

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library

Thesis Consent Form

Spatial Assessment and Hazard Modeling of Tropical Forest Fires

Rey S. Ofren

Thesis Submitted for the Degree of Ph.D.

Department of Geography UNIVERSITY OF AUCKLAND New Zealand 1999 UNIVERSITY OF AUGKLAND

ABSTRACT

This research study offers a quantitative understanding of the environmental factors related to fire occurrence and its potential distribution. The Huai Kha Khaeng Wildlife Sanctuary, located in the northwestern region of Thailand, serves as an example to analyze and expand the knowledge base of forest fire ecology in tropical environments. Specific objectives focus on establishing the relationship between physiognomic variables that are related to forest fuel loading among different forest types. In addition, this study aims at modeling and quantifying the relative importance of the biophysical variables associated with the occurrence of tropical forest fires.

The methodological framework links Geographic Information Systems (GIS) with the potential of statistical analysis. Thematic layers of several biophysical variables are combined in GIS, along with field measurements of fuel loading and stand physiognomy. Under the statistical analysis, the variability and interactions of spatial attributes related to fires are synthesized using the Decision Tree modeling. GIS is further employed to display the modeling results.

Rainfall pattern, geological material, aspect and vegetation index variables significantly influence the ability of the Decision Tree model to predict the likely occurrence of fire. They explain most of the processes underlying a hierarchical set of rules that help to distinguish the varying levels of fire hazards. The vegetation index in particular was found to be a strong potential indicator of fire incidents and an underlying driving factor behind fuel moisture dynamics.

At a certain vegetation index, two types of forest were distinguished as having wet and dry fuel conditions. The difference in the amount of fuel load between the physiognomically distinct evergreen and deciduous forests is proven to be insignificant, except in the variation of moisture content. Factors contributing to the varying levels of fuel moisture in evergreen forests are controlled by the micro-climate created by its intact crown cover. However, there is no distinct relationship concerning the stand structure of deciduous forest with regard to the dryness of fuel on its floor. The dominance of weather over the fuel variables suggests that forest fire situations in an open and dry stand of deciduous forest is driven by extreme weather conditions.

A GIS-generated map of the sanctuary illustrates the spatial variation in fire hazard probabilities as predicted by the Decision Tree model. The prediction accuracy of fire hazard zones based on bio-physical factors is further enhanced by incorporating the proportion of neighbouring areas with high potential for ignition. The potential combustibility and danger rating are determined

ii

for the predicted hazard zones. In addition, the spatial association of the neighbouring human settlements is analyzed.

This research expands the value of GIS from the usual selective retrieval and investigation of spatial patterns into the evaluation of the complex hierarchical combinations of spatial attributes. The combined effect of GIS and statistical modeling eliminates the problems of handling a mixture of environmental data and identifying both variables and attributes interactions. Likewise, the need to design site-specific fire management strategies, as guided by particular combinations of environmental attributes, takes into account the applicability of the data-driven Decision Tree modeling.

Key words: fire hazard modeling, fire management, GIS, Decision Tree analysis, Thailand.

Acknowledgments

My sincere appreciation for the meaningful support and generous time given by my research supervisor, Jochen Albrecht. I want also to thank Edward Harvey who became part in the initiation and execution of several activities of this research. The guidance extended by the current (Robin Kearns) and past graduate advisers of the Department of Geography is worth mentioning.

My entire stay in the University of Auckland was made possible by the financial support given by the New Zealand Overseas Development Authority's (NZODA) post-graduate scholarship program. I want to acknowledge the research grants awarded by the Graduate Research Fund of this university and from the South-east Asian Regional Centre for Tropical Biology (BIOTROP) – Global Change and Terrestrial Ecosystems (GCTE).

The field data collection was accomplished through the help of the Royal Thai Forestry Department (RFD), National Research Council of Thailand, Green World Foundation-Thailand, and the Asian Institute of Technology. Special thanks goes to Dr. Viroj (Wildlife Conservation Division-RFD), Dr. Schwann (Wildlife Research Division-RFD), and Mr. Siri Akaakara (Forest Fire Control Office-RFD). I would like also to convey my earnest gratitude to the management and field staff of the Huai Kha Khaeng Wildlife Sanctuary.

To my dear friends and family, Dovie, Kim and Keeara, your presence (and patience) is more than enough in providing me the strength and inspiration to accomplish this piece of work. To all of you and to you Lord, *Maraming Salamat*!

Content

List of Tables	vi
List of Figures	
Glossary of Terms	x
	XII
1. Introduction	1
	1
1.1 Motivation and Contribution	1
1.2 Objectives of the Study	2
1.3 Methodological Approach	3
1.4 Thesis Organization	4
2. Forest Fire Ecology	6
2.1 Definitions	6
2.2 Ecological Significance and Impact	6
2.3 Ecological Factors Behind Forest Fire	9
2.3.1 Topography	9
2.3.2 Climate	10
2.3.3 Vegetation Cover and Structure	11
2.3.4 Fuel	12
2.4 Summary	13
3 Forest Fire Modeling	14
3.1 Spatial Analysis	
3.2 Spatial Modeling of Forest Fires	14
3.3 Decision Tree Model, Communication 15	16
3.3 Decision Tree Model: General Concept and Features	19
3.3.1 Strengths of Decision Tree Models	19
3.3.2 Decision Tree Analysis and Spatial Modeling of Environment	21
3.3.3 Decision Tree Growing	21
3.3.4 Model Validation	23
3.3.5 Decision Tree Simplification	25
3.4 Summary	25
4. Forest Fire in Thailand and at Huai Kha Khaeng Wildlife Sanctuary	27
4.1 Forest Fires the Tropics	27
4.2 Extent and Magnitude of Forest Fires in Thailand	27 28
4.3 National Forest Fire Policy and Research Activities	
4.4 Study Area: Location and General Features	30
4.5 Historical Background	31
4.6 Physical Environment	32
4.6.1 Topography	33
4.6.2 Climate	33
4.6.3 Soil and Geology	33
4.7 Biological Features	35
	36
4.7.1 Evergreen Forest Formations	38
4.7.2 Deciduous Forest Formations	40
4.8 People and the Wildlife Sanctuary	41
4.8.1 History of Settlement	41
4.8.2 Surrounding Communities	42
4.8.3 Five Kilometer Buffer Zone	43

4.9 Forest Fire Issues and Perspective 4.10 Summary	44 47
5 Methods	
	48
5.1 Methodological Framework	49
5.2 General Flow of Activities	49
5.3 Data Collection and Integration	51
5.3.1 Data Assembly	51
5.3.2 Field Sampling	52
5.3.3 Thematic Layers and Derived Data Preparations 5.4 Data Analysis	56
5.4.1 Spatial Environment of Fire	63
5.4.2 Fuel and Vegetation Structure	63
5.4.3 Fire Hazard Modeling using Decision Tree Analysis	63 65
5.4.4 Model Implementation and Validation	68
5.4.5 Spatial Contiguity	70
5.4.6 Anthropogenic Influence	73
5.5 Fire Danger and Potential Combustibility Interpretation	74
6. Spatial Data Assessment and Fuel Loading Analysis	76
6.1 Spatial Data Enumeration of Fire Environment	76
6.1.1 Extent and Distribution of Forest Type	76
6.1.2 Extent and Distribution of Burnt Areas	77
6.2 Fuel Loading and Stand Structure Analysis	80
6.2.1 Field Plot Assessment	80
6.2.2 Univariate Summary of the Fuel Load and Stand Structure 6.2.3 Variability Assessment among Forest Types	82
6.2.4 Fuel Load and Stand Structure Relationship	85 88
6.3 Summary	92
7. Fire Hazard Modeling using Decision Tree Analysis	95
7.1 Data Diagnosis	96
7.1.1 Training Samples	96
7.1.2 Bivariate Correlation Analysis	99
7.2 Fire Hazard Decision Tree Model	100
7.2.1 Examination of Attributes	101
7.2.2 Variable Role Investigation	107
7.2.3 Tree Model Cross-Validation and Simplification	112
7.3 Summary	114
8.Model Implementation and Implications on Forest Fire Management	116
8.1 Decision Tree Implementation with GIS	116
8.2 Spatial Contiguity	120
8.3 Danger Rating and Combustion Potential	121
8.4 Anthropogenic Influence 8.5 Thesis Contribution: Forest Fire Management	122
8.5 Thesis Contribution: Forest Fire Management 8.6 Summary	127
9. Summary and Conclusions	129 131
References	151

Appendices

Appendix A. GPS readings on sample plots and the 95% confidence radius limit	146
Appendix B. Forest type distribution in various bio-physical factors	147
Appendix C. Compiled fuel variables obtained from field data sampling	148
Appendix D. Compiled stand structure variables obtained from field data sampling	151
Appendix E. Estimated population variance comparison between forest types	154
Appendix F. Fuel and stand structure correlation test: per forest cover basis	155
Appendix G. Fire hazard Decision Tree model in textual form	160
Appendix H. Contingency matrix for mapping accuracy and Khat calculations	162
Appendix I. Demographic data of villages within the 10 kilometer buffer zone	163

List of Tables

Table 4.1 Monthly air temperatures, relative humidity, rainfall and wind speed	35
Table 4.2 Geological materials of Huai Kha Khaeng Wildlife Sanctuary	36
Table 4.3 Environmental descriptions of major forest type in HKKWS	39
Table 4.4 Frequency and extent of forest fire occurrence on monthly basis from 1991-19	96 45
Table 4.5 Causes of forest fire in Huia Kha Khaeng Wildlife Sanctuary	46
Table 5.1 Dataset enumeration and categorization	52
Table 5.2 Bio-physical variable characterization and grouping	66
Table 5.3 Neighbouring burnt pixels weight index categorization	72
Table 5.4 Thailand fire danger rating based on fuel moisture content	75
Table 5.5 Fire sustainability rating based on fuel moisture content	75
Table 6.1 Forest fire distribution in various bio-physical factors	79
Table 6.2 Distribution of field plots in various topographic gradients	80
Table 6.3 Statistical summary of various fuel loading and forest structure variables	85
Table 6.4 Results of the analysis of variance in comparing fuel and stand structure variable derived from all forest covers	es 86
Table 6.5 Fuel production and stand structure correlation assessment	90
Table 6.6 Relationship of fuel moisture to tree crown opening and fuel bed density	91
Table 7.1 List of categorical variables contained in the Decision Tree model	96
Table 7.2 Variance test comparison of categorical and continuous variables	98
Table 7.3 Correlation coefficients of paired predictors	99
Table 7.4 Discriminatory power of predictor at the first split	103
Table 7.5 Average vegetation index and fuel load among forest types	104
Table 7.6 Terminal nodes burnt attributes enumeration	106
Table 7.7 Change of RMD and MCE through variable omission	110

Table 7.8 RMD and MCE change on variable group category	112
Table 8.1 Environmental model fire hazard and anthropogenic proximity levels area comparison	124

*

List of Figures

Figure 2.1 A framework for fire analysis in tropical ecosystems	7
Figure 4.1 Percentage allocation of causes of forest fires in Thailand (1990)	29
Figure 4.2 Geographical location and general features of the Huai Kha Khaeng Wildlife Sanctuary (HKKWS)	32
Figure 4.3 Elevation and annual rainfall pattern of the HKKWS	34
Figure 4.4 Geological and forest types distribution	37
Figure 4.5 Villages and road networks outside the sanctuary; park stations and the extent of 5 km buffer zone	43
Figure 4.6 Weekly breakdown of burnt extent during the summer months	45
Figure 5.1 Spatial modeling approach	49
Figure 5.2 General flow of activities	50
Figure 5.3 Candidate sampling areas according to forest type and topographic gradients	54
Figure 5.4 Topographical features of the HKKWS generated by DEM	59
Figure 5.5 Aspect and slope derived from DEM	60
Figure 5.6 Field plot distribution and interpolated fuel and stand structure variables per fo category	orest 61
Figure 5.7 Exemplified interpretation of decision rules into spatial operations	69
Figure 6.1 Burnt distribution in four types of forest	78
Figure 6.2 Hemispherical views of selected stand canopy taken from the ground during summer of 1997	83
Figure 7.1 Distribution of training samples	97
Figure 7.2 Burnt and unburnt cases distribution on varying levels of dry leaf moisture content, fuel load, fuel bed density, tree canopy closure, average tree height, and tree density	98
Figure 7.3 Graphical display of a full grown Decision Tree model	102
Figure 7.4 Vegetation index display (10 February 1997)	104
Figure 7.5 Amount and proportion of deviance explained by major predictors in the Decision Tree model	- 108
Figure 7.6 Deviance of full tree and cross validated tree models	113

Figure 7.7 Classification Tree of fire occurrence (pruned at 10 terminal nodes)	113
Figure 8.1 Mapping accuracy assessment in various levels of fire hazard probability cutoffs (bio-physical factors)	117
Figure 8.2 Predicted fire locations based on bio-physical factors and the inclusion of spatial contiguity of neighbouring fire locations	119
Figure 8.3 Mapping accuracy assessment in various levels of fire hazard probability cutoffs (bio-physical factors and spatial contiguity)	121
Figure 8.4 Fire danger and sustainability distribution of the predicted hazard zone	122
Figure 8.5 Mapping accuracy assessment of anthropogenic role on various fire hazard probability cutoffs	123
Figure 8.6 Anthropogenic proximity levels and fire hazard frequency comparison	126
Figure 8.7 Anthropogenic proximity index and environmental fire hazard maps	126

Glossary of Terms

DEM (Digital Elevation Model) - gridded representation of elevation.

Dry fuel – refers to the dead combustible materials available in the forest floor (e.g., grass, leaves, twigs).

Fire Intensity – energy output rate per unit length of fire front and directly related to flame size (Alexander, 1982).

Fire Frequency -the number of times fires have occurred at one location (Woods, 1995).

Hazard - the probability of occurrence, within a specific period of time in a given area, of a potentially damaging phenomenon (e.g., forest fire).

Knowledge-based GIS Model – equations/relationships are developed outside the GIS and applied to datasets in the geographic database (Harrison and Dunn, 1993).

Landsat TM – an electromechanical multi-spectral scanner carried on the Landsat 4 and 5 satellites which records seven channels of electromagnetic radiation from 450 nanometer up to 2.35 micrometer for an optical pixel size of 30 meters and 10.4 –12.6 micrometer for an optical size of 120 meters.

Risk - the expected number of lives lost, person injured, damage to property and disruption of economic activity due to a particularly phenomenon and consequently the product of specific risk and element at risk. (*Elements at Risk* - the population, buildings and civil engineering works, economic activities, public services, utilities and infrastructure at risk in a given area, and, *Specific Risk* - the expected degree of loss due to a particular phenomenon and as a function of both natural hazard and vulnerability) (Crozier, 1988).

Vulnerability - the degree of loss to a given element at risk or set of such elements from the occurrence of a phenomenon of a given magnitude and expressed on a scale from 0 (no damage) to 1 (total loss) (Crozier, 1988).

Wildfire – a fire, regardless of origin that gets out of control (Sarre and Goldammer, 1998). It burns outside of pre-determined conditions and moves into land not included in a fire management zone.