

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the <u>Library Thesis Consent Form</u> and <u>Deposit Licence</u>.

Note : Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.

Dystrophin and the Dystrophin Associated Glycoprotein Complex in the Zebrafish, *Danio rerio*

Stephen Peter Chambers

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biological Sciences, The University of Auckland, August 2004.

Abstract

Mutations affecting the dystrophin gene and the dystrophin associated glycoprotein complex (DGC) genes in humans cause chronic muscle wasting diseases collectively termed muscular dystrophies (MDs), often with associated cardiomyopathy. The dystrophin gene is associated with the allelic, X-linked diseases Duchenne and Becker muscular dystrophy (D/BMD), of which DMD is fatal in early adulthood. The DGC is associated with the autosomal recessive limb girdle muscular dystrophies (LGMDs) which result from mutations of the human α -, β -, δ - and γ -sarcoglycan genes. Dystrophin and the DGC genes encode a sarcolemmal complex of proteins that forms the structural linkage between the muscle cytoskeleton and extracellular matrix, which is crucial for the maintenance of muscle integrity during normal activity. Dystrophin and the DGC genes are evolutionarily conserved, underpinning the important role of this complex.

In terms of DMD modeling, the mouse has served as a suitable vertebrate species but the pathophysiology of the disease in the mouse does not entirely mimic human DMD. LGMD modeling is served by a the BIO 14.6 hamster which is a traditional model of cardiomyopathy, and mouse sarcoglycan gene null strains. The zebrafish is an established model of vertebrate development, and is receiving increasing attention in terms of human disease modeling. This thesis sought to examine the potential of the zebrafish as a further comparative model for these MDs.

In order to provide experimental support to realise this modeling potential, this thesis describes the identification of apparent orthologues of many critical members of the DGC in the zebrafish. An apparent zebrafish orthologue of the human dystrophin gene was identified that expresses a 400kDa protein that is localised to the myofibre membrane surface of adult zebrafish muscle. Epitope mapping confirmed that zebrafish dystrophin retains all the conserved functional domains reported in the human protein. Dystrophin expression in the zebrafish embryo was observed at six hours post fertilisation (hpf), although maternal transcript was present in the zygote. Dystrophin protein was localised at the myosepta of zebrafish embryos at 24 hours post fertilisation (hpf).

Apparent zebrafish orthologues of human β -dystroglycan and β -, δ -, ϵ -, γ - and ζ -sarcoglycan were also identified, and in the case of β -dystroglycan and β -, and γ -sarcoglycan were shown to

express proteins localised to the myofibre membrane surface in adult zebrafish. Like dystrophin, zebrafish β -dystroglycan and β -sarcoglycan genes express proteins which localised to the myosepta of 24 hpf zebrafish embryos. Co-localisation of dystrophin with β -dystroglycan and F-actin confirmed that the zebrafish carries an intact DGC.

The DGC in the zebrafish retina was also studied to provide a basis for understanding the diversity of DGC expression and function in respect of the pathology of the human diseases modelled. A DGC which incorporates zebrafish utrophin or dystrophin with dystroglycan, was localised to the glial cell layer (GCL) and outer plexiform layer (OPL) of the adult zebrafish retina. During zebrafish retinal development, dystrophin and dystroglycan were first localised in the GCL at 48 hpf and the OPL at 72 hpf.

In terms of targeting gene expression to achieve disease modeling outcomes, two strategies were used targeting the carboxyl-terminus of zebrafish dystrophin transcript. Peptide nucleic acid (PNA) masking of the splice donor site of zebrafish dystrophin exon 71 resulted in mis-splicing of the transcript which conserved the reading frame of the transcript. Gene silencing by short interfering RNAs targeted against exon 53 and exon 68 of zebrafish dystrophin caused temporary loss of dystrophin transcript, and delayed dystrophin and β -sarcoglycan localisation at the myosepta of affected embryos.

Together, these data suggest that dystrophin and the DGC in zebrafish may play a highly conserved functional role in muscle architecture that, when disrupted, could offer insight into human neuromuscular disease processes.

Key words: disease modeling, dystroglycan, dystrophin, dystrophin-associated glycoprotein complex, sarcoglycans, muscular dystrophy, peptide nucleic acids, RNA interference, zebrafish

Acknowledgements

My first and heart-felt thank you goes to the closest partners in this endeavour, Professor Don Love, who managed to keep me going till the end, and my partner Lee who lived through it with me and is still there. No less so the many supporters who have helped in uncounted ways, but the closest collaboration and support in this work came from Andrew Dodd, I thank you too. This work would have been impossible without the collaborations of Professor Glenn Morris and Dr. Louise Anderson who both gifted antibodies and to whom I am deeply thankful. My sincere thank you also to Dr. David Bissett for his gift of utrophin antibodies and for discussion of his pre-publication results. Thank you also to Professor Colin Green, Dr. Shiva Reddy and Dr. David Crosssman who all helped this study with gifts of reagents and generous advice.

For your friendly advice and endless support; Dr Shane Lavery, Dr Adrian Turner, Beryl Davey, Dr David Saul and Dr Terry Gruijters, thank you all. For your special support with confocal microscopy, Hillary Holloway and Jaqui Ross of the Biomedical Imaging Research Unit, thank you too. Giselle Maguire, Rupert Overall and Tamara Sirey were also part of this work, thanks guys. Of course there are all the other people who keep one's life and sanity together by their friendship, who are so many that to list them all would endanger the rainforests, so my apologies if I appear to have missed anyone. Special thanks to Steve F and Marty; "Stevomix" Corporation and saved by the Lion; also Bro Rich, Michelle and Flynn; Steve P. and family; Paul and Megan, Richie M., Gus and all their familys; the Mahia "boys", and all the rest of you.

The sequence data used for gene predictions were produced by the Danio rerio Sequencing Group at the Sanger Institute and can be obtained from ftp://ftp.sanger.ac.uk/pub/zebrafish.

Grants from The University of Auckland Research Committee, the Maurice and Phyllis Paykel Trust and the Lottery Grants Board of New Zealand financially supported this work.

Table of contents

Abstract ii		
Acknowledgementsiv		
Tab	le of contentsv	
List	of figures and tablesxi	
List	of abbreviationsxiv	
1.	Introduction1	
1.1	Skeletal muscle and muscular dystrophies2	
	Myogenesis	
	Satellite cells and muscle repair7	
	A cluster of muscular dystrophies7	
1.2	Duchenne muscular dystrophy10	
	Clinical symptoms and pathophysiology of DMD10	
	Skeletal muscle damage and repair	
	DMD also affects the heart, brain and retina12	
	Becker muscular dystrophy	
	Female carriers	
1.3	Dystrophin15	
	Loss of dystrophin protein is associated with DMD pathology15	
	The structure-function relationship in dystrophin15	
	The dystrophin protein exists as a variety of isoforms17	
1.4	The dystrophin-associated glycoprotein complex	
	Dystroglycan	
	The sarcoglycan-sarcospan complex	

	Dystrobrevin and the syntrophins	24
	Dystrophin related proteins	25
1.5	Disease Models of MD	26
	Animal models of dystrophinopathy	26
	The <i>mdx</i> mouse	26
	Other MD model species	27
1.6	The Zebrafish as a Potential Model of DMD	29
	Is Another Model of DMD Required?	29
	Zebrafish Development and Genetics.	29
	Comparative Muscle Physiology in Zebrafish	30
	Are the technology requirements for disease modeling available in the zebrafish?	30
1.7	Summary and aims of this thesis	32
	The zebrafish as a platform for disease modeling	32
2	Materials and Methods	34
2.1	Materials	35
2.1.	1 Materials and Suppliers	35
	Bacterial strains and plasmids	35
	Enzymes and molecular biological reagents	35
	Antibodies, histochemistry reagents and stains	35
	Zebrafish	36
	List of suppliers	36
2.1.	2 Solutions and Media	39
	General solutions	39
	Zebrafish solutions, media and supplements	39
	Bacterial media, antibiotics and other additives.	39

Histochemistry solutions	39
2.1.3 ESTs and Libraries	40
Zebrafish dystrophin EST	40
Zebrafish DGC ESTs	
Radiation hybrid mapping panel	
2.1.4 Oligonucleotides and PNAs	
DNA oligonucleotides	
PNAs	
2.2 Methods	43
2.2.1 Molecular Genetics	
Bacteria culture	
Maintenance of bacterial stocks	
Trasmit DTA preparation	.43
Plasmid DNA preparation	
Sequencing	.44
Sequencing RNA preparation	.44 .45
Sequencing RNA preparation Reverse transcription (RT) of RNA	.44 .45 .46
Sequencing RNA preparation Reverse transcription (RT) of RNA Polymerase chain reaction (PCR)	.44 .45 .46 .46
Sequencing RNA preparation Reverse transcription (RT) of RNA Polymerase chain reaction (PCR) Electrophoresis of DNA on agarose gels	.44 .45 .46 .46
Sequencing RNA preparation Reverse transcription (RT) of RNA Polymerase chain reaction (PCR) Electrophoresis of DNA on agarose gels Genetic mapping	.44 .45 .46 .46 .46
Sequencing RNA preparation Reverse transcription (RT) of RNA Polymerase chain reaction (PCR) Electrophoresis of DNA on agarose gels Genetic mapping	.44 .45 .46 .46 .46 .46 .47
Sequencing RNA preparation Reverse transcription (RT) of RNA Polymerase chain reaction (PCR) Electrophoresis of DNA on agarose gels Genetic mapping 2.2.2 Bioinformatics Assembly of raw DNA sequence	.44 .45 .46 .46 .46 46 47 47
Sequencing RNA preparation Reverse transcription (RT) of RNA Polymerase chain reaction (PCR) Electrophoresis of DNA on agarose gels Genetic mapping 2.2.2 Bioinformatics Assembly of raw DNA sequence Prediction of amino acid sequences and sequence analysis	.44 .45 .46 .46 .46 .46 .47 .47 .47
Sequencing RNA preparation Reverse transcription (RT) of RNA Polymerase chain reaction (PCR) Electrophoresis of DNA on agarose gels Genetic mapping 2.2.2 Bioinformatics Assembly of raw DNA sequence Prediction of amino acid sequences and sequence analysis Prediction of zebrafish genes by genome mining	.44 .45 .46 .46 .46 .46 .47 .47 .47
Sequencing RNA preparation Reverse transcription (RT) of RNA Polymerase chain reaction (PCR) Electrophoresis of DNA on agarose gels Genetic mapping 2.2.2 Bioinformatics Assembly of raw DNA sequence Prediction of amino acid sequences and sequence analysis	.44 .45 .46 .46 .46 .46 .47 .47 .47 .47 .48

	Phylogenetic tree building		
2.2.3 Histological Methods			
	Cryopreservation and sectioning of tissue49		
	Preparation of zebrafish embryos and adult eyes for cryosectioning		
	Immunohistochemistry of cryosectioned tissue		
	Wholemount immunohistochemistry		
	Pre-adsorption of secondary antibodies		
	Direct labelling of primary antibody51		
	Scanning confocal microscopy51		
	Electron Microscopy		
2.2.	4 Zebrafish Methods		
	Zebrafish husbandry		
	Zebrafish breeding		
	Construction of embryo injection trays		
	Microinjection needles		
	Preparation of PNA for microinjection		
	Microinjection of zebrafish embryos		
3	Dystrophin in Zebrafish		
3.1	Identification and sequence analysis of zebrafish dystrophin		
3.2	Gene tree analysis of zebrafish dystrophin61		
3.3	Detection of dystrophin protein in zebrafish61		
	Immunolocalisation of zebrafish dystrophin protein		
	Epitope mapping the zebrafish dystrophin protein64		
3.4	Discussion		

4	The DGC in Zebrafish
4.1	Identification and sequence of zebrafish DGC genes70
	Zebrafish EST sequence analysis70
	Prediction of sarcoglycan sequences from the zebrafish genome74
4.2	Gene tree analysis of the zebrafish DGC77
4.3	Detection of DGC proteins in embryonic and adult zebrafish79
4.4	Dystrophin colocalises with DGC proteins in zebrafish
4.5	Discussion
5	Non-muscle dystrophin and DGC in the zebrafish
	Molecular diversity of the DGC
5.1	Dystrophin and the DGC in the zebrafish eye
	Zebrafish utrophin
	The DGC in the adult zebrafish retina
5.2	The DGC in the developing zebrafish neural tube
5.3	Discussion97
6	Targeting dystrophin in the zebrafish embryo99
6.1	Mis-splicing of the zebrafish dystrophin gene induced by PNAs
	PNA design and pilot studies101
	Mis-splicing of exon 71 reveals the timing of dystrophin gene expression in zebrafish
	embryos
	PNAs targeting exon 53 of the zebrafish dystrophin gene transcript107
6.2	Histological analysis of gene targeting of zebrafish dystrophin110
6.3	Discussion

7	The zebrafish as a model for muscular dystrophy114
	Preamble114
	Identification of a zebrafish dystrophin orthologue115
	The zebrafish carries DGC genes which express a functional complex that is localised to
	myosepta117
	The zebrafish retina
	Targeted gene knockdown of the zebrafish DGC
Ref	erences

List of figures and tables

Figure 1.1 Skeletal muscle is the principal tissue affected by DMD
Figure 1.2 The myogenic program6
Table 1.1 Proteins implicated in different forms of muscular dystrophy9
Figure 1.3 Effects of muscular dystrophy11
Figure 1.4 Multiple transcripts are derived from the dystrophin gene
Figure 1.5 The dystrophin protein (Dp) variants19
Figure 1.6 Molecular model of the dystrophin associated glycoprotein complex (DGC) in
humans
Table 1.2 Vertebrate models of muscular dystrophy
Figure 1.7 Myogenesis and muscle anatomy in zebrafish
Figure 1.8 Flow diagram of the components of this thesis
Table 2.1 Bacterial strains and plasmids
Table 2.2 Enzymes and molecular biological reagents 35
Table 2.3 Antibodies and histochemical reagents used in this thesis
Table 2.4 General solutions
Table 2.5 Zebrafish solutions, media, and supplements
Table 2.6 Bacterial media, antibiotics and additives
Table 2.7 Histochemistry solutions
Table 2.8 Summary of EST clones
Table 2.9 Oligonucleotides and their uses 41
Table 2.10 PNAs, and their sequences and molar extinction co-efficients
Figure 3.1 Nucleotide and deduced amino acid sequence of EST fc33b12
Figure 3.2 Annotated alignment of zebrafish and human dystrophin C-terminal peptide
sequences

Figure 3.3 The map location of the zebrafish <i>dystrophin</i> locus on linkage group 160
Figure 3.4 Radial gene tree showing the dystrophin, utrophin and DRP2 proteins in vertebrates
and Drosophila melanogaster61
Figure 3.5 Western blot of dystrophin in zebrafish muscle
Figure 3.6 Immunolocalisation of dystrophin in adult zebrafish and human muscle63
Figure 3.7 Immunolocalisation of dystrophin in the 24 hpf to 48 hpf zebrafish embryo64
Figure 3.8 Epitope mapping of zebrafish dystrophin65
Figure 4.1 Nucleotide and deduced amino acid sequence of EST fb83d0171
Figure 4.2 Nucleotide and deduced amino acid sequence of EST fc49e1172
Figure 4.3 Nucleotide and deduced amino acid sequence of EST fj50e0973
Figure 4.4 Annotated amino acid sequence alignment of zebrafish and human dystroglycan74
Table 4.1 Summary of dystroglycan and sarcoglycan sequences used in gene tree construction 75
Figure 4.5 Annotated amino acid sequence alignment of zebrafish and human sarcoglycans76
Figure 4.6 Radial gene tree analysis dystroglycan proteins in vertebrates, Drosophila
melanogaster and Caenorhabditis elegans77
Figure 4.7 Radial gene tree analysis of sarcoglycan proteins in vertebrates, Drosophila
melanogaster and Caenorhabditis elegans
Figure 4.8 Immunolocalisation of components of the DGC in adult zebrafish and human muscle.
Figure 4.9 Wholemount immunolocalisation of components of the DGC in 24 hpf zebrafish
embryos
Figure 4.10 Co-localisation of dystrophin and the DGC in zebrafish embryos
Figure 5.1 Diversity of the DGC in muscle and non-muscle tissues
Figure 5.2 Architecture of the adult zebrafish retina
Figure 5.3 Development of the zebrafish retina

Figure 5.5 Immunolocalisation of the DGC in the adult zebrafish eye
Figure 5.6 Time course of dystrophin and DGC localisation in the eye of zebrafish embryos95
Figure 5.7 Dystrophin and the DGC in 96 hour and 7 day zebrafish embryos96
Figure 6.1 Conceptual scheme of PNA induced mis-splicing
Figure 6.2 Predicted zebrafish dystrophin intron: exon boundaries and PNA binding sites102
Figure 6.3 Analysis of dystrophin intron: exon boundary sequences in the zebrafish genome 103
Figure 6.4 RT-PCR assay to analyse splicing events
Figure 6.5 RT-PCR amplification of dystrophin exons 70-72 in pooled embryos by RT-PCR .105
Figure 6.6 PNA induced mis-splicing of exon 71 of the zebrafish dystrophin gene transcript 106
Figure 6.7 Confirmation of reaction conditions for RT-PCR amplification of exons 52-54 of the
zebrafish dystrophin gene transcript107
Figure 6.8 Analysis of PNA 2410 injections targeting exon 53 of the zebrafish dystrophin gene
transcript108
Figure 6.9 Analysis of PNA 2411 injections targeting exon 53 of the zebrafish dystrophin gene
Figure 6.10 Histological analysis of dystrophin gene targeting in the zebrafish

List of abbreviations

The most frequent	y used abbreviations in this work include:
2MeAO	2'-O-Methyl-antisense oligonucleotides
AAV	adeno associated virus
Amp	ampicillin
AP	anterior-posterior (axis)
ATP	adenosine triphosphate
bp	base pairs
BMD	Becker muscular dystrophy
BSA	bovine serum albumin
Ca ⁺⁺	calcium ion
СК	creatine kinase
CMD	congenital muscular dystrophy
DGC	dystrophin associated glycoprotein complex
DMD	Duchenne muscular dystrophy
DMSO	dimethyl sulphoxide
DNA	deoxyribose nucleic acid
dNTP	deoxynucleoside triphosphates
dpf	days post fertilisation
DRP1	dystrophin-related protein 1 (utrophin)
DRP2	dystrophin-related protein 2
DTT	dithiothreitol
E. coli	Escherichia coli
EST	expressed sequence tag
EF	embryonic fissure
g	gram
GCL	glial cell layer
GZ	germinal zone
hpf	hours post fertilisation
IgG	immunoglobulin G (also G1, G2a, etc)
ILM	inner limiting membrane
INL	inner nuclear layer
IPL	inner plexiform layer

kb	kilobases
L	litres
LGMD	limb girdle muscular dystrophy
Μ	molar
MD	muscular dystrophy
mg	milligram
ml	millilitre
mM	millimolar
NEWI	North East Wales Institute
ng	nanogram
nl	nanolitre
OFL	optic fibre layer
oligo	oligonucleotide
ONL	outer nuclear layer
OPL	outer plexiform layer
PAGE	ployacrylamide gel electrophoresis
PE	pigmented epithelium
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PEG	polyethylene glycol
pH	potential hydrogen
PNA	peptide nucleic acid
Q-PCR	quantitative PCR
RNA	ribose nucleic acid
rpm	revolutions per minute
RT-PCR	reverse transcription PCR
siRNA	short interfering RNA
SDS	sodium dodecyl sulphate
SGCA	α-sarcoglycan
SGCB	β-sarcoglycan
SGCD	δ-sarcoglycan
SGCE	ɛ-sarcoglycan
SGCG	γ-sarcoglycan
SGCZ	ζ-sarcoglycan

TAE	Tris-acetate-EDTA
TBE	Tris-borate-EDTA
Tween 20	polyoxyethylene sorbitan monolaureate
Tet	tetracycline
U	units
μg	microgram
μL	microlitre
μm	micrometre (micron)
μΜ	micromolar
v/v	volume by volume
w/v	weight by volume