi corresponds to the effect

of the oblateness of the Sun on the ith satellite. The term ml∇lRl for l = 1, 2, 3, occurs

due to the component of the attraction on Saturn caused by the oblateness of Saturn [84].

The term ∇iRi is

∇iRi = Ari + Bẑ,

where ẑ is the unit vector in the z-direction. The coefficients A and B are given as

A =
GM

r3i

4
∑

n=2

Jn
an0
rni
P ′
n+1(zi/ri), B = −GM

r2i

4
∑

n=2

Jn
an0
rni
P ′
n(zi/ri),

where a0 is the equatorial radius of Saturn, Jn is a non-dimensional constant and Pn is

the Legendre polynomial of degree n.
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Satellite Orbital period (Days) Eccentricity Semi-major axis (AU) Mass
Titan 15.9 0.028 0.0082 1350×1020

Hyperion 21.3 0.123 0.0099 0.05×1020

Iapetus 79.3 0.028 0.0238 18×1020

Rhea 4.5 0.001 0.0035 23×1020

Table 1.2: Some orbital and physical data for the Saturnian Satellites. The semi-major axis is in astro-
nomical units (AU) and the mass in kilograms.

The position of Rhea in Cartesian coordinates is given by

r4 = a cos(L)̂i+ a sin(L)ĵ

where L = 231◦.761 + 79◦.69004007(x− 2411093.0) and a is a constant. The unit vectors

î and ĵ correspond to the y1and y2 coordinates of the vector r.

We omit the Sun from our simulations, since they did not change the essential

numerical properties of the problem, and the omission simplifies our testing.

1.7 Framework of Thesis

A large number of numerical methods for performing N -body simulations have been

developed so far. These can be divided into two broad ways: those methods intended to

obtain qualitative informations and those intended to obtain accurate solutions.

In this thesis, we present some new high order explicit Runge–Kutta Nyström meth-

ods. The new methods are up to approximately 60% more efficient than existing methods

on our test problems. We also include some symplectic methods consisting of implicit

Gauss methods and implemented in a more efficient way to reduce the computational

cost by 20%. Throughout the thesis, we aim to analyse and compare the efficiency and

error growth for new and existing methods. This error growth is examined in terms of

global error and the errors in the Hamiltonian and angular momentum for these sys-

tems. We measure the L2-norm of global error and relative error in energy and angular

momentum throughout the comparisons.

Basic concepts, definitions and a review of traditional numerical methods for solv-
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ing ordinary differential equations are developed in Chapter 2. Hamiltonian systems and

their conserved quantities are also described in this chapter. In Chapter 3, we present

the new high order explicit Runge–Kutta Nyström methods. A summary of extensive

numerical comparisons of these methods with existing methods is also presented, when

applied to a variety of Solar Systems problems. Then in Chapter 4, we review the implicit

Runge–Kutta and Störmer methods that have optimal error growth. We also investigate a

general way of improving the efficiency of the implicit Runge–Kutta methods and perform

comparisons between the Störmer and implicit Runge–Kutta methods. Continuous exten-

sion has also been considered using interpolation polynomials for implicit Runge–Kutta

methods. We end in Chapter 5 with our conclusions.



2
Preliminaries

There are two general ways to find the numerical solution of a second order IVP of the form

(1.1.2). The first is to transform the problem to a system of first order equations and then

perform the integration using one of a large array of methods including an Adams method,

an extrapolation method or an explicit or implicit Runge–Kutta method. The second way

is to solve the IVP directly using methods such as Störmer, Runge–Kutta Nyström, or

extrapolation methods. In this chapter, we will survey some numerical methods that can

be used to solve initial value ODE’s that arise in N -body simulations of the Solar System.

2.1 First order systems

The equivalent first order IVP (1.1.2) takes the form

(y(x), u(x))′ = (u(x), f(x, y(x))) , y(x0) = y0, u(x0) = y′0. (2.1.1)

13
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Before we look at the ways to numerically approximate the solution to an IVP, it is

essential to consider whether there exists a solution to an initial value problem and if it

exists, whether it is unique. These matters are discussed in the following.

2.1.1 Existence and uniqueness

There are many criteria for determining the existence and uniqueness of solutions. The

most commonly used approach employs the Lipschitz condition, which is considered as

a necessary condition for the existence of a unique solution to a system of differential

equations and is given in the following theorem [8].

Theorem 2.1.1 Let the function f(x, y) : R×R
n −→ R

n be continuous for all (x, y) ∈ D,

where D is defined by a ≤ x ≤ b, −∞ ≤ yi ≤ ∞, i = 1, . . . , n. If there exists a constant

L then

‖f(x, y)− f(x, y∗)‖ ≤ L‖y − y∗‖, (2.1.2)

holds for all (x, y), (x, y∗) ∈ D, then for any y0 ∈ R
n there exists a unique solution y(x)

of problem (2.1.1), where y(x) is continuous and differentiable for all (x, y) ∈ D. The

above condition (2.1.2) is called the Lipschitz condition and L the Lipschitz constant.

2.1.2 Order and convergence

Almost all numerical methods for first order IVP of the form (2.1.1) can be written using

the increment formula

yn+1 = yn + hn+1Φ(xn, yn+1, yn, . . . , yn−k+1). (2.1.3)

This yields a sequence of values yn, n = 0, 1, . . . , N . The yn are approximations to the

true values y(xn) and hn+1 = xn+1−xn is the step-size. The notation hn+1 is used instead

of h, because it is possible to change the step-size at each step.

When using a numerical method to solve an IVP, we must make sure that these

approximations satisfy certain conditions. One of them is convergence, that is as the
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step-size hn+1 tends to zero, the numerical solution approaches the exact solution in the

absence of round-off error. A numerical method defined by (2.1.3) is convergent if for all

IVP satisfying Theorem 2.1.1

max ‖y(xn)− yn‖ −→ 0 as h −→ 0,

with fixed value of xn (xn = x0 + nh).

Another important property is how fast a numerical approximate solution converges

to its exact solution. This can not be measured without the local truncation error. To

understand this concept, we first define the local solution zn(x) at xn as the solution of

the local problem

z′n = f(x, zn), zn(xn) = yn.

The local truncation error is a measure of how much the numerical solution fails to satisfy

the local problem. The local truncation error for the method (2.1.3) is defined as

tn+1 = y(xn) + hn+1Φ(xn, y(xn+1), y(xn), . . . , y(xn−k+1))− y(xn+1).

We also need the concept of order. The order of a numerical method is measured

by comparing the numerical solution on one step with the Taylor series expansion of the

exact solution when written in the increment form

y(xn+1) = y(xn) + h∆(x, y(xn)), (2.1.4)

where

∆(x, y(xn)) = y′(xn) +
h

2
y′′(xn) + · · ·+ h(p−1)

p!
y(p)(xn) + · · · .

If the Taylor series expansion of the numerical solution (2.1.3) and exact solution agree

to the terms up to the power of hp, the method is of order p. The difference is of O(hp+1),

and is the local truncation error. As an example, the numerical solution yn+1 calculated

using the Euler’s method is given as

yn+1 = yn + hf(xn, yn). (2.1.5)

A comparison of equations (2.1.4) and (2.1.5) gives the local truncation error

y(xn+1)− yn+1 = O(h2).
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The order is therefore one. In addition to the order of the method we are also interested

to know how sensitive the solution is to small perturbations in the initial conditions. This

concept is related to the stability of the numerical method.

2.1.3 Stability

Let ν∗n be any perturbation in the initial condition νn of an IVP and y∗n be the correspond-

ing perturbed solution of yn. Then if there exist constants K and ε such that

‖yn − y∗n‖ ≤ Kε,

whenever

‖νn − ν∗n‖ ≤ ǫ, 0 ≤ n ≤ N,

then the method (2.1.3) is said to be stable. Otherwise, the method is said to be unstable.

So a method is said to be stable if small changes in the input lead to small changes in

the output. Stability does not mean that the numerical solution obtained by a method is

accurate. Stability is also referred to as zero-stability in some texts, e.g. in [61].

Consider the linear test equation

y′ = λy, y(0) = 1, (2.1.6)

where λ ∈ C. The exact solution is y(x) = eλx, hence limx→∞ y(x) = 0 iff Reλ < 0.

Suppose the test equation is solved using the explicit Euler’s method with a fixed

step-size h. The approximate solution at xn = x0 + nh is

yn = (1 + hλ)yn−1,

or

yn = (1 + hλ)ny0.

We want a bounded behaviour for (1 + hλ)n as n → ∞ whenever the exact solution

exp(nhλ) is bounded. This implies that |1 + hλ| ≤ 1 iff Reλ ≤ 0. We may take z = hλ,

where z is complex. So the stability region for Euler’s method is z ∈ C satisfying R(z) =

|1 + z| ≤ 1, i.e. the disc with centre −1 and radius 1. If Re(z) < 0 and |R(z)| ≤ 1, then
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the method is absolutely stable. If |R(z)| = 1 and λ is purely imaginary, the method is

said to be periodically stable or P-stable.

To extend the stability analysis to a system of differential equations, we consider a

system of linear differential equations of dimension m

y′ = Ay,

where A is an m×m constant diagonalisable matrix. Euler’s method applied to the above

equation, gives the solution

yn = (I + hA)ny0.

The exact solution y(xn) = exp(nhA)y(x0) of the above system is stable iff Reλi ≤ 0 for

all i = 1, . . . ,m, where the λi are the eigenvalues of A. So we deduce that the step-size

h > 0 must be such that |1 + hλi| < 1 and all the products hλ1, hλ2, . . . , hλm lie in the

stability region.

2.1.4 Local and global error

Two measures of the accuracy of a numerical method are the local and global errors. We

define the local error at xn+1. This error arises from a single step and is

εle = yn+1 − zn(xn+1), zn = yn.

The error is closely related to the local truncation error. The difference between the exact

and numerical solution is said to be the global error of the numerical solution and is

defined as

εge = yn+1 − y(xn+1).

The global error is of major importance in the measurement of the quality of the approx-

imated solution at time xn+1.
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2.1.5 Round-off error

When performing accurate simulations, a significant contribution to the global error is

the round-off error. Since computers store numbers to only a certain precision, there will

be a loss of accuracy when a long-term computation is involved, especially when using

a small step-size. We will illustrate and measure the effects of round-off in subsequent

chapters.

2.2 Numerical integrators

Initial value problems can be divided into stiff and non-stiff. There does not exist a formal

definition of stiffness. Stiffness was first recognised in 1952 by Curtiss and Hirschfelder

[17]. One feature of stiff problems is that they normally have a large Lipschitz constant.

Explicit methods are not useful for solving stiff problems as the methods have bounded

stability regions, necessitating excessively small step-sizes.

Most IVPs that arise when performing N -body simulations of the Solar System are

non-stiff. For the remainder of the thesis, we will assume non-stiff problems.

2.2.1 Multi-step integrators

Linear multistep methods use the values of the solution and derivatives from the previous

steps. The general form of a k-step linear multistep method for first order system is given

by

yn =
k
∑

j=1

αjyn−j + h
k
∑

j=0

βjf(yn−j), k = 1, 2, . . . , (2.2.1)

where αj and βj are given constants, h denotes the step-size and yr is the numerical

approximation to the exact value y(xr) at the point xr. For k > 1, a special procedure

must be used to find the starting values y1, . . . , yk−1.

The method (2.2.1) is said to be explicit if β0 = 0 and implicit if β0 6= 0. The Adams–
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Bashforth and Adams–Moulton are special cases of linear multistep methods which are

explicit and implicit respectively and intended for non-stiff problems. Adams–Moulton

methods use less information from the past compared with the Adams–Bashforth method

while obtaining the same accuracy. Another notable thing is that the coefficients for

Adams–Moulton methods are smaller than that of Adams–Bashforth.

Adams methods were first used as predictor-corrector pairs by Milne [67]. On each

step, the Adams-Bashforth formula was first used to predict yn. The Adams-Moulton

formula was then used one or more times to correct the predicted value. The predictor-

corrector mode is often implemented as P (EC)mE or P (EC)m, where m is the number of

iterations for the corrector formula and E means an evaluation of f . This implementation

has two advantages. It is explicit in nature and the local error can be estimated using a

simple technique known as Milne’s device [61].

Linear multistep methods are often implemented in variable step-size and variable-

order fashion, to produce an adaptive code. The first efficient adaptive code was published

by Krogh [59].

An important class of multistep methods for solving a second order system of equa-

tions is Störmer methods. These methods are popular in astronomical applications and

have long been used for long-term simulations of the Solar System [39]. Störmer [86]

introduced these methods. Störmer developed a simple method by adding the Taylor

series for y(xn+h) and y(xn−h), ignoring the higher order terms as detailed in [47], and

obtained

yn+1 − 2yn + yn−1 = h2fn.

Higher order is obtained by using differences involving values of f from the end of the

previous steps, for example

yn+1 − 2yn + yn−1 = h2fn +
h2

12

(

59

20
fn −

176

20
fn−1 +

194

20
fn−2 −

96

20
fn−3 +

19

20
fn−4

)

.

A Störmer method of order p+ 1 can be written in the form

yn+1 − 2yn + yn−1 = h2
p−1
∑

i=0

αifn−i, (2.2.2)
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y′n+1 −
1

h
(yn − yn−1) = h

p−1
∑

i=0

βifn−i.

The coefficients αi and βi can be found from generating functions [47]. The starting values

y1, y2, . . . , yp−1 are usually computed using a one-step method. The detailed implementa-

tion of Störmer methods is discussed in Chapter 4.

2.2.2 One-step integrators

Integrators which use only information about the solution at a single point yn to integrate

forward to the next point yn+1 are known as one-step integrators. One of the earliest

numerical algorithms for the approximation of the solution of an IVP is the Taylor series

method. The method advances the step by calculating higher derivatives. A pth order

method is written in increment form as

yn+1 = yn + hΦ(x, yn), (2.2.3)

where

Φ(x, yn) = y′n +
h

2
y′′n + · · ·+ h(p−1)

p!
y(p)n .

The relative difficulty of computing higher derivatives initially restricted the popularity

of the Taylor series methods. The methods have become more popular with the advent

of automatic differentiation and canonical transformation. To avoid the difficulty of com-

puting higher derivatives, Runge–Kutta (RK) methods were devised about a century ago.

The German mathematician Runge [75] and his successors Heun [49] and Kutta [60] es-

tablished some fundamentals of RK methods during the late 19th and early 20th centuries.

Kutta also characterized the most famous “Classical RK method” of order four. All these

methods are explicit in nature so they are easy to implement. The basic approach of RK

methods is to obtain the Taylor series expansion for the exact and approximate solutions

without evaluating the derivatives of f and comparing these series term by term at the

end of each single step.

In the 1960’s Kuntzmann and Butcher [7] proposed implicit Runge–Kutta (IRK)

methods. Since that time considerable attention has been devoted towards improvement

in the efficiency and cheaper implementation of these methods. A number of interesting

subclasses of the IRK methods have been identified. These methods represent attempts to
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trade-off the higher accuracy of the IRK methods for methods which can be implemented

more efficiently. Such methods include semi-implicit methods (SIRK) and the diagonally

implicit Runge–Kutta methods (DIRK) introduced by Alexander in [2].

Butcher [7] introduced methods based on quadrature formula. These are known as

Gauss, Radau and Lobatto methods. The Gauss methods have the maximum possible

order 2s (s is the number of stages of the method) and have strong stability properties.

The Radau methods are of order 2s − 1 and Lobatto methods of order 2s − 2. The

implementation of Gauss IRK methods is discussed in Chapter 4.

For an ordinary differential equation of type (2.1.1), a general Runge–Kutta method

is of the form

yn+1 = yn + hΦ(yn), (2.2.4)

where

Φ(yn) =
s
∑

i=1

biKi,

and

Ki = f(xn + cih, yn + h

s
∑

j=1

aijKj), i = 1, 2, . . . , s.

TheKi, i = 1, . . . , s, are called stages and are calculated during the integration from

xn to xn+1. As with methods discussed previously, the output value yn+1 is the numerical

approximation to the true solution y at x = xn+1. The coefficients of the methods are

often written in a form known as the Butcher tableau shown in Table 2.1,

c1 a11 a12 . . . a1s

c2 a21 a21 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass

b1 b2 . . . bs

Table 2.1: The Butcher tableau for RK methods.

The bi are called the exterior weights of the method and the ci are the abscissas.

The row sum condition ci =
∑s

j=1 aij, i = 1, 2, . . . , s holds, for all but some low
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order methods. The consistency condition
∑s

i=1 bi = 1 always holds. The s × s matrix

A = (aij)
s
i,j=1 is called the RK matrix and the elements of matrix A are known as interior

weights. The method is explicit if matrix A is strictly lower triangular and implicit

otherwise. As noted previously, implementation of implicit methods is less convenient

than that of explicit Runge–Kutta methods because at each stage the values of vector Ki

depend upon other Kj. So at each step of computation a set of n× s (n be the dimension

of system) non-linear system of equations is to be solved.

The Runge–Kutta methods for solving second order differential equations of the

form (1.1.1) directly are known as Runge–Kutta Nyström methods (RKN). These were

introduced in 1925 by E. J. Nyström [68]. A RKN method can be written as [19]

yn+1 = yn + hy′n + h2
∑

i

biki,

y′n+1 = y′n + h
∑

i

b′iki, (2.2.5)

and

ki = f(xn + cih, yn + cihy
′
n + h2

∑

j

aijkj).

The Butcher tableau for the method is shown in Table 2.2

c1 a11 a12 . . . a1s
c2 a21 a21 . . . a2s
...

...
...

cs as1 as2 . . . ass
b1 b2 . . . bs
b′1 b′2 . . . b′s

Table 2.2: The Butcher tableau for RKN methods.

RKN methods are relatively simple to apply and reduce the computational work

compared with RK methods applied to the equivalent first order problem. As an example,

an order-five explicit RKN method needs only four function evaluations while an explicit

Runge–Kutta method of order five needs at least six function evaluations [47].

The coefficients of the above methods can be found by solving the order conditions
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for that method. These can be derived in a similar way as for Runge–Kutta methods, i.e.

by comparing the Taylor series expansions for the exact and numerical solutions.

2.2.3 Adaptive step-size methods

The efficiency of numerical methods for the approximate solution of ordinary differential

equations depends on the strategy for controlling the error in the approximate solutions.

One procedure is to use adaptive step-size control to achieve a predetermined accuracy

on each step with minimal computational effort. In order to control the error, a pair of

formulae of different orders is used at one-step so that the derivative evaluations of the

two methods are identical. The essence of this idea was first introduced by Merson [66],

and further developed by England [27] and Fehlberg [31]. In embedded Runge–Kutta

methods, two methods of different orders p and q are used with the same set of stage

vectors Ki and can be written as

ŷn+1 = ŷn + h

s
∑

i=1

b̂iKi,

yn+1 = ŷn + h
s
∑

i=1

biKi,

(2.2.6)

where

Ki = f(xn + cih, ŷn + h
s
∑

j=1

aijKj), i = 1, 2, . . . , s.

A pair of formulae can be represented in a Butcher tableau as

c A

bT

b̂T

where bT = [b1, . . . , bs]
T is the exterior weight vector of the RK method of order p and

b̂T = [b̂1, . . . , b̂s]
T is that of order q, q > p. A pair of formulae having orders p and q is

usually referred to as a p − q pair. If the solution yi obtained by the pth order method

is used as the starting value for the step continuation then the embedded pair is said to

be implemented in lower order fashion. However for efficiency reasons, it is recommended
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that the solution yi obtained by the qth order method should be used for the next step

[28]. In this way, the more accurate approximation is used to advance the integration.

The pair operated in this way is said to be implemented in higher mode or local

extrapolation. The difference between the order p and q methods will give an estimate

of the local truncation error en+1 = ŷn+1 − yn+1 at xn+1. Once the local error en+1 of an

approximate solution is known, then using a method of order p it is easy to control the

step-size by using the well-known formula [56]

hn+1 = 0.9hn

(

Tol

‖en+1‖

)
1

p+1

, (2.2.7)

where Tol is the local error tolerance. During the integration a new step will be accepted

if ‖en+1‖ ≤ Tol and the step-size for the next step will be calculated using (2.2.7). If

‖en+1‖ > Tol, the step will be rejected and a reduced step-size will be calculated using

the same formula.

Dormand and Prince [24] popularised the idea of a method having the property

FSAL (first same as last), in which the vector bT and the last row of the matrix A are

equal. A method developed by Dormand and Prince [22] in 1980 known as DOPRI (5,4)

has seven stages but, being FSAL, the method has effectively six stages because the last

stage is reused as the first stage of the next step.

In a similar way to the embedding technique for RK methods, a RKN algorithm

utilises an estimate of the local truncation error of both y and y′ using two pair having

order p and q and sharing the same function evaluations

ŷn+1 = ûn + hnû
′
n + h2n

s
∑

i

b̂iki,

ŷ′n+1 = û′n + hn

s
∑

i

b̂′iki,

(2.2.8)

yn+1 = un + hnu
′
n + h2n

s
∑

i

biki,

y′n+1 = u′n + hn

s
∑

i

b′iki,

(2.2.9)
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where

ki = f(xn + cihn, ŷn + cihnŷ′n + h2n
∑

j

aijkj), i = 1, . . . , s.

The caps denote the approximations for the qth order method. If the numerical

approximations are taken from xn to xn+1 using the q
th order formula then un = ŷn, u′n =

ŷ′n. If the pth order method is used to advance the step then un = yn, u′n = y′n. It is

practically preferable to implement the pairs in higher order mode [51]. Throughout the

thesis, we implement the pairs in local extrapolation mode and denote explicit Runge–

Kutta Nyström (ERKN) pairs as ERKN p− q pair.

Fehlberg [30, 32] was the first who developed RKN pairs. Later Dormand and

Prince [24], Bettis [5], Horn [51] and Filippi and Graf [34] also added their algorithms in

the RKN family. Many classes of fully implicit, diagonally implicit and explicit embedded

RKN methods have been developed so far. Such methods can be seen in Dormand et al.

[20, 21], Someijer [85], Sharp et al. [82], Papageorgiou et al. [70], El-Mikkawy et al. [25]

and Al-Khasawneh et al. [1].

The local error for ERKN method is computed using a similar expression as (2.2.7)

hn+1 = 0.9hn

(

Tol

max{‖en+1‖, ‖e′n+1‖}

)
1

p+1

, (2.2.10)

where en+1 = ŷn+1−yn+1 and e
′
n+1 = ŷ′n+1−y′n+1 are local error estimates in the pth order

formula.

As noted previously linear multistep methods including Störmer methods can be

implemented with a variable step-size, see for example Cano and Archilla [11]. In this

thesis we will be using fixed step-size multistep methods, as discussed in subsequent

chapters.
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2.3 Hamiltonian Systems

The equations of motion for many N -body simulations not only contain the information

about position and velocities but some hidden geometrical properties. These geometrical

properties include phase space, symmetries of the motion and some special conservation

laws for the energy, angular momentum and centre of mass. The branch of physics, which

deals with these physical laws is called classical mechanics. A form of classical mechanics

in which equations of motion are based on generalised coordinates qi and generalised

momenta pi is called as Hamiltonian mechanics. A system governed by these equations of

motion is called a Hamiltonian system. These systems arise on a large scale in cosmology

and dynamical astronomy and on a small scale in molecular dynamics.

The Lagrange theory of dynamical systems is related to Hamiltonian mechanics and

based on real valued functions. These are the kinetic energy T (p) and the potential energy

V (q). The Lagrangian is defined as L = T − V , and the Lagrangian equations of motion

are given by
∂L

∂q
=

d

dx

(

∂L

∂q′

)

. (2.3.1)

The Hamiltonian equations of motion come from Lagrange’s equations and are written in

autonomous form as [78]

dqi
dx

=
∂H(q, p)

∂pi
,

dpi
dx

= −∂H(q, p)

∂qi
, (2.3.2)

for i = 1, . . . , n, and H : Rn ×R
n → R. The function H is called the Hamiltonian. In the

Hamiltonian equations, the number of (qi, pi) pairs is said to be the number of degrees of

freedom of that system.

For many dynamical problems the Hamiltonian is in separable form, since the Hamil-

tonian H is the sum of the kinetic energy and the potential energy of the system. Hence

H(q, p) = T (p) + V (q), (2.3.3)

where T is normally quadratic in p, i.e. T (p) = 1
2
pTp.

If H does not depend explicitly on time x, the Hamiltonian equations are au-

tonomous and describe a conservative system. In a conservative systems, the Hamiltonian
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function H is a first integral of (2.3.2). To see this form dH/dx, this is

dH

dx
=
∂H

∂x
+

n
∑

i=1

∂H

∂qi
q′i +

n
∑

i=1

∂H

∂pi
p′i.

Now use equation (2.3.2) and that ∂H/∂x = 0. We have,

dH

dx
=

n
∑

i=1

∂H

∂qi

∂H

∂pi
+

n
∑

i=1

∂H

∂pi

(

−∂H
∂qi

)

= 0.

This means that the Hamiltonian is conserved for an autonomous Hamiltonian system. In

most cases, the first integral can be identified with the energy of the system. Its invariance

corresponds to the conservation of total energy.

Sometimes, it is useful to re-write (2.3.2) by defining y = (q1, . . . , qn, p1, . . . , pn) as

a 2n-dimensional vector. Then (2.3.2) takes the form

dy

dx
= J−1∇H, (2.3.4)

where the 2n× 2n skew symmetric matrix J is defined as

J =

[

0 I

−I 0

]

, (2.3.5)

and I is the n× n identity matrix.

We now present two simple examples of Hamiltonian systems. More realistic exam-

ples are described in subsequent chapters.

Example 2.3.1 The harmonic oscillator

An example of a Hamiltonian system is a mass-spring system modeled as a simple har-

monic oscillator having kinetic energy p2/(2m), where p = mv is the momentum of the

system, and potential energy 1
2
kq2, where k is the spring constant. The parameter q is

the distance of the body of mass m from the equilibrium. The Hamiltonian is the total

energy of the system and has one degree of freedom

H(q, p) =
1

2
kq2 +

p2

2m
. (2.3.6)
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In the case where k = m = 1, the equations of motion from the Hamiltonian are

q′ =
∂H(q, p)

∂p
= p, p′ = −∂H(q, p)

∂q
= −q. (2.3.7)

Example 2.3.2 The simple pendulum

A simple pendulum consists of a bob of mass m at the end of a massless string of length

l. A simple pendulum has one degree of freedom and the Hamiltonian can be written as

H(q, p) =
p2

2m
−mgl cos(q), (2.3.8)

where g is the acceleration due to gravity. The equations of motion are

q′ =
∂H(q, p)

∂p
=

p

m
, p′ = −∂H(q, p)

∂q
= −mgl sin(q). (2.3.9)

2.3.1 Symplecticity

The main qualitative property of many Hamiltonian systems is the preservation of phase

flow of the underlying symplectic structure in phase space. This is called symplecticity.

The phase space of Hamiltonian systems is a 2n−dimensional space in (p, q). One question

that arises is why we need to preserve this qualitative property of symplectic structure?

Since Hamiltonian systems naturally have these properties, it is beneficial to preserve

them numerically as well. Standard methods for simulating motion do not explicitly

attempt to satisfy the physical laws which are intrinsic to Hamiltonian systems.

The phase flow of Hamiltonian systems using the operator ΦH is a transformation

such that

ΦH : (p0, q0) 7−→ (p(x), q(x)).

The transformation ΦH is a symplectic or canonical transformation according to Liouville’s

theorem: the phase flow preserves area, an important property of (2.3.2). In term of

differential forms, the corresponding flow is symplectic and preserves the differential 2-

form

w =
n
∑

i=1

dpi ∧ dqi,
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In two dimensions (n = 1), this means that the area of parallelograms at different times

remains unchanged as shown in the following figure.

q

p

D1

ΦH

q

p

D1

Figure 2.1: Illustration of symplecticity.

2.3.2 Symplectic integrators

The vital property of Hamiltonian systems is that the Hamiltonian H(p, q) is a first in-

tegral of system (2.3.2). The numerical methods which preserve the so-called symplectic

structure of the variables (p, q) at each step during numerical integration, i.e. repro-

ducing the qualitative properties of the solution for the Hamiltonian systems, are called

symplectic integrators. When solving the Hamiltonian systems, we can verify that certain

numerical methods are symplectic by using the following definitions.

Definition 2.3.1 A linear mapping ΦH : R2n → R2n is called symplectic if

ΦT
HJΦH = J,

where J =

[

0 I

−I 0

]

.

Definition 2.3.2 A differentiable map g : U −→ R2n (where U ⊂ R2n is an open set) is

called symplectic if the Jacobian matrix g′(p, q) is everywhere symplectic, i.e.,

g′(p, q)TJg′(p, q) = J.

Definition 2.3.3 Let D be a domain in R2n having the symplectic structure. A numerical

one-step method consisting of a function φh : D −→ D with fixed h > 0 is called symplectic
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if the approximate solution can be computed as

(qn+1, pn+1) = φh(qn, pn),

whenever the method is applied to a smooth Hamiltonian system.

Pioneering work on symplectic integrators is due to de Vogelaere [18], Ruth [76] and

Feng [33]. Lasagni [62], Sanz-Serna [77] and Suris [87] independently found a condition

for implicit Runge–Kutta methods to be symplectic. For details see Sanz-Serna and

Calvo [78], and Hairer et al. [44]. All multistep methods are non-symplectic as they

require more than one initial value to start. These methods can not define a map on the

phase space and so can not be symplectic. One-step methods have the potential of being

symplectic integrators. The family of explicit Runge–Kutta methods is non-symplectic

as they introduce artificial dissipation during step by step integration. Also in general,

they are unable to keep the Hamiltonian constant throughout the integration. For a RK

method to be symplectic, its coefficients must satisfy the following theorem along with its

order conditions.

Theorem 2.3.1 Let M = (mij)
s
i,j=1 be the real s× s matrix given by

mij = biaij + bjaji − bibj,

for i, j = 1, . . . , s. If the coefficients of a Runge–Kutta method satisfy M = 0, then it is

symplectic.

The above matrix M arises frequently in the study of RK schemes and nonlinear stability

and many implicit Runge–Kutta methods satisfy the condition and are symplectic. Some

of the examples include the symplectic Euler, the implicit midpoint rule, the Störmer-

Verlet and Gauss methods.

It is worth mentioning that the use of variable step-size can lead to non-symplectic

behaviour; at each integration step the method should ensure that the underlying physical

properties are preserved.

Embedded RKN methods with variable step-size are not symplectic while the fixed

step-size explicit RKN methods developed by Yoshida [95], Okunbor and Skeel [69] and
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Calvo and Sanz-Serna [9, 10] are symplectic. Similar to RK methods, a RKN method is

symplectic if it satisfies

aij = (ci − cj)b
′
j, j = 1, . . . , i− 1, i = 2, . . . , s.

A remarkable property of symplectic integrators other than the area preserving

property is that the accumulation of discretization error in energy does not have a secular

term. This means that the error in the conserved quantities does not grow with time if

the round-off error is insignificant and the error in position increases linearly with time.

Non-symplectic methods produce errors in the position and conserved quantities that

grow quadratically in time.
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3
Explicit Runge–Kutta Nyström Methods

In this chapter we review the construction of explicit Runge–Kutta Nyström methods

and present new 8-10 and 10-12 Nyström pairs that are more efficient than those of

El-Mikkawy [26] and Dormand et al. [21].

3.1 RKN embedded pairs

Let ŷn+1, ŷ′n+1 be the numerical approximations of order q to y(xn+1) and y′(xn+1) re-

spectively, and the yn+1, y
′
n+1 the corresponding approximations of order p, where p < q.

The update formulae (2.2.8) and (2.2.9) for an embedded RKN pair of s stages were

introduced in the previous chapter. Here we use the more general formulation

ŷn+1 = ûn + hnΦ̂n(xn, ŷn, ŷ
′
n, hn),

ŷ′n+1 = û′n + hnΦ̂′
n(xn, ŷn, ŷ

′
n, hn),

(3.1.1)

33
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yn+1 = un + hnΦn, (xn, ŷn, ŷ
′
n, hn),

y′n+1 = u′n + hnΦ
′
n(xn, ŷn, ŷ

′
n, hn),

(3.1.2)

where

Φ̂(xn, ŷn, ŷ
′
n, hn) = û′n + hn

s
∑

i

b̂iki,

Φ̂′(xn, ŷn, ŷ
′
n, hn) =

s
∑

i

b̂′iki,

Φ(xn, ŷn, ŷ
′
n, hn) = u′n + hn

s
∑

i

biki,

Φ′(xn, ŷn, ŷ
′
n, hn) =

s
∑

i

b′iki,

and

ki = f(xn + cihn, ûn + cihnû′n + h2n

s
∑

j=1

aijkj), i = 1, . . . , s.

We have assumed the local extrapolation mode (the solution is advanced using the

high order formula).

Many classes of explicit embedded RKN methods have been developed. These meth-

ods include those of Dormand et al. [20, 21], Someijer [85], Papageorgiou et al. [70],

El-Mikkawy et al. [25] and Al-Khasawneh et al. [1]. The numerical test results in the

cited references show that embedded RKN methods require fewer function evaluations to

achieve the same global error than embedded explicit Runge-Kutta methods applied to

the equivalent first order system. RKN methods also require less storage.

The coefficients aij, b̂i, b̂
′
i, bi, b

′
i are usually chosen so that the method has the

highest possible order. The coefficients aij are related to the abscissas ci by

i−1
∑

j=1

aij =
c2i
2
, i = 1, . . . , s,

for all but some low order methods. The convergence and sufficient condition for a RKN

method to be consistent are given by the following definitions [26].



3.1 RKN embedded pairs 35

Definition 3.1.1 The RKN methods defined by (3.1.1) and (3.1.2) are said to be con-

vergent for the problem (1.1.1) if for all fixed xn,

max
(

|| εgen ||, || ε
′

gen
||
)

‖ −→ 0 as h −→ 0,

where εge and ε′ge are the global errors for y and y′, as defined in section 2.1.4.

Definition 3.1.2 The RKN methods defined by (3.1.1) and (3.1.2) are said to be consis-

tent for the problem (1.1.1) if

Φ(y, y′, 0) = y′,

and

Φ′(y, y′, 0) = f(y).

The above definitions yield that the RKN methods (3.1.1) and (3.1.2) are consistent if

s
∑

i=1

b̂′ = 1 and
s
∑

i=1

b′ = 1.

3.1.1 Derivation of ERKN pair

As with ERK methods, the order conditions for ERKN methods are found by comparing

the exact and numerical solution of a Taylor series expansion. This is illustrated in the

following example:

Example 3.1.1

Using the Taylor series expansion, we have

y(xn+1) = y(xn) + hy′(xn) +
1

2
h2y′′(xn) +

1

6
h3y′′′(xn) +

1

24
h4y(4)(xn) +O(h5),

y′(xn+1) = y′(xn) + hy′′(xn) +
1

2
h2y′′′(xn) +

1

6
h3y4(xn) +

1

24
h4y(5)(xn) +O(h5),
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where

y′ = y′,

y′′ = f(x, y),

y′′′ = fx + fyy
′,

y(4) = fxx + 2fxyy
′ + fyf + fyyy

′2,

y(5) = fxxx + 3fxxyy
′ + 3fxyf + 3fxyyy

′2 + 5fyyfy
′ + fxfy + f 2

y y
′ + fyyyy

′3.

The quantities f(x, y) and its partial derivatives are called elementary differentialsDi
j(x, y)

(i is the order and j is number of the elementary differential). Assuming s = 3 and ex-

panding the approximation (3.1.2) in the same manner yields

yn+1 = yn + hy′(xn) + h2f(b1 + b2 + b3) + h3(b2c2 + b3c3)(fx + fyy
′)

+h4(b2a21ffy +

(

1

2
b2c

2
2 +

1

2
b3c

2
3

)

(fxx + fyyy
′2) + (b2c

2
2 + b3c

2
3)fxyy

′)

y′n+1 = y′n + hf(b′1 + b′2 + b′3) + h2f(b′2c2 + b′3c3)(fx + fyy
′) + h3((fxx + fyyy

′2),
(

1

2
b2c

2
2 +

1

2
b3c

2
3

)

+ b2a21ffy + (b2c
2
2 + b3c

2
3)fxyy

′) + h4(a32c2fxxx + a32a21fxfy

(3fxxyy
′ + 3fxyy

′2)

(

1

2
b2c

3
2 +

1

2
b3c

3
3

)

+ 3fxyfy
′(b2c

2
2 + b3c

2
3) + (f 2

y y
′ + fyyyy

′3)b2a21).

Now comparing the above two equations with the Taylor series expansion, we get

the following equations for y

b1 + b2 + b3 =
1

2
,

b2c2 + b3c3 =
1

6
,

b2c
2
2 + b3c

2
3 =

1

12
,
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and for the derivatives y′

b′1 + b′2 + b′3 = 1,

b′2c2 + b′3c3 =
1

2
,

b′2c
2
2 + b′3c

2
3 =

1

3
,

b′2c
3
2 + b′3c

3
3 =

1

4
,

b′3a32c2 =
1

24
.

These equations are solved for the coefficients to obtain an ERKN embedded pair. Since,

we have five equations for derivative order conditions and six unknowns, so one of the

coefficients can be chosen as free parameter. It is convenient to have c2 as free parameter.

We also need the order conditions for the formulae of order q. These involve the

coefficients ci, aij, b̂
′
i and b̂i, and are found in a similar way as for the order p formulae.

The order conditions for the order p solution formula can be eliminated using the

transformation

bi = b′i(1− ci), i = 1, . . . , s. (3.1.3)

Using this transformation, simplifies the solving of the order conditions but can mean

that the solution to the order conditions is not as general.

The complexity of the order conditions grows rapidly as the order of the method

increases. These order conditions can be represented in the form of trees and this notation

is very useful in finding order conditions for higher orders. The Nyström trees for y′′ =

f(y, y′) are first given by Hairer and Wanner [48]. Nyström trees are described in details

by Hairer et al. [47]

3.1.2 Simplifying assumptions

The complexity of the order conditions can be reduced by assuming specific relationships

between coefficients. The relationships are called simplifying assumptions. One set of

simplifying assumptions often used in the construction of RKN methods is



38 Explicit Runge–Kutta Nyström Methods

cki
k(k − 1)

=
i−1
∑

j=1

aijc
k−2
j , i = 1, 2, . . . , s, k = 2, 3, . . . . (3.1.4)

It is convenient to write non quadrature order conditions in terms of some functions

introduced by Hairer [41]. These functions were later used by Dormand et al. in [20] for

the construction of high order methods. These functions Qij and Rkj are defined by

Qij =
i−1
∑

j=1

aijc
k
j −

ck+2
i

(k + 1)(k + 2)
, i = 1, 2, . . . , s, k = 1, 2 . . . ,

and

Rkj =
s
∑

i=1

b′ic
k
i aij − b′j

ck+2
j − cj(k + 2) + (k + 1)

(k + 1)(k + 2)
, j = 1, 2, . . . , s, k = 0, 1, 2 . . . .

3.1.3 Leading truncation error coefficients

Once the order of a RKN method has been selected, the local truncation error (LTE) is

an important measure of the accuracy of the method. The LTE for RKN methods is given

by

t̂n+1 = ŷ(xn) + hnΦ̂(xn, ŷn, ŷ′n, hn)− ŷ(xn+1),

t̂′n+1 = ŷ′(xn) + hnΦ̂
′(xn, ŷn, ŷ′n, hn)− ŷ′(xn+1).

(3.1.5)

Expanding y(xn+1) and y
′(xn+1) by Taylor series, the above equation takes the form

t̂n+1 = hn(Φ̂(xn, ŷn, ŷ′n, hn)−∆(y(xn), hn)), (3.1.6)

t̂′n+1 = hn(Φ̂(xn, ŷn, ŷ′n, hn)−∆(y(xn), hn)). (3.1.7)

Assuming f , Φ̂ and Φ̂′ have qth order bounded continuous partial derivatives with respect

to h, the truncation error terms may be written as [20, 26]

t̂n+1 =

q−1
∑

i=0

hi+1
n ψ̂i(xn, ŷn, ŷ

′
n) +O(hq+1

n ), (3.1.8)

t̂′n+1 =

q−1
∑

i=1

hi+1
n ψ̂′

i(xn, ŷn, ŷ
′
n) +O(hq+1

n ), (3.1.9)
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where

ψ̂i =

ni
∑

j=1

τ̂
(i)
j D̂i

j(xn, ŷn(x), ŷ
′
n(x)), (3.1.10)

ψ̂′
i =

ni+1
∑

j=1

τ̂ ′
(i)

j D̂
i+1
j (xn, ŷn(x), ŷ

′
n(x)), (3.1.11)

are known as error functions. The qth order term in the above expressions is called the

leading truncation error term.

The coefficients τ̂
(i)
j and τ̂ ′

(j)

j are the error coefficients for the RKN methods and are

expressions involving aij, b̂i, ci and aij, b̂
′
i, ci respectively.

Definition 3.1.3 A RKN method is of order q if ψ̂i = ψ̂′
i = 0, i = 0, . . . , q − 1, and ψ̂q

and ψ̂′
q 6= 0. The error functions ψ̂q and ψ̂′

q are called the principal error functions.

Definition 3.1.4 The embedded RKN p-q pair is of order q and p, (q > p) if the following

holds

τ̂
(i+1)
j = 0, i = 1, . . . , q − 1, j = 1, . . . , ni, (3.1.12)

τ̂ ′
(i+1)

j = 0, i = 1, . . . , q − 1, j = 1, . . . , ni+1,

τ
(i+1)
j = 0, i = 1, . . . , p− 1, j = 1, . . . , ni, (3.1.13)

τ ′
(i+1)
j = 0, i = 1, . . . , p− 1, j = 1, . . . , ni+1.

The above four system of equations are the order conditions for qth and pth order formu-

lae. As discussed by Horn [51], the number of function evaluations, step-size estimates,

truncation error analysis and stability characteristics play a significant role in determining

the efficiency of a method.

3.2 Stability of RKN methods

Here we review some commonly used stability criteria for RKN methods.
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3.2.1 Matrix stability criteria

Absolute stability analysis for RKN methods using a matrix stability criterion were first

used by Chawla and Sharma [13, 14]. This analysis has been used by many researchers for

example, Van der Houwen and Sommeijer [53], Sharp et al. [83], Van der Houwen et al.

[55] and Paternoster [71]. In this analysis, the stability of RKN methods (3.1.1)-(3.1.2) is

investigated by applying them to the test equation

y′′ = −λ2y, λ ∈ R. (3.2.1)

This yields

yn+1 = yn + hy′n + zbTKn, (3.2.2)

hy′n+1 = hy′n+1 + hzb′TKn, (3.2.3)

where

Kn = N−1(yn + chy′n), (3.2.4)

with N = (I − zA) and z = −h2λ2. The above set of equations may be written as

(

yn+1

hy′n+1

)

= R(z)

(

yn

hy′n

)

, (3.2.5)

where

R(z) =

(

1 + zbTN−1e 1 + zbTN−1c

zb′TN−1e 1 + zb′TN−1c

)

,

with A = (aij)
s
i,j=1, e = (1, . . . , 1)T , b = (b1, . . . , bs)

T , b′ = (b′1, . . . , b
′
s)

T and c =

(c1, . . . , cs)
T . The matrix R(z) is called the stability matrix. Following Van der Houwen

and Sommeijer [54], we introduce the functions S(z) and P (z)

S(z) = trace(R(z)), P (z) = det(R(z)).

It is easily shown that these S(z) and P (z) are algebraic polynomials. The interval of

absolute stability is the values of z for which the spectral radius ρ(R(z)) < 1, and the

interval of periodicity is the value of z for which |R(z)| = 1 and S(z)2 − 4P (z) < 0 (see

[55] for example).
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3.2.2 Horn’s stability criteria

Horn discussed the absolute stability for RKN methods in detail in [51] and recommended

using the test equation

y′′ = λ2y + g(x), λ ∈ C, (3.2.6)

where λ2 is a constant. This test equation has since been used by Dormand et al. [20]

and El-Mikkawy [26]. It is easily shown that when a RKN method is applied to the above

test equation

y(x0 + h) = y0 P (hλ),

y′(x0 + h) = y′0 P
′(hλ),

where

P (hλ) =
2s
∑

k=0

uk(hλ)
k,

and

P ′(hλ) =
2s−1
∑

k=0

vk(hλ)
k.

The expressions uk and vk are combinations of ci, aij, bi and b
′
i and are detailed by Horn

[51]. Since the error in y and y′ may be magnified because of the polynomials P and P ′,

the conditions |P (hλ)| < 1 and |P ′(hλ)| < 1 should hold for a method to be stable for

a particular value of hλ. The values of hλ such that |P (hλ)| = |P ′(hλ)| = 1 give the

boundary of stability region for y and y′ respectively.

The above completes our review of the order and stability definitions for RKN

methods. We now review the derivation of the ERKN 8-10 pairs of El-Mikkawy [26], and

the ERKN 10-12 pairs of Dormand et al. [21].

3.3 Solving the order conditions for 8-10 pairs

We have 235 equations to solve: 112 for ŷ′, 64 for ŷ, 37 for y′ and 22 for y. El-Mikkawy [26]

derived a family of 8-10 pair for s = 13 and imposed the following simplifying assumptions
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in the form of Qij as

Qi1 = 0,

Qi2 = 0,







i = 3, . . . , 13, (3.3.1)

Qi3 = 0,

Qj4 = 0,







i = 5, . . . , 13, j = 6, . . . , 13, (3.3.2)

and

ai2 = 0, i = 5, . . . , 13,

b̂′i, b
′
i = 0, i = 2, . . . , 5.

When the above stated simplifying assumptions are applied, the equations that

remain are (equations (3.3.1) and (3.3.2)) along with the quadrature conditions

b̂′ic
k
i =

1

k + 1
, i = 1, . . . , 13, k = 1, . . . , 10, (3.3.3)

b′ic
k
i =

1

k + 1
, i = 1, . . . , 13, k = 1, . . . , 8, (3.3.4)

and the equations

b̂′ic
j
iQi5 = 0,

b′iQi5 = 0,







i = 6, . . . , 13, j = 0, 1, 2, (3.3.5)

b̂′ic
j
iQi6 = 0, i = 6, . . . , 13, j = 0, 1, (3.3.6)

b̂′iQi7 = 0, i = 6, . . . , 13, (3.3.7)

b̂′ic
j
iai3 = 0,

b′iai3 = 0,







i = 6, . . . , 13, j = 0, 1, 2, (3.3.8)

b̂′ic
j
iai4 = 0,

b′iai4 = 0,







i = 6, . . . , 13, j = 0, 1, 2, (3.3.9)

b̂′ic
j
iai5 = 0, i = 6, . . . , 13, j = 0, 1. (3.3.10)

The above system of non-linear algebraic equations is solved using the following

steps.
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i. We have nine non-zero exterior weights b̂′i for the order 10 derivative formula. We

use these non-zero weights to solve the quadrature conditions of orders one to nine

for the derivative formula, see (3.3.3). The order ten quadrature condition from

equation (3.3.3) is satisfied by constraining c12.

ii. Equations (3.3.4) are then solved for the exterior weights b′i, with b′13 as free pa-

rameters.

iii. The exterior weights of order 10 and 8 solution formulae are then found by using

the transformation (3.1.3).

iv. Solve Q31 = Q32 = 0 from equation (3.3.1), for a32 and c2.

v. Equations (3.3.1) and (3.1.4) are solved for Q41, Q42, providing the values of a41, a42

and a43.

vi. We solve equations (3.3.1) for Q51 and Q52 yielding the values of a53 and a54, putting

back these values in Q53, a quadratic equation in c5 is obtained.

vii. A sixth row of interior weights (aij of coefficient matrix A) is obtained by solving

Q6i = 0, i = 1, 2, 3 and equation (3.1.4). Again plugging back these values into Q64,

a cubic equation in c6 is achieved. We solve this cubic equation for c3 and put it in

the previously found quadratic equation, two more abscissae c3 and c4 are found.

viii. The seventh, eighth and ninth rows for interior weights are obtained using equations

(3.3.1) and (3.3.2) with i = 7, 8, 9. This makes the interior weights a83, a93 and a94

as free parameters.

ix. Now solving equations (3.3.8) and (3.3.9), it is easy to find the 3rd and 4th columns

of interior weights.

x. It is convenient to use equations (3.3.5), (3.3.6) and (3.3.7) to obtain values for

Qi5, i = 10, . . . , 13, Qi6, i = 12, 13 and Q137 respectively.

xi. The 10th and 11th rows of the coefficient matrix can now easily be acquired using

Q10i and Q11i, i = 1, . . . , 5, making a115 as free parameter.

xii. We solve equation (3.3.10) in a similar way as that discussed in the above step. The

values of a125 and a135 are found.

xiii. Now straightforwardly the remaining interior weights for the 12th and 13th rows of

coefficient matrix are earned after solving Q12i, i = 1, . . . , 6, and Q13i, i = 1, . . . , 7,

respectively.
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The derivation produces a family of 13-stage, 8-10 pairs with free parameters ci, i =

5, 6, . . . , 11, a83, a93, a94, a115 and b̂′13. We will find the suitable values for these free pa-

rameters in upcoming sections using search methods.

3.4 Solving the order conditions for 10-12 pairs

A family of 17-stage 10-12 pair was derived by Dormand et al. [21]. For a 10-12 pair,

we need to solve a total of 732 equations: 357 and 199 equations for 12th and 112 and

64 equations for 10th order method for derivative and solution respectively. The order

conditions are written inQij and R0j form. The simplifying assumptions used by Dormand

et al. [21] are given by Baker et al. [4] and are

Qi1 = 0,

Qi2 = 0,







i = 3, . . . , 17, (3.4.1)

Qi3 = 0,

Qj4 = 0,







i = 5, . . . , 17, j = 6, . . . , 17, (3.4.2)

R0j = 0,

R̂0j = 0,







j = 1, . . . , 17, (3.4.3)

ai2 = 0, i = 5, . . . , 17,

b̂′i, b
′
i = 0, i = 2, . . . , 6.

It is possible to eliminate all the order conditions except the following ones af-

ter applying the above simplifying assumptions. The remaining equations including the

quadrature conditions are

b̂′ic
k
i =

1

k + 1
, i = 1, . . . , 17, k = 1, . . . , 12, (3.4.4)

b′ic
k
i =

1

k + 1
, i = 1, . . . , 17, k = 1, . . . , 10, (3.4.5)

b̂′ic
j
iQi5 = 0, i = 7, . . . , 17, j = 0, 1, . . . , 4, (3.4.6)



3.4 Solving the order conditions for 10-12 pairs 45

b′ic
j
iQi5 = 0, i = 7, . . . , 17, j = 0, 1, 2, (3.4.7)

b̂′ic
j
iQi6 = 0, i = 7, . . . , 17, j = 0, 1, 2, 3, (3.4.8)

b′ic
j
iQi6 = 0, i = 7, . . . , 17, j = 0, 1, (3.4.9)

b̂′ic
j
iQi7 = 0, i = 7, . . . , 17, j = 0, 1, 2, (3.4.10)

b̂′ic
j
iQi8 = 0, i = 7, . . . , 17, j = 0, 1, (3.4.11)

b̂′ic
j
iai3 = 0, i = 7, . . . , 17, j = 0, 1, . . . , 4, (3.4.12)

b′ic
j
iai3 = 0, i = 7, . . . , 17, j = 0, 1, 2, (3.4.13)

b̂′ic
j
iai4 = 0, i = 7, . . . , 17, j = 0, 1, . . . , 4, (3.4.14)

b′ic
j
iai4 = 0, i = 7, . . . , 17, j = 0, 1, . . . , 4, (3.4.15)

b̂′ic
j
iai5 = 0, i = 7, . . . , 17, j = 0, 1, 2, 3, (3.4.16)

b′ic
j
iai5 = 0, i = 7, . . . , 17, j = 0, 1, (3.4.17)

b̂′ic
j
iai6 = 0, i = 7, . . . , 17, j = 0, 1, 2. (3.4.18)

The above equations can be solved as follows.

i. We get exterior weights for higher order formulae using quadrature conditions (3.4.4)

up to order eleven in the form of the Vandermonde system, whilst b̂′17 is chosen as a

free parameter, whereas the order twelve quadrature condition helps us to find the

value for c15.

ii. Similar is the case to obtain lower order weights using quadrature conditions (3.4.5)

and assuming b′16 as free parameter and b′17 = 0.

iii. We adopt almost the same criteria as was done for 8-10 pair, the interior weights up

to the ninth row are obtained using the equations (3.4.1) and (3.4.2) keeping a87,

a97 and a98 as free parameters.

iv. The coefficients ai3 and ai4, i = 10, . . . , 15, are found using equations (3.4.12),

(3.4.13), (3.4.14) and (3.4.15).

v. On the next step, equations (3.4.6) and (3.4.7) yield Qi5, i = 10, . . . , 15. These

are useful to find a10i and a11i, i = 5, . . . , 9. Again managing a1110 as a free

parameter.
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vi. It is straightforward to get ai5, i = 12, . . . , 15, by solving the equations (3.4.16) and

(3.4.17).

vii. Equations (3.4.8) and (3.4.9) are solved for Qi6, i = 12, . . . , 15. These along with

equations (3.4.8) and (3.4.9) are helpful in attaining the rest of the 12th and 13th

rows of the coefficient matrix. These are a12i and a13i, i = 6, . . . , 13, again adopting

a1312 as a free parameter.

viii. Now we use equations (3.4.10) and (3.4.11) to obtain Q147, Q157 and Q158. But prior

to calculating Q158, it is handy to solve equation (3.4.18) in finding a146 and a156.

ix. The interior weights a14i, i = 7, . . . , 13, and a15i, i = 7, . . . , 14, are attained using

recently found Qi7 and Qi8 alongwith equations (3.4.10) and (3.4.11).

x. It is now effortless to achieve a16i, i = 3, . . . , 15, and a17i, i = 3, . . . , 16, using

the first and second equations of (3.4.3) with j = 3, . . . , 15 and j = 3, . . . , 16,

respectively.

The derivation produces a family of 17-stage, 10-12 pairs with free parameters

c5, c6, . . . , c14, a87, a97, a98, a1110, a1312, b̂′16 and b′17.

3.5 Selecting a pair

The coefficients of a ERKN pair are obtained by solving order conditions and assigning

the values for the free parameters. Generally, the technique used for the choice of free

parameters is a grid search algorithm performed on a restricted set of free parameters as

done by El-Mikkawy [26]. This results in a pair having several desirable properties. These

properties are similar to those used for RK pairs by Prince and Dormand [72], Verner [93]

and for the RKNG pair of Sharp and Fine [82]. The first and foremost property is the

efficiency of a pair. For an efficient pair, the free parameters are chosen so that the pair

has a small principal truncation error norm and reasonable absolute stability regions [26].

Before we find the suitable values for these free parameters in the 8-10 and 10-12

pairs, we briefly review simulated annealing, which is the method we used instead of a grid

search to find suitable pairs. We chose simulated annealing because it does not require
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derivative information about the objective function and can even do reasonably well on

objective functions that are discontinuous (as is the case here).

3.6 Simulated annealing

The simulated annealing (SA) is a generic heuristic for global optimisation problems and

was introduced independently by Kirkpatrik et al. [58] and Cerny [12].

In simulated annealing, the goal is to find a point in space at which a real valued

objective function is minimised by trying random variations of the current solution in

an analogous way. SA might not always find the optimal solution to a given problem.

However, it almost finds a better solution than grid methods. If the objective function

has steep maxima or minima, the probability of SA in finding them significantly decreases

[91]. Specifically, it moves about randomly in the solution space looking for a solution

that minimises the value of some objective function. Because it is generated randomly,

a move may cause the objective function to increase, decrease or remain unchanged. A

worse variation is accepted as the new solution with a probability that decreases as the

computation proceeds. The probability of accepting a worse state that may increase the

value of an objective function is given by the equation

P = e(−∆f/T ) > r, (3.6.1)

where ∆f is the change in evaluation of the objective function, T is the control parameter

called the temperature and r is a random number between 0 and 1. The optimisation

algorithm is described by Corana et al. [16].

3.7 Optimisation problem

Our goal is to reduce the leading error coefficient as much as possible, which will be used

as an objective function for our optimisation problem. The magnitude of the coefficients,

lower and upper bound for the abscissae and stability regions are taken as constraints.
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This optimisation problem can be stated as

minimise f : max ‖τ̂ (q+1), τ̂ ′(q+1)‖,
subject to e1 : abscissae are bounded, 0 ≤ Xi ≤ 1,

e2 : max{|aij|, |b̂|, |b̂′|, |b|, |b′|} < bmax (bound),

e3 : (Horn’s stability) ẐH > ÛH(bound),

e4 : (Matrix stability) ẐM > ÛM(bound),

e5 :
max‖τ̂ (q+2), τ̂ ′(q+2)‖
max‖τ̂ (q+1), τ̂ ′(q+1)‖ < dr(q + 2) (bound),

(3.7.1)

where Xi, i = 1, . . . , N , are the free parameters. In some cases, we replace our objective

function by max ‖τ̂ (q+2), τ̂ ′(q+2)‖.

We incorporated the constraints by using the simple penalty function of setting the

objective function to a fixed value when a constraint was violated.

3.7.1 Searching ERKN 8-10 pairs

The family of 8-10 pairs has 12 free parameters: ci, i = 5, 6, . . . , 11, a83, a93, a94, a115

and b̂′13. El-Mikkawy [26] established that the performance of the pairs was insensitive

to the value of the free parameters a83, a93, a94, a115 and b̂′13. This leaves the seven free

parameters ci, i = 5, 6, . . . , 11.

Before applying simulated annealing, we performed two-dimensional grid searches

over these seven free parameters. This was done to gain insight about what values of the

free parameters would give near optimal pairs. This searching was done by fixing five

free parameters and using a grid for the remaining two free parameters. We did the grid

search for all pairs of free parameters against others. Below we discuss the results for

some pairs of free parameters.

Figures 3.1 and 3.2 show ẐH and ẐM respectively for different pairs of free param-

eters. Figure 3.1 contains two plots. The upper plot gives ẐH as a function of c5 and c7,

and the lower plot gives ẐH as a function of c5 and c9. We observe from both plots that

ẐH has a maximum for c5 < 0.4. Figure 3.2 shows the region for ẐM plotted as a function
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of c5 and c6 (top plot), and c5 and c11 (bottom plot). We observe that the results are

not as clear cut as in Figure 3.1. In the top plot, the maximum for ẐM occurs for c5 in

[0.4,0.5], whereas in the bottom plot the maximum occurs for c5 < 0.4.

As noted above, we did not see a pattern for ẐM . Hence, we investigated the depen-

dence of ẐH and τ (11) on pairs of free parameters. In Table 3.1, each of free parameters

ci, i = 5, 6, . . . , 11, is plotted against others for maximum value of ẐH and minimum

value of τ (11). Our conclusions for the above seven free parameters are summarised in the

following table.

max(ẐH) min(τ (11))

c5 c5 < 0.5 c5 < 0.5

c6 c6 < 0.5 c6 < 0.2

c7 c7 < 0.45 c7 < 0.23

c8 c8 < 0.5 c8 < 0.2

c9 c9 ∈ [0.45, 0.75] c9 ∈ [0.45, 0.55]

c10 c10 ∈ [0.25, 1] c10 ∈ [0.65, 0.7]

c11 c11 ∈ [0, 1] c11 ∈ [0.8, 1]

Table 3.1: A summary of our conclusions about the ranges of the free parameters for the ERKN 8-10

pair that will lead to near optimal ERKN pairs.

Having completed the investigation using pairs of free parameters, we then used

simulated annealing to find local minima to the optimisation problem (3.7.1). The op-

timisations were done for different values of the bounds bmax, ÛZ and ÛM . We initially

used the bounds employed by El-Mikkawy [26], and then tried smaller and larger bounds.

The optimisations took a considerable amount of CPU time and led to 73 ERKN pairs.

We tested all 73 ERKN pairs on some test problems and used the results of these tests

to reduce the 73 ERKN pairs to 10.

Table 3.2 lists some of the properties of the ten new 8-10 pairs. The ERKN pairs

are denoted by 8-10-p1 and so-on. The ERKN pair 8-10-edp represents the pair selected

by El-Mikkawy in [26]. The ERKN pairs 8-10-p1 to 8-10-p8 were obtained using τ̂ (11)

as the objective function, subject to all five constraints in problem (3.7.1). The pairs

8-10-p9 and 8-10-p10 are earned using τ̂ (12) as objective function solely. Table 3.2 shows

that all ten ERKN pairs have a leading error coefficient τ̂ (11) that is noticeably smaller

than for the 8-10-edp pair of El-Mikkawy [26]. We also see that ẐM for some pairs is a

lot smaller than for the 8-10-edp pair. We come back to this point later when discussing
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Figure 3.1: The plot of the stability interval ẐH for the 8-10 pair as a function of two free parameters.
(Top) - The free parameters are c5 and c7. (Bottom) - The free parameters are c5 and c9.

Method ‖τ (11)‖∞ ‖τ (12)‖∞ ẐH ZH ẐM ZM max(Mag.)
8-10-edp 0.1886 4.31 7.56 6.9 6.75 0.05 24.4
8-10-p1 0.0017 0.47 7.50 8.2 5.60 0.05 4.3
8-10-p2 0.0051 0.28 7.52 7.5 0.15 0.05 3.7

8-10-p3 0.0050 0.32 7.60 7.1 0.15 0.05 5.3
8-10-p4 0.0016 0.46 7.50 7.9 5.60 0.05 5.0
8-10-p5 0.0050 0.31 7.30 6.6 0.21 0.05 3.7

8-10-p6 0.0063 0.37 7.60 7.0 0.15 0.05 4.7
8-10-p7 0.0067 0.65 7.11 6.0 0.15 0.05 10.0
8-10-p8 0.0094 1.13 6.82 7.0 0.15 0.05 4.0

8-10-p9 0.0230 0.14 7.61 7.0 0.22 0.05 2.8
8-10-p10 0.0193 0.12 7.50 7.1 0.21 0.05 2.7

Table 3.2: Some properties of the ten 8-10 pairs that remained after our preliminary numerical testing
of the 73 pairs.
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Figure 3.2: The plot of the stability interval ẐM for the 8-10 pair as a function of two free parameters.
(Top) - The free parameters are c5 and c6. (Bottom) - The free parameters are c5 and c11.
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Figure 3.3: The efficiency plots for the eleven ERKN 8-10 pairs applied to the Nine Planets Problem.
The interval of integration is one thousand years and the tolerances vary from 10−14 to
10−8. The efficient plots were calculated from the norm of the maximum global error and
the number of function evaluations.

the numerical testing.

The numerical tests are done in two parts. In the first part, we plotted the efficiency

curves for some of the gravitational problems at a range of tolerances for a short interval

of time (to avoid an excess amount of CPU time). In the second part, we tested the more

efficient pairs from the first part on longer intervals of integration. The results for the

second part are discussed later in the chapter. Here we discuss the results for the first

part.

The test problems and intervals for the first part were the Nine Planet Problem over

1000 years, the HRC Problem over 10,000 days and the Jovian Problem over one million

years. The efficiency curves for these pairs are plotted in Figures 3.3, 3.4 and 3.5. The

red line represents the 8-10-edp pair of El-Mikkawy [26], while other colours correspond

to ERKN new pairs. We employed local error tolerances in the range 10−14 to 10−8 and

used the number of function evaluations as the measure of work. This is an acceptable

way of measuring effort since all the pairs have the same number of stages, our results are
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Figure 3.4: The efficiency plots for the eleven ERKN 8-10 pairs applied to the HRC Problem. The
interval of integration is ten thousand days and the tolerances vary from 10−14 to 10−8.
The efficient plots were calculated from the norm of the maximum global error and the
number of function evaluations.
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thus essentially machine independent.

Figure 3.3 gives the efficiency curves for the Nine Planets Problem. We observe that

all new pairs are more efficient than the 8-10-edp pair. In addition, we observe that the

most accurate solution produced by the new pairs is more accurate than that produced

by the 8-10-edp pair. The vertical segments in the curves for severe tolerances are due

to round-off error. The conclusions are similar for the HRC Problem, see Figure 3.4. For

the Jovian Problem, see Figure 3.5, we observe that at severe tolerances some of the new

pairs are less efficient than the 8-10-edp pair. It is clear from the numerical tests and

from the Table 3.2 that a larger or smaller stability interval for ẐM has no effect on the

efficiency of the pairs.

We found the increase in efficiency of the new pairs relative to the 8-10-edp pair

was less than predicted by the size of τ (11) and τ ′(11). Nevertheless, there was qualitative

agreement with the size of τ (11) and τ ′(11).

3.7.2 Searching ERKN 10-12 pairs

In the case of the ERKN 10-12 pair, we have 17 free parameters: c5, c6, . . . , c14, a87, a97, a98,

a1110, a1312, b̂′16 and b′17. By experiment we showed that b̂′16 and b
′
17 do not have much

effect on the minimisation of the leading error coefficient τ (13). So we use the same values

of b̂′16 and b′17 as in ERKN 10-12 pair of Dormand et al. [21], namely 0.02 and 0.025

respectively.

We analyzed the behaviour of the coefficients for the ERKN 10-12 pair in the same

way as was done for the 8-10 pair in the previous section. Figures 3.6 and 3.7 show the

plots of ẐH and ẐM respectively. In the upper plot of Figure 3.6, ẐH is a function of

c5 and c6 and function of c5 and c13 in the lower plot. For both plots, the maximum of

stability interval is obtained for value c5 ≃ 0.5 and in [0.6,0.9] for c5. We observe from

the experiments that ẐM has no particular pattern for the free parameters, which is the

same as for the 8-10 pair. This can be seen in Figure 3.7, the maximum stability interval

occurs for c5 near to 0.1 in the top plot, and close to 0.4 in the bottom plot.

Dependance of ẐH and τ (13) on pairs of free parameters is summarised in the fol-
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lowing table.

max(ẐH) min(τ (13))

c5 c5 ∈ [0.2, 0.4] ∪ [0.6, 0.9] c5 ∈ [0, 1]

c6 c6 < 0.2 c6 < 0.8

c7 c7 < 0.06 c7 < 0.07

c8 c8 < 0.2 c8 < 0.22

c9 c9 ∈ [0.22, 0.6] c9 ∈ [0.2, 0.35]

c10 c10 ∈ [0.26, 0.41] c10 ∈ [0.25, 0.35]

c11 c11 ∈ [0.33, 0.7] c11 ∈ [0.45, 0.52]

c12 c12 ∈ [0.4, 0.6] c12 ∈ [0.46, 0.56]

c13 c13 ∈ [0.65, 1] c13 ∈ [0.5, 0.76]

c14 c14 ∈ [0, 1] c14 ∈ [0.8, 0.9]

Table 3.3: A summary of our conclusions about the ranges of the free parameters for the ERKN 10-12

pair that will lead to near optimal pairs.

Optimising the objective function τ (13) in the same way as detailed in the previous

section, 52 new ERKN pairs are obtained. Some of the properties of the seven most

efficient new ERKN pairs are given in Table 3.4. The pair 10-12-dep represents the pair

selected by Dormand et al. [21]. All other listed pairs are obtained using τ (13) as the

objective function with different values for dr. Table 3.4 shows that all seven ERKN pairs

have a leading error coefficient τ (13) that is noticeably smaller than for the 10-12-dep pair

of Dormand et al. [21]. We also see that ẐM for some pairs is a lot smaller than for the

10-12-dep pair as was previously observed for 8-10 pairs.

We tested these new 10-12 pairs on the same problems as used for the 8-10 pairs.

Figures 3.8, 3.9 and 3.10 show the efficiency of new searched 10-12 pairs for the Nine

Planets, HRC and Jovian Problems respectively for the same time interval as was done

for 8-10 pairs. The gain in efficiency compared with the 10-12-dep pair is less than the

gain for 8-10 pairs. The red line represents the 10-12-dep pair of Dormand et al. [21],

while other colours correspond to ERKN new pairs.

Our numerical experiments show that only 10-12-p5 is more efficient for the Nine

Planets Problem, when compared with the 10-12-dep pair on severe tolerances, see Figure

3.8. But most of the pairs are giving better efficiency on lax tolerances. Figure 3.9 gives

the efficiency curves for the HRC Problem. We observe that all new pairs use fewer

function evaluations than 10-12-dep pair at small tolerances. For the Jovian Problem,
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Figure 3.6: The plot of the stability interval ẐH for the 10-12 pair as a function of two free parameters.
(Top) - The free parameters are c5 and c6. (Bottom) - The free parameters are c5 and c13.
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Figure 3.7: The plot of the stability interval ẐM for the 10-12 pair as a function of two free parameters.
(Top) - The free parameters are c5 and c6. (Bottom) - The free parameters are c5 and c13.
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Method ‖τ (13)‖∞ ‖τ (14)‖∞ ẐH ZH ẐM ZM Mag.
10-12-dep 0.2600 7.94 10.54 10.2 0.25 35.25 48.95
10-12-p1 0.0018 3.97 10.11 10.1 0.65 0.15 39.85

10-12-p2 0.0060 3.97 10.93 10.2 0.45 0.15 48.96
10-12-p3 0.0041 3.97 9.13 8.7 0.41 0.11 48.96

10-12-p4 0.0037 3.94 7.80 7.0 0.20 12.10 5.54
10-12-p5 0.0023 3.97 10.53 10.2 8.35 8.25 48.95

10-12-p6 0.0078 3.26 6.54 5.5 0.21 0.13 35.89
10-12-p7 0.0052 3.63 7.06 7.0 0.35 2.05 13.32

Table 3.4: Some properties of the seven 10-12 pairs that remained after our preliminary numerical
testing of the 52 pairs.

all new pairs are more efficient than 10-12-dep except 10-12-p5 at small tolerances, see

Figure 3.10. The pair 10-12-p3 gives the least global error at tolerances 10−14, 10−13 and

10−12. The vertical segments in the curves for severe tolerances 10−14 to 10−12 are because

of round-off error.

3.8 Numerical tests for long-term integration

In this section, we analyse the error growth for the position of planets and conserved

quantities for long-term integration of the Solar System. We integrate the Jovian Problem,

the Nine Planets Problem, the HRC Problem and the Saturnian Satellites problem for

100 million years, one million years, 10 thousand days and 27 thousand Earth years

respectively.

To keep the CPU time requirement reasonable, we restrict ourselves to test the three

most efficient pairs from the previous testing. This is done for the 8-10 and 10-12 pairs.

We keep the number of function evaluations same and use the tolerances of 10−13 and

10−10.

We take the pairs 8-10-p1, 8-10-p6 and 8-10-p10, for convenience we denote them

as 8-10-p1, 8-10-p2 and 8-10-p3 respectively. Among the 10-12 pairs, we choose 10-12-p3,

10-12-p4 and 10-12-p6 and denote them as 10-12-p1, 10-12-p2 and 10-12-p3 respectively.

We explore the behaviour of error growth for the pairs, and the efficiency at lax and severe

tolerances. Some of the plots have high frequency fluctuations; we smooth that data using
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the ‘filter’ command in Matlab. The window size employed is 5% of the original data used.

The percentage efficiency of the pairs is measured relative to the 8-10-edp and 10-12-dep

pairs using the following formula

(

(

error in ref. pair

error in new pair

)1/(p+1)

− 1

)

× 100.

In the above formula, ‘ref. pair’ means the 8-10 pair of El-Mikkawy [26] and 10-12 pair of

Dormand et al. [21]. The error is calculated at evenly spaced points with in the interval

of integration. We found the reference solution by performing accurate simulations in

quadruple precision with tolerances of 10−20. The above formula is calculated at start,

middle and end point of each integration.

Figure 3.11 shows the error growth in the position, the Hamiltonian and the angular

momentum for the Jovian Problem using 8-10 pairs. The integration is done using a

tolerance of 10−13 for the 8-10-edp pair, while for the other pairs, the tolerance is adjusted

so they use the same number of evaluations as the 8-10-edp pair. It is evident from the

figure that all new pairs give better accuracy than the 8-10-edp pair. The pairs 8-10-p1

and 8-10-p2 are approximately 30% more efficient, while 8-10-p3 is 56% more efficient

than the 8-10-edp pair. The efficiency in the Hamiltonian and the angular momentum

is similar to that for the global error. Similar error growth and efficiency were found,

when comparing the pairs using the base tolerance 10−10, except the 8-10-p1 pair which

gives 99% more efficiency than the 8-10-edp pair. The error growth of angular momentum

for 8-10-p3 in the bottom plot of Figure 3.11 is because round-off error dominates, while

using the tolerance of 10−10 linear error growth is seen.

The Jovian Problem is also integrated using 10-12 pairs on both tolerances i.e. 10−10

and 10−13. The top plot in Figure 3.12 shows that the 10-12-p1 is 18% more efficient than

the 10-12-dep pair when computing the error in position. The pair 10-12-p2 gives almost

the similar accuracy as for the 10-12-dep pair. The gain in efficiency when the error in

Hamiltonian and angular momentum are used is approximately similar for these three

pairs. On the other hand, 10-12-p3 proved to be 10% more expensive than the 10-12-

dep pair. For the tolerance 10−10, the pairs 10-12-p1, 10-12-p2 become approximately

14% and 25% more efficient respectively. The 10-12-p3 pair gives almost the similar

accuracy, exhibiting only 3% efficiency which is not much worthy. This means that at

bigger tolerance new pairs are behaving better than at smaller tolerance for the Jovian

Problem. (See Tables 3.7 and 3.8.)
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Pair b( εge ) b( εH ) b( εL )
8-10-dep 2.17 0.97 0.97
8-10-p1 2.18 0.97 0.89

8-10-p2 2.18 0.97 0.94
8-10-p3 2.20 0.99 0.78

10-12-dep 2.07 0.92 0.89
10-12-p1 2.05 0.91 0.92

10-12-p2 2.07 0.91 0.90
10-12-p3 2.07 0.85 0.83

Table 3.5: The exponent b of the power law for global error, relative error in the Hamiltonian and angular
momentum for the Jovian Problem with a local error tolerance 10−13.

We also did a linear least square fit for the power law axb and found the values of b

close to the theory as detailed in Table 3.5.

We also simulate the Nine Planets Problem in a similar manner to that for the Jovian

Problem, keeping the same number of function evaluations on two different tolerances.

Figure 3.13 presents the error growth in the position, the Hamiltonian and the angular

momentum for 8-10 pairs applied to the Nine Planets Problem using a tolerance 10−13.

We observe that 8-10-p1, 8-10-p2 and 8-10-p3 are respectively 30%, 62% and 20% more

efficient than the 8-10-edp pair when computing the positional error. The efficiency for

the error in the Hamiltonian is 27% and 20% more than 8-10-edp for 8-10p1 and 8-10-p2

respectively, while the pair 8-10-p3 is 52% more efficient than for 8-10-edp. The growth

behaviour seems to be affected by round-off error. In the bottom plot of Figure 3.13 the

growth in the angular momentum is measured for these pairs, which is almost the same

for all pairs because of the dominance of the round-off error. The experiment with keeping

the tolerance 10−10 shows that 8-10-p1, 8-10-p2 and 8-10-p3 become 27%, 50% and 37%

more efficient than the 8-10-edp pair. The pairs 8-10-p2 and 8-10-p3 gain 41% and 18%

more efficiency for the Hamiltonian and a similar amount for the angular momentum (see

Table 3.8).

Figures 3.14 and 3.15 show the error growth for 10-12 pairs using the tolerances

10−13 and 10−10 respectively. The pair 10-12-p3 proved to be approximately 10 to 17%

more expensive than the 10-12-dep pair at both tolerances. The pairs 10-12-p1 and 10-12-

p2 become more efficient than the 10-12-dep at tolerance 10−10 and gain efficiency up to

26% while computing global error. Similar was the case for the efficiency for the error in

Hamiltonian. But for angular momentum, 10-12-p1 and 10-12-p2 only give 6% efficiency,
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Pair b( εge ) b( εH ) b( εL )
8-10-dep 2.25 1.00 0.72
8-10-p1 2.23 0.97 0.73

8-10-p2 2.23 0.95 0.72
8-10-p3 2.20 0.74 0.73

10-12-dep 2.24 0.81 0.71
10-12-p1 2.24 0.94 0.72

10-12-p2 2.19 0.72 0.70
10-12-p3 2.24 0.99 0.73

Table 3.6: The exponent b of the power law for global error, relative error in the Hamiltonian and angular
momentum for the Nine Planets Problem with a local error tolerance 10−13.

this may be because of round-off error. The global error in the top plot of Figure 3.15 has

the quadratic error growth of up to 105 years, while it starts oscillating afterwards for all

pairs.

The error growth for H and L in Figure 3.14 shows oscillations. We repeated

the integrations with tolerance increased from 10−13 to 10−12 and found the oscillations

disappeared, indicating that round-off error was causing the oscillations. This is because

as the base tolerance is increased, the error growth becomes linear. (See the middle and

bottom plot of Figure 3.15 .)

Table 3.6 shows the exponent of power law, which is slightly bigger than expected

for εge . The exponent b for εH are in reasonable agreement to the expected values

except for 8-10-p3 and 10-12-p2. The values of b for εL are smaller than expected, but

are consistent across the six pairs, suggesting an underlying cause such as round-off error.

Figures 3.16 and 3.17 show the error growth in position for the HRC Problem using

the 8-10 and 10-12 pairs at tolerances 10−13 and 10−10 respectively. In both plots, the

global error up to 2200 days is approximately the same for all pairs and suddenly increases

afterwards. This increase is due to close approaches of the comet to jupiter as previously

discussed in Chapter 1. At the end point of integration, 8-10-p1, 8-10-p2 and 8-10-p3 give

39%, 57% and 25% increase in efficiency respectively using the tolerance 10−13.

The pairs 10-12-p1 and 10-12-p2 give 11% and 13% less error, while 10-12-p3 proves

to be 6% more expensive in error growth. The experiment shows that for the HRC

Problem, 8-10-p1 and 8-10-p2 behave more efficiently for tolerance 10−13 than using 10−10.
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εge εH εL

8-10 10-12 8-10 10-12 8-10 10-12
p1 30% 18% 31% 24% 28% 22%

JOV p2 30% 2% 26% 2% 22% 2%
p3 56% −10% 54% −10% 62% −11%
p1 30% −1% 27% −17% −1% −1%

NPP p2 62% 1% 20% −1% 1% 1%
p3 20% −17% 52% −27% 1% 1%
p1 39% 2% − − − −

HRC p2 57% 3% − − − −
p3 25% −4% − − − −
p1 17% 15% − − − −

SS p2 −9% 21% − − − −
p3 −3% 24% − − − −

Table 3.7: Percentage efficiency calculated from the global error in position, the relative error in Hamil-
tonian and the angular momentum, all for a local error tolerance 10−13.

εge εH εL

8-10 10-12 8-10 10-12 8-10 10-12
p1 99% 14% 88% 14% 70% 13%

JOV p2 34% 25% 31% 24% 28% 13%
p3 54% 3% 48% 3% 50% −4%
p1 27% 26% 28% 20% 28% 6%

NPP p2 50% 26% 41% 20% 38% 6%
p3 37% −10% 18% −13% 16% −12%
p1 23% 11% − − − −

HRC p2 33% 13% − − − −
p3 43% −6% − − − −
p1 −11% 2% − − − −

SS p2 −4% 8% − − − −
p3 −13% 12% − − − −

Table 3.8: Percentage efficiency calculated from the global error in position, the relative error in Hamil-
tonian and the angular momentum, all for a local error tolerance 10−10.

At tolerance 10−10, 10-12-p1 and 10-12-p2 are more efficient than using tolerance 10−13

for the problem.

Figures 3.18 and 3.19 give the global error growth as a function of time using the

8-10 and 10-12 pairs respectively, when applied to Saturnian Satellites. Among the 8-10

pairs, only 8-10-p1 is efficient up to 17% at small tolerance as can be seen in Figure 3.18.

No pair was found to be more efficient than 8-10-edp at the bigger tolerance of 10−10.

Referring to Figure 3.19 , all new pairs behave more efficiently than 10-12-dep at small

tolerance. The pair 10-12-p3 being the most efficient yielding an efficiency of 24%, while

10-12-p1 and 10-12-p2 give 21% and 15% more efficiency than 10-12-dep. For tolerance

10−10, these pairs could not increase in efficiency as the general trend was seen in the

Jovian and Nine Planets Problems. (see Table 3.8.)
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Figure 3.11: The error growth for the 8-10 pairs applied to the Jovian Problem over hundred million
years for a local error tolerance 10−13. (Top) Global error in position. (Middle) Relative
error in Hamiltonian. (Bottom) Relative error in angular momentum.
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Figure 3.12: The error growth for 10-12 pairs applied to the Jovian Problem over hundred million years
for a local error tolerance 10−13. (Top) Global error in position. (Middle) Relative error in
Hamiltonian. (Bottom) Relative error in angular momentum.
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Figure 3.13: The error growth for 8-10 pairs applied to the Nine Planets Problem over one million years
for a local error tolerance 10−13. (Top) Global error in position. (Middle) Relative error in
Hamiltonian. (Bottom) Relative error in angular momentum.
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Figure 3.14: The error growth for 10-12 pairs applied to the Nine Planets Problem over one million
years for a local error tolerance 10−13. (Top) Global error in position. (Middle) Relative
error in Hamiltonian. (Bottom) Relative error in angular momentum.
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Figure 3.15: The error growth for 10-12 pairs applied to the Nine Planets Problem over one million
years for a local error tolerance 10−10. (Top) Global error in position. (Middle) Relative
error in Hamiltonian. (Bottom) Relative error in angular momentum.
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Figure 3.16: The error growth in position for 8-10 pairs applied to the HRC Problem over ten thousand
days for a local error tolerance 10−13.
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Figure 3.17: The error growth in position for 10-12 pairs applied to the HRC Problem over an interval
of ten thousand days for a local error tolerance 10−10.
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Figure 3.18: The growth of global error in position for 8-10 pairs applied to the Saturnian Satellites
over an interval of 27 thousand years for local error tolerance 10−13.
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Figure 3.19: The growth of global error in position for 10-12 pairs applied to the Saturnian Satellites
over an interval of 27 thousand years for a local error tolerance 10−13.
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3.9 Summary

The goal of this chapter was to find new high-order explicit Runge–Kutta Nyström pairs

that were more efficient than existing pairs. We first presented a summary of how the

order conditions for 8-10 and 10-12 pairs can be solved. We then found optimal 8-10 and

10-12 pairs by solving a constrained optimisation problem. The objective function was

the norm of the leading error coefficients and the constraints were an upper bound on the

magnitude of the coefficients, and lower bounds on the size of the stability regions. We

found optimal pairs for different upper and lower bounds and tested these pairs on four

long simulations in double precision for severe local error tolerances. Our testing showed

that the best of the new 8-10 pairs was on average ten percent more efficient than the

8-10 pair of El-Mikkawy [26], and that the best of the 10-12 pairs were on average six

percent more efficient than the 10-12 pair of Dormand et al. [21].



4
Achieving Brouwer’s Law

4.1 Introduction

The numerical error in an approximate solution consists of truncation error and round-off

error. For non-chaotic systems, Brouwer [6] showed for fixed step-size schemes that if the

step-size was smaller than a prescribed value, random round-off error grows as the power

law x1/2 for conserved quantities such as total energy and angular momentum, and as x3/2

for other dynamical variables such as the coordinates of particles. The growth is often

called Brouwer’s Law in literature [37, 45]. This growth contrasts with that when the

round-off error is systematic. The power laws are then x and x2 respectively.

Table 4.1 illustrates the growth of the round-off error for the power laws (axb)

described above. The entries in the table are maximum of error for different values of

exponent b in power law. We have assumed that the constant of proportionality in the

77
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Time (years) x1/2 x x3/2 x2

103 2× 10−15 2× 10−14 7× 10−10 2× 10−9

106 2× 10−13 3× 10−12 2× 10−7 3× 10−5

109 2× 10−10 7× 10−9 2× 10−3 —

Table 4.1: Illustrative round-off error for a one billion year integration of the Jovian Problem with two
different error growth rates.

power laws is one.1 We observe from the table that after one billion years of systematic

round-off error there are no significant digits left in the position, and that when the

round-off error is random there is approximately two significant digits. That is why a lot

of interest has been shown in developing methods that have an error growth as x3/2.

At least three integration schemes which achieve Brouwer’s Law have been devel-

oped. The first scheme was due to Grazier et al. [37]. They implemented an order-13

Störmer method with the step-size chosen so that the truncation error was below ma-

chine precision. This choice meant that the only contribution to the numerical error was

round-off error. Grazier et al. showed for the Jovian Problem, see [37, 38], that the

phase error and error in energy grew as approximately x3/2 and x1/2 respectively when

using the step-size of 4.1 days. Laskar et al. [65] presented a symplectic method of order

O(h8ǫ) + O(h4ǫ2), where ǫ is a planetary mass in solar masses. They performed a simu-

lation of the Sun, the eight planets, Pluto and the Moon using a step-size of 1.83 days

and found the error in the energy satisfied Brouwer’s Law. Hairer et al. [45] showed that

when implicit Gauss Runge–Kutta (IRK) methods were implemented in the standard way

Brouwer’s Law was not achieved and that it was possible to modify the implementation

so that Brouwer’s Law could be achieved.

In this chapter we present comparisons between the IRK methods of Hairer et al.

[45] and the Störmer methods of Grazier et al. [37]. We include the explicit Runge–Kutta

Nyström 10-12 pair of Dormand et al. [21] to permit a comparison with a method that

does not achieve Brouwer’s Law. In addition, we investigate if the IRK methods can be

made more efficient by using a higher degree polynomial for the initial estimate of the

stage values (Hairer et al. [45] used a linear polynomial).

1Our numerical experiments on the Jovian Problem showed for one-step methods that the constant
of proportionality was approximating one.
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4.2 Implicit Runge–Kutta methods

IRK methods have the general form

yn+1 = yn + h
s
∑

i=1

biKi, (4.2.1)

where

Ki = f(xn + cih, yn + h
s
∑

j=1

aijKj), i = 1, 2, . . . , s.

The Ki are defined implicitly in terms of one another and must be found using an iter-

ative scheme. Fixed point iteration and Newton’s method are the most commonly-used

schemes. Fixed point iteration is used for non-stiff problems and Newton’s method for

stiff problems.

Hairer et al. [45] used Gauss Runge-Kutta methods of four and six stages in their

work. These methods have order eight and twelve, and we denote them by IRK8 and

IRK12 respectively.

4.2.1 Achieving Brouwer’s Law with IRK methods

The models used by Hairer et al. [45] for their simulations of the Solar System were

non-stiff and hence Hairer et al. [45] used fixed point iteration to solve for the Ki. On

each step, the system of non-linear equations K − g(K) = 0, where K = [KT
1 , . . . , K

T
s ]

T

and

g = [KT
1 − fT (xn + c1h, yn + h

s
∑

j=1

a1jKj), · · · , KT
s − fT (xn + csh, yn + h

s
∑

j=1

asjKj)]
T ,

(4.2.2)

is solved using the equation

K [m+1] = g(K [m+1]), m = 0, 1, 2, . . . , (4.2.3)

where m is the number of iterations. This process is continued until the desired conver-

gence is secured. The convergence of the above process depends on the function g and

starting point K0. Hairer et al. [45] proposed that, instead of using the usual fixed-point
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convergence criteria, the iterations should be continued until the difference between the

two consecutive iterations was below machine precision ǫ, (ǫ ≈ 2.2× 10−16)

max
i=1,...,s

‖K [m+1]
i −K

[m]
i ‖ ≤ ǫ, . (4.2.4)

They also found some systematic error contributing to the Hamiltonian due to inex-

act (rounded) coefficients of Gauss IRK. They avoided this contribution by representing

the coefficients in higher precision.

In our first set of tests with the Gauss IRK methods, we used Hairer’s code [43]

to integrate the Jovian Problem for one million years and Kepler’s two-body problem for

1000, 10,000 and 100,000 periods with different eccentricities up to 0.5. The reference

solution for the Jovian Problem was found using a very accurate integration in quadru-

ple precision, and the reference solution for Kepler’s problem was taken from the exact

solution as discussed in Chapter 1.

We solved the Jovian Problem for a large number of step-size ranging from 25 to

350 days. Figure 4.1 depicts the graph of the maximum relative error in the Hamiltonian

across the interval of one million years as a function of the step-size. The solid blue line is

for IRK8 and the solid red line for IRK12. We observe from the figure that both graphs

have a tick (X) shape. For larger step-size the truncation error dominates the round-

off error and the relative error in the Hamiltonian behaves as the power law hq where

q is approximately the order of the integration method (as seen from Figure 4.1). For

smaller step-size, the round-off error dominates the truncation error and the numerical

error increases slowly as the step-size decreases. We refer to the step-size at which the

numerical error is minimised as the optimal step-size. We observe from Figure 4.1 that the

optimal step-size for IRK8 is approximately 80 days and that for IRK12 is approximately

185 days.

Another way of estimating the optimal step-sizes is to fit the least square lines to

the increasing and decreasing parts of each graph and find the intersection of the lines.

These lines are represented by the grey dashed lines in Figure 4.1. We observe from the

figure that the intersection is at a step-size of 78 days for IRK8 and 187 days for IRK12,

in good agreement with the previous estimates. Hairer et al. [45] used a step-size of 165

days in their experiments with IRK12.
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Figure 4.1: The maximum error in the Hamiltonian for step-sizes ranging from 350 days to 25 days for
one million years of the Jovian Problem.
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Figure 4.2 demonstrates the error growth rate in position using an optimal step-size

for Jovian planets against the time, over an interval of one million years. The error was

sampled every 104 years, hence the first point on the graph is at 104 years. The red

and blue lines show the error for IRK12 and IRK8 respectively. The graphs have been

smoothed in the same way as those in Section 3.8. We have added the grey dotted line

to show the power law growth of x1.5. We used linear least squares to fit the power law

axb for global error and found that b was 1.44 and 1.32 for IRK12 and IRK8 respectively.

These are in reasonable agreement with the theoretical value of 1.5 for stochastic error

growth.

The exponents b of power law for global error and error in Hamiltonian are not

3/2 and 1/2. This suggests that the methods do not satisfy Brouwer’s Law. However,

the exponents of 3/2 and 1/2 are expected values and will only be achieved when an

average over a suitable number of simulations with slightly different initial conditions is

calculated.

Hairer et al. [45] demonstrated the random nature of the error growth for their model

of the outer Solar System by performing the integration using 500 sets of perturbed initial

conditions. We used the same procedure with a step-size of 185 days and integrated over

an interval of 300,000 years (the size of the interval was a compromise between using as

long an interval as possible and keeping the total CPU time requirement to an acceptable

level).

The upper plot in Figure 4.3 illustrates the random walk of the error in the Hamil-

tonian for the perturbed initial conditions. In this figure, the relative error in the Hamil-

tonian as a function of time is shown for 100 perturbed initial values chosen randomly

out of 500 perturbed initial conditions. The solid red lines show the average and standard

deviation for the data. The average and standard deviation at the end of the integration

were µ = 2.58× 10−15 and σ = 7.52× 10−14 respectively. The average of the exponent for

the power law growth of Hamiltonian was 0.52, in good agreement with Brouwer’s Law.

The bottom plot of Figure 4.3 shows the histogram of the relative error in the

Hamiltonian at x = 300, 000 years. The solid blue line is the graph of the normal curve

with the same mean and standard deviation as given above. We observe there is good

agreement between the normal curve and the histogram.
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Figure 4.2: The error growth in the position of the planets for 1 million years of the Jovian Problem
using IRK8 and IRK12.
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Figure 4.4: The error growth for Kepler’s problem for 100,000 periods: (Top) – eccentricity is 0, (Bot-
tom) – eccentricity is 0.5 .

We used the same way as for the Jovian Problem to find the optimal step-sizes for

Kepler’s problem. We found the optimal step-sizes of 2π
44

and 2π
105

for IRK8 with eccentricity

of 0 and 0.5 respectively, and step-sizes 2π
12

and 2π
78

for IRK12 for the same eccentricities.

Figure 4.4 gives the graphs of the global error as a function of x for Kepler’s two-body

problem with eccentricities of 0 and 0.5. The blue and red lines represent the global

error growth for IRK8 and IRK12 respectively, the grey dotted line has slope 1.5 and is

included for comparison purposes. Both methods have approximately the same global

error at 100,000 periods for each eccentricity (see Figure 4.4).
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4.2.2 Modification while implementing IRK

Hairer et al. [45] calculated the initial estimate for the argument of the stage value Ki by

evaluating the linear polynomial

zi = yi + α h fi , (y′ = f), (4.2.5)

at α = ci. We sought to reduce the number of function evaluations by using a higher

degree polynomial based on past y values for the initial estimate.

A general form of nth degree divided difference interpolation polynomial for given

(n+ 1) data points (xi, yi), i = 0, 1, 2, . . . , n, can be expressed as

Pn(x) = y1 +
n
∑

i=1

dii

i−1
∏

j=0

(x− xj), (4.2.6)

where dii, i = 1, . . . , n, are divided differences.

This polynomial can also be expressed in a simplified form when xi, i = 0, 1, . . . , n,

are equally spaced. If we define xi+1 − xi = h and x = x0 + sh, the above polynomial

(4.2.6) takes the form

Pn(x) = y1 +
n
∑

i=1

diis(s− 1) · · · (s− i+ 1)hi.

This is called the Newton forward difference form. If the data points are recorded as

xn, xn−1, . . . , x0 and are equally spaced with x = xn + sh and xi = xn − (n − 1)h, the

polynomial can be written in the Newton backward difference form

Pn(x) = yn +
n
∑

i=1

diis(s+ 1) · · · (s+ i− 1)hi.

To make the method numerically stable and computationally efficient, Horner’s algorithm,

also called nested multiplication, is used to evaluate the above expression.

The polynomial is extrapolated at xn + cih , i = 1, . . . , s, and the values obtained
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are used as starting points for the scheme. The extrapolated value at x = xn + cih is

Pn(xn + cih) = yn + cih(dn1 + (1 + ci)h(dn2 + (2 + ci)h(dn3 + · · ·+ (n− 1 + ci)h(dnn)) · · · ).

We found that changing the initial estimate from the linear polynomial (4.2.5) to a

higher degree polynomial usually changed the optimal step-size. Hence, for each degree

of the polynomial we had to re-estimate the optimal step-size. We did this in the same

way as described in the previous subsection (4.2.1).

Tables 4.2 and 4.3 give the cost of integration for one million years of the Jovian

Problem for polynomials up to degree 10 using IRK8 and IRK12. The acronym LP

corresponds to linear polynomial that was used in [45], while nDD, n = 2, . . . , 10, denotes

the nth degree polynomial used to get the initial values for the fixed point iteration. A

positive percentage means that the new method was more efficient than LP while negative

percentage means that the method was more expensive than LP.

The first row in Table 4.2 gives information about the integration using the linear

polynomial of Hairer et al. [45]. The integration required approximately 49 million

iterations and 200 million function evaluations, and took 249 seconds of CPU time (Tcpu ).

The L2 norm of the maximum global error ( εge ) was 1.21× 10−6.

The second row in the table gives information about the integration when the sec-

ond degree polynomial is used for the initial estimate. The integration required 4.9%

fewer iterations and 7.1% fewer function evaluations than for the linear polynomial. This

resulted in a 9.4% reduction in the CPU time (the CPU time are accurate to one or two

percent). On the downside, the norm of the maximum global error increased a small

amount.

The third degree polynomial in the third row gives 7.4% and 9.5% fewer iterations

and function evaluations respectively yielding 8% less CPU time required for the integra-

tion having similar global error.

When we used the fourth degree polynomial and a step-size of 80 days, we found

that the global error was a lot larger than we expected. We experimented with other
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Method h Nit Nfe Tcpu Max( εge) b

LP 80 48, 814, 577 199, 808, 308 249 1.21× 10−6 1.22
2DD 80 4.9% 7.1% 9.4% 1.40× 10−6 1.32

3DD 80 7.4% 9.5% 8.0% 1.22× 10−6 1.32
4DD 25 −89.3% −84.9% −84.4% 1.76× 10−6 1.54

5DD 14 −152.9% −147.2% −161.4% 2.02× 10−6 1.68
6DD 80 20.9% 22.5% 21.6% 7.57× 10−7 1.25

7DD 80 −12.1% −9.3% −4.7% 1.05× 10−6 1.20
8DD 70 22.5% 24.4% 20.6% 1.82× 10−6 1.64

9DD 80 −12.3% −9.9% −3.2% 9.65× 10−7 1.24
10DD 50 16.9% 15% 5.4% 7.05× 10−7 1.47

Table 4.2: A comparison of the polynomials for 1 million years of the Jovian Problem employing IRK8.
The comparison is made using the optimal step-size h, number of iterations Nit, number of
function evaluations Nfe and CPU time Tcpu .

step-sizes and found that a step-size of 25 days was optimal. We observe from the fourth

row of the table that with this step-size, the integration requires about 84% more CPU

time than for LP and the resulting error is larger, although the increase in the error is

barely significant.

We observe from the rest of the table that an even degree polynomial led to less

CPU time than LP and an odd degree polynomial to more CPU time. In all cases the

global error was similar to that for LP.

Table 4.3 gives the results for IRK12. We observe that the optimal step-size varies

considerably with the degree of the polynomial, and that the polynomials of degree four,

five, seven, eight, nine and ten led to increased CPU time. The best degree was two and

the reduction in CPU time was similar to that for the sixth degree polynomial used with

IRK8.

We also performed simulations of the Nine Planets over 100,000 years. These sim-

ulations are done using optimal step-sizes, estimated as discussed earlier. They are 30 to

40 times smaller than those used for the Jovian Problem, in reasonable agreement with

what we expect from the ratio of the smallest orbital period for each of the two problems.

Table 4.4 gives the information on the cost of the integrations for IRK8. We observe that

all degrees except four led to a reduction in the CPU time, and that the degree six poly-

nomial is the most efficient among the polynomials that produced a global error similar
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Method h Nit Nfe Tcpu Max( εge) b

LP 185 26, 059, 951 158, 359, 706 210 4.66× 10−7 1.38
2DD 250 19.2% 18.1% 19.1% 5.20× 10−7 1.64

3DD 200 8.9% 7.7% 7.6% 8.13× 10−7 1.42
4DD 25 −255% −260% −261% 8.26× 10−7 1.68

5DD 14 −376% −382% −418% 8.76× 10−7 1.63
6DD 185 10% 8.8% 9.5% 6.82× 10−7 1.58

7DD 185 −10.5% −12% −13.3% 2.59× 10−7 1.44
8DD 65 −49.8% −51.7% −53.6% 7.85× 10−7 1.56

9DD 100 −73.5% −75.7% −76.9% 3.22× 10−7 1.29
10DD 50 −52.6% −54.6% −68% 7.78× 10−7 1.57

Table 4.3: A comparison of the polynomials for 1 million years of the Jovian Problem employing IRK12.
The comparison is made using the optimal step-size h, number of iterations Nit, number of
function evaluations Nfe and CPU time Tcpu .

to that for LP.

Table 4.5 shows the integration cost for these polynomials using IRK12. We observe

that using a polynomial other than LP was of no significant benefit neither in error

reduction nor in CPU time.

4.3 Störmer methods

Störmer in 1907 [86] developed an accurate and simple method for solving (1.1.2) by

adding the Taylor series for y(xn + h) and y(xn − h) and ignoring the higher order terms,

see Hairer et al. [47], p. 462 for example. A Störmer method of order p can be written as

yn+1 − 2yn + yn−1 = h2
p−1
∑

i=0

αifn−i,

y′n+1 −
1

h
(yn − yn−1) = h

p−1
∑

i=0

βifn−i,

(4.3.1)

where fn−i = y′′n−i and the coefficients αi and βi can be found using generating functions.

The starting values y1, y2, . . . , yn, are usually computed using a one-step method. The

method can also be written in terms of the backward difference interpolation polynomial
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Method h Nit Nfe Tcpu Max( εge) b

LP 2 206, 209, 305 843, 100, 020 3407 8.6× 10−6 1.61
2DD 3 24.8% 24.6% 24.8% 2.2× 10−5 1.65

3DD 2 5.4% 5.6% 5.2% 5.7× 10−6 1.59
4DD 2 −5.2% −5.3% −4.2% 8.5× 10−6 1.60

5DD 2 10.8% 11.1% 10.5% 1.8× 10−5 1.72
6DD 2 21.4% 21.3% 21.1% 8.5× 10−6 1.61

7DD 2 15.5% 15.9% 15.2% 7.5× 10−6 1.60
8DD 2 17.1% 17.5% 15.9% 3.9× 10−5 1.75

9DD 2 18.2% 18.6% 17.3% 5.2× 10−5 1.76
10DD 2 18.8% 19.2% 17.4% 9.5× 10−6 1.63

Table 4.4: A comparison of the polynomials for 100,000 years of the Nine Planets Problem employing
IRK8. The comparison is made using the optimal step-size h, number of iterations Nit,
number of function evaluations Nfe and CPU time Tcpu .

Method h Nit Nfe Tcpu Max( εge) b

LP 6 93, 403, 040 566, 505, 840 2408 1.9× 10−6 1.55
2DD 6 −0.6% −0.6% −0.2% 7.8× 10−6 1.59

3DD 6 0.76% 0.77% 1.3% 4.5× 10−6 1.57
4DD 6 −4.9% −4.9% −4.5% 3.7× 10−6 1.56

5DD 6 1.5% 1.5% 1.7% 1.8× 10−6 1.54
6DD 6 1.3% 1.3% 1.4% 1.7× 10−6 1.54

7DD 3 −47.5% −47.2% −49.1% 8.1× 10−6 1.60
8DD 5 −10.1% −10.5% −35.6% 9.5× 10−6 1.63

9DD 3 −47.8% −47.6% −49.3% 7.9× 10−5 1.71
10DD 5 −11.8% −11.2% −37.4% 5.5× 10−5 1.74

Table 4.5: A comparison of the polynomials for 100,000 years of the Nine Planets Problem employing
IRK12. The comparison is made using the optimal step-size h, number of iterations Nit,
number of function evaluations Nfe and CPU time Tcpu .
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passing through the points (xi, fi), i = n− p+ 1, . . . , n. This gives

yn+1 − 2yn + yn−1 = h2
p−1
∑

i=0

γi ▽i fn,

y′n+1 −
1

h
(yn − yn−1) = h

p−1
∑

i=0

σi ▽i fn,

(4.3.2)

where ▽0fn = fn and ▽i+1fn = ▽ifn −▽ifn−1, i = 0, 1, . . . ,

and

γi = (−1)i
∫ 1

0

(1− s)

((−s
i

)

+

(

s

i

))

ds,

σi = (−1)i
(
∫ 0

−1

(1 + s)

(−s
i

)

ds+

∫ 1

0

(−s
i

))

ds.

The γi can be calculated from the recurrence

γi = 1− 2

3
d2γi−1 − · · · − 2

i+ 2
di+1γ0,

where γ0 = 1 and di = 1 + 1/2 + · · ·+ 1/i.

4.3.1 Störmer methods achieving Brouwer’s Law

Grazier et al. [36] implemented Störmer methods in a way that achieved Brouwer’s Law

to within the uncertainty of the numerical experiments. Their implementation which they

refer to as significance ordered computation has the following three important parts:

i. The coefficients in (4.3.1) become larger and are alternate in sign, as the order

increases. This causes significant round-off error growth. Grazier et al. [36] im-

plemented the Störmer methods in backward difference form as in (4.3.2). In the

backward difference form (4.3.2), the coefficients γi and σi are all positive and mono-

tonically decrease very slowly, thus reducing the round-off error.

ii. In addition Grazier et al. [36] avoided multiplying yn by 2 in the first equation

of (4.3.2) by using the technique named as “summed form”. This practice is also

formulated in [44] for the Störmer-Verlet scheme. Writing the first equation of

(4.3.2) as y′n+1/2 − y′n−1/2 = hf(yn) and using y′n+1/2 = (yn+1 − yn)/h and y′n−1/2 =
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(yn − yn−1)/h, one gets

y′n+1/2 = y′n−1/2 + hf(yn),

yn+1 = yn + hy′n+1/2.
(4.3.3)

iii. Furthermore Grazier et al. [36] suggested using the insertion method when evalu-

ating (4.3.2), see for example Higham [50]. In this method the values of a series

are sorted in increasing magnitude and are also summed pairwise. So when calcu-

lating
∑p−1

i=0 γi ▽i fn, the fi are sorted such that |fn−i| < |fn−i+1| < · · · < |fn| and
also summed in the same manner but in the form of pairs as (· · · ((fn−i + fn−i+1) +

fn−i+2)+ · · ·+fn). In practice, the backward differences decrease in magnitude with

increasing i and it is sufficient to sum backwards over i.

Grazier et al. [36] then chose the step-size so that the truncation error was below machine

precision.

4.4 Comparisons

We compared the IRK and Störmer methods described in the previous sections, and the

ERKN 10-12 pair of Dormand et al. [21] on the Jovian Problem over an interval of 108

years and the Nine Planets Problem over 105 years. The emphasis in our comparison is

on the accuracy of the solution including the phase information.

Rather than using the same variant of the above IRK methods for all problems, we

used the most efficient variant for each problem. This choice meant that the IRK methods

were shown in the best light. For the Störmer methods, we used order 12, 13 and 15 -

these methods are denoted by the acronyms S12, S13 and S15 respectively. Order 13 was

used because this order was recommended by Grazier [35]. Order 12 and 15 were used

to illustrate the dependance on the order. The Störmer methods were implemented in

Fortran in a way similar to that of N -body integrators NBI developed by Varadi [92]. All

the comparisons are performed in double precision.
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4.4.1 Jovian Problem

We used IRK8-6DD with a step-size of 80 days and IRK12-2DD with a step-size of 250

days. The step-size used for the Störmer method was 4 days, a value very similar to that

used by Grazier et al. [36]. The tolerance for the ERKN pair was 10−14 which is the

minimum usable tolerance in double precision arithmetic. This choice gave an average

step-size of 200 days.

The global error in the position was estimated at N evenly spaced values on the

interval of integration where N was either 1000 or 10,000. The reference solution for

error estimation was calculated in quadruple precision using a tolerance of at least 104

times smaller than that used for double precision simulations. The quadruple precision

simulations require approximately 100 times as much CPU time as the simulations in

double precision.

Table 4.6 summarises the results of the integration for IRK8-6DD, IRK12-2DD, S13

and the ERKN 10-12 pair. The table lists the CPU time Tcpu , the L2 norm of the

maximum global error εge , and exponents b for the least squares fit of the power law

axb to εge and the relative error εH in the Hamiltonian for each method. We observe

for the methods which satisfy Brouwer’s Law that IRK12-2DD uses the least CPU time.

We also observe that S13 requires four times as much Tcpu as IRK12-2DD and produces

a solution for which εge is over three times as large as that for IRK12-2DD.

If we now consider the performance of the ERKN 10-12 pair, the results clearly

illustrate the trade-off between accuracy and CPU time. The 10-12 pair used only 20%

of the CPU time of IRK12-2DD but εge was 129 times as large. If our requirement when

doing the simulation is to get the most accurate solution, the fact that the 10-12 pair

needed far less CPU time would be irrelevant.

The exponents in the last two columns of the Table 4.6 for the IRK and Störmer

methods are not 3/2 and 1/2. The reason for this is discussed in section 4.2.1. However,

this reasoning does not apply to the ERKN pair because the round-off error is systematic

and not random. Hence, we expect to get exponents close to the values of 2 and 1

respectively.
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Method h Tcpu Max( εge) b( εge ) b( εH )

IRK8-6DD 80 22, 704 3.56× 10−3 1.62 0.38
IRK12-2DD 250 18, 695 1.17× 10−3 1.60 0.57

S13 4 74, 739 3.76× 10−3 1.58 0.33
ERKN 10-12 200 3, 721 1.51× 10−1 2.04 0.99

Table 4.6: A comparison of the methods for 100 million years of the Jovian Problem, at optimal step-
size h, CPU time Tcpu in seconds, Maximum of global error in positions εge , exponent of
power law for global error and relative error in Hamiltonian εH .

The final observation we make from the table is that even when a method satisfies

Brouwer’s Law the accumulated error in a very long simulation can mean the position of

the planets is poorly known. This is in agreement with the idealised results in Table 4.6.

4.4.2 Nine Planets Problem

The shortest orbital period in the Nine Planets Problem is 88 days (Mercury) as against

the shortest orbital period of 4333 days (Jupiter) in the Jovian Problem. Hence we can

expect the optimal step-sizes for the Nine Planets Problem to be approximately 50 times

smaller than those for the Jovian Problem.

We found that IRK12-6DD was the most efficient among the variants of the IRK12

methods. The optimal step-sizes we used were 2, 6 and 0.08 days for IRK8-6DD, IRK12-

6DD and S13 respectively. Table 4.7 summarises the results of the integrations. As with

the Jovian Problem, IRK12-6DD required the least CPU time among the methods and

had the smallest value of εge , although εge for S13 was just 3% larger than that for

IRK12-6DD. S13 required 3.6 times as much CPU time as IRK12-6DD. This is less than

the factor of four for the Jovian Problem. One possible reason for this difference is that the

cost per equation of evaluating the acceleration for the Nine Planets Problem is greater

than that for the Jovian Problem.

The ERKN pair used only 30% of the CPU time of the IRK12-6DD but unlike in

the Jovian Problem, the εge is only 7 times as large. This may be because the Nine

Planets Problem is integrated 103 times less than that done for the Jovian Problem. This

reduction is not fully compensated by the smallest orbital period in the Nine Planets

Problem being 50 times smaller than that for the Jovian Problem. In addition, we found
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Figure 4.5: The error growth in the position for the Nine Planets Problem using the IRK, Stormer and
ERKN methods over 100 thousand years.

that the global error for the 10-12 pair was smaller than that for the other methods up

to approximately 2× 104 years. For larger values of x, the quadratic growth of the global

error for the the 10-12 pair means the error is larger than that for the other methods.

This behaviour is clearly illustrated in Figure 4.5. The behaviour also occurred for the

Jovian Problem, although the crossover point was at a different value of x.

4.5 Continuous extension

One-step methods are usually formulated to produce successive approximations yn to

y(xn) on the mesh points x0 < x1 < x2 < · · · . These mesh points are determined by a

step-size selection strategy based on the methods. If the approximation to the solution is
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Method h Tcpu Max( εge) b( εge ) b( εH )

IRK8-6DD 2 2880 8.12× 10−6 1.58 0.34
IRK12-6DD 6 2280 2.72× 10−6 1.35 0.56

S13 0.08 8160 2.80× 10−6 1.41 0.19
ERKN 10-12 4 660 2.11× 10−5 2.06 0.89

Table 4.7: A comparison of the methods for 100 thousand years of the Nine Planets Problem, at op-
timal step-size h, CPU time Tcpu in seconds, Maximum of global error in positions εge ,
exponent of power law for global error and relative error in Hamiltonian εH .

required at x = x∗, x∗ ∈ [xn, xn+1], the approximate solution at the mesh points must be

extended into a continuous approximation.

An important application of continuous approximations occurs when detecting if a

small body hits a planet. It might be possible that a collision occurs within the step and

not at the end of it. This collision would not be detected if we have the approximate

solution at just the mesh points. One way to detect the collision is to use a far smaller

step-size when the small body is near a planet than when the small body is far from

the planet. This would be inefficient because all bodies including those that were not

colliding with a planet would be integrated with the smaller step-size. This inefficiency

can be avoided by extending the solution at the mesh points to a continuous approximation

across the step and using root finding techniques to check for a collision. The continuous

extensions we consider are often called interpolants. In this section, we investigate the

use of interpolants for the IRK methods.

The very first work on interpolants for Runge-Kutta methods was done by Horn

[52] and Shampine [79] for explicit methods. Enright [29], Dormand [23], Tsitouras [90]

and Verner [94] extended this work. Less work has been done for IRK methods, see for

example, the integrators RADAU5 and SDIRK4 [42, 46].

For an s-stage IRK method, the s intermediate values

Yi = yn + h

s
∑

j=1

aijKj, i = 1, . . . , s,

are of order s. We can easily form an sth degree polynomial Ps(x) from the Yi and the

solution at the end of the step using a divided difference formulation. If we denote the

divided difference coefficients of the polynomial by dii, i = 0, . . . , s, the polynomial can
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be written as

Ps(x) = Y1 +
s
∑

i=1

dii

i−1
∏

j=0

(x− xj)h
i, (4.5.1)

where

xj = xn−1 + cj+1h, j = 0, 1, . . . , s− 1.

The order of the Gauss methods is 2s while the interpolation polynomial is of order s. So

the error at the mesh points x0 < x1 < x2 < . . . is much smaller than that of intermediate

values. The total error in a value of y calculated using Ps(x) is the sum of the error

introduced by the IRK method and the polynomial, as illustrated in Figure 4.6. The

error in the solution grows as ǫ1 = Cx3/2h2s and the error introduced by the interpolation

is ǫ2 = Dhs+1. Hence the total error is ǫ1 + ǫ2. The ratio Re of this error to the error at

the mesh points is then

Re =
ǫ1 + ǫ2
ǫ1

= 1 +
ǫ2
ǫ1

(4.5.2)

This ratio tends to 1 as x→ ∞.

To test the above analysis we integrated the Jovian Problem over one million years

using IRK8-6DD and IRK12-2DD with optimal step-sizes. On each step, we formed

the interpolant and evaluated it at 10 evenly spaced values of x on the step. We then
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calculated the L2 norm of the relative error in the Hamiltonian and angular momentum

at each of these points and divided these errors by the corresponding error at the end of

the step to give the ratio Re defined above.

Figure 4.7 gives the graphs of Re for IRK12-2DD and IRK8-6DD. The top half of

the figure has the graph of the ratio for the error in Hamiltonian and angular momentum

using IRK12-2DD with the 6th degree interpolant. We observe that Re for both the

Hamiltonian and angular momentum is large for small x and decreases, with oscillations,

as x increases, and approaches one, confirming our analysis above.

The bottom half of the figure depicts the ratio of the error in Hamiltonian and

angular momentum for IRK8-6DD with the 4th degree interpolant. We observe that the

ratio for both the Hamiltinian H and angular momentum L decreases with time but have

not approached one as closely as for IRK12. One possible reason the ratio is not one

within the 106 years is that the order of polynomial is four rather than six.

The disadvantage of a large Re for small x on the Jovian Problem does not occur

with the implementation of Störmer methods given by Grazier et al. [36]. Graizer et al.

[40] showed that when the step-size is chosen so that the methods satisfy Brouwer’s Law,

one-step quintic interpolation will be sufficiently accurate for all x.

To illustrate this difference between cubic and quintic, we added the cubic and

quintic Hermite polynomials to our Störmer integrator and then solved the Jovian Problem

in a similar manner for that of IRK8 and IRK12 using an optimal step-size of four days.

For cubic, yn, y
′
n, yn+1, y

′
n+1 are needed to construct a polynomial while including y′′n and

y′′n+1, quintic polynomial can be obtained. The polynomials as implemented in [40] are

given by

P3(x) = d0yn + d1hy
′
n + d2yn+1 + d3hy

′
n+1 (4.5.3)

where d0 = (τ − 1)2(2τ + 1), d1 = (τ − 1)2τ , d2 = (3− 2τ)τ 2, d3 = (τ − 1)τ 2

and τ = (x− xn)/h.

The quintic interpolation polynomial is

P5(x) = d0yn + d1hy
′
n + d2hy

′′
n + d3yn+1 + d4hy

′
n+1 + d5hy

′′
n+1 (4.5.4)

here d0 = (1− τ)3(6τ 2 + 3τ + 1), d1 = (1− τ)3τ(3τ + 1)),

d2 = (1− τ)3τ 2/2, d3 = τ 3(6τ 2 − 15τ + 10), d4 = τ 3(1− τ)(3τ − 4), d5 = τ 3(τ − 1)2/2.



100 Achieving Brouwer’s Law

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

R
at

io
 o

f e
rr

or
 in

 e
ne

rg
y

5th degree polynomial

10
0

10
1

10
2

10
3

10
4

10
510

0

10
2

10
4

10
6

10
8

R
at

io
 o

f e
rr

or
 in

 e
ne

rg
y

3rd degree polynomial

Time (years)

Figure 4.8: The ratio of the relative error in Hamiltonian for 100,000 years of the Jovian Problem while
implementing continuous extension for Störmer method of order 13. (Top) - quintic in-
terpolant implemented on Störmer method. (Bottom): cubic interpolant implemented on
Störmer method.



4.6 Summary 101

We calculate the relative error in Hamiltonian for 100,000 years of the Jovian Prob-

lem. The error is calculated at each day using interpolation polynomial within the interval.

Figure 4.8 contains the plots of the ratio Re for the energy. The top plot is for quintic

interpolation and the bottom is for cubic interpolation. We observe from the top plot

that the ratio of error in Hamiltonian is approximately one up to 7× 103 years and then

oscillates at some points, as can be seen in Figure 4.8. The bottom plot in Figure 4.8

shows that using cubic polynomial the ratio of error in energy does not decrease as was

expected. This verifies the results of Graizer et al. [40]. This may be because that the

interpolation polynomial used for velocity coordinates is of order 2.

4.6 Summary

The chapter deals with efficient implementation of implicit Runge–Kutta methods, which

achieve Brouwer’s Law. We investigated that the IRK methods having order eight and

twelve can be made more efficient by using a higher degree polynomial for the initial

estimate of the stage values (linear polynomials are in use in the original method by

Hairer et al. [45]). This gave us a significant decrease in the number of iterations and

hence in the CPU time, which is worthwhile for long-term simulation of the Solar System.

We also presented comparisons between the IRK methods of Hairer et al. [45] and the

Störmer methods of Grazier et al. [37]. We included the explicit Runge–Kutta Nyström

10-12 pair of Dormand et al. [21] to permit a comparison with a method that does

not achieve Brouwer’s Law. The provision of continuous extension has been considered

using interpolation polynomials for IRK methods. This is done by fitting a polynomial

interpolant to the discrete IRK function evaluations. We used the 4th and 6th degree

polynomials for eighth and twelve order methods respectively. These polynomials were

implemented on Jovian problem and ratio of error at intermediate and end points of the

interval was calculated. It was shown that the ratio becomes one as the time of integration

proceeds.
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5
Conclusions

The goal of this thesis was to obtain more efficient methods for performing accurate N -

body simulations of the Solar System. We investigated two types of methods: higher

order explicit Runge–Kutta Nyström (ERKN) pairs and implicit Runge–Kutta (IRK)

methods used with a fixed step-size and fixed point iteration. Throughout the thesis, we

used several realistic test problems. These consisted of the Jovian, Nine Planets, Helin-

Roman-Crockett (HRC) and Saturnian satellites Problems. We also included Kepler’s

two-body problem in our test problems as it has an analytical solution.

We investigated the ERKN pairs of two classes having orders 8-10 and 10-12 by

searching efficient pairs and then comparing them on our test problems. The objective

function, while searching the coefficients for 8-10 and 10-12 pairs, is the leading error

coefficient τ (11) and τ (13) respectively. We also used τ (13) and τ (14) as an objective function

for the 8-10 and 10-12 pairs. We used Horn’s and Matrix stability criteria as part of

our constraints. These constraints are incorporated using penalty functions. We make

use of the algorithm known as simulated annealing (SA) for our minimisation problem.

103
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Simulated annealing is a direct search method based on optimisation. The minimisation

of the objective function using SA leads to a large number of near optimal pairs. The

pairs obtained by using Matrix stability criteria as constraint are not efficient than the

8-10 pair of El-Mikkawy [26] and 10-12 pair of Dormand et al. [21]. On the other hand,

pairs obtained by keeping Horn’s stability interval as one of the constraints are more

efficient. Numerical experiments show that the extended stability intervals do not have

a significant effect on the efficiency of the pairs. We also observe that pairs obtained by

keeping τ (11) for 8-10 pairs and τ (13) for 10-12 pairs as objective function are more efficient

than keeping τ (12) and τ (14) as objective functions for 8-10 and 10-12 pairs respectively.

We implemented the new8-10 and 10-12 pairs on test problems for short and long

intervals of integration. Our numerical testing consists of two parts. In a preliminary

testing, efficiency graphs are plotted at a range of tolerances for a short interval of time

(to avoid an access amount of CPU time) using new pairs. Some of the new8-10 pairs

become more efficient on lax tolerances and some on severe tolerances for 8-10 pairs,

except for Saturnian satellite. whereas all the 10-12 pairs are giving better efficiency on

severe tolerance. In the second part, we tested the more efficient 8-10 and 10-12 pairs

from the first part on longer intervals of integration. The efficiency is measured at lax and

severe tolerances keeping the same number of function evaluations. We find that the new

8-10 pairs are up to 56%, 62%, 57% and 17% more efficient for the Jovian, Nine Planets,

HRC and Saturnian satellites problems respectively, when compared with the 8-10 pair

of El-Mikkawy [26]. The new 10-12 pairs did not prove to be much more efficient as 8-10

pairs. We obtain that for Jovian, Nine Planets, HRC and Saturnian satellites, new pairs

are 18%, 26%, 13% and 24% much more efficient than the 10-12 pair of Dormand et al.

[21] respectively.

We also implemented the IRK methods achieving the optimal error growth. This

optimal error growth is x1.5 and x0.5 for the dynamical variables e.g. the coordinates of the

particles and the conserved quantities e.g. total energy respectively. This error growth is

known as Brouwer’s Law. Our investigation is based on the implementation of IRK by

Hairer et al. [45]. They implemented the IRK methods using optimal step-sizes, chosen

such that the truncation error was below machine precision. This choice means that the

only contribution to the numerical error is due to random round-off errors.

We investigated that the IRKmethods having order eight (IRK8) and twelve (IRK12)

can be made more efficient by using a higher degree polynomial for the initial estimate of
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the stage values (Hairer et al. [45] used a linear polynomial). This gave us a significant

decrease in the number of iterations and hence in the CPU time, which is worthwhile

for long-term simulation of the Solar System. This implementation makes the methods

approximately up to 23% more efficient than when implemented by Hairer et al. [45].

The numerical experiments show that IRK8 with 6th degree and IRK12 with 2nd degree

polynomials are 23% and 19% respectively more efficient for the Jovian Problem. For the

Nine Planets Problem, IRK8 and IRK12 with 6th degree polynomials proved to be 15%

and 5% more efficient than IRK8 and IRK12 as implemented by Hairer et al. [45] respec-

tively. This means that the gain in efficiency using polynomials is problem dependent not

method dependent.

We also present comparisons between the IRK methods of Hairer et al. [45] and the

Störmer methods of Grazier et al. [37]. We include the explicit Runge–Kutta Nyström

10-12 pair of Dormand et al. [21] to permit a comparison with a method that does not

achieve Brouwer’s Law.

The provision of continuous extension has been considered using an interpolation

polynomial for IRK methods. This is done by fitting a polynomial interpolant to the

discrete IRK function evaluations. We implemented the 4th and 6th degree polynomials

for IRK8 and IRK12 respectively. Numerical experiments show that the ratio of the error

within the interval and mesh points approaches one as the integration proceeds. The con-

tinuous extension constructed by Störmer methods using cubic and quintic interpolation

is also carried out. We verified the results of Grazier et al. [40].

There are still many ideas, we may like to explore. The most obvious is to use a

higher degree interpolant. The degree of the interpolant for continuous extensions can

be increased using an 8th degree interpolant by implementing a two-step interpolation

polynomial. This can be done using the information yn, y
′
n, y

′′
n at xn and yn−1, y

′
n−1, y

′′
n−1

and yn−2, y
′
n−2, y

′′
n−2 at xn−1 and xn−2 respectively. It is expected that these higher degree

polynomials will be more efficient than the 6th degree interpolant, used in this study. This

two-step interpolant may increase the overhead of the methods.
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A.1 Jovian Problem

The Gm for five bodies ordered from Sun, Jupiter, Saturn, Uranus and Neptune are

µ1 = 0.295912208285591095E-03

µ2 = 0.282534590952422643E-06

µ3 = 0.845971518568065874E-07

µ4 = 0.129202491678196939E-07

µ5 = 0.152435890078427628E-07

and the initial conditions
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x y z

Sun 4.5041709931760E-03 7.629617246855896E-04 2.642173714857008E-04

Jupiter -5.37970523578697608E+00 -8.30484073974418041E-01 -2.24831631285812891E-01

Saturn 7.89439586897901350E+00 4.59647081929466859E+00 1.55869642252380332E+00

Uranus -1.82653939237009090E+01 -1.16195110729092122E+00 -2.50107720935801844E-01

Neptune -1.60550335112138710E+01 -2.39421866167270672E+01 -9.40016532150945853E+00

Sun -2.686979799291859E-07 5.225296222968518E-06 2.248930945915554E-06

Jupiter 1.09209442155944167E-03 -6.51806804633966371E-03 -2.82076550685720154E-03

Saturn -3.21747131481691839E-03 4.33585784900737449E-03 1.92866675819078661E-03

Uranus 2.21271749628262749E-04 -3.76242860345373065E-03 -1.65099556049815467E-03

Neptune 2.64285432917179465E-03 -1.49826690091408224E-03 -6.79022140848015384E-04

Table A.1: Rows 1 to 5 list the initial position and rows 6 to 10 the initial velocity.

A.2 Nine Planets Problem

The Gm for ten bodies ordered from Sun to Neptune are

µ1 = (0.017202098952)2, µ2 = µ1/6023600,

µ3 = µ1/408523.5, µ4 = µ1/328900.53,

µ5 = µ1/3098710, µ6 = µ1/1047.355,

µ7 = µ1/3498.5, µ8 = µ1/22869.0,

µ9 = µ1/19314.0, µ10 = µ1/3000000.0

and the initial conditions
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x y z

Sun 0.9301259103994515E-03 0.2292733100662641E-02 0.9059057664779422E-03

Mercury 0.3448565760800415E+00 0.4790821305397614E-01 -0.1001813144545456E-01

Venus 0.1438953102536455E+00 0.6492977991345496E+00 0.2833883064268579E+00

Earth -0.1354345700443955E+00 0.8956906559576626E+00 0.3883642504058149E+00

Mars -0.1368903850273021E+01 0.8454279811185666E+00 0.4247388123779079E+00

Jupiter 0.3350294349606409E+01 -0.3471468715911917E+01 -0.1571243780627322E+01

Saturn -0.8971574942371711E+01 0.2281974741233523E+01 0.1331244515477938E+01

Uranus -0.1002073869416921E+01 0.1732580120637246E+02 0.7605730952182388E+01

Neptune -0.2919365061270080E+02 -0.7716992458897807E+01 -0.2426339472522292E+01

Pluto -0.2623272065610510E+02 0.2056426815315656E+02 0.1444546303354718E+02

Sun -0.4559774360194479E-05 -0.3150250493626429E-05 -0.1274328432609927E-05

Mercury -0.8471091819370054E-02 0.2561145505678817E-01 0.1458557100780699E-01

Venus -0.1989837205370269E-01 0.3109969215624964E-02 0.2658171477313190E-02

Earth -0.1732455862288979E-01 -0.2247454982261186E-02 -0.9746354441906539E-03

Mars -0.7389123605631364E-02 -0.9480508889767826E-02 -0.4152929465094740E-02

Jupiter 0.5581083375222116E-02 0.4959110886728884E-02 0.1991002598306760E-02

Saturn -0.1862811731356904E-02 -0.4987008831911066E-02 -0.1981531741239860E-02

Uranus -0.3959813937377914E-02 -0.3790640356065674E-03 -0.1101243197204039E-03

Neptune 0.8161882834578905E-03 -0.2775248510073856E-02 -0.1157390358868530E-02

Pluto -0.1320448472641354E-02 -0.2623278455987146E-02 -0.4283576834589079E-03

Table A.2: Rows 1 to 10 list the initial position and rows 11 to 20 the initial velocity.

A.3 HRC Problem

The Gm for five bodies ordered from Sun, Jupiter, Saturn, Uranus and Neptune are

µ1 = 2.95912208285591102582E-4

µ2 = 2.82534210344592625472E-7

µ3 = 8.45946850483065929285E-8

µ4 = 1.28881623813803488851E-8

µ5 = 1.53211248128427618918E-8

and the initial conditions are
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x y z

Sun 0.6669198564440767E-02 -0.7235114664408392E-03 -0.1130654423787794E-03

Jupiter -0.4929481880506559E+01 -0.2310910532399841E+01 0.1197889941614212E+00

Saturn -0.5559462159881659E+01 0.7217090743352659E+01 0.1008764843911512E+00

Uranus -0.1051479684851656E+02 -0.1555904864202644E+02 0.7740390484943622E-01

Neptune 0.1636130229890141E+01 0.2982856616501356E+02 -0.6473579962266688E+00

Asteroid -0.3965267044277659E+01 0.3060320798461592E+00 0.2949122108880113E+00

Sun -0.1597551822288177E-05 0.7254098157790906E-05 -0.3038348598973975E-07

Jupiter 0.3109433296611612E-02 -0.6477134819096109E-02 -0.4357172559451174E-04

Saturn -0.4717678753258388E-02 -0.3413503592855709E-02 0.2469252827795303E-03

Uranus 0.3227888778570112E-02 -0.2386568620156909E-02 -0.5061978789868374E-04

Neptune -0.3152327294479188E-02 0.1931132154044109E-03 0.6952342277721326E-04

Asteroid -0.1800219023380088E-02 -0.8521337694196810E-02 0.1052106206437703E-03

Table A.3: Rows 1 to 6 list the initial position and rRows 7 to 12 the initial velocity.

A.4 Saturnian Satelites Problem

The Gm for Saturn and its satellites Titan, Hyperion, Iapetus and Rhea are

µ1 = 8.45945E-8

µ2 = 2.36777E-4

µ3 = 0.0000E+0

µ4 = 3.30000E-6

µ5 = 4.40000E-6

and the initial conditions for the satellites are
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x y z

Titan -0.0075533871 0.0025250254 -0.0000462204

Hyperion -0.0006436995 0.0099145485 0.0000357506

Iapetus 0.0219653473 -0.0071369083 0.0062333851

Titan -0.0010017342 -0.0031443009 0.0000059503

Hyperion -0.0029182723 0.0000521415 -0.0000356145

Iapetus 0.0006187633 0.0017696165 0.0000439292

Table A.4: Rows 1 to 3 list the initial position and rows 4 to 6 the initial velocity.
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B.1 New ERKN 8-10 pairs

The free parameters ci, i = 5, 6, . . . , 11, for three 8-10 pairs used in section 3.8 of Chapter

3 are given:

f/p Pair-1 Pair-2 Pair-3

c5 3.7816356668098677E-01 3.5800754997386142E-01 3.7573634352881985E-01

c6 2.3340642219668725E-01 2.1676714120826357E-01 2.3145420319518401E-01

c7 6.9057770903994550E-02 6.2741443345879513E-02 6.7900161894482267E-02

c8 4.6767082145306405E-01 4.3951960713241267E-01 4.6432886711716126E-01

c9 6.8384341349308353E-01 6.4658567852808746E-01 6.7535563840305401E-01

c10 6.9075641020317624E-01 6.3334792215508817E-01 6.9035974717019544E-01

c11 8.9994487169379556E-01 8.4908158174866688E-01 8.9119856258216357E-01
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B.2 New ERKN 10-12 pairs

The free parameters c5, c6, . . . , c14, a87, a97, a98, a1110, a1312 for three 10-12 pairs used in

section 3.8 of Chapter 3 are given:

f/p Pair-1 Pair-2 Pair-3

c5 1.6169824256029197E-01 3.6878589554805252E-01 1.3867121921867076E-01

c6 8.6391183056119564E-02 4.0190789527213705E-01 3.8148564145645636E-01

c7 6.7774706077147168E-02 6.1835050059732388E-02 5.5099941970174156E-02

c8 2.1374534011733662E-01 1.9489543428855932E-01 5.5099941970174156E-02

c9 3.7681169943882814E-01 5.5025819693976585E-01 5.1933709678417905E-01

c10 4.6873712069764029E-01 3.7065168211602806E-01 3.9760816944290622E-01

c11 5.7431288975218664E-01 6.8115508411862535E-01 7.4796391091042980E-01

c12 5.4897073515495354E-01 7.4092473677521020E-01 5.0078078645633151E-01

c13 7.9520877391857303E-01 9.2587683229488060E-01 9.1085406546294456E-01

c14 9.1808540705299513E-01 8.6662294591203137E-01 7.6012586685710715E-01

a87 -1.1181753478716572E-02 1.6154681221438580E-02 -1.3230417684741527E-02

a97 -3.101522980228387E+00 1.7726211852657497E-01 2.8060872097068281E+00

a98 1.3464303908151812E-01 7.3732941401536176E-02 -9.8980026712823591E-02

a1110 1.7495009797235041E-02 4.4121271968179282E-01 -2.8214926501367823E+00

a1312 -1.197827679820685E+00 1.2154507166142844E-01 5.6521143784826409E+00
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