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Abstract

This thesis is concerned with the Filtered-x Least Mean Square (FxLMS) adaptation algorithm and its

applications in Active Noise Control (ANC). Generally, this algorithm is used in system identification

problems in which a physical channel, called the secondary path, follows the adaptive filter. The FxLMS

algorithm compensates for the secondary path effect by filtering the input signal (training data sequence)

using an available estimate of the secondary path, called the secondary path model. However, this

filtering causes the analytical model of the adaptation process to become highly complex. Because

of this complexity, this model has to be simplified when it is desired to derive closed-form expressions

for formulating different behaviours of the adaptation process. Usually, this simplification has been

carried out by using unrealistic assumptions of pure delay secondary paths, broad-band acoustic noise,

and perfect secondary path models.

The first contribution of this thesis is the derivation of a set of closed-from mathematical expressions

for formulating behaviours of FxLMS-based ANC systems in steady-state and transient conditions. This

derivation is carried out without using any simplifying assumption regarding the secondary path. Con-

sequently, the obtained expressions extend the available knowledge on FxLMS-based ANC systems.

The second contribution is formulating influences of acoustic noise band-width on the newly-derived

expressions. In the analysis of ANC systems with stochastic noise, it is usual to assume a broad-band

acoustic noise with a flat frequency spectrum (which is usually referred to as a white signal), in order

to avoid mathematical complexity. However, even if the acoustic noise has a flat spectrum over a wide

frequency range, the signal picked up and fed to the ANC system is required to be processed with a

sampling frequency higher than the maximum frequency of the acoustic noise. For this reason, a realistic

noise signal can only have a flat spectrum over a limited band-width.

The third contribution is investigating influences of secondary path models on the newly-derived expres-

sions. Usually, it is acceptable to assume a perfectly-accurate secondary path model; however, in order

to generalise the obtained closed-form expressions, this assumption is also removed in this thesis. Con-

sequently, the final closed-form expressions, proposed in this thesis, can apply to a relatively general

case with an arbitrary secondary path, an acoustic noise with an arbitrary band-width, and an arbitrary

(imperfect) secondary path model.

Another contribution of this thesis is determining trajectories of the poles of the FxLMS adaptation

process in the z-plane. This investigation leads to find the FxLMS adaptation process root locus. It is

shown that the dominant pole of this locus always locates on a certain branch with a typical trajectory
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in the z-plane. A mechanism for localising this pole is then proposed in this thesis, resulting in a novel

ANC algorithm, called the Filtered Weight FxLMS.

In addition to several numerical analyses and computer simulations, a FPGA-based ANC setup, de-

veloped for this research, is used to study the validity of the theoretical results obtained in this thesis.

This setup is developed by using a flexible FPGA programming structure which can be used for the im-

plementation of other ANC algorithms. Different experiments with this setup confirms the validity of the

theoretical results proposed in this thesis.
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Chapter 1

Introduction

The traditional approach to acoustic noise control uses passive silencers to attenuate unwanted sound

waves. These silencers are valued for their global noise attenuation; however, they are relatively bulky,

costly and ineffective for low frequency noise. To overcome these problems, Active Noise Control

(ANC), in which an electro-acoustic system is responsible to create a local silence zone, has received

considerable interest.

The first patent on active noise control was granted to Paul Leug, in 1936 [1]. Figure 1.1 shows the

drawings, which Leug appended to his patent, describing how two sinusoidal sound waves can cancel

each other. For two decades this idea remained only a theory on paper until Olson used early analog

electronic technology to invent the first ANC device, called the “electronic sound absorber” [2, 3]. By

the end of the 1950’s, several analog ANC devices were invented, including those patented by Fogel [4],

Simshauser [5] and Bose. However, all of these analog ANC devices are not able to adapt to changing

characteristics of the noise to be cancelled nor to changing environmental conditions. This is because

adaptive signal processing techniques cannot be realised by using analog electronic technology. Only

with the advent of digital technology did the realisation of adaptive ANC systems become possible. The

theory of adaptive ANC, in which an adaptation algorithm automatically adjusts the ANC device, was

established by Widrow in 1975 [6]; however the most significant progresses on this subject has been

reported in the last two decades [7, 8].

In this chapter, the theory behind adaptive ANC is elaborated, followed by a literature review on signal

processing techniques used in design and implementation of adaptive ANC devices. Shortcomings of

available relevant work are discussed, based on which the main outstanding problems to be dealt with in

this thesis are defined.

1.1 Physical Principles of Active Noise Control

This section introduces the acoustic wave propagation process and its properties. Based on the linearity

of this process, the phenomenon of interference between sound waves, upon which the ANC theory is

established, is then discussed.

1



2 Introduction

Figure 1.1: The drawings appended to the first patent on active noise control [1]

1.1.1 Acoustic Wave Propagation

Sound waves (also called “acoustic waves”) are described by variations in the acoustic pressure through

space and time. The acoustic pressure is defined as the local deviation from the ambient atmospheric

pressure1 caused by a sound wave. This scalar quantity, which can be directly measured using a micro-

phone in air or a hydrophone in water, is the force (N) of sound on a surface area (m2) perpendicular to

the direction of the sound. The evolution of the acoustic pressure as a function of position and time can

be described by the wave propagation equation in three-dimensional space [9]:

∇2p (x, y, z, t)− 1

c2

∂2

∂t2
p (x, y, z, t) = 0 (1.1)

where p (x, y, z, t) denotes the acoustic pressure at position (x, y, z) and continuous time t, operator∇2

is the Laplacian operator and constant c is the propagation speed of the sound in the ambient2. In [9], it
1Atmospheric pressure is the force per unit area exerted against a surface by the weight of air above that surface in the

Earth’s atmosphere.
2 c = 343m

s
in dry air at 20 °C
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is shown that the propagation of a sound wave through the wave propagation process, given in Eq. (1.1),

can be effectively modelled as a linear process.

1.1.2 Superposition Property

In system theory, the superposition property states that, for all linear systems, the net response at a given

position and time caused by two or more sources is the algebraic sum of the responses, which would have

been caused by each source acting individually. Therefore, based on the linearity of the acoustic wave

propagation process, the net acoustic pressure at position (x, y, z) and (discrete) time index n caused

by two or more sound sources, can be expressed as the algebraic sum of the acoustic pressures, caused

by each sound source acting individually. Accordingly, in a general case with N sound sources, the net

acoustic pressure at position (x, y, z) and time index n can be expressed as

p (x, y, z, n) = p1 (x, y, z, n) + ...+ pk (x, y, z, n) + ...+ pN (x, y, z, n) (1.2)

where pk (x, y, z, n) denotes the acoustic pressure at position (x, y, z) and time index n, caused by the

k-th sound source acting individually (for k = 1, 2, . . . , N ).

1.1.3 Acoustic Wave Interference

The phenomenon of interference between acoustic waves is based on the superposition property de-

scribed above. For formulating this phenomenon, let us assume that there are only two sound sources in

the ambient. In this case, Eq. (1.2) is simplified to

p (x, y, z, n) = p1 (x, y, z, n) + p2 (x, y, z, n) (1.3)

which gives the acoustic pressure in three-dimensional space, while the existing sound waves interact

with each other. The interaction of these two sound waves at a given point (x0, y0, z0) and time index

n, is called the constructive interference if the absolute value of p (x0, y0, z0, n) is equal or greater than

the absolute values of p1 (x0, y0, z0, n) and p2 (x0, y0, z0, n). Otherwise, the interaction is called the

destructive interference. This definition can be extended for a general case with an arbitrary number of

sound sources. The phenomenon of destructive interference is the basis for the creation of a silence zone

by ANC devices.

1.2 How to Create a Silence Zone

This section introduces the ANC physical mechanism by which a local silence zone can be created. Also,

it is shown that this mechanism should be precisely driven by a digital electronic control system.
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x

y

z
Noise Source 1

Noise Source 2

Noise Source 3

Anti-Noise 
Source 

Figure 1.2: Location of noise and anti-noise sources in three dimensional space (single channel ANC)

1.2.1 ANC Physical Mechanism

In single channel ANC, there is a single control source, called the anti-noise source, dealing with a

number of acoustic noise sources. This situation is illustrated in Figure 1.2 with the coordinate system

used. For this general case, the net acoustic pressure at a given position and time can be mathematically

described by using the superposition property:

p (x, y, z, n) = pd (x, y, z, n) + pd̃ (x, y, z, n) (1.4)

where pd (x, y, z, n) is the net acoustic pressure at position (x, y, z) and time index n caused by all the

existing noise sources, and pd̃ (x, y, z, n) is the acoustic pressure at the same position and time caused

by the anti-noise source acting individually. The unwanted acoustic pressure pd (x, y, z, n) itself can be

described as the superposition of the acoustic pressures caused by the noise sources acting individually :

pd (x, y, z, n) = p1 (x, y, z, n) + p2 (x, y, z, n) + p3 (x, y, z, n) + ... (1.5)

Now, let us define the following notations.

1. Zs (xs, ys, zs) is the position of a desired silence zone in three-dimensional space.

2. eac (n) is the net acoustic pressure at Zs :

eac (n) , p (xs, ys, zs, n) (1.6)

3. dac (n) is the acoustic pressure at Zs caused by all the existing noise sources:

dac (n) , pd (xs, ys, zs, n) (1.7)

4. d̃ac (n) is the acoustic pressure at Zs caused by the anti-noise (control) source:

d̃ac (n) , pd̃ (xs, ys, zs, n) (1.8)

Using the above notations, Eq. (1.4) can be re-expressed as

eac (n) = dac (n) + d̃ac (n) (1.9)



1.2 How to Create a Silence Zone 5

x

y

z
Noise Source 1

Noise Source 2

Noise Source 3

Anti-Noise 
Source 

dac(n)

~
dac(n)= - dac(n)

eac(n)=0
Silence

dac(n)
+   dac(n)

eac(n)

dac(t)

~
dac(t) eac(n)~input output

disturbance

dac(n)

~
dac(n) eac(n)

input output

disturbance

Figure 1.3: Physical mechanism of active noise control

x

y

z
Noise Source 1

Noise Source 2

Noise Source 3

Anti-Noise 
Source 

dac(n)

~
dac(n)= - dac(n)

eac(n)=0
Silence

dac(n)
+   dac(n)

eac(n)

dac(t)

~
dac(t) eac(n)~input output

disturbance

dac(n)

~
dac(n) eac(n)

input output

disturbance

Figure 1.4: Physical concept of active noise control

Eq. (1.9) describes the physical mechanism which is responsible for ANC. The relation between the

input and output of this mechanism is shown in Figure 1.3. According to this figure, the input of this

mechanism is the control acoustic pressure at Zs caused by the anti-noise source, the disturbance signal

is the unwanted acoustic pressure at Zs, and the output signal is the net acoustic pressure at Zs. The ANC

physical mechanism generates the output signal as the summation of the input and disturbance signals.

From Eq. (1.9), it can be shown that the net acoustic pressure at Zs can be made zero if, and only if, the

input and disturbance signals are equal in magnitude and opposite in phase:

eac (n) = 0⇐⇒ d̃ac (n) = −dac (n) (1.10)

Therefore, by setting d̃ac (n) = −dac (n), the ANC physical mechanism can create a silence zone at Zs.

This process is illustrated in Figure 1.4.

1.2.2 Digital Electronic Control System

Referring to Figure 1.5, it can be seen that the ANC physical mechanism can create a silence zone at a

given position, if the loudspeaker acting as the anti-noise source is precisely driven to produce d̃ac (n)

exactly equal to −dac (n). For this purpose, the ANC physical mechanism is usually associated with a

digital electronic control system generating a control signal (or command signal) to drive the anti-noise

source. This control system is usually referred to as the ANC controller and its combination with the

loudspeaker acting as the anti-noise source, and with a number of microphones collecting information

on the existing noise field is referred to as the ANC system.

A general ANC system is illustrated in Figure 1.6. As can be seen in this figure, one essential component

of ANC systems is an error microphone measuring the net acoustic pressure at the desired silence zone:

eac (n). The response of this microphone, hereafter called the error signal, is directly used by the ANC

controller as a feedback signal containing information on the performance of the ANC system.
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Figure 1.5: Creating a silence zone using the ANC physical mechanism

As illustrated in Figure 1.6, a digital ANC controller generates the control signal y (n) in response to

the input signal x (n), called the reference signal. In order to generate an effective control signal, the

controller requires the reference signal to contain enough information on the unwanted acoustic pressure.

In other words, an ideal reference signal is identical to the unwanted acoustic pressure at Zs: dac (n).

However, this signal cannot be measured during the operation of the anti-noise source. This is because

dac (n) is intended to be combined with the control acoustic pressure generated by the anti-noise source,

d̃ac (n). Here, it is useful to continue with an ideal case, where the ideal reference signal, as introduced

above, is available:

x (n) = dac (n) (1.11)

and where it is assumed that the waveform of the control acoustic pressure at Zs is exactly equal to that

of the control signal fed to the anti-noise source:

d̃ac (n) = y (n) (1.12)

Now, by substituting Eqs. (1.11)-(1.12) into Eq. (1.10), the desired control signal, denoted by yo (n), is

obtained as

yo (n) = −x (n) (1.13)

From Eq. (1.13), the impulse response of the desired ANC controller, wo (n) is obtained as

wo (n) = −δ (n) (1.14)

where δ (t) denotes the Kronecker delta function. In practise, such a simple controller cannot perfectly

create a silence zone atZs because of the existence of two constraints, the first of which is d̃ac (n) 6= y (n)

due to the existence of a physical Electra-acoustic channel between the output of the controller and Zs
(usually referred to as the secondary path) and the second of which is x (n) 6= dac (n) due to the non-

measurability of the ideal reference signal. These two constraints and the standard approaches used to

deal with them are discussed in the following.
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Figure 1.6: A general ANC system

1.2.2.1 Secondary Path Constraint

In practise, even if the ANC controller output y (n) is identical to−dac (n), the control acoustic pressure

at Zs, deviates from −dac (n). Consequently, the net sound pressure at Zs deviates from zero. This

is because of the existence of an electro-acoustic channel, called the secondary path, between the ANC

controller andZs. Assuming that s (n) is the impulse response of the secondary path, the control acoustic

pressure at Zs can be expressed as

d̃ac (n) = s (n) ∗ y (n) (1.15)

where ∗ denotes the convolution operator. Therefore, for producing a control acoustic pressure equal to

d̃ac (n) at Zs, the control signal driving the anti-noise source should be set to

y (n) = s−1 (n) ∗ d̃ac (n) . (1.16)

From this result, it can be induced that only if the secondary path impulse response is known can the

desired control signal y (n) be estimated.

1.2.2.2 Reference Signal Measurement Constraint

As discussed, an ideal reference signal, to which the ANC controller can generate a perfect control

signal in response, is equal to the unwanted acoustic pressure at Zs. However, this acoustic pressure is

not measurable because it is intended to be combined with the control acoustic pressure. Based on the

structure upon which ANC devices deal with this constraint, these systems are classified into two major

categories: feed-forward and feedback.

Feed-forward Structure:

Feed-forward ANC controllers have a long history in digital ANC. This dates back to Widrow’s original

work on adaptive ANC [6], in which an upstream microphone was used to give information about the
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Figure 1.7: General diagram for feed-forward ANC

unwanted noise propagating down the system. However, most significant reports on feed-forward ANC

were published in the 1980’s, including those published by Morgan [10], Widrow [11], Burgess [12] and

Warnaka [13].

Figure 1.7 shows the diagram of feed-forward ANC. As can be seen in this figure, a microphone, called

the reference microphone, is located at a far position from Zs, where the influence of the anti-noise

source is not considerable. The response of this microphone is then fed to the controller as the reference

signal x (n). However, due to the existence of the distance between the reference microphone and Zs
the waveform of the measured signal x (n) is different from that of dac (n), which is the ideal reference

signal. In the feed-forward structure, it is assumed that the ideal reference signal dac (n) can be modelled

as the response of a linear digital filter, called the primary path, to the measured reference signal x (n):

dac (n) = p (n) ∗ x (n) , (1.17)

where p (n) is the impulse response of the primary path. Note that the primary path is an hypothetical

signal path which is used for modelling the ideal reference signal, unlike the secondary path which is an

actual signal path.

Feedback Structure:

As an alternative to the feed-forward structure, a feedback structure for ANC controllers was proposed

by Eriksson in 1991 [14]. As illustrated in Figure 1.8, in this structure, dac (n) is directly estimated

by a feedback predictor from the measured error signal e (n). Therefore, since the predicted dac (n) is

directly fed to the ANC controller, there is no signal path between x (n) and dac (n). In other words, the

feedback structure is a special case of the feed-forward structure, in which the primary path is simply

replaced by an identity system. The main advantage of this structure is that it does not require any refer-
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Figure 1.8: General diagram for feedback ANC

ence microphone; therefore, feedback ANC controllers are more compact and cost effective, compared

to feed-forward ANC controllers. However, these controllers can attenuate only the predictable com-

ponents of the unwanted noise. Furthermore, they are less robust than feed-forward ANC controllers.

Due to these limitations, successful implementation of these controllers can be found only in specific

applications such as personal hearing protection devices [15] and noise cancelling headphones [16–18].

Hybrid Feed-forward/Feedback Structure:

Hybrid ANC controllers are combined systems that derive the control signal from the outputs of both

the reference and error microphone [19]. The feedback part of this structure controls the predictable

component of the noise leaving the feed-forward part to concentrate on the other components of the

noise. This structure results in a considerable overall performance improvement when compared to just

a feed-forward or feedback system [20].

1.2.3 Adjustment of ANC Controller

Considering both the constraints, described in Section 1.2.2, the net acoustic pressure at the desired

silence zone can be expressed by combining Eqs. (1.9), (1.15) and (1.17) as

eac (n) = p (n) ∗ x (n) + s (n) ∗ y (n) (1.18)

Assuming that the error microphone has no effect on the signal waveform (or assuming that influences of

this microphone is included in the primary and secondary paths), the response of the error microphone,

which is called the error signal, can be expressed as

e (n) ≈ eac (n) . (1.19)
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Now, combining Eqs. (1.18) and (1.19) results in

e (n) = p (n) ∗ x (n) + s (n) ∗ y (n) . (1.20)

Eq. (1.20) represents a model in terms of electrical signals for the ANC physical mechanism. Consider-

ing that y (n) is the response of the ANC controller to x (n), the functional block diagram of this model

can be drawn, as shown in Figure 1.9. In this diagram, blocks p, s and w represent the primary path,

secondary path and ANC controller, respectively. Based on this block diagram, error signal e (n) can be

expressed as

e (n) = p (n) ∗ x (n) + {s (n) ∗ w (n)} ∗ x (n) , (1.21)

wherew (n) is the impulse response of the ANC controller. By setting e (n) to zero, the impulse response

of the desired ANC controller, wo (n), can be obtained as

wo (n) = −s−1 (n) ∗ p (n) (1.22)

Compared to Eq. (1.14) which describes an ideal ANC controller, Eq. (1.22) describes a more real-

istic ANC controller, considering both the secondary path and reference signal measurement constraints.

However, since the impulse responses p (n) and s (n) are usually unknown, the desired ANC controller

cannot be directly implemented. In this case, the role of Eq. (1.22) is reduced to a theoretical proof for

the existence of the desired ANC controller.

1.3 Adaptive Active Noise Control

This section introduces adaptive ANC in which the desired ANC controller can be adaptively adjusted

in a system identification framework without having the knowledge of the primary and secondary paths

individually. Also, this section conducts a short review on available algorithms used in adaptive ANC.

1.3.1 Adaptive Identification of ANC Controller

According to Eq. (1.22), for realising the desired ANC controller, it is required to know the impulse

responses of the primary and secondary paths, both of which are usually unknown time-varying electro-
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Figure 1.10: Functional block diagram for adaptive ANC

acoustic channels. To solve this problem, an adaptive scheme for ANC was proposed by Widrow in

1975 [6]. After publishing Widrow’s original work, several researchers began working on this subject

[10–13]. It was in 1981 that the first successful realisation of an adaptive ANC system for acoustic noise

propagating in a duct was reported by Burgess [12].

In adaptive ANC, an identification (or adaptation) algorithm continually adjusts the ANC controller w in

such a way that an error signal is progressively minimised, resulting in the gradual convergence of w to

wo. For the realisation of such an adaptive structure, the digital electronic control system should consist

of two distinct parts (Figure 1.10):

1. A programmable digital filter, w acting as the ANC controller, and

2. An adaptation algorithm for the adjustment of the ANC controller.

Usually, the digital filter used as the ANC controller is an standard transversal filter; however, standard

adaptation algorithms developed for the transversal filters e.g. Least Mean Square (LMS) or Recursive

Least Square (RLS) cannot be used for the automatic adjustment of ANC controllers [8]. A relatively

complete but not up-to-date review on adaptation algorithms used in ANC can be found in the book

authored by Kuo [7]. A substantial number of other references are listed in this book. Also, the book

authored by Elliott [8] provides detailed information on signal processing techniques used in adaptive

ANC. In the next section, available ANC adaptation algorithms are briefly reviewed.

1.3.2 ANC Algorithms

In ANC systems, standard adaptation algorithms can not be used due to the existence of the secondary

path. However, the influence of the secondary path on the performance of any standard adaptation al-

gorithm can be compensated for if the reference signal is filtered using an estimate of the secondary path.

This compensation mechanism results in a new range of adaptation algorithms referred to as filtered-x

adaptation algorithms. The basic of which is the Filtered-x Least Mean Square (FxLMS) derived by
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Widrow in 1981 [11]. This algorithm is an LMS-type adaptation algorithm which can be used for the

identification of an unknown system (e.g. a desired ANC controller) in the presence of a secondary

path. The functional block diagram of an FxLMS algorithm adjusting an ANC controller is illustrated

in Figure 1.11. In this figure ŝ represents an estimate model of the secondary path. As can be seen,

the reference signal is filtered by ŝ before being used by the standard LMS algorithm. This is the only

difference between the LMS and FxLMS algorithms, resulting in the compensation for the secondary

path.

Other versions of the FxLMS such as Filtered-x Normalised LMS (FxNLMS) [13], Leaky FxLMS [21],

Modified FxLMS (MFxLMS) [22, 23] etc [24, 25] were proposed to improve the performance of the

original algorithm. However, the common problem with all of these algorithms is the slow convergence

rate, specially when there is a large number of weights (which is usually the case). To overcome this

problem, more complicated algorithms such as Filtered-x Recursive Least Square (FxRLS) [26, 27] or

Filtered-x Affine Projection (FxAP) [28] can be used. These algorithms have faster convergence rate

compared to the FxLMS; however they involve matrix computations and their real-time realisations may

not be cost effective [29].

1.3.2.1 Frequency Domain ANC Algorithms

The above mentioned ANC algorithms suffer from either slow convergence rate or computational com-

plexity. To overcome both of these problems, frequency domain algorithms can be used. The first fre-

quency domain system identification framework was proposed in the 1970’s [30] and the first frequency

domain ANC algorithm was developed in 1992 [31]. In this algorithm, the reference and error signals

are first stored in buffers to form data blocks. These blocks are then transformed to frequency domain

reference and error vectors by a Fast Fourier Transform (FFT). Elements of the frequency domain ref-

erence vector is multiplied by filter weights to generate the frequency-domain control vector. Then this

vector is fed to an Inverse FFT (IFFT) to produce a block of control signal in the time domain. The filter

weights, used in the generation of the control signal in the frequency domain, are updated by the com-

plex FxLMS algorithm [32, 33]. This algorithm causes a time delay equal to the length of the FFT used

between the input and output of the ANC controller. This problem is a shortcoming of frequency-domain

ANC controllers, specially in controlling broad-band stochastic noise.
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Table 1.1: Comparison of available structures and adaptation algorithms used in ANC

Algorithm(s) Strengths Weaknesses

FxLMS Simple real-time realisation.
Low computational complexity.

Slow convergence rate.

FxRLS or FxAP Fast convergence.
Low steady-state residual noise.

Huge computational complexity.
Difficult real-time realisation.

Freq. Domain
FxLMS

Low computational complexity.
Fast convergence.
Simple real-time realisation.

Only suitable for narrow-band noise.

Sub-band FxLMS Low computational complexity.
Fast convergence.

Only suitable for narrow-band noise.

1.3.2.2 Sub-Band ANC Algorithms

Another approach to overcome both the computational complexity and slow convergence rate problems

associated with ANC algorithms, is based on using the sub-band system identification framework. This

framework consists of a sub-band filter-bank structure and an adaptation algorithm for each filter of the

filter-bank. Conventional sub-band adaptation algorithms introduce a delay into the signal path. This

delay cannot be tolerable in ANC systems because these systems are very sensitive to any delay in the

secondary path. To overcome this problem, Morgan proposed a delay-less sub-band system identification

framework and its FxLMS-based adaptation algorithm in 1995 [34]. Later (in 2001), Park improved the

performance of the Morgan’s algorithm [35]. Recently, a number of different algorithms for adaptation

of sub-band ANC controllers have been proposed [36–39].

In a typical sub-band ANC algorithm, the reference and error signals are divided into sub-bands and then

an FxLMS algorithm adjusts a low order transversal filter for each sub-band in order to minimise the

corresponding sub-band error signal. In order to avoid the sub-band processing delay, sub-band ANC

controllers are not directly used for the generation of the control signals. From weights of sub-band

controllers, a full-band transversal ANC controller is constructed. In this scheme, since low order ad-

aptive filters are adjusted in parallel, the convergence rate is fast. Also, since the adaptation process is

performed on low order sub-band transversal controllers, the total computational complexity is signific-

antly reduced. The main drawback of sub-band ANC is its requirement of block processing. Hence, this

scheme is only useful for low frequency noise but not very effective for broad-band noise.

1.4 FxLMS Adaptation Process

Table 1.1 summarises the strengths and drawbacks of different ANC algorithms. According to this table,

most ANC algorithms rely on the FxLMS algorithm. For this reason, this algorithm is usually known as

the basic ANC algorithm. This section discusses the performance of the adaptation process performed

by the FxLMS algorithm (hereafter called FxLMS adaptation process). Also, this section briefly reviews

the available studies on theoretical analysis of the FxLMS adaptation process.
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1.4.1 Performance of FxLMS Adaptation Process

The performance of the FxLMS adaptation process is limited by a number of related factors that must be

addressed in the appropriate order. Referring to Figure 1.12, it can be seen that the absolute maximum

level of performance is limited first by the characteristics of the physical plant to be controlled, including

the secondary path impulse response and the acoustic noise band-width. This means that no matter

how good is the electronic control system, the FxLMS will not function properly if the secondary path

has a long impulse response and/or the acoustic noise has a wide band-width. After the physical plant

characteristics, the design parameters of the electronic control system limit the maximum performance

achievable. Among these parameters, the most important one is the length of the transversal filter used

as the ANC controller. It should be noticed that although increasing the filter length improves the steady-

state performance, it degrades the convergence rate of the FxLMS adaptation process. In addition to this

trade-off, the filter length should be set considering the hardware resources available in the electronic

control system.

After the filter length is set carefully, the maximum achievable performance is limited by a scalar para-

meter called the adaptation step-size (denoted by µ). In fact, the step-size is the only parameter in the

original FxLMS algorithm which provides a control mechanism over the performance of the FxLMS

adaptation process. The discussion on influences of this parameter is left to Section 1.4.2. According to

Figure 1.12, the final factor limiting the performance of the FxLMS adaptation process is the accuracy

of the secondary path model used in the algorithm. The discussion on this subject is left to Section 1.4.3.
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1.4.2 Adaptation Step-Size

Analysing influences of the step-size µ on the FxLMS adaptation process is a complicated subject in

adaptive signal processing. However, simplified theoretical analyses, simulation results and even exper-

imental results show that these influences are similar to those derived for the LMS adaptation process.

Hence, the rules governing influences of µ on the LMS adaptation process [40, 41] can be used as rules

of thumb for the adjustment of µ in the FxLMS algorithm. These rules can be stated as follows.

1. There is an upper-bound for µ (denoted by µmax) beyond which the process becomes unstable.

2. The convergence rate has a direct relationship with µ.

3. The steady-state performance has an indirect relationship with µ.

These rules provides a useful sense for setting the step-size; however, there are some ambiguities while

using them. For example, the mathematical formulation for µmax, which is available in ANC literature,

has been derived only for a pure delay secondary path [7,8] and the exact value of this bound is unknown

for a realistic secondary path.

There have been several contributions in the performance analysis of the FxLMS adaptation process in

terms of µ [42–49]. However, only a few have intended to find general closed-form expressions for

µmax, steady-state performance, and convergence speed of this process. Even if such expressions were

derived, simplified cases with pure delay secondary paths were considered. This is mainly because of

the mathematical complexity associated with the modelling of the FxLMS adaptation process.

Long summarised early work on the analysis of the FxLMS algorithm in [46,47], while deriving closed-

form expressions for µmax and the steady-state performance. However, these expressions were derived

only for pure delay secondary paths. In [48], Elliott derived another expression for µmax which was

very similar to the one previously derived by Long. The distinction between the two expressions was

that Elliott derived his expression specifically for ANC applications. Hence, Elliott’s expression for

µmax is very popular in ANC literature. In [49], Bjarnason conducted a comprehensive analysis on the

FxLMS adaptation process. However, once he intended to derive closed-form expressions for µmax and

the steady-state performance, he had to simplify his formulations by assuming a pure delay secondary

path. Also, Vicente derived another expression for µmax when the acoustic noise is assumed to be sum

of deterministic sinusoids [50].

All the aforementioned closed-form expressions for µmax were derived for pure delay secondary paths.

However, this assumption is not very realistic because usually an acoustic channel (which is the main

part of the secondary path) has a long impulse response. Also, practical results show that the actual value

of µmax is different from those that have been proposed in available literature so far [51]. Xiao tried to

compute µmax for a realistic secondary path but, as he reported in [52], his theoretical results were not

in a good agreement with the simulation results obtained.



16 Introduction

1.4.3 Secondary Path Modelling Error

Due to mathematical difficulties, convergence analyses of adaptive ANC systems have been usually con-

ducted without considering any secondary path modelling error (or by considering a perfect secondary

path model). However, for some simplified cases, e.g. pure delay secondary paths or tonal noise, in-

fluences of this error on the FxLMS adaptation process have been studied [53–55]. All of these studies

have shown that, for a particular special case, the FxLMS algorithm is very robust against the secondary

path modelling error. It has to be noted that even for a perfect secondary path model, the analysis of the

FxLMS adaptation process is an active area of research.

In [10], Morgan showed that for the trivial case when the secondary path model is an identity system,

then this model does not cause the FxLMS adaptation process to become unstable if the phase difference

between this model and the actual secondary path is below 90o. Later, Boucher extends Morgan’s 90o

condition for the case with pure delay secondary paths and tonal acoustic noise [56].

1.5 Thesis Contributions

The main contributions of this thesis can be summarised as follows.

• As discussed in Section 1.4, available mathematical expressions for formulating behaviours of

FxLMS-based ANC systems can apply to only cases with pure delay secondary paths. However, a

realistic secondary path is not a pure delay path. This is the first challenge which this thesis intends

to deal with. In fact, it is desired to derive closed-form expressions for the step-size upper-bound,

steady-state performance and convergence speed of FxLMS-based ANC systems without using

any simplifying assumption regarding the secondary path.

• The second issue which this thesis is concerned with is to determine influences of the acoustic

noise band-width on FxLMS-based ANC systems. These influences have been studied by differ-

ent researchers; however, no theoretical and closed-form expressions describing them have been

proposed so far.

• As a further step towards the generalisation of the theoretical results, this thesis aims at determining

influences of secondary path modelling error on FxLMS-based ANC systems. This issue has been

addressed by different researchers but it requires further investigation.

• While performing an analysis on FxLMS-based ANC systems, it is found that trajectories of the

poles of the FxLMS adaptation process in the z-plane comply with certain rules. Also, it is found

that the dominant pole is located on a particular trajectory. Based on this observation, this thesis

develops a mechanism for localising the dominant pole of the FxLMS adaptation process.

• This thesis shows the validity of the obtained theoretical results by using an FPGA-based experi-

mental setup developed for this research.

• 11 journal and conference publications are extracted from this thesis, a list of which is available in

Page vii of the front matter.
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1.6 Thesis Organisation

The remainder of this thesis is organised as shown in Figure 1.13 . Chapter 2 uses the available literature

to formulate a theoretical frame-work for this research. Chapter 3 develops a novel theoretical model

for describing behaviours of FxLMS-based ANC systems in general conditions. This chapter considers

a realistic secondary path, an stochastic acoustic noise with an arbitrary band-width, and an arbitrary

secondary path model. This means that this comprehensive model can precisely determine behaviours

of practical FxLMS-based ANC systems. Chapter 4 simplifies this model by assuming a broad-band

acoustic noise and a perfect secondary path model; however, without using any simplifying assumption

regarding the physical secondary path. Based on the obtained model, this chapter derives closed-form

expressions for the step-size upper-bound, steady-state performance and convergence speed of FxLMS-

based ANC systems. The distinction between these expressions, and those previously derived, is that

they can apply to any general secondary path while previously-derived expressions can apply to only

pure delay secondary paths.

As another step towards the generalisation of the obtained theoretical results, Chapter 5 removes the

constraints, caused by assuming a broad-band acoustic noise, from the theoretical results derived in

Chapter 4. In fact, Chapter 5 extends the expressions derived in Chapter 4 to a more general case with

a more realistic acoustic noise. This chapter continues by determining influences of the acoustic noise

band-width on FxLMS-based ANC systems. Also, it is shown that the available expression for the

step-size upper-bound with tonal acoustic noise, can be derived from a special case of the expressions

developed in this chapter.

Chapter 6 removes the constraints, caused by assuming a perfect secondary path model, from the results

obtained in Chapter 5. In fact, this chapter extends the expressions derived in Chapter 5 to the most

general case in which the secondary path is a realistic acoustic channel, the acoustic noise is an stochastic

signal with an arbitrary band-width, and the secondary path model is an arbitrary imperfect model .

Chapter 7 examines the validity of the theoretical results, obtained in Chapters 3-6, by using computer

simulations. First, the validity of the model developed in Chapter 3 is shown. It is then shown that

influences of the physical secondary path, acoustic noise band-width, and imperfect secondary path

model on behaviours of FxLMS-based ANC systems can be accurately formulated by the expression

given in Chapters 4-6.

Chapters 8 and 9 contain a different analysis of FxLMS-based ANC systems. In fact, Chapters 3-6

study FxLMS-based ANC systems to evaluate performance of these systems but Chapters 8 and 9 study

these systems in view points of control engineering to develop a control mechanism over the FxLMS

adaptation process dynamics. Another novel contribution of this thesis is that Chapter 8 analyses the

FxLMS adaptation process using the root locus theory and determines the trajectories of the poles of this

process in the z-plane (FxLMS root locus). The properties of the dominant root of this root locus are also

determined. Chapter 9 uses the root locus analysis, performed in Chapter 8, to develop a mechanism for

the localisation of the dominant root of the FxLMS adaptation process, leading to developing a new ANC

algorithm which is called the Filtered-Weight FxLMS algorithm. This chapters ends by representing

relevant simulation results.
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Chapter 10 introduces the experimental setup used for the validation of the proposed theoretical results.

Using this setup, it is shown that the theoretical expressions derived for the step-size upper-bound, steady-

state performance and convergence speed of FxLMS-based ANC systems are valid in practise. Also,

the proposed ANC algorithm, developed in Chapter 8, is implemented in the experimental setup. It is

then shown that this algorithm is more efficient than the FxLMS algorithm. Finally, Chapter 11 gives

concluding remarks and possible future work.
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Chapter 2

Basic Principles of FxLMS Algorithm

This chapter uses the available literature to develop a mathematical foundation for the theoretical invest-

igations to be conducted in the thesis. A typical single channel feed-forward ANC system that has a

single control source, a single reference microphone and a single error microphone, is considered. This

is because general techniques used for the design, analysis and implementation of this typical system,

can apply to other varieties of ANC systems.

Section 2.1 introduces the single channel feed-forward ANC system. Section 2.2 derives the FxLMS al-

gorithm as a gradient-based adaptation algorithm, which causes the residual acoustic noise at the desired

silence zone to become minimal. Sections 2.3 defines the rotated vectors, based on which theoretical

models for FxLMS-based ANC systems are developed. Sections 2.4 introduces some simplifying as-

sumptions, which are commonly used in modelling and analysis of stochastic adaptation algorithms. Sec-

tion 2.5 uses the definitions and assumptions, introduced in Sections 2.3 and 2.4, to formulate FxLMS-

based ANC systems.

2.1 Single Channel Feed-forward ANC

The general block diagram of a single channel adaptive feed-forward ANC system is shown in Figure 2.1.

In this figure, d (n) is the noise signal (or unwanted acoustic pressure) at the desired silence zone, x (n)

is the reference signal, measured by the reference microphone, y (n) is the anti-noise signal, generated

by the ANC controller, and e (n) is the residual acoustic noise, measured by the error microphone in the

silence zone. Also, the primary and secondary paths are shown by linear systems p and s, respectively.

According to Figure 2.1, the acoustic noise d (n) is assumed to be the response of the primary path p

to the measured reference signal x (n)1. The acoustic signal d (n) is combined with the (acoustic) anti-

noise signal at the desired silence zone. As shown, the anti-noise signal is the actual response of the

secondary path s to the control signal y (n). The control signal is generated by an ANC controller w

which has a transversal digital filter structure. This digital structure can be adjusted adaptively by using

an adaptation algorithm (such as the FxLMS algorithm). In the following, different elements of the block

diagram shown in Figure 2.1 are discussed in more detail.
1It is an assumption because p is a hypothetical system

21
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Figure 2.1: Functional block diagram of single channel adaptive feed-forward ANC

2.1.1 Control Signal

Assuming that the ANC controller w has a transversal structure of length L, the control signal y (n), can

be expressed as

y (n) = wT (n) x (n) (2.1)

where x (n), called the tap reference vector, is given by

x (n) =
[
x (n) x (n− 1) . . . x (n− L+ 1)

]T
(2.2)

and w (n), called the (adaptive) weight vector, is formed by filter parameters w0, w1, ...and wL−1 as

w (n) =
[
w0 (n) w1 (n) . . . wL−1 (n)

]T
(2.3)

The FxLMS algorithm performs an adaptation process on w (n) in such a way that y (n) causes the

power of the residual acoustic noise e (n) to be minimised. The derivation of this algorithm is left to

Section 2.2.

2.1.2 Actual Secondary Path

A realistic secondary path can be represented by a Finite Impulse Response (FIR) system of length Q

with an unknown impulse response in the form of

s (n) =

Q−1∑

q=0

sqδ (n− q) (2.4)

where δ (n) is Kronecker delta function and sq is the amplitude of the impulse response at time index q.

Alternatively, this impulse response can be represented in the vector form of

s ,
[
s0 s1 . . . sQ−1

]T
(2.5)
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Note that the above formulation for the secondary path does not introduce any constraint because ac-

tual electro-acoustic channels usually have finite-duration impulse responses (FIR). However, even if a

secondary path has an infinite impulse response, it can be represented by a FIR system of high order.

2.1.3 Secondary Path Model

As discussed in Chapter 1, the realisation of the FxLMS algorithm requires an estimate of the secondary

path to be uploaded into the electronic control system. This estimate model, which is usually referred to

as the secondary path model, can be obtained by using off-line secondary path identification techniques

prior to the operation of the ANC system [7], or by using on-line techniques during the operation of the

ANC system [57–60]. Since the actual secondary path is a FIR system, the secondary path model can be

assumed to be another FIR system with the impulse response given by

ŝ (n) =
M−1∑

m=0

ŝmδ (n−m) (2.6)

whereM is the length of the impulse response (usuallyM < Q) and scalar parameter ŝm is the amplitude

of the impulse response at time index m. Similar to the actual secondary path impulse response, ŝ (n)

can be represented by a Q× 1 vector of

ŝ ,
[
ŝ0 ŝ1 . . . ŝM−1 0Q . . . 0

]T
(2.7)

By using the definitions, given in Eqs. (2.5) and (2.7), it can be stated that when the secondary path

model is perfect, vectors s and ŝ are equal: s = ŝ and when the secondary path model is not perfect,

these two vectors are not equal: s 6= ŝ.

2.2 Algorithm Derivation

This section drives the FxLMS algorithm as a gradient-based adaptation algorithm. It is shown that

performing this algorithm on a transversal ANC controller causes the residual acoustic noise power to

become minimal.

2.2.1 Modelling Residual Noise

Usually, the derivation of the FxLMS algorithm begins with developing a mathematical expression for

the residual acoustic noise e (n). This expression is then optimised with respect to w (n). For this

purpose, by using Figure 2.1, e (n) is initially expressed as

e (n) = d (n)− s (n) ∗ y (n) (2.8)
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Now, substituting Eqs. (2.1) and (2.4) into (2.8) results in:

e (n) = d (n)−
Q−1∑

q=0

sqw
T (n− q) x (n− q) (2.9)

Eq. (2.9) gives an appropriate expression for e (n), which can be used in the derivation of the FxLMS

algorithm. In the following, this expression is used to minimise the power of e (n) with respect to w (n).

2.2.2 Optimal ANC Controller

Here, the cost function J (n) is defined as the power (or variance) of e (n):

J(n) , E
{
e2 (n)

}
(2.10)

where E {.} denotes the statistical expectation operator. This cost function is usually referred to as

the Mean Square Error (MSE) function. The optimal weight vector of an ANC controller, denoted by

wo (n), is the weight vector for which the MSE function is minimised. It can be shown that, for a

stationary acoustic noise, the optimal weight vector is time-invariant [11]:

∀n, wo (n) = wo (2.11)

Accordingly, the optimal control signal, denoted by yo (n), can be expressed by setting w(n) = wo in

Eq. (2.1) as

yo (n) = y (n)|wo
= wT

o x (n) (2.12)

Similarly, the optimal residual acoustic noise, denoted by eo (n), can be expressed by setting y (n) =

yo (n) in Eq. (2.9) as

eo (n) = e (n)|yo(n) = d (n)−wT
o

Q−1∑

q=0

sqx (n− q) (2.13)

This expression for eo (n) can be re-expressed in the form of

eo (n) = d (n)−wT
o f (n) (2.14)

where f (n) is defined as

f (n) ,
Q−1∑

q=0

sqx (n− q) (2.15)

Finally, the minimal MSE, denoted by Jo, can be obtained by setting e (n) = eo (n) in Eq. (2.10) as

Jo = E
{
e2
o (n)

}
= σ2

d − 2wT
o E {d (n) f (n)}+ wT

o E
{
f (n) fT (n)

}
wo (2.16)
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where σ2
d = E

{
d2 (n)

}
is the power of the primary acoustic noise d (n). Now, the cross-correlation

vector pf is defined as

pf , E {f(n)d(n)} (2.17)

Also, the auto-correlation matrix Rf is defined as

Rf , E
{
f(n)fT (n)

}
(2.18)

By using these definitions, Eq. (2.16) can be re-expressed as

Jo = σ2
d − 2wT

o pf + wT
o Rfwo (2.19)

For a stationary acoustic noise, where pf and Rf are constants, the minimal MSE is time-invariant, and,

therefore, it can be represented by Jo. Also, since wo minimises Jo, the following equation can be stated.

∇Jo|wo
= 0 (2.20)

where∇ is the vector-gradient operator. Now, combining Eqs. (2.19) and (2.20) results in

− 2pf + 2Rfwo = 0 (2.21)

By solving this equation, the optimal weigh vector wo can be obtained as

wo = R−1
f pf (2.22)

Finally, combining Eqs. (2.19) and (2.22), the optimal MSE is obtained as

Jo = σ2
d − pTf R−1

f pf (2.23)

In signal processing, the optimal weight vector, given in Eq. (2.22), is usually referred to as the Wiener-

Hopf optimal filter. Also, the value of Jo is referred to as the minimum achievable MSE function. In

ANC literature, Jo can be interpreted as the minimum achievable residual acoustic noise power. Note

that Jo is only a function of acoustic noise statistics and impulse responses of primary and secondary

paths. In other words, Jo is independent of instantaneous values of the acoustic noise and operational

parameters of the FxLMS algorithms (e.g. step-size and secondary path model).

2.2.3 Gradient-Based Optimisation

The optimal weight vector, given in Eq. (2.22), can be directly calculated from Rf and pf ; however, es-

timation of Rf and pf requires a considerable amount of computation. Another approach to determining

the optimal weight vector is based on using the steepest-descent method [61]. According to this method,

if the weight vector w (n) is updated by the following equation, then it is bound to move towards the

optimal solution given in Eq. (2.22).

w (n+ 1) = w (n)− 1

2
µ∇J (n) (2.24)
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where scalar parameter µ is the adaptation step-size. For the realisation of this equation, it is required

to estimate ∇J (n) in terms of available parameters and signals so that it can be computed. For this

purpose, the following approximation should be made [11].

∇J (n) = ∇E
{
e2 (n)

}
= E

{
∇e2 (n)

}
' ∇e2 (n) = 2e (n)∇e (n) (2.25)

According to Eq. (2.25), the computation of∇J (n) requires an estimation for∇e (n). By differentiating

Eq. (2.9),∇e (n) can be expressed as

∇e(n) =
∂e(n)

∂w(n)
= −

Q−1∑

q=0

sq
∂wT (n− q)
∂w(n)

x(n− q) (2.26)

When the adaptation process is slow, it can be assumed that

w (n) ≈ w (n− 1) ≈ · · · ≈ w (n−Q+ 1) (2.27)

Substituting this approximation into Eq. (2.26) results in

∇e (n) = −
Q−1∑

q=0

sqx (n− q) (2.28)

From Eqs. (2.15) and (2.28), it can be shown that

∇e (n) = −f (n) (2.29)

Subsequently, combining Eqs. (2.25) and (2.29) results in

∇J (n) = −2e (n) f (n) (2.30)

Now, the FxLMS update equation can be obtained by substituting Eq. (2.30) into (2.24) as

w (n+ 1) = w (n) + µe (n) f (n) (2.31)

In practise, f (n) is not physically available, therefore, the implementation of Eq. (2.31) requires an

estimate of f (n). This estimate can be obtained by filtering x (n) using the available estimate of the

secondary path, given in Eq. (2.6). Therefore, the estimate of f (n), denoted by f̂ (n), can be obtained

by

f̂ (n) =
M−1∑

m=0

ŝmx (n−m) (2.32)

Usually, f̂ (n) is called the filtered reference vector. Now, by replacing f (n) with f̂ (n) in Eq. (2.30),

∇J (n) is approximated by

∇J (n) ≈ −2e (n) f̂ (n) (2.33)
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Figure 2.2: Functional block diagram of FxLMS-based ANC

Also, the updating equation, given in Eq. (2.24), becomes

w (n+ 1) = w (n) + µe (n) f̂ (n) (2.34)

Eq. (2.34) can be implemented using available signals and parameters. As shown in Figure 2.2, f̂ (n)

can be obtained by filtering the reference signal and buffering the obtained values as

f̂ (n) =
[
f̂ (n) f̂ (n− 1) . . . f̂ (n− L+ 1)

]T
(2.35)

where f̂ (n) is the filtered-reference signal given by

f̂ (n) =

M−1∑

m=0

ŝmx (n−m) (2.36)

Eqs. (2.34)-(2.36) give a formulation for the FxLMS algorithm, which can be implemented practically.

2.3 Rotated Vectors

In the analysis of a gradient-based adaptation algorithm, it is more convenient to use the rotated reference

vector and rotated weight misalignment vector, instead of the original reference and weight vectors [61].

This is because the auto-correlation matrix of the rotated reference vector is diagonal, and the equilibrium

point of the rotated weight misalignment vector is the origin, rather than the Wiener-Hopf solution. In

this section, these rotated vectors are introduced.

2.3.1 Auto-Correlation Matrix

The Auto-Correlation Matrix (ACM) of the reference vector is defined as

R , E
{
x (n) xT (n)

}
(2.37)

Since R is a Toeplitz matrix, it can be diagonalised as

R = FΛFT (2.38)
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where square matrix F is the modal matrix, formed by the Eigenvectors of R:

F =
[

F0 F1 . . . FL−1

]
(2.39)

and diagonal matrix Λ is formed by the Eigenvalues of R:

Λ =




λ0 0 . . . 0

0 λ1
. . .

...
...

. . . . . . 0

0 . . . 0 λL−1




(2.40)

In Eqs. (2.39) and (2.40), F0,F1, . . . ,FL−1 are Eigenvectors and λ0, λ1, . . . , λL−1 are Eigenvalues of

the ACM matrix R. The inverse of any modal matrix is equal to its transpose; thus:

FTF = I (2.41)

In this case, from Eqs. (2.38) and (2.41) it can be shown that

FTRF = Λ (2.42)

Eqs. (2.41) and (2.42) are widely used in the next chapters.

2.3.2 Rotated Reference Vector

Using the modal matrix F as a rotation matrix, the rotated reference vector is defined as:

z (n) , FTx (n) (2.43)

This vector can be expressed in the form of

z (n) =
[
z0 (n) z1 (n) . . . zL−1 (n)

]T
(2.44)

From Eq. (2.43), it can be shown that the l-th element of z (n) can be computed as

zl (n) = FT
l x (n) , l = 0, 1, . . . , L− 1 (2.45)

where vector Fl is the l-th column of matrix F.

2.3.3 Rotated Weight Misalignment Vector

The weight misalignment vector at time n, denoted by v (n), is defined as the difference between the

weight vector at time n and the optimal weight vector:

v (n) , w (n)−wo, (2.46)
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Also, the rotated weight misalignment vector is defined as

c (n) , FTv (n) = FT (w (n)−wo) . (2.47)

This vector can be also represented in the form of

c (n) =
[
c0 (n) c1 (n) . . . cL−1 (n)

]T
. (2.48)

where cl (n) is computed as

cl (n) = FT
l (w (n)−wo) , , l = 0, 1, . . . , L− 1. (2.49)

As can be seen in Eq. (2.49), when w (n) converges to wo, the rotated weight misalignment vector

converges to the origin. Due to this property, the analysis of the FxLMS algorithm using the rotated

weight misalignment vector is more convenient.

2.4 Independence Assumptions

The analysis of gradient-based adaptation algorithms with stochastic reference signals is usually per-

formed based on a set of simplifying assumptions, called the independence assumptions. These assump-

tions were proposed by Gardener in a signal processing context [62]; however, they have been widely

used in analysing adaptive ANC systems. As Gardener stated in [62], “the independence assumptions

apparently cannot be analytically justified for practical cases, but this is perhaps the best that can be

done from the pragmatic point of view of obtaining a good trade-off between model realism and model

tractability”.

In the following, these assumptions are discussed and formulated in detail. Later, the validity of the

theoretical results obtained by using these assumptions are verified in computer simulation and practise.

2.4.1 Primary Independence Assumption

The primary independence assumption states that, for a Gaussian reference signal, the sequence of ref-

erence vectors can be considered as an independent identically distributed (i.i.d) sequence with zero

mean [62]. Accordingly, consecutive reference vectors are statistically independent. Based on this as-

sumption, it can be shown that, for time indexes n1 and n2,

E
{
x (n1) xT (n2)

}
=

{
R n1 = n2

0 n1 6= n2

(2.50)

where matrix R is given in Eq. (2.37). The above equality can be also re-expressed in the form of

E
{
x (n−m) xT (n− p)

}
= δm,pR ∀n,m, p ∈ N (2.51)
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Also, by using Eqs. (2.43) and (2.51), it can be shown that

E
{
z (n−m) zT (n− p)

}
= δm,pΛ ∀n,m, p ∈ N, (2.52)

Eq. (2.52) shows that consecutive rotated reference vectors are statistically independent and the ACM of

these vector variables is the diagonal matrix Λ.

2.4.2 Secondary Independence Assumption

According to the secondary independence assumption, for the problem of adaptive identification of an un-

known system with finite impulse response (e.g. transversal ANC controllers), the optimal error (which

is equivalent to eo (n) in ANC) is independent of the reference vector sequence [62]:

E {eo (n1) x (n2)} = E {eo (n1)}E {x (n2)} (2.53)

Left multiplying both sides of this equality by FT results in

E {eo (n1) z (n2)} = E {eo (n1)}E {z (n2)} (2.54)

This equality shows that the optimal residual acoustic noise is also independent of the rotated reference

vectors. Since the reference vector has zero mean, the following results can be obtained from Eqs. (2.53)

and (2.54), respectively:

E {eo (n1) x (n2)} = 0 (2.55)

and

E {eo (n1) z (n2)} = 0 (2.56)

Therefore, the optimal residual acoustic noise is uncorrelated with both the reference and rotated refer-

ence vectors.

2.4.3 Independence of Weights and Reference Signal

Usually it is assumed that the weights of the ANC controller and samples of the reference signal are

statistically independent [11, 63]. Based on this assumption, it can be shown that

E
{
wT (n1) x (n2)

}
= E

{
wT (n1)

}
E {x (n2)} (2.57)

Also, from this equality, it can be shown that c (n) and z (n) are statistically independent. For proving

this, both sides of Eq. (2.57), should be manipulated as

E
{[

wT (n1)−wT
o

]
x (n2)

}
= E

{
wT (n1)

}
E {x (n2)} −wT

o E {x (n2)} (2.58)

The right side of this equality can be modified as

E
{[

wT (n1)−wT
o

]
x (n2)

}
=
(
E
{
wT (n1)−wT

o

})
E {x (n2)} (2.59)
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Since FFT = I, Eq. (2.59) can be re-expressed as

E
{[

wT (n1)−wT
o

]
FFTx (n2)

}
=
(
E
{
wT (n1)−wT

o

}
F
)
E
{
FTx (n2)

}
(2.60)

Finally, combining Eqs. (2.43), (2.47) and (2.61) results in

E
{
cT (n1) z (n2)

}
= E

{
cT (n1)

}
E {z (n2)} (2.61)

This equality shows that the rotated weight misalignment vector c and rotated reference vector z are

statistically independent. Note that for stationary acoustic noise E {x (n)} = E {z (n)} = 0.

2.5 Basic Model for FxLMS-Based ANC

This section expresses the FxLMS update equation and the residual acoustic noise in terms of rotated

variables. The obtained expressions are used later in Chapters 3-6. Also, this section develops a dynamic

model for the first-order moments of the adaptive weights in the FxLMS-based ANC systems. This

dynamic model is the core of Chapters 8 and 9.

2.5.1 Alternative Expression for FxLMS Update Equation

In order to express the FxLMS update equation in terms of the rotated variables, Eq. (2.34) can be

modified as follows.

FT [w(n+ 1)−wo] = FT [w(n)−wo] + µe(n)FT f̂ (n) (2.62)

Combining Eqs. (2.47) and (2.62) results in

c (n+ 1) = c (n) + µe(n)FTf̂ (n) (2.63)

Now, the rotated filtered reference vector is defined as

ĝ (n) = FTf̂ (n) (2.64)

By using this definition, Eq. (2.63) can be re-expressed as

c (n+ 1) = c (n) + µe(n)ĝ (n) (2.65)

According to Eqs. (2.32), (2.43) and (2.64), vector ĝ (n) can be obtained by filtering z (n) using the

available estimate of the secondary path:

ĝ (n) =
M−1∑

m=0

ŝmz (n−m) , (2.66)
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Alternatively, ĝ (n) can be also represented in the form of

ĝ (n) =
[
ĝ0 (n) ĝ1 (n) . . . ĝL−1 (n)

]T
, (2.67)

where

ĝl (n) =
M−1∑

m=0

ŝmzl (n−m) . (2.68)

Eqs. (2.65)-(2.68) describe the FxLMS update equation in terms of the rotated variables.

2.5.2 Alternative Expression for Residual Acoustic Noise

In order to develop an expression for the residual acoustic noise in terms of the rotated variables, Eq.

(2.9) can be modified as follows.

e (n) = d(n)−
Q−1∑

q=0

sq
[
wT (n− q)−wT

o + wT
o

]
x (n− q) (2.69)

= d(n)−
Q−1∑

q=0

sqw
T
o x (n− q)−

Q−1∑

q=0

sq
[
wT (n− q)−wT

o

]
FFTx (n− q)

As can be seen, z (n), c (n) and f (n) appear in the right side of Eq. (2.69); thus,

e(n) = d(n)−wT
o

Q−1∑

q=0

sqx (n− q)−
Q−1∑

q=0

sqc
T (n− q) z (n− q)

= d(n)−wT
o f (n)−

Q−1∑

q=0

sqc
T (n− q) z (n− q) . (2.70)

According to Eq. (2.14), the summation of the first two terms in Eq. (2.70) is equal to eo (t); therefore,

Eq. (2.70) can be simplified to

e(n) = eo (n)−
Q−1∑

q=0

sqc
T (n− q) z (n− q) . (2.71)

or equivalently

e(n) = eo (n)−
Q−1∑

q=0

sqz
T (n− q) c (n− q) . (2.72)

This equation expresses the residual acoustic noise in terms of the rotated variables.

2.5.3 Dynamics of First-Order Moments

In [49], a dynamic model for the FxLMS adaptation process was derived. In the following, this model

is derived and expressed in accordance with the terminology used in this thesis. For this purpose, Eqs.
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(2.72) and (2.65) are initially combined as

c (n+ 1) = c (n) + µeo (n) ĝ (n)− µ
Q−1∑

q=0

sqĝ (n) zT (n− q) c (n− q) (2.73)

Combining Eqs. (2.66) and (2.73) results in

c (n+ 1) = c (n) + µeo (n) ĝ (n)− µ
Q−1∑

q=0

M−1∑

m=0

ŝmsqz (n−m) zT (n− q) c (n− q) (2.74)

Now, taking the statistical expectation form both sides of Eq. (2.74) results in

c̄ (n+ 1) = c̄ (n) + µE {eo (n) ĝ (n)} − µ
Q−1∑

q=0

M−1∑

m=0

ŝmsqE
{
z (n−m) zT (n− q) c (n− q)

}
(2.75)

where c̄ (n) is defined as the mean of the rotated weight misalignment vector:

c̄ (n) , E {c (n)} (2.76)

c̄ (n) can be interpreted as the first-order moment of the adaptive weight vector. According to the second-

ary independence assumption, the optimal residual acoustic noise is uncorrelated with rotated reference

vectors: E {eo (n) ĝ (n)} = 0. Substituting this result into Eq. (2.75) results in

c̄ (n+ 1) = c̄ (n)− µ
Q−1∑

q=0

M−1∑

m=0

ŝmsqE
{
z (n−m) zT (n− q) c (n− q)

}
(2.77)

Since weights and reference signal are independent, Eq. (2.77) can be modified to

c̄ (n+ 1) = c̄ (n)− µ
Q−1∑

q=0

M−1∑

m=0

ŝmsqE
{
z (n−m) zT (n− q)

}
c (n− q) (2.78)

Now, combining Eqs. (2.52) and (2.78) results in

c̄ (n+ 1) = c̄ (n)− µ
Q−1∑

q=0

M−1∑

m=0

ŝmsqδm,qΛc (n− q) (2.79)

Assuming a perfect secondary path model (ŝ = s), Eq. (2.79) becomes

c (n+ 1) = c (n)− µΛ

Q−1∑

q=0

s2
qc (n− q) (2.80)

Eq. (2.80) formulates a dynamic model for the first-order moments in FxLMS-based ANC systems. This

model is used in Chapters 8 and 9.
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Chapter 3

Stochastic Model for FxLMS-Based ANC

There are several contributions on theoretical modelling of FxLMS-based ANC systems [42–49]. How-

ever, when it is intended to derive elegant closed-form expressions for formulating stability or steady-

state behaviours of these systems, a number of simplifying assumptions regarding the acoustic noise, the

actual secondary path and its model have to be used.

This chapter develops a dynamic model for FxLMS-based ANC systems, considering a general stochastic

acoustic noise and a general secondary path. Also, an arbitrary secondary path model, which is not

necessarily a perfect model, is considered. The main distinction of the proposed model is its properties

based on which closed-form expressions for formulating system behaviours can be derived, without

using any simplifying assumptions regarding the acoustic noise, nor regarding the secondary path and its

model. The derivation of these expressions are left to the next chapters.

3.1 MSE Function

This section derives an alternative expression for the MSE function. For this purpose, this function is

initially expressed by combining Eqs. (2.10) and (2.71) as

J (n) = E
{
e2
o (n)

}
− 2

Q−1∑

q=0

sqE
{
cT (n− q) z (n− q) eo (n)

}

+

Q−1∑

q,p=0

sqspE
{
cT (n− q) z (n− q) zT (n− p) c (n− p)

}
(3.1)

According to Eq. (2.16), the first term in Eq. (3.1) is equal to Jo. The second term is equal to zero

because based on the independence assumptions, discussed in Chapter 2, the rotated reference vector

z (n− q) is a zero mean vector and statistically independent of eo (n) and c (n). Therefore, Eq. (3.1)

can be simplified to

J (n) = Jo +

Q−1∑

q,p=0

sqspE
{
cT (n− q) z (n− q) zT (n− p) c (n− p)

}
(3.2)

35
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Now, combining Eqs. (2.44), (2.48) and (3.2) results in

J (n) = Jo +

Q−1∑

q,p=0

sqspE

{
L−1∑

l=0

cl (n− q) zl (n− q)
L−1∑

k=0

zk (n− p) ck (n− p)
}

= Jo +

Q−1∑

q,p=0

L−1∑

l,k=0

sqspE {cl (n− q) ck (n− p) zl (n− q) zk (n− p)} (3.3)

Since samples of the reference signal and adaptive weights are statistically independent (the third inde-

pendence assumption), Eq. (3.3) can be simplified to

J (n) = Jo +

Q−1∑

q,p=0

L−1∑

l,k=0

sqspE {zl (n− q) zk (n− p)}E {cl (n− q) ck (n− p)} (3.4)

Combining Eqs. (2.45) and (3.4) results in

J (n) = Jo +

Q−1∑

q,p=0

L−1∑

l,k=0

sqspE
{
FT
l x (n− q) FT

k x (n− p)
}
E {cl (n− q) ck (n− p)} (3.5)

Since Fl and Fk are constant vectors, Eq. (3.5) can be simplified to

J (n) = Jo +

Q−1∑

q,p=0

L−1∑

l,k=0

sqspF
T
l E
{
x (n− q) xT (n− p)

}
FkE {cl (n− q) ck (n− p)} (3.6)

Now, combining Eqs. (2.51) and (3.6) results in

J (n) = Jo +

Q−1∑

q=0

L−1∑

l,k=0

s2
qF

T
l RFkE {cl (n− q) ck (n− q)} (3.7)

On the other hand, from Eq. (2.42), it can be shown that

FT
l RFk = λlδl,k (3.8)

Using this equality, Eq. (3.7) is simplified to

J (n) = Jo +

Q−1∑

q=0

L−1∑

l=0

s2
qλlE

{
c2
l (n− q)

}
(3.9)

Finally, Eq. (3.9) can be expressed in the form of

J (n) = Jo +

Q−1∑

q=0

s2
qE
{
cT (n− q) Λc (n− q)

}
(3.10)

From Eq. (3.10), it can be seen that J (n) is independent of instantaneous values of the acoustic noise.

Also, it can be deduced that J (n) is a positive scalar function of c (n).
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3.2 Excess-MSE Function

Here, the excess-MSE function is defined as a dynamic measure, determining the deviation of the MSE

function from its minimal level. Usually, the steady-state level of this function is referred to as the excess-

MSE in ANC terminology. However, the excess-MSE function, which can be interpreted as the distance

of the instantaneous residual noise power from the minimum achievable noise power, is considered in

this thesis. Accordingly, stability behaviours of an ANC system can be studied by analysing the variation

of the excess-MSE function during the operation of the adaptation algorithm on the ANC controller. For

developing a dynamic model for the excess-MSE function, the MSE function is expressed as

J (n) = Jo + Jex (n) (3.11)

where Jo is the minimal MSE level and Jex (n) is the excess-MSE function. As can be seen in Eq.

(3.11), the absolute value of Jex (n) determines how far the instantaneous residual noise power is from

its minimal level. Obviously, since Jo is the minimal value of the positive definite function J (n), Jex (n)

is always a positive definite function of system variables:

∀n, min J (n) = Jo ⇒ J (n) ≥ Jo ⇒ Jo + Jex (n) ≥ Jo
⇒ Jex (n) ≥ 0 (3.12)

Now, considering the expressions, given in Eqs. (3.10) and (3.11), Jex (n) can be formulated as

Jex (n) ,
Q−1∑

q=0

s2
qE
{
cT (n− q) Λc (n− q)

}
(3.13)

Substituting Eqs. (2.40) and (2.48) into (3.13) results in

Jex (n) =

Q−1∑

q=0

L−1∑

l=0

λls
2
qE
{
c2
l (n− q)

}
(3.14)

which can be re-expressed as

Jex (n) =

Q−1∑

q=0

L−1∑

l=0

λls
2
qml (n− q) (3.15)

where m0 (n) ,m1 (n) , . . . ,mL−1 (n) are the second-order moments of the adaptive weights:

ml (n) , E
{
c2
l (n)

}
l = 0, 1, . . . , L− 1 (3.16)

Now, in order to investigate the variation of the excess-MSE function during the operation of the FxLMS

algorithm, its time difference is defined as

4Jex (n) , Jex (n+ 1)− Jex (n) (3.17)
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By combining Eqs. (3.15) and (3.17),4Jex (n) can be expressed as

4Jex (n) =

Q−1∑

q=0

L−1∑

l=0

λls
2
q4ml (n− q) (3.18)

where4ml (n) is the time difference of the l-th second-order moment:

4ml (n) = ml (n+ 1)−ml (n) , l = 0, 1, . . . , L− 1 (3.19)

From Eq. (3.16),4ml (n) can be expressed as

4ml (n) = E
{
c2
l (n+ 1)

}
− E

{
c2
l (n)

}
(3.20)

On the other hand, from Eq. (2.65), it can be shown that

cl (n+ 1) = cl (n) + µĝl (n) e (n) (3.21)

By combining Eqs. (3.20) and (3.21),4ml (n) is formulated by

4ml (n) = µ2E
{
ĝ2
l (n) e2 (n)

}
+ 2µE {cl (n) ĝl (n) e (n)} (3.22)

On the other hand, from Eqs. (2.32), (2.45) and (2.68), it can be shown that

ĝl (n) = FT
l f̂ (n) (3.23)

By substituting the above expression for ĝl (n) into Eq. (3.22),4ml (n) is obtained as

4ml (n) = µ2FT
l E
{

f̂ (n) f̂T (n) e2 (n)
}

Fl + 2µFT
l E
{

f̂ (n) cl (n) e (n)
}

(3.24)

This equation can be expressed as

4ml (n) = Al (n) +Bl (n) (3.25)

where scalar functions Al (n) and Bl (n) are given by

Al (n) = µ2FT
l E
{

f̂ (n) f̂T (n) e2 (n)
}

Fl (3.26)

and,

Bl (n) = 2µFT
l E
{

f̂ (n) cl (n) e (n)
}

(3.27)

The mathematical expressions, given in Eqs. (3.18) and (3.25)-(3.27), compose a stochastic dynamic

model for the variation of the excess-MSE function during the operation of the FxLMS algorithm. The

following two sections formulate scalar functions Al (n) and Bl (n) and show that they are linear func-

tions of the second-order moments mo (n) , . . . ,mL−1 (n).
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3.3 Variation of Al (n)

Based on the third independence assumption, it can be shown that the reference vector x (n) is independ-

ent of the MSE function J (n) [64]. Consequently, the filtered reference vector f̂ (n) is independent of

J (n). Accordingly, Eq. (3.26) can be simplified to

Al (n) = µ2FT
l E
{

f̂ (n) f̂T (n)
}

Fl.J (n) (3.28)

On the other hand, from Eqs. (2.32) and (2.51) , it can be shown that

E
{

f̂ (n) f̂T (n)
}

=

M−1∑

q,p=0

ŝq ŝpE
{
x (n− q) xT (n− p)

}

=
M−1∑

q=0

ŝ2
qR

= ‖ŝ‖2 R (3.29)

where ‖.‖ denotes the Euclidean vector norm and vector ŝ is given in Eq. (2.7):

‖ŝ‖2 =

M−1∑

q=0

ŝ2
q =

Q−1∑

q=0

ŝ2
q (3.30)

Now, by substituting Eq. (3.29) into (3.28), Al (n) is simplified to

Al (n) = µ2 ‖ŝ‖2 FT
l RFlJ (n) (3.31)

From Eq. (2.42) , it can be shown that

FT
l RFl = λl (3.32)

Substituting this equality into Eq. (3.31) results in

Al (n) = µ2λl ‖ŝ‖2 J (n) (3.33)

Now, substituting Eq. (3.11) into Eq. (3.33) results in

Al (n) = µ2λl ‖ŝ‖2 Jo + µ2λl ‖ŝ‖2 Jex (n) (3.34)

Finally, by using Eq. (3.15), Eq (3.34) can be expressed as

Al (n) = µ2λl ‖ŝ‖2 Jo + µ2λl ‖ŝ‖2
Q−1∑

p=0

L−1∑

k=0

λks
2
pmk (n− p) (3.35)

Eq. (3.35) formulates Al (n) as a function of the second-order moments mo (n) , . . . ,mL−1 (n).
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3.4 Variation of Bl (n)

By substituting Eq. (2.71) into (3.27), Bl (n) is expanded to

Bl (n) = 2µFT
l E
{

f̂ (n) cl (n) eo (n)
}
− 2µFT

l

Q−1∑

p=0

spE
{
cl (n) f̂ (n) cT (n− p) z (n− p)

}
(3.36)

Considering the second and third independence assumptions, the first term in Eq. (3.36) is simplified to

2µFT
l E
{

f̂ (n) cl (n) eo (n)
}

= 2µFT
l E
{

f̂ (n)
}
E {cl (n) eo (n)} (3.37)

Since the reference signal has zero mean, it can be shown that E{f̂ (n)} = 0; therefore,

2µFT
l E
{

f̂ (n) cl (n) eo (n)
}

= 0 (3.38)

By substituting Eq. (3.38) into (3.36), Bl (n) is simplified to

Bl (n) = −2µFT
l

Q−1∑

p=0

spE
{
cl (n) f̂ (n) cT (n− p) z (n− p)

}
(3.39)

Now, substituting Eq. (2.32) into (3.39) results in

Bl (n) = −2µFT
l

Q−1∑

p=0

spE

{
cl (n)

(
M−1∑

m=0

ŝmx (n−m)

)
cT (n− p) z (n− p)

}

= −2µFT
l

Q−1∑

p=0

M−1∑

m=0

spŝmE
{
cl (n) x (n−m) cT (n− p) z (n− p)

}
(3.40)

Substituting Eqs. (2.44) and (2.48) into (3.40) results in

Bl (n) = −2µFT
l

Q−1∑

p=0

M−1∑

m=0

spŝmE

{
cl (n) x (n−m)

L−1∑

i=0

ci (n− p) zi (n− p)
}

= −2µFT
l

Q−1∑

p=0

M−1∑

m=0

L−1∑

i=0

spŝmE {cl (n) ci (n− p) x (n−m) zi (n− p)} (3.41)

On the other hand, from Eq. (2.45), it can be shown that

zi (n− p) = xT (n− p) Fi (3.42)

Combining Eqs. (3.41) and (3.42) results in

Bl (n) = −2µFT
l

Q−1∑

p=0

M−1∑

m=0

L−1∑

i=0

spŝmE
{
cl (n) ci (n− p) x (n−m) xT (n− p)

}
Fi (3.43)
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Considering that adaptive weights and noise samples are statistically independent (third independence

assumption), Eq. (3.43) can be simplified to

Bl (n) = −2µFT
l

Q−1∑

p=0

M−1∑

m=0

L−1∑

i=0

spŝmE {cl (n) ci (n− p)}E
{
x (n−m) xT (n− p)

}
Fi (3.44)

Now, substituting Eq. (2.51) into (3.44) results in

Bl (n) = −2µFT
l

Q−1∑

p=0

M−1∑

m=0

L−1∑

i=0

spŝmE {cl (n) ci (n− p)} δm,pRFi

= −2µ

Q−1∑

p=0

L−1∑

i=0

spŝpE {cl (n) ci (n− p)}FT
l RFi (3.45)

Note that, according to Eq. (2.7), for m > M − 1, ŝm = 0. On the other hand, Eq. (2.42) results in

FT
l RFi = λlδl,i (3.46)

By using this equality, Eq.(3.45) is simplified to

Bl (n) = −2µ

Q−1∑

p=0

L−1∑

i=0

spŝpλlδl,iE {cl (n) ci (n− p)}

= −2µλl

Q−1∑

p=0

spŝpE {cl (n) cl (n− p)} (3.47)

From the FxLMS update equation, given in Eq. (2.65), it can be shown that

c (n) = c (n− p) + µ

p∑

k=1

ĝ (n− k) e (n− k) p = 0, 1, . . . , Q− 1 (3.48)

When the adaptation process is slow, Eq. (3.48) can be approximated by 1

c (n) ≈ c (n− p) + µpĝ (n− p) e (n− p) p = 0, 1, . . . , Q− 1 (3.49)

Therefore, for the variation of the l-th adaptive weight, the following equation can be derived.

cl (n) ≈ cl (n− p) + µpĝl (n− p) e (n− p) p = 0, 1, . . . , Q− 1 (3.50)

1For a slow adaptation process, it can be assumed that the variation of the gradient vector ∇J (n) is
so slow that ∇J (n)≈. . .≈∇J (n− p), for p = 0, 1, . . . , Q − 1. Therefore, by using the expression
given for ∇J (n) in Eq. (2.33), it can be shown that e (n) f̂ (n)≈. . .≈e (n− p) f̂ (n− p). Subsequently, it
can be shown that e (n)FT f̂ (n)≈e (n− 1)FT f̂ (n− 1)≈. . .≈e (n−Q+ 1)FT f̂ (n−Q+ 1), which is identical to
e (n) ĝ (n)≈. . .≈e (n−Q+ 1) ĝ (n−Q+ 1). Therefore:

.

p∑
k=1

ĝ (n− k) e (n− k) ≈ µpĝ (n− p) e (n− p)
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Now, combining Eqs. (3.47) and (3.50) results in

Bl (n) = −2µλl

Q−1∑

p=0

spŝpE
{
c2
l (n− p)

}

− 2µ2λl

Q−1∑

p=0

pspŝpE {cl (n− p) ĝl (n− p) e (n− p)} (3.51)

By using Eqs. (3.16), (3.23) and (3.27), Eq. (3.51) can be expressed as

Bl (n) = −2µλl

Q−1∑

p=0

spŝpml (n− p)− µλl
Q−1∑

p=0

pspŝpBl (n− p) (3.52)

By changing the index of the second summation in Eq. (3.52), Bl (n) can be re-expressed as

Bl (n) = −2µλl

Q−1∑

p=0

spŝpml (n− p)− µλl
Q−1∑

r=0

rsrŝrBl (n− r) (3.53)

The recursive equation, given in Eq. (3.53), can be expanded to

Bl (n) = −2µλl

Q−1∑

p=0

spŝpml (n− p)

+ 2µ2λ2
l

Q−1∑

p=0

spŝp

Q−1∑

r=0

rsrŝrml (n− p− r)

− 2µ3λ3
l

Q−1∑

p=0

spŝp

Q−1∑

r=0

rsrŝr

Q−1∑

k=0

kskŝkml (n− p− r − k)

... (3.54)

For µ� 1, Eq. (3.54) can be approximated by its two first terms as

Bl (n) ≈ −2µλl

Q−1∑

p=0

spŝpml (n− p) + 2µ2λ2
l

Q−1∑

p,r=0

rspŝpsrŝrml (n− p− r) (3.55)

Eq. (3.55) formulates Bl (n) as a function of the second-order moments mo (n) , . . . ,mL−1 (n).

3.5 Stochastic Model for Excess-MSE Function

Using the expressions, obtained in Sections 3.3 and 3.4, this section develops an stochastic model for the

excess-MSE function. For this purpose, 4ml (n) is initially expressed by substituting Eqs. (3.35) and
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(3.55) into Eq. (3.25) as

4ml (n) = µ2λl ‖ŝ‖2 J0

+ µ2λl ‖ŝ‖2
Q−1∑

p=0

L−1∑

k=0

λks
2
pmk (n− p)

− 2µλl

Q−1∑

p=0

spŝpml (n− p)

+ 2µ2λ2
l

Q−1∑

p,r=0

rspŝpsrŝrml (n− p− r) (3.56)

Subsequently, substituting the above expression for4ml (n) into Eq. (3.18) gives the following expres-

sion for4Jex (n).

4Jex (n) = µ2 ‖ŝ‖2
Q−1∑

q=0

L−1∑

l=0

λ2
l s

2
qJo

+ µ2 ‖ŝ‖2
Q−1∑

q,p=0

L−1∑

l,k=0

λ2
l λks

2
qs

2
pmk (n− p− q)

− 2µ

Q−1∑

q,p=0

L−1∑

l=0

λ2
l s

2
qspŝpml (n− p− q)

+ 2µ2
Q−1∑

q,p,r=0

L−1∑

l=0

rλ3
l s

2
qspŝpsrŝrml (n− p− r − q) (3.57)

Now, the RMS (Root Mean Square) value of the Eigenvalues is defined as

λrms =

√√√√ 1

L

L−1∑

l=0

λ2
l (3.58)

Using this definition, Eq. (3.57) can be simplified to

4Jex (n) = µ2 ‖ŝ‖2 ‖s‖2 λ2
rmsLJo

+ µ2 ‖ŝ‖2 Lλ2
rms

Q−1∑

q,p=0

L−1∑

k=0

λks
2
qs

2
pmk (n− p− q)

− 2µ

Q−1∑

p,q=0

L−1∑

l=0

λ2
l s

2
qspŝpml (n− p− q)

+ 2µ2
Q−1∑

q,p,r=0

L−1∑

l=0

rλ3
l s

2
qspŝpsrŝrml (n− p− r − q) (3.59)
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where ‖s‖ denotes the Euclidean norm of vector s as:

‖s‖2 =

Q−1∑

q=0

s2
q (3.60)

In a slow adaptation process, the second-order moments are updated slowly so that:

ml (n− p− r − q) ≈ ml (n− p− q) , r = 0, 1, . . . , L− 1 (3.61)

By using this assumption, Eq. (3.59) is simplified to

4Jex (n) = µ2 ‖ŝ‖2 ‖s‖2 λ2
rmsLJo

+ µ2 ‖ŝ‖2 Lλ2
rms

Q−1∑

q,p=0

L−1∑

k=0

λks
2
qs

2
pmk (n− p− q)

− 2µ

Q−1∑

q,p=0

L−1∑

l=0

λ2
l s

2
qspŝpml (n− p− q)

+ 2µ2

(
Q−1∑

r=0

rsrŝr

)
Q−1∑

q,p=0

L−1∑

l=0

λ3
l s

2
qspŝpml (n− p− q) (3.62)

Now, by defining diagonal matrix Ψ as

Ψ =




0 0 . . . 0

0 1
. . .

...
...

. . . . . . 0

0 . . . 0 Q− 1



, (3.63)

it can be shown that
Q−1∑

r=0

rsrŝr = sTΨŝ (3.64)

Substituting Eq. (3.64) into (3.62) results in

4Jex (n) = µ2 ‖ŝ‖2 ‖s‖2 λ2
rmsLJo

+ µ2 ‖ŝ‖2 Lλ2
rms

Q−1∑

q,p=0

L−1∑

k=0

λks
2
qs

2
pmk (n− p− q)

− 2µ

Q−1∑

p,q=0

L−1∑

l=0

λ2
l s

2
qspŝpml (n− p− q)

+ 2µ2
(
sTΨŝ

) Q−1∑

p,q=0

L−1∑

l=0

λ3
l s

2
qspŝpml (n− p− q) , (3.65)
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Eq. (3.65) can be simplified to

4Jex (n) = µ2 ‖ŝ‖2 ‖s‖2 λ2
rmsLJo − µ

Q−1∑

q,p=0

L−1∑

l=0

γl,p,qml (n− p− q) , (3.66)

where scalar parameter γl,p,q is defined as

γl,p,q = λls
2
q

[
2λlspŝp − µλ2

rms ‖ŝ‖2
(
Ls2

p + 2

(
λl
λrms

)2

× sTΨŝ

‖ŝ‖2
spŝp

)]
, (3.67)

Eqs. (3.17), (3.66) and (3.67) describe a linear stochastic model for the excess-MSE function, consider-

ing an arbitrary acoustic noise, an arbitrary secondary path, and an arbitrary secondary path model. This

model is the core of the analysis which is performed in the next chapters. The general validity of this

model is shown in Chapter 7 by using several computer simulations.
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Chapter 4

Analysis of FxLMS-Based ANC Systems
Considering General Secondary Paths

Available mathematical expressions for formulating behaviours of FxLMS-based ANC systems are de-

rived from simplified models. These models are usually developed by using a number of simplifying as-

sumptions regarding the actual secondary path, acoustic noise, and secondary path model. For example,

the well-known expression for the step-size upper-bound, suggested by Elliott in [8,21], were derived by

assuming a pure delay secondary path, a broad-band white acoustic noise, and a perfect secondary path

model. Also, closed-form expressions for steady-state performance and step-size upper-bound, sugges-

ted by Bjarnason in [49], were derived under the same simplifying assumptions. Unfortunately, these

assumptions (specially the first one) are not realistic and, consequently, none of the available mathemat-

ical expressions can accurately describe behaviours of FxLMS-based ANC systems in practise [51].

In order to take the first step towards matching theoretical and practical findings, this chapter uses the

stochastic model, developed in the previous chapter, to derive closed-form expressions for formulating

behaviours of FxLMS-based ANC systems, without using any simplifying assumption regarding the

actual secondary path.

Figure 4.1 shows the main contributions of this chapter. As shown in this figure, the expressions de-

rived in this chapter thoroughly cover the commonly-used expressions. Moreover, they can apply to any

arbitrary secondary path in general form, unlike the commonly-used expressions. Also, it can be seen

from this figure that the classic simplifying assumptions regarding the acoustic noise and secondary path

model are still used in this chapter. Removing the constraints caused by these two assumptions are left

to the next two succeeding chapters.

4.1 System Model with General Secondary Path

When the acoustic noise is a broad-band white signal, the reference signal x (n) can also be considered

as a broad-band white signal. In this case, all the Eigenvalues of the auto-correlation matrix R are equal

47
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Conditions:
  - Secondary path: pure delay
  - Acoustic noise: stochastic white and broad-band
  - Secondary path model: perfect 

Commonly-used theoretical results

Conditions:
  - Secondary path: general
  - Acoustic noise: stochastic white and broad-band
  - Secondary path model: perfect 

This chapter results

Figure 4.1: Contribution of Chapter 4: closed-form expressions for formulating behaviours of FxLMS-based ANC
systems, considering a general secondary path

to the power of the reference signal, σ2
x [64]:

λ0 = λ1 = . . . = λL−1 = σ2
x, (4.1)

In this situation, the RMS value of the Eigenvalues is also equal to σ2
x:

λrms = σ2
x (4.2)

By substituting Eq. (4.1) into Eq. (3.15), Jex (n) can be expressed as

Jex (n) = σ2
x

Q−1∑

q=0

L−1∑

l=0

s2
qml (n− q) (4.3)

Similarly, by substituting Eqs. (4.1) and (4.2) into Eq. (3.67), γl,p,q is obtained as

γl,p,q = σ4
xs

2
q

[
2spŝp − µσ2

x ‖ŝ‖2
(
Ls2

p + 2
sTΨŝ

‖ŝ‖2
spŝp

)]
(4.4)

Now, assuming that the secondary path model is perfect (ŝ = s), Eq. (4.4) is simplified to

γl,p,q = σ4
xs

2
qs

2
p

[
2− µσ2

x ‖s‖2
(
L+ 2

sTΨs

‖s‖2
)]

(4.5)

By substituting Eq. (4.5) into (3.66) and considering λrms = σ2
x and ŝ = s,4Jex (n) is simplified to

4Jex (n) = µ2 ‖s‖4 σ4
xLJo

− µσ4
x

[
2− µσ2

x ‖s‖2
(
L+ 2

sTΨs

‖s‖2
)] L−1∑

l=0

Q−1∑

q,p=0

s2
qs

2
pml (n− p− q) (4.6)
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+
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Jex(n+1)
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Figure 4.2: Proposed model for FxLMS-based ANC systems with a general secondary path

Combining Eqs. (4.3) and (4.6) results in

4Jex (n) = µ2 ‖s‖4 σ4
xLJo

− µσ2
x

[
2− µσ2

x ‖s‖2
(
L+ 2

sTΨs

‖s‖2
)]Q−1∑

p=0

s2
pJex (n− p) (4.7)

As a novel parameter in ANC theory, the secondary path equivalent delay, Deq is defined as

Deq ,
sTΨs

‖s‖2
(4.8)

Using this definition, Eq. (4.7) can be expressed as

4Jex (n) = µ2 ‖s‖4 σ4
xLJo − µσ2

x

[
2− µ ‖s‖2 σ2

x (L+ 2Deq)
]
J (n) (4.9)

where scalar function J (n) is given by

J (n) =

Q−1∑

p=0

s2
pJex (n− p) (4.10)

Now, time-invariant parameters α and β are defined as

α , µ2 ‖s‖4 σ4
xL (4.11)

and

β , µσ2
x

[
2− µ ‖s‖2 σ2

x (L+ 2Deq)
]

(4.12)

By using the above definitions for α and β, Eq. (4.9) can be expressed as

4Jex (n) = αJo − βJ (n) (4.13)

The dynamic model, given in Eq. (4.13), along with Eqs. (3.17), (4.8), (4.10) , (4.11) and (4.12)

compose a theoretical model for FxLMS-based ANC systems. For the sake of clarity, these equations

are collected in Table 4.1. Also, the functional block diagram of this model is shown in Figure 4.2.

The main distinction of this model is that it considers a general secondary path. However, it is derived
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only for a broad-band acoustic noise and perfect secondary path model. Influences of the acoustic noise

band-width and secondary path models on this model are investigated in Chapters 5 and 6, respectively.

4.2 Steady-State Performance

By using the dynamic model, developed in Section 4.1, this section formulates steady-state behaviours

of FxLMS-based ANC systems. The obtained formulations are derived for a general secondary path,

unlike the commonly-used formulations which were derived only for pure delay secondary paths.

4.2.1 Steady-State Residual Noise Power

Since the MSE function J (n) is defined as the variance of the residual noise, the power of the residual

noise in steady-state conditions (denoted by σ2
e ) can be expressed as

σ2
e = lim

n→∞
E
{
e2 (n)

}
= lim

n→∞
J (n) (4.14)

Combining Eqs. (3.11) and (4.14) results in

σ2
e = Jo + lim

n→∞
Jex (n) (4.15)

On the other hand, for a stable adaptation process, it is expected that

lim
n→∞

4Jex (n) = 0 (4.16)

Now, substituting Eq. (4.13) into (4.16) results in

β lim
n→∞

J (n) = αJo (4.17)

Also, from Eq. (4.10), it can be shown that

lim
n→∞

J (n) = lim
n→∞

Q−1∑

p=0

s2
pJex (n− p)

= ‖s‖2 lim
n→∞

Jex (n) (4.18)

Substituting Eq. (4.18) into (4.17) results in

‖s‖2 β lim
n→∞

Jex (n) = αJo (4.19)

Therefore,

lim
n→∞

Jex (n) =
α

‖s‖2 β
Jo (4.20)
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Now, σ2
e can be obtained by substituting Eq. (4.20) into (4.15) as

σ2
e = Jo +

α

‖s‖2 β
Jo (4.21)

Subsequently, substituting Eqs. (4.11) and (4.12) into (4.21) results in

σ2
e =

(
1 +

µL ‖s‖2 σ2
x

2− µ ‖s‖2 σ2
x (L+ 2Deq)

)
Jo (4.22)

Eq. (4.22) gives the steady-state power of the residual noise for a general secondary path.

4.2.2 Misadjustment Level

The steady-state performance of adaptive ANC systems is usually measured using a relative parameter,

called the misadjustment. This parameter, denoted by M, is defined as the ratio of the steady-state

excess-MSE function to the optimal MSE level:

M ,
1

Jo
lim
n→∞

Jex (n) (4.23)

Or, equivalently

M ,
σ2
e − Jo
Jo

(4.24)

By combining Eqs. (4.20) and (4.23),M is obtained as

M =
α

‖s‖2 β
(4.25)

Alternatively, substituting Eqs. (4.11) and (4.12) into Eq. (4.25) results in

M =
µL ‖s‖2 σ2

x

2− µ ‖s‖2 σ2
x (L+ 2Deq)

(4.26)

As can be seen in Eq. (4.26), influences of the secondary path on the misadjustment level is taken into

account by two scalar parameters of the secondary path: the static gain ‖s‖, and the equivalent delayDeq.

The influence of ‖s‖ can be compensated for by adjusting the step-size µ (usually µ is normalised by the

filtered-reference signal power that is ‖s‖2 σ2
x). Therefore, the equivalent delay can be considered as the

major parameter of the secondary path which affects on the steady-state performance of the system. By

using Eq. (4.26), the variation ofM with respect to Deq can be plotted as shown in Figure 4.3. From

this figure, the direct relationship between Deq andM is apparent; therefore, it can be stated that Deq

causes the steady-state performance to be degraded.

4.3 Stability Analysis

This section studies stability of FxLMS-based ANC systems and derives a mathematical expression for

the upper-bound of the step-size beyond which these systems become unstable. This upper-bound is
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Deq
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µ = µ1

µ = µ2

µ = µ3

µ = µ4

µ = µ5

µ = µ6

Figure 4.3: Influences of secondary path equivalent delay (Deq) on misadjustment level (M) for different values
of step-size (µ1 < µ2 < µ3 < µ4 < µ5 < µ6)

derived for a general secondary path, unlike the commonly-used upper-bound which was derived for

only pure delay secondary paths.

4.3.1 Stability in Steady-State Conditions

From Eq. (3.13), it can be seen that the excess-MSE function is always a positive definite function of

the second-order moments of the adaptive weights. Therefore, the steady-state stability of the system

requires that the steady-state excess-MSE function to be finite and positive:

0 < lim
n→∞

Jex (n) < c, ∃c ∈ R (4.27)

where c is a finite positive real number. Combining this inequality and Eq. (4.20) results in the following

stability condition.

0 <
α

‖s‖2 β
Jo < c (4.28)

Since Jo, α and ‖s‖2 are positive scalars, the only condition for the steady-state stability is

β > 0 (4.29)

In the following, it is proved that this condition is a sufficient condition for the stability of FxLMS-based

ANC systems in transient conditions.

4.3.2 Stability in Transient Conditions

As discussed in Chapter 3, the excess-MSE function is a positive definite function of the second-order

moments of the adaptive weights. Therefore, according to the Lyapunov stability theorems, if this func-

tion is an decreasing function then the system is stable and the second-order moments will converge to
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their equilibrium point at the origin:

lim
n→∞

ml (n) = 0, l = 0, 1, . . . , L− 1 (4.30)

Combining Eqs. (2.47) and (4.30) results in

lim
n→∞

w (n) = wo (4.31)

This means that if Lyapunov stability condition is satisfied then the adaptive weight vector converges to

the optimal Wiener-Hopf vector wo.

Now, let us assume that, at time index n, the excess-MSE function does not reach its steady-state level.

In this situation, since the FxLMS is a gradient-based algorithm, it is expected that the current value of

the excess-MSE function and its past values are greater than its steady-state level; therefore,

Jex (n− p) > ε, p = 0, 1, 2, . . . (4.32)

where ε denotes the steady-state excess-MSE level:

ε , lim
n→∞

Jex (n) (4.33)

Since s2
p > 0, the following inequalities set can be derived from Eq. (4.32).





s2
0Jex (n) > s2

0ε
...

s2
pJex (n− p) > s2

pε
...

s2
Q−1Jex (n−Q+ 1) > s2

Q−1ε

Adding all of the above inequalities results in:

Q−1∑

p=0

s2
pJex (n− p) >



Q−1∑

p=0

s2
p


 ε (4.34)

The left side of Eq. (4.34) equals to J (n) and its right side equals to ‖s‖2 ε; therefore,

J (n) > ‖s‖2 ε (4.35)

As shown in Section 4.3.1, the steady-state stability of FxLMS-based ANC systems requires β to be

positive. Therefore, multiplying both sides of Eq. (4.35) by positive scalar β results in

− βJ (n) < −β ‖s‖2 ε (4.36)
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Now, αJo is added to the both sides of Eq. (4.36):

αJo − βJ (n) < αJo − β ‖s‖2 ε (4.37)

Combining Eqs. (4.13) and (4.37) results in

4Jex (n) < αJo − β ‖s‖2 ε (4.38)

By substituting Eqs. (4.20) and (4.33) into (4.38), the following inequality is obtained.

4Jex (n) < αJo − β ‖s‖2
α

‖s‖2 β
Jo (4.39)

The right side of the inequality given in Eq. (4.39) can be simplified to zero; therefore,

4Jex (n) < 0 (4.40)

As a result, when β > 0, the Lyapunov function Jex (n) is a decreasing function in transient conditions

(because its time difference is negative). Therefore, β > 0 causes the Lyapunov stability condition to be

satisfied. In this case, the weight vector converges to the Wiener-Hopf filter and the MSE function

converges to the optimal MSE level Jo.

4.3.3 Step-Size Upper-Bound

From the two stability analyses conducted in Sections 4.3.1 and 4.3.2, it can be shown that an FxLMS-

based ANC system is always stable if β > 0. Accordingly, from Eq. (4.12) it can be shown that

β > 0 ⇒ µσ2
x

[
2− µ ‖s‖2 σ2

x (L+ 2Deq)
]
> 0 (4.41)

This inequality leads to obtain the following condition for the step-size,

0 < µ <
2

‖s‖2 σ2
x (L+ 2Deq)

(4.42)

In other words, there is an upper-bound for the step-size beyond which the system becomes unstable.

This upper-bound which is referred to as the step-size upper-bound (or stability bound) is given by

µmax =
2

‖s‖2 σ2
x (L+ 2Deq)

(4.43)

As can be seen in Eq. (4.43), influences of the secondary path on the stability bound is taken into

account by two scalar parameters of the secondary path: the static gain ‖s‖, and the equivalent delay

Deq. Usually, µ is normalised by the filtered-reference signal power that is ‖s‖2 σ2
x; therefore, Deq can

be considered as the major parameter of the secondary path which affects on µmax. The variation of

µmax with respect to Deq can be plotted by using Eq. (4.43), as shown in Figure 4.4. As can be seen in
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Figure 4.4: Influence of secondary path equivalent delay (Deq) on upper-bound of stability (µmax)

this figure, by increasing Deq, µmax is also decreased; therefore, Deq causes the stability behaviour of

the system to be degraded.

Also, it can be seen from Eq. (4.43) that the proposed expression for µmax is in the form of the

commonly-used expression, derived by Elliott in [8]. In fact, Elliott derived the same expression, but

instead of the secondary path equivalent delay, the physical time delay in the secondary path appeared

in his expression. This is because Elliott simplified his analysis by assuming a pure delay secondary

path but this thesis considers an arbitrary secondary path in a general form. The novel parameter of

the secondary path equivalent delay, defined in this thesis, makes this generalisation possible (Elliott’s

expression for the step-size upper-bound is derived later in Section 4.5.2.).

4.4 Convergence Speed

This section introduces a measure for the convergence speed of FxLMS-based ANC systems in transient

conditions and discusses influences of a general secondary path on this measure. Also, this section

derives a mathematical expression for the step-size leading to the fastest convergence speed.

4.4.1 Convergence Speed Measure

In transient conditions, the MSE function is greater than the optimal MSE level: J (n) � Jo. In this

situation, the first term in Eq. (4.13) is neglectable. Thus, this equation can be approximated to

4Jex (n) ≈ −βJ (n) (4.44)

According to the Lyapunov stability theory, the convergence speed of a dynamic system is directly related

to the gradient of its Lyapunov function; therefore,

transient convergence speed ∝ βJ (n) (4.45)
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Figure 4.5: Influences of secondary path equivalent delay (Deq) on convergence speed (ω) for different values of
step-size (µ1 < µ2 < µ3 < µ4 < µ5 < µ6 < 0.5µmax)

Accordingly, a convergence speed measure for FxLMS-based ANC systems (denoted by ω) is defined as

ω = β = µσ2
x

[
2− µ ‖s‖2 σ2

x (L+ 2Deq)
]

(4.46)

It is shown later (in Chapter 7) that how the proposed theoretical measure can efficiently describe the

convergence speed of FxLMS-based ANC systems. By using Eq. (4.46), the variation of the convergence

speed measure ω with respect to Deq can be plotted, as shown in Figure 4.5. From this figure, it can

be seen that Deq causes the convergence speed to be decreased. It is well known that for pure delay

secondary paths, increasing the secondary path delay causes the convergence speed to be decreased.

However, herein, it is shown that, for general secondary paths, there is a similar relationship between the

convergence speed and secondary path equivalent delay Deq, which is a novel parameter introduced in

this thesis. It is while Deq can be computed for any arbitrary secondary path, rather than the secondary

path delay which is a physical parameter relevant to only pure delay secondary paths.

4.4.2 Fastest Convergence Speed

Combining Eqs. (4.43) and (4.46), ω can be expressed as

ω = 2µσ2
x

(
1− µ

µmax

)
(4.47)

By using Eq. (4.47), the variation of ω with respect to µ can be plotted, as shown in Figure 4.6. As can

be seen in this figure, the maximum attainable convergence speed can be obtained when the step-size is

set to the half of its upper-bound. Therefore,

µ∗ =
µmax

2
(4.48)
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Figure 4.6: Variation of convergence speed measure (ω) with respect to adaptation step-size (µ)

where µ∗ denotes the step-size leading to the fastest convergence rate1. By setting µ = µ∗ in Eq. (4.47),

the maximum convergence speed measure can be computed as

ωmax =
1

2
µmaxσ

2
x (4.49)

As can be seen, the maximum attainable convergence speed is directly related to µmax. On the other

hand, Eq. (4.43) shows that Deq causes µmax to be decreased. Consequently, Deq is a limiting factor for

the the maximum attainable convergence speed.

4.5 Simplified Cases

One way to verify the general theoretical formulations, obtained in this chapter, is to re-derive commonly-

used formulations from them as special and simplified cases. This section derives the commonly-used

formulations for the misadjustment level and stability bound of FxLMS-based ANC systems, as special

cases of the proposed general formulations. The validity of the proposed formulations in a general case

will be discussed later in Chapters 7 and 10 using simulation and experimental results, respectively.

4.5.1 Identity Control Path (LMS Algorithm)

In the LMS algorithm, there is no secondary path following the adaptive controller. Therefore, it can be

assumed that the secondary path is an identity system with the impulse response given by

s (n) = 1 (4.50)

For such secondary path, Q = 1 and s0 = 1 . Substituting these parameters into Eq. (3.60) and (3.63)

results in

‖s‖2 = 1 (4.51)

1This result can be also proved analytically; µ∗ = 0.5µmax maximises the expression given for ω in Eq. (4.47).
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and

Ψ = 0 (4.52)

Now, setting Ψ = 0 in Eq. (4.8) results in

Deq = 0 (4.53)

Substituting the above expressions for ‖s‖2 and Deq into Eq. (4.26) results in

M =
µLσ2

x

2− µσ2
x

(4.54)

This expression for M is identical to that given in [61] or [64]. Similarly, substituting Deq = 0 and

‖s‖2 = 1 into Eq. (4.43) results in

µmax =
2

σ2
xL

(4.55)

which is the well-known expression for the step-size upper-bound in the LMS algorithm [41, 61].

4.5.2 Pure Delay Secondary Path

Let us assume that the secondary path is a pure delay system with the impulse response given by

s (n) = Aδ (n−D) (4.56)

where D is the physical time delay in the secondary path and scalar parameter A is the static gain of

the secondary path. For such system, it can be shown that Q = D + 1, s0 = s1 = . . . sQ−2 = 0 and

sQ−1 = A. Substituting these parameters into Eqs. (3.60), (3.63) and (4.8) results in

‖s‖2 = A2 (4.57)

and

Deq = D (4.58)

This equality means that, for a pure delay secondary path, the equivalent delay is exactly equal to the

physical time delay in the secondary path. Now, substituting the above expressions for ‖s‖2 andDeq into

Eq. (4.26) results in

M =
µLσ2

f

2− µσ2
f (L+ 2D)

(4.59)

where σ2
f = A2σ2

x denotes the power of the filtered reference signal. This expression forM is identical

to that given in [8, 21]. Similarly, substituting Deq = D and ‖s‖2 = A2 into Eq. (4.43) results in

µmax =
2

σ2
f (L+ 2D)

(4.60)

which is the commonly used expression (Elliott’s expression) for the step-size upper-bound in the FxLMS

algorithm with pure delay secondary paths [8, 21].
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4.6 Summary

From the theoretical results obtained in this chapter, the following statements can be expressed.

• For a general secondary path with the impulse response, given by vector s, the equivalent delay is

defined as

Deq ,
sTΨs

‖s‖2

This parameter can be computed for any arbitrary secondary path, unlike the secondary path delay

which is a physical parameter relevant to only pure delay secondary paths.

• Considering a general secondary path with the equivalent delay of Deq, the step-size upper-bound

µmax, steady-state noise power σ2
e , misadjustment levelM, and transient convergence speed meas-

ure ω can be formulated as




µmax =
2

‖s‖2 σ2
x (L+ 2Deq)

σ2
e = Jo +

µL ‖s‖2 σ2
xJo

2− µ ‖s‖2 σ2
x (L+ 2Deq)

M =
µL ‖s‖2 σ2

x

2− µ ‖s‖2 σ2
x (L+ 2Deq)

ω = 2µσ2
x

(
1− µ

µmax

)

• The step-size leading to the fastest convergence speed is

µ∗ =
µmax

2

• The steady-state performance, stability bound, and convergence speed of FxLMS-based ANC sys-

tems are inversely related to the equivalent secondary path delay Deq . This is similar to the

physical time delay in the secondary path (D) which has an indirect relationship with the perform-

ance of the FxLMS algorithm with pure delay secondary paths. However, unlike the physical delay

in the pure delay secondary paths (D), the equivalent delay Deq can be computed for any arbitrary

secondary path.



Chapter 5

Influences of Acoustic Noise band-width
on FxLMS-Based ANC Systems

Chapter 4 extends the available theoretical knowledge on FxLMS-based ANC systems; however, in order

to match theoretical and practical results, another step towards the generalisation of the obtained results

should be taken. This is because it is usually assumed in theory that the acoustic noise is a broad-band

stochastic white signal but, this signal can only be white over a limited range of frequencies in practise.

Even if the acoustic noise is white over a wide frequency range, the reference signal is required to

be processed by a low-pass filter, as shown in Figure 5.1. Obviously, the sampling frequency used in

the filter, should be higher than the maximum frequency of the reference signal. Therefore, a realistic

reference signal can not have a perfect flat spectrum over its entire frequency range so that it can be

considered as a broad-band white signal.

This chapter studies influences of the acoustic noise band-width on behaviours of FxLMS-based ANC

systems. Referring to Figure 5.2, it can be seen that this chapter generalises the closed-form expressions,

derived in Chapter 4, to a more general case with any arbitrary acoustic noise band-width . However, it

is still assumed that the secondary path model is perfectly accurate. Removing the constraint caused by

this assumption is left to the next chapter.

5.1 Band-Limited White Signal

This section describes a general band-limited white signal and shows the relationship between its power

spectrum and Eigenvalues. Also, mathematical expressions for the signal power and the RMS value of

the Eigenvalues are derived. These expressions are widely used in this chapter.

5.1.1 Power Spectrum

The power spectrum of a band-limited stochastic white signal is flat (and non-zero) over a particular

frequency range, called the band-width, and zero over the rest of frequencies. For a general case, this

power spectrum is shown in Figure 5.3. In this figure, the frequency axis is normalised with respect to

61
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Figure 5.1: Low-pass filtering of reference signal before being used by ANC algorithm

Conditions:
  - Secondary path: pure delay
  - Acoustic noise: stochastic white and broad-band
  - Secondary path model: perfect 

Commonly-used theoretical results

Conditions:
  - Secondary path: general
  - Acoustic noise: stochastic white and broad-band
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Chapter 4 results
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Figure 5.2: Contribution of Chapter 5: generalisation of the theoretical findings considering a band-limited acous-
tic noise with an arbitrary band-with
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Figure 5.3: Power spectrum of band-limited white noise

0.5fs, where fs is the sampling frequency. Also, f1 is the minimum frequency component of the signal,

f2 is the maximum frequency component of the signal, and Bw is the signal band-width, given by

Bw , f2 − f1 (5.1)

5.1.2 Application of Szego Theorem

According to the Szego theorem [65], for a stationary signal, the Eigenvalues of the ACM matrix are

asymptotically equal to the power spectrum at (normalised) frequencies spread 1
L apart, where L is the

size of the ACM matrix. Based on this theorem, the Eigenvalues of the ACM matrix of a band-limited

white signal can be expressed as

λl ∈ {ε, κ} l = 0, 1, . . . , L− 1 (5.2)

where λl denotes the l-th eigenvalue of the ACM matrix, κ is a non-zero positive number, and ε is a nearly

zero positive number (ε ≈ 0). The Eigenvalues with the value of κ correspond to the frequency range

over which the noise power is uniformly distributed and the Eigenvalues with the value of ε correspond

to the frequency range over which the noise power is approximately zero. Also, it can be shown from the

Szego theorem [65] that, for a high order ACM matrix (large L), the noise band-width Bw is equal to

Bw ≈
Lw
L

(5.3)
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where Lw is the number of the Eigenvalues with values of κ and L is the total number of Eigenvalues.

Also, the power of a band-limited signal (denoted by σ2
x) can be obtained as [65, 66]

σ2
x =

1

L
trace (Λ)

=
1

L

L−1∑

l=0

λl =
Lw
L
κ+

L− Lw
L

ε (5.4)

Since ε is approximately zero, σ2
x can be estimated by

σ2
x =

Lw
L
κ (5.5)

Now, combining Eqs. (5.3) and (5.5) results in

κ =
σ2
x

Bw
(5.6)

Similarly, the RMS value of the Eigenvalues can be obtained as

λ2
rms =

1

L

L−1∑

l=0

κ2 =
Lw
L
κ2 (5.7)

Combining Eqs. (5.3), (5.6) and (5.7) results in

λ2
rms =

σ4
x

Bw
(5.8)

This equation shows that the RMS value of the Eigenvalues is inversely proportional to the band-width.

5.2 System Model with Band-Limited Acoustic Noise

In Chapter 4, a dynamic model for FxLMS-based ANC systems with general secondary paths is derived.

However, this model assumes a broad-band white acoustic noise and a perfect secondary path model.

This chapter removes the constraint, caused by assuming a broad-band white acoustic noise. For this

purpose, a general band-limited reference signal x (n) with band-width of Bw is considered. In this

situation, the Eigenvalues λ0, λ1, . . . , λL−1 and and their RMS value λrms are given in Eqs. (5.2) and

(5.8), respectively. Therefore, substituting Eqs. (5.2) and (5.8) into (3.67), the following expression for

γl,p,q can be obtained.

γl,p,q =





κs2
q

[
2κspŝp − µ σ4

x
Bw
‖ŝ‖2

(
Ls2

p + 2
Bw
× sT Ψŝ
‖ŝ‖2 spŝp

)]
when λl = κ

εs2
q

[
2εspŝp − µ σ4

x
Bw
‖ŝ‖2

(
Ls2

p + 2
Bw
× sT Ψŝ
‖ŝ‖2 spŝp

)]
when λl = ε

(5.9)
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By using Eq. (5.6) and considering that ε is nearly zero, γl,p,q can be approximated to

γl,p,q =





σ4
x

B2
w
s2
q

[
2spŝp − µσ2

x ‖ŝ‖2
(
Ls2

p + 2
Bw
× sT Ψŝ
‖ŝ‖2 spŝp

)]
when λl = κ

0 when λl = ε

(5.10)

On the other hand, from Eqs. (5.2) and (5.6) it can be shown that

Bwλl
σ2
x

≈





1 when λl = κ

0 when λl = ε

(5.11)

Now, combining Eqs. (5.10) and (5.11), a single closed-form expression for γl,p,q can be obtained as

γl,p,q =
σ4
x

B2
w

s2
q

[
2spŝp − µσ2

x ‖ŝ‖2
(
Ls2

p +
2

Bw
× sTΨŝ

‖ŝ‖2
spŝp

)](
Bwλl
σ2
x

)
(5.12)

This equation can be simplified to

γl,p,q =
σ2
x

Bw
s2
q

[
2spŝp − µσ2

x ‖ŝ‖2
(
Ls2

p +
2

Bw
× sTΨŝ

‖ŝ‖2
spŝp

)]
λl (5.13)

Assuming that the secondary path model is perfect (ŝ = s), γl,p,q is simplified to

γl,p,q =
σ2
x

Bw
s2
qs

2
p

[
2− µσ2

x ‖s‖2
(
L+

2

Bw
× sTΨs2

‖s‖2
)]

λl (5.14)

As can be seen, the secondary path equivalent delay (Deq), as defined in Eq. (4.8), appears in Eq. (5.14);

therefore,

γl,p,q =
σ2
x

Bw
s2
qs

2
p

[
2− µσ2

x ‖s‖2
(
L+

2

Bw
Deq

)]
λl (5.15)

Now, by substituting the above simplified expression for γl,p,q into Eq. (3.66),4Jex (n) is obtained as

4Jex (n) = µ2 ‖s‖4 σ4
x

Bw
LJo (5.16)

− µ
σ4
x

B2
w

[
2− µσ2

x ‖s‖2
(
L+

2

Bw
Deq

)] Q−1∑

q,p=0

L−1∑

l=0

λls
2
qs

2
pml (n− p− q)

Combining Eqs. (3.15) and (5.16) results in

4Jex (n) = µ2 ‖s‖4 σ4
x

Bw
LJo

− µ
σ4
x

B2
w

[
2− µσ2

x ‖s‖2
(
L+

2

Bw
Deq

)]Q−1∑

q=0

s2
pJex (n− p)

︸ ︷︷ ︸
J (n)

(5.17)
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Figure 5.4: Proposed model for FxLMS-based ANC systems with a general secondary path and a band-limited
acoustic noise

As can be seen, the scalar function J (n), as defined in Eq. (4.10), appears in Eq. (5.17); therefore,

4Jex (n) = µ2 ‖s‖4 σ4
x

Bw
LJo − µ

σ2
x

Bw

[
2− µ ‖s‖2 σ2

x

(
L+

2

Bw
Deq

)]
J (n) (5.18)

Now, time-invariant parameters αw and βw are defined as

αw = µ2 ‖s‖4 σ4
x

Bw
L (5.19)

and

βw = µ
σ2
x

Bw

[
2− µ ‖s‖2 σ2

x

(
L+

2

Bw
Deq

)]
(5.20)

Using these definitions, Eq. (5.18) can be re-expressed as

4Jex (n) = αwJo − βwJ (n) (5.21)

The dynamic model, given in Eq. (5.21), along with the definitions, given in Eqs. (3.17), (4.8), (4.10) ,

(5.19) and (5.20) compose a theoretical model for FxLMS-based ANC systems with general secondary

paths and band-limited acoustic noise (still assuming a perfect secondary path model). For the sake of

clarity, these equations are collected in Table 5.1. The functional block diagram of this model is also

shown in Figure 5.4.

From Eqs. (5.19) and (5.20), it can be seen that for a broad-band acoustic noise (Bw = 1), these

expressions results in αw = α and βw = β and, thereby, the proposed model is simplified to the one

derived in Chapter 4. In other words, the dynamic model developed in this chapter is a generalisation of

the model given in Chapter 4.

Comparing the model derived in this chapter and the one derived in Chapter 4 shows that the only

difference between these two models is due to the changing in scalar coefficients α and β to αw and βw.

However, both of them have a similar structure. Therefore, the theoretical results, obtained in Chapter 4,

are valid for the model, developed in this chapter, after replacing α and β with αw and βw.
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Figure 5.5: Influences of secondary path equivalent delay (Deq) on upper-bound of stability (µmax) for different
noise band-widths

5.3 System Behaviours with Band-Limited Acoustic Noise

By using the dynamic model, shown in Figure 5.4, this section studies behaviours of FxLMS-based

ANC systems and derives closed-form expressions for the steady-state performance, stability bound, and

transient convergence speed of these systems. These expressions can apply to a general secondary path,

unlike the commonly-used expressions which can apply to only a pure delay secondary path. Also these

expressions are derived considering a white noise with an arbitrary band-width, unlink the expressions

derived in Chapter 4 which are derived assuming a broad-band white noise.

5.3.1 Step-Size Upper-Bound

Based on the same logic1 used in Section 4.3 and from Eq. (5.21), it can be shown that the stability of

FxLMS-based ANC systems with a band-limited reference signal requires that

βw > 0 (5.22)

Substituting Eq. (5.20) into this inequality, results in the following step-size upper-bound beyond which

the system becomes unstable.

µmax =
2

‖s‖2 σ2
x

(
L+

2

Bw
Deq

) (5.23)

Figure 5.5 shows variations of µmax with respect to Deq for different noise band-widths. This figure is

obtained by plotting Eq. (5.23). The curve, shown byBw = 1, corresponds to the case with a broad-band

white noise, as described in the previous chapter. From this figure, it can be seen that by decreasing Bw,

the step-size upper-bound is also decreased. Also, by decreasing Bw, the influence of the secondary path

equivalent delay on the step-size upper-bound is more pronounced.
1This is because both the dynamic models, derived in the previous chapter and this chapter, have similar structure; the only

differences are due to the changing the scalar coefficients α and β to αw and βw.
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Figure 5.6: Influences of noise band-width (Bw) on misadjustment level (M) for different values of step-size
(µ1 < µ2 < µ3 < µ4 < µ5 < µ6)

In [49], Bjarnason studied the influence of Bw on µmax. However, he did not intend to formulate this

influence based on a theoretical model. He tried to fit a closed-form expression to data obtained from

computer simulations. As one of the contribution of this thesis, Eq. (5.23) gives a closed-form expression

for µmax in terms of acoustic noise band-width Bw and considering a general secondary path.

5.3.2 Steady-State Performance

Based on the same logic used in the derivation of Eq. (4.21), the steady-state residual noise power can

be obtained by replacing α and β with αw and βw in Eq. (4.21) as

σ2
e = Jo +

αw

‖s‖2 βw
Jo (5.24)

Now, substituting Eqs. (5.19) and (5.20) into (5.24) results in

σ2
e = Jo +

µL ‖s‖2 σ2
xJo

2− µ ‖s‖2 σ2
x

(
L+

2

Bw
Deq

) (5.25)

Eq. (5.25) can be re-expressed as

σ2
e = Jo +

µL ‖s‖2 σ2
xJo

2

(
1− µ

µmax

) (5.26)

where µmax is given in Eq. (5.23). For determining influences of the noise band-widthBw on the steady-

state residual noise power σ2
e , its influences on the minimum MSE level Jo should be also considered.

This is because Jo is a function of noise statistics and, thereby, it is dependant of Bw. However, Jo is an

optimal value and independent of the FxLMS adaptation process (as discussed in Chapter 2).



70 Influences of Acoustic Noise band-width on FxLMS-Based ANC Systems

0 1
Bw

ω

µ = µ6

µ = µ5

µ = µ2
µ = µ1

µ = µ4
µ = µ3

Figure 5.7: Influences of noise band-width (Bw) on convergence speed measure (ω) for different values of step-
size (µ1 < µ2 < µ3 < µ4 < µ5 < µ6 < 0.5µmax)

For determining the influence of Bw on the steady-state performance of the FxLMS algorithm, the vari-

ation of the misadjustment level (M) with respect to Bw can be analysed. This is becauseM is inde-

pendent of Jo. This parameter can be obtained by combining Eqs. (4.24) and (5.26) as

M =
µ ‖s‖2 σ2

xL

2

(
1− µ

µmax

) (5.27)

As can be seen in Eq. (5.27),M is independent of Jo. However,M is a function ofBw (because µmax is

a function of Bw). By using Eqs. (5.27) and (5.23), variations ofM with respect to Bw and for different

values of µ can be plotted, as shown in Figure 5.6. From this figure, it can be seen that increasing Bw
causes M to be decreased. For very narrow noise band-widths (Bw < 0.1), M is highly decreased.

However, for wider noise band-widths, the influence of Bw onM is less pronounced.

5.3.3 Convergence Speed

Based on the the same logic, used in the derivation of Eq. (4.46), the convergence speed measure of

FxLMS-based ANC systems with band-limited white reference signals can be represented by

ω = βw (5.28)

Substituting Eq. (5.20) into this equation, results in

ω = µ
σ2
x

Bw

[
2− µ ‖s‖2 σ2

x

(
L+

2

Bw
Deq

)]
(5.29)

which can be expressed as

ω = 2µ
σ2
x

Bw

(
1− µ

µmax

)
(5.30)
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By using Eq. (5.30), variations of the convergence speed measure with respect to the noise band-width

can be plotted, as shown in Figure 5.7. From this figure, it can be seen that by increasing Bw, the

convergence speed is decreased.

The step-size leading to the fastest convergence speed (µ∗) can be obtained by maximising ω with respect

to µ. Therefore,
dω

dµ

∣∣∣∣
µ∗

= 0 (5.31)

Combining Eqs. (5.30) and (5.31) results in

µ∗ = 0.5µmax (5.32)

Therefore, the maximum attainable convergence speed can be obtained by setting the step-size to 0.5µmax.

5.4 Tonal Acoustic Noise

The performance analysis of FxLMS-based ANC systems with tonal acoustic noise is another area of

interest. This subject has been relatively matured, specially, in research reports published by Bjarnason

in 1995 [49] and Vicente in 2006 [50]. This section shows that the theoretical results, reported in [50], can

be obtained from a special and simplified case of the analysis conducted in this chapter. The similarity

between these results shows the validity of the general analysis conducted in this chapter. Checking the

validity of the results in a more general case is left to Chapters 7 and 10 using computer simulation and

experimental results, respectively.

For a tonal acoustic noise, there is only a dominant Eigenvalue in the ACM matrix (Lw = 1) which

corresponds to the signal power at the tonal frequency. In this case, from Eq. (5.3), it can be shown that

Bw =
1

L
(5.33)

Also, in this situation, the secondary path can be represented by a static gain A and a time delay D as

s (n) = Aδ (n−D) (5.34)

For such secondary path, ‖s‖2 = A2 and Deq = D. Now, setting Bw, ‖s‖2 and Deq in Eq. (5.27) gives

the following expression for the misadjustment level:

M =
µσ2

xf
L

2− µσ2
xf
L (1 + 2D)

(5.35)

where σ2
xf

= A2σ2
x denotes the power of the filtered reference signal. Also, setting Bw, ‖s‖2 and Deq

into Eq. (5.23) results in the following stability bound.

µmax =
2

σ2
xf
L (1 + 2D)

(5.36)
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As can be seen, for a tonal noise, µmax is inversely proportional to the multiplication of the filter length

L and secondary path time delay D, rather than their summation. The expressions given in Eqs. (5.35)

and (5.36) are identical to those obtained in [50].

5.5 Summary

From the theoretical results obtained in this chapter, the following statements can be expressed.

• Considering a general secondary path with the equivalent delay of Deq and a general band-limited

acoustic noise, the step-size upper-bound µmax, steady-state noise power σ2
e , misadjustment level

M, and transient convergence speed measure ω can be formulated as





µmax =
2

‖s‖2 σ2
x

(
L+

2

Bw
Deq

)

σ2
e = Jo +

µL ‖s‖2 σ2
xJo

2

(
1− µ

µmax

)

M =
µL ‖s‖2 σ2

x

2

(
1− µ

µmax

)

ω = 2µ
σ2
x

Bw

(
1− µ

µmax

)

• Similar to the case with broad-band acoustic noise, the step-size leading to the fastest convergence

speed is

µ∗ =
µmax

2

• The step-size upper-bound is an increasing function of Bw; therefore, in the case with a broad-

band white noise, the step-size can be chosen from a wider range, compared to the case with

band-limited white acoustic noise.

• The misadjustment is a decreasing function of Bw; therefore, by increasing the acoustic noise

band-width the misadjustment level is reduced.

• The convergence speed measure is a decreasing function ofBw; therefore, by increasing the acous-

tic noise band-width the convergence speed is reduced.



Chapter 6

Influences of Secondary Path Models on
FxLMS-Based ANC Systems

As discussed in Chapter 2, for implementing FxLMS-based ANC systems, an estimate model of the

secondary path is required. This model, usually referred to as the secondary path model, is estimated

by either off-line or on-line system identification techniques (which are beyond the scope of this thesis).

Ideally, the secondary path model is identical to the actual secondary path. In this case, the secondary

path model is considered as a perfect model. However, a realistic secondary path model is not necessarily

perfect.

Commonly-used theoretical expressions for formulating behaviours of FxLMS-based ANC systems are

usually derived by assuming a perfect secondary path model, to avoid mathematical difficulties. Even

the relatively more generalised expressions, obtained in Chapters 4 and 5 of this thesis, are derived

under this simplifying assumption. Referring to Figure 6.1, it can be seen that this chapter removes the

constraint caused by assuming a perfect secondary path model from the theoretical results obtained in

Chapters 4 and 5. Consequently, the expressions, obtained in this chapter, are the most general theoretical

expressions which have been so far derived for formulating behaviours of FxLMS-based ANC systems.

6.1 System Model with Imperfect Secondary Path Model

In Chapter 5, γl,p,q is computed for a general secondary path and band-limited acoustic noise. This

parameter is then simplified by assuming a perfect secondary path model: ŝ = s. Herein, this simplifying

assumption is not used. Therefore, substituting the expression given in Eq. (5.13) for γl,p,q into Eq. (3.66)

results in a more general expression for4Jex (n) as

4Jex (n) = µ2 ‖ŝ‖2 ‖s‖2 σ4
x

Bw
LJo (6.1)

− µ
σ2
x

Bw

Q−1∑

q,p=0

L−1∑

l=0

s2
q

[
2spŝp − µσ2

x ‖ŝ‖2
(
Ls2

p +
2

Bw
spŝp

sTΨŝ

‖ŝ‖2
)]

λlml (n− p− q)
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Conditions:
  - Secondary path: pure delay
  - Acoustic noise: stochastic white and broad-band
  - Secondary path model: perfect 

Commonly-used theoretical results

Conditions:
  - Secondary path: general
  - Acoustic noise: stochastic white and broad-band
  - Secondary path model: perfect 

Chapter 4 results

Conditions:
   - Secondary path: general
   - Acoustic noise: stochastic white with arbitrary bandwidth
   - Secondary path model: perfect        

Conditions:
   - Secondary path: general
   - Acoustic noise: stochastic white with arbitrary bandwidth
   - Secondary path model: arbitrary        

Chapter 5 results

This chapter results

Figure 6.1: Contribution of Chapter 6: generalisation of the theoretical findings considering an arbitrary (imper-
fect) secondary path model
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Combining Eqs. (3.15) and (6.1) results in

4Jex (n) = µ2 ‖ŝ‖2 ‖s‖2 σ4
x

Bw
LJo (6.2)

− µ
σ2
x

Bw

Q−1∑

p=0

[
2spŝp − µσ2

x ‖ŝ‖2
(
Ls2

p +
2

Bw
spŝp

sTΨŝ

‖ŝ‖2
)]

Jex (n− p)

Now, scalar functions J (n) and Ĵ (n) are defined as

J (n) =

Q−1∑

p=0

s2
pJex (n− p) (6.3)

and

Ĵ (n) =

Q−1∑

p=0

spŝpJex (n− p) (6.4)

Substituting these definitions into Eq. (6.2) results in

4Jex (n) = µ2 ‖ŝ‖2 ‖s‖2 σ4
x

Bw
LJo − 2µ

σ2
x

Bw

[
1− µ σ

2
x

Bw

(
sTΨŝ

)]
Ĵ (n)

+ µ2 ‖ŝ‖2 L σ
4
x

Bw
J (n) (6.5)

For a perfect secondary path model, it can be shown that Ĵ (n) = J (n); however, for an imperfect

model, this equality is not valid. In the following, it can be shown that, for a slow adaptation process,

there is a relationship between these two scalar functions. Assuming that the adaptation process is slow,

the variation of the excess-MSE function is also slow so:

Jex (n− p) ≈ Jex (n) , p = 0, 1, . . . , Q− 1 (6.6)

In this case, from Eq. (6.3), it can be shown that

J (n) ≈



Q−1∑

p=0

s2
p


 Jex (n) (6.7)

Using the same logic, it can be shown from Eq. (6.4) that

Ĵ (n) ≈



Q−1∑

p=0

spŝp


 Jex (n) (6.8)
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Now, combining Eqs. (6.7) and (6.8) results in

Ĵ (n) =

Q−1∑

p=0

spŝp

Q−1∑

p=0

s2
p

J (n) (6.9)

which can be expressed in the following form.

Ĵ (n) =
sT ŝ

‖s‖2
J (n) (6.10)

Eq. (6.10) shows the existence of a linear proportional relationship between scalar functions J (n) and

Ĵ (n). Now, by substituting Eq. (6.10) into (6.5),4Jex (n) is simplified to

4Jex (n) = µ2 ‖ŝ‖2 ‖s‖2 σ4
x

Bw
LJo

−
{

2µ
σ2
x

Bw

[
1− µ σ

2
x

Bw

(
sTΨŝ

)]( sT ŝ

‖s‖2
)
− µ2 ‖ŝ‖2 L σ

4
x

Bw

}
J (n) (6.11)

Therefore,

4Jex (n) = µ2 ‖ŝ‖2 ‖s‖2 σ4
x

Bw
LJo

+

[
µ2 ‖ŝ‖2 L σ

4
x

Bw
− 2µ

σ2
x

Bw

(
sT ŝ

‖s‖2
)

+ 2µ2
(
sTΨŝ

) σ4
x

B2
w

(
sT ŝ

‖s‖2
)]
J (n) (6.12)

Herein, perfectness ratios ρ1, ρ2 and ρ3 are defined as

ρ1 =
‖ŝ‖2

‖s‖2
(6.13)

and

ρ2 =
sT ŝ

‖ŝ‖2
(6.14)

and

ρ3 =
sTΨŝ

sTΨs
(6.15)

Obviously, for a perfect model (ŝ = s) all the perfectness ratios are equal to 1. Now, by using the above

definitions for ρ1, ρ2 and ρ3, Eq. (6.12) can be expressed as

4Jex (n) = ρ1µ
2 ‖s‖4 σ4

x

Bw
LJo

+

[
ρ1µ

2 ‖s‖2 L σ
4
x

Bw
− 2µ

σ2
x

Bw
ρ1ρ2 + 2µ2ρ1ρ2ρ3

(
sTΨs

) σ4
x

B2
w

]
J (n) , (6.16)
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Figure 6.2: Proposed model for FxLMS-based ANC systems with a general secondary path, a band-limited acous-
tic noise, and an arbitrary (imperfect) secondary path model

which can be simplified to

4Jex (n) = ρ1µ
2 ‖s‖4 σ4

x

Bw
LJo

− ρ1µ
σ2
x

Bw

[
2ρ2 − µσ2

x ‖s‖2
(
L+

2ρ2ρ3

Bw

(
sTΨs

‖s‖2
))]

J (n) , (6.17)

As can be seen, the secondary path equivalent delay Deq, as defined in Chapter 4, appears in Eq. (6.17);

therefore

4Jex (n) = ρ1µ
2 ‖s‖4 σ4

x

Bw
LJo

− ρ1µ
σ2
x

Bw

[
2ρ2 − µσ2

x ‖s‖2
(
L+

2ρ2ρ3

Bw
Deq

)]
J (n) , (6.18)

Now, time-invariant parameters α̂w and β̂w are defined as

α̂w = ρ1µ
2 ‖s‖4 σ4

x

Bw
LJo (6.19)

and

β̂w = ρ1µ
σ2
x

Bw

[
2ρ2 − µσ2

x ‖s‖2
(
L+

2ρ2ρ3

Bw
Deq

)]
(6.20)

Using these definitions, Eq. (5.18) can be re-expressed as

4Jex (n) = α̂wJo − β̂wJ (n) (6.21)

The dynamic model, given in Eq. (6.21), along with Eqs. (3.17), (6.3), (6.19) and (6.20) compose

a theoretical model for FxLMS-based ANC systems, considering a general secondary path, a band-

limited acoustic noise, and an arbitrary secondary path model. For the sake of clarity, these equations are

collected in Table 6.1. The functional block diagram of this model is also shown in Figure 6.2.

From Eqs.(6.19) and (6.20), it can be seen that by setting Bw = 1 (broad-band noise) and ŝ = s (perfect

model) the expressions, given for α̂w and β̂w, results in α̂w = α and β̂w = β. In this case, the proposed

model is simplified to the one derived in Chapter 4. In other words, the dynamic model obtained in this

chapter is a generalisation of the models previously obtained in Chapters 4 and 5 of this thesis. However,
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the structure of both of them is similar. Therefore, the theoretical findings, obtained in Chapter 4, are

also valid for the model given in Eq. (6.21), after replacing α and β with α̂w and β̂w.

6.2 System Behaviours with Imperfect Secondary Path Models

By using the dynamic model, developed in Section 6.1, this section studies behaviours of FxLMS-based

ANC systems and derives closed-form expressions for the steady-state performance, step-size upper-

bound, and convergence speed of these system. In the derivation of these expressions, a general sec-

ondary path, an arbitrary secondary path model and, an stochastic acoustic white noise with an arbitrary

band-width are considered. The obtained expressions are the most general theoretical expressions which

have been so far derived for formulating behaviours of FxLMS-based ANC systems.

6.2.1 Step-Size Upper-Bound

In Chapter 4, it was proved that the stability of the dynamic model, given in Eq. (4.13), requires the

scalar parameter β to be positive: β > 0 . The only difference between the model, given in Eq. (4.13)

and the one given in Eq. (6.21) of this chapter, is due to the changing of scalar (constant) parameters

α and β to α̂w and β̂w. Accordingly, the stability of the model, given in Eq. (6.21) requires the scalar

parameter β̂w to be positive (because the model given in Eq. (4.13) is stable when β > 0):

β̂w > 0 (6.22)

Combining Eqs. (6.20) and (6.22), it can be shown that β̂w > 0 requires that

ρ1µ
σ2
x

Bw

[
2ρ2 − µσ2

x ‖s‖2
(
L+

2ρ2ρ3

Bw
Deq

)]
> 0 (6.23)

From Eq. (6.13), it can be seen that ρ1 is a positive scalar. Also, parameters σ2
x and Bw are positive;

therefore, the above inequality is identical to

µ

[
2ρ2 − µσ2

x ‖s‖2
(
L+

2ρ2ρ3

Bw
Deq

)]
> 0 (6.24)

From this result, it can be deduced that the stability of the system requires

0 < µ < µ̂max (6.25)

where the step-size upper-bound, µ̂max is given by

µ̂max =
2ρ2

σ2
x ‖s‖2

(
L+

2ρ2ρ3

Bw
Deq

) (6.26)

In this equation, µ̂max represents the step-size upper-bound in the case of using the imperfect secondary

path model ŝ, instead of the perfect model s. The closed-form expression for µ̂max, given in Eq. (6.26),
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can apply to a general case, where the actual secondary path and secondary path model are two arbitrary

general systems and the acoustic noise is a stochastic white signal with an arbitrary band-width.

6.2.2 Instability Caused by Secondary Path Models

According to Eq. (6.26), it is possible that the secondary path model causes µ̂max to become always

negative. In this case, there is no positive step-size for which the FxLMS algorithm can become stable.

Based on this logic, secondary path models causing the FxLMS algorithm to become unstable can be

determined.

Usually L is set to a large number, therefore it can be assumed that even if ρ2 and ρ3 have opposite signs,

the denominator of the fraction given in Eq. (6.26) remains positive. Accordingly, the sign of µ̂max can

be determined only by considering the numerator of the fraction given in Eq. (6.26).

Initially, let us consider the case in which the second perfectness ratio is positive (ρ2 > 0). In this case,

from Eq. (6.14) it can be shown that µ̂max is also positive. In the next case, let us consider the case

in which the second perfectness ratio is negative (ρ2 < 0). In this case µ̂max becomes negative and,

thereby, there is no positive step-size for which the FxLMS algorithm can become stable.

According to the above discussion, only for secondary path models with ρ2 < 0, the FxLMS algorithm

cannot become stable. Eq. (6.14) gives ρ2 in terms of actual secondary path and its model vectors. On

the other hand, the inner product of two vectors can be expressed as

sT ŝ = ‖s‖ ‖ŝ‖ cosφ (6.27)

where φ is the angle between vectors s and ŝ in Q-dimensional space. Now, combining Eqs. (6.14) and

(6.27) results in

ρ2 =
‖s‖
‖ŝ‖ cosφ (6.28)

Since both ‖s‖ and ‖ŝ‖ are positive, the instability condition of the FxLMS algorithm (which is ρ2 < 0)

requires that

cosφ < 0 (6.29)

As an elegant result, when the angle between the actual secondary path vector and its model vector

is greater than 90o, then the FxLMS algorithm cannot become stable. This result is in an excellent

agreement with the 90o condition, derived by Boucher for pure delay secondary paths and tonal acoustic

noise [56] or by Morgan for an identity secondary path model [10]. For these simplified cases, in which

only one element in vectors s and ŝ are non-zero, Boucher showed that if the secondary path model is 90o

out of phase, then the FxLMS algorithm cannot become stable. However, in the derivation of Eq. (6.29),

a general secondary path, its arbitrary model, and an arbitrary acoustic noise band-width are considered.

This generalisation is one of the contributions of this thesis.
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6.2.3 Steady-State Performance

According to the similarity between the models, given in Eqs. (4.13) and (6.21), the steady-state residual

noise power of the system given in Eq. (6.21) can be expressed by replacing α and β with α̂w and β̂w in

Eq. (4.22) as

σ̂2
e = Jo +

α̂w

‖s‖2 β̂w
Jo (6.30)

where σ̂2
e denotes the residual acoustic noise power in steady-state conditions for the imperfect secondary

path model ŝ. Note that the secondary path model does not have any influence on the minimal MSE level

Jo. Now, substituting Eqs. (6.19) and (6.20) into (6.30) results in

σ̂2
e = Jo +

µσ2
x ‖s‖2 L

2ρ2 − µσ2
x ‖s‖2

(
L+

2ρ2ρ3

Bw
Deq

)Jo (6.31)

which can be re-expressed in the following form.

σ̂2
e = Jo +

µσ2
x ‖s‖2 L

2ρ2

(
1− µ

µ̂max

)Jo (6.32)

This equation shows that influences of the secondary path model on the steady-state residual noise can

be formulated by two parameters ρ2 and ρ3 (note that µ̂max is a function of ρ2 and ρ3) 1.

Now, the misadjustment level can be obtained by combining Eqs. (4.24) and (6.31) as

M̂ =
µσ2

x ‖s‖2 L

2ρ2

(
1− µ

µ̂max

) (6.33)

Eq. (6.33) gives a closed-form expression for the misadjustment level in FxLMS-based ANC systems

when the actual secondary path and its model are two arbitrary systems and the acoustic noise is a white

stochastic signal with an arbitrary band-width. This expression is more general than those derived in

Chapters 4 and 5.

It can be shown from Eq. (6.33) that an imperfect secondary path model does not necessarily degrade

the steady-state performance of FxLMS-based ANC systems. For the case in which the secondary path

model causes the steady-state performance to be improved, the misadjustment level M̂ is smaller than

M:

M̂ <M (6.34)

Now, substituting Eqs. (5.27) and (6.33) into this inequality results in

1

ρ2
<

1− µ

µ̂max

1− µ

µmax

(6.35)

1Since the secondary path model is a part of the adaptation process (not a part of physical plant) it has no influence on the
optimal MSE level Jo.
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For small step-sizes, where µ� µmax and µ� µ̂max, this condition becomes

ρ2 > 1 (6.36)

As an interesting result, when the second perfectness ratio is greater than 1, then the imperfect secondary

path model improves the steady-state performance of FxLMS-based ANC systems.

6.2.4 Convergence Speed

According to the similarity between the models, given in Eqs. (4.13) and (6.21), the convergence speed

measure of the model given in Eq. (6.21) can be expressed by replacing β with β̂w in Eq. (4.46) as

ω̂ = β̂w (6.37)

where ω̂ denotes the convergence speed measure in the case of using the imperfect secondary path model

ŝ. Substituting Eq. (6.20) into (6.37), results in

ω̂ = ρ1µ
σ2
x

Bw

[
2ρ2 − µσ2

x ‖s‖2
(
L+

2ρ2ρ3

Bw
Deq

)]
(6.38)

which can be described as

ω̂ = 2µ
σ2
x

Bw
ρ1ρ2

(
1− µ

µ̂max

)
(6.39)

As another interesting result, it can be shown from Eq. (6.39) that an imperfect secondary path model

does not necessarily degrade the transient convergence speed. For the case in which the secondary path

model causes the transient convergence speed to be improved, ω̂ is greater than ω:

ω̂ > ω (6.40)

Now, substituting Eqs. (5.30) and (6.39) into this inequality results in

ρ1ρ2

(
1− µ

µ̂max

)
> 1− µ

µmax
(6.41)

Therefore,

ρ1ρ2 >

1− µ

µmax

1− µ

µ̂max

(6.42)

For small step-sizes, where µ� µmax and µ� µ̂max, this condition becomes

ρ1ρ2 > 1 (6.43)

Therefore, when ρ1ρ2 > 1 holds, then the imperfect secondary path model improves the convergence

speed of the FxLMS algorithm.
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Let us derive the step-size leading to the fastest convergence speed (µ∗) for imperfect secondary path

models. This step-size can be obtained by maximising ω̂ with respect to µ. Therefore,

dω̂

dµ

∣∣∣∣
µ∗

= 0 (6.44)

Combining Eqs. (6.39) and (6.44) results in

µ∗ = 0.5µ̂max (6.45)

It means that the FxLMS algorithm has its fastest possible convergence speed if the step-size is set to the

half of its upper-bound. Combination of this result and those obtained in Sections 4.4.2 and 5.3.3 shows

that the ratio of µ∗ and step-size upper-bound is constant and equal to 0.5, independent of the acoustic

noise band-width and secondary path model.

6.3 Discussion

As an interesting result from the previous section, an imperfect secondary path model does not neces-

sarily degrade the steady-state performance or convergence speed of FxLMS-based ANC systems. This

section studies the possibility of the existence of a secondary path model which can improve both the

steady-state performance and convergence speed of FxLMS-based ANC systems.

In linear algebra [67], it is well known that for any two arbitrary vectors x and y (with similar dimen-

sions) the Cauchy Schawrs inequality always hold. This inequality can be stated as

xTy ≤ ‖x‖ ‖y‖ (6.46)

Setting x = s and y = ŝ in Eq. (6.46) results in

sT ŝ ≤ ‖s‖ ‖ŝ‖ (6.47)

By dividing both sides of this inequality by ‖ŝ‖2 and considering Eq. (6.14), the following inequality for

the second perfectness ratio can be derived.

sT ŝ

‖ŝ‖2
≤ ‖s‖‖ŝ‖ ⇒ ρ2 ≤

‖s‖
‖ŝ‖ (6.48)

As mentioned in Section 6.2.3, when the secondary path model causes the steady-state performance to

be improved, it is necessary that ρ2 > 1. Therefore, by combining the inequality of ρ2 > 1 and the one

given in Eq. (6.48), it can be shown that the improvement in the steady-state performance occurs if the

following necessary condition holds.
‖s‖
‖ŝ‖ > 1 (6.49)
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Similarly, dividing both sides of the Cauchy Schawrs inequality, given in Eq. (6.47), by ‖s‖2 results in

sT ŝ

‖s‖2
≤ ‖ŝ‖‖s‖ ⇒ ρ1ρ2 ≤

‖ŝ‖
‖s‖ (6.50)

According to Section 6.2.4, when the secondary path causes the convergence speed to be improved it is

necessary that ρ1ρ2 > 1. Therefore, by combining the inequality of ρ1ρ2 > 1 and the one given in Eq.

(6.50), it can be shown that the improvement in the convergence speed occurs if the following necessary

condition holds.
‖ŝ‖
‖s‖ > 1 (6.51)

Considering the inequalities, given in Eqs. (6.49) and (6.50), it can be shown that there is no secondary

path model ŝ for which both the necessary conditions for the improvement of the steady-state perform-

ance and convergence speed hold. Therefore, there is no secondary path model which improves both the

steady-state performance and convergence speed of FxLMS-based ANC systems.

6.4 Summary

From the theoretical results obtained in this chapter, the following statements can be expressed.

• The deviation of a secondary path model from the actual secondary path can be represented by

using three perfectness ratios ρ1, ρ2 and ρ3, defined in Eqs. (6.13)-(6.15).

• Considering a general secondary path, an arbitrary acoustic noise band-width, and an arbitrary

(imperfect) secondary path model, the step-size upper-bound µmax, steady-state noise power σ2
e ,

misadjustment levelM, and convergence speed measure ω can be formulated as





µ̂max =
2ρ2

σ2
x ‖s‖2

(
L+

2ρ2ρ3

Bw
Deq

)

σ̂2
e = Jo +

µσ2
x ‖s‖2 L

2ρ2

(
1− µ

µ̂max

)Jo

M̂ =
µσ2

x ‖s‖2 L

2ρ2

(
1− µ

µ̂max

)

ω̂ = 2µ σ2
x

Bw
ρ1ρ2

(
1− µ

µ̂max

)

These equation are in the most general form, compared to those derived in available literature and

also in previous chapters of this thesis.
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• When the phase difference between the actual secondary path s and its model ŝ becomes greater

than 90o (sT ŝ < 0), the FxLMS algorithm becomes unstable. This result is the generalisation of

the 90o condition which was previously derived for simplified cases by other researchers.

• The imperfectness in a given secondary path model does not necessarily degrade steady-state per-

formance or convergence speed of FxLMS-based ANC systems; however, improving both of them

is impossible.
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Chapter 7

Behaviours of FxLMS-Based ANC
Systems in Computer Simulation

Based on the theoretical model developed in Chapter 3 a number of closed-form expressions for for-

mulating behaviours of FxLMS-based ANC systems are derived in Chapters 4-6. In order to check the

general validity of these expressions, this chapter studies behaviours of FxLMS-based ANC systems in

computer simulation.

Section 7.1 starts with describing the simulated system, its components, and the numerical techniques

used in the analysis of simulation results. Then this section shows that simulated system behaviours

can be described precisely by using the theoretical model, developed in Chapter 3. Focusing on the

stability behaviour, Section 7.2 shows the validity of the proposed expression for the step-size upper-

bound. Also, this section shows that influences of the acoustic noise band-width and secondary path

models on the step-size upper-bound of the simulated system can be formulated as proposed in Chapters

4-6. Section 7.3 shows the validity of the proposed expressions for the misadjustment level and steady-

state residual noise power. Also, this section shows that influences of the acoustic noise band-width and

secondary path models on the steady-state performance of the simulated system can be formulated as

proposed in Chapters 4-6. Finally, Section 7.4 shows the validity of the proposed theoretical expressions

for the transient convergence speed.

7.1 Verification of the Proposed Model

Figure 7.1 shows the primary and secondary paths impulse responses of the simulated ANC system.

Also, Figure 7.2 shows impulse responses of the two imperfect secondary path models (M1 and M2),

used in the implementation of the FxLMS algorithm. In this figure, the impulse response of the actual

secondary path (perfect model) is also shown by a dashed line.

Figure 7.3a shows the power spectrum of the broad-band white signal, generated by the computer to be

used as the reference signal x (n) in simulation experiments. As can be seen, the power spectrum of

this signal is approximately flat over its entire frequency range. Hence, this signal can be considered as

87
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Figure 7.1: Impulse responses of primary and secondary paths in computer simulation
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Figure 7.2: Impulse responses of secondary path models M1 and M2

a broad-band white signal. The total power of the signal is limited to σ2
x = 1. By passing this broad-

band signal through standard low-pass filters, different band-limited white signals can be produced. For

example, by using a low-pass filter of normalised band-width 0.5, a band-limited reference signal with

band-width Bw = 0.5 can be produced. The power spectrum of such signal is shown in Figure 7.3b.

The magnitude of the obtained signal is scaled in such a way that its power remains constant at σ2
x = 1.

Using the same procedure, different band-limited reference signals with different band-widths can be

generated.

Note that, in Figures 7.3, blue solid lines show the power spectrum, obtained using numerical methods

(FFT length: 512, averaging over 1000 FFT transforms) and red dashed lines show the theoretical power

spectrum, as it is assumed in our theoretical investigations. In addition to this theoretical assumption,

the independence assumptions are used in the derivation of the analytical model developed in Chapter

3. Based on this model, most of the theoretical contributions of Chapters 4-6 are obtained. Therefore,

before checking the validity of the derived theoretical results, it is necessary to check the general validity

of this fundamental model.
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Figure 7.3: Power spectrum of two reference signals generated by computer (σ2
x = 1)

7.1.1 Dynamic Simulation

Here, it is shown that the model, developed in Chapter 3, can precisely describe behaviours of the simu-

lated FxLMS-based ANC system, despite using theoretical independence assumptions in the derivation

of this model. Each simulation experiment includes 100 simulation runs with independent noise se-

quences (reference signal). The variation of the square of the residual acoustic noise, obtained from each

run, is stored in the computer memory. The MSE function is then estimated by averaging over the stored

data as

J (n) ≈ 1

100

100∑

i=1

e2
i (n) (7.1)

where ei (n) is the residual acoustic noise, obtained from i-th simulation run. Now, it is required to find

an estimate for the excess-MSE function form the obtained simulation results. According to Eq. (3.11),

it can be shown that the difference of the excess-MSE function, 4Jex (n), is equal to the difference of

4J (n); therefore,4Jex (n) can be evaluated as

4Jex (n) = J (n+ 1)− J (n) (7.2)

Based on Eqs. (7.1) and (7.2), the variation of 4Jex (n) can be computed using the data obtained from

the computer simulation. On the other hand, the theoretical variation of 4Jex (n) can be computed by

using the analytical model, given in Eqs. (3.66) and (3.67). Accordingly, comparing the result obtained

from this model and the one obtained from the computer simulation leads to the verification of the validity

of the proposed theoretical model. For this purpose, several simulation experiments in different cases are

conducted.

Case 1: In the first case, simulation experiments are conducted in classical working conditions, which

were usually considered in the theoretical analysis of FxLMS-based ANC systems. In these conditions,

the reference signal is assumed to be a broad-band white stochastic signal with a flat power spectrum,

as shown in Figure 7.3a. Also, the secondary path model is assumed to be a perfectly accurate model

(identical to the actual secondary path).
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Figure 7.4: Variations of4Jex (n) for different step-sizes and in different working conditions, red lines: theoret-
ical results, blue lines: computer simulation

In this situation, two simulation experiments with two different step-sizes are conducted. In the first

experiment, a relatively small step-size of µ = 0.005 and in the second one a relatively large step-size

of µ = 0.05 is used. The variation of 4Jex (n) for each experiment can be then plotted, as shown in

Figure 7.4a (blue lies). Also, the theoretical variation of4Jex (n), obtained from Eqs. (3.66) and (3.67)

is shown in Figure 7.4a by using red lines. As can be seen, the proposed theoretical model can precisely

describe behaviours of the simulated system in both the transient and steady-state modes.

Case 2: In the second case, band-limited acoustic noise signals are considered; however, the secondary

path model is still set to a perfect model. In this situation, two experiments with two different band-

limited signals are conducted (Bw = 0.2 and Bw = 0.8). In both of the experiments, the step-size is

set to µ = 0.005. For each experiment, experimental and theoretical variations of 4Jex (n) are plotted

in Figure 7.4b. The agreement between the theoretical and simulation results is evident. This agreement

can be also shown for other values of the step-size.
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Case 3: In this case, a broad-band white noise, as described in Case 1, is considered; however, imperfect

secondary path models M1 and M2, shown in Figure 7.2, are used in the FxLMS algorithm. For each

secondary path model, a separate experiment is conducted. In both of the experiments, the step-size is

set to µ = 0.005. Theoretical and experimental variations of4Jex (n) are plotted in Figure 7.4c. As this

figure shows, the proposed theoretical model can precisely describe the simulated system behaviours in

both the transient and steady-state modes.

Case 4: Now, the most general case with a band-limited noise and an imperfect secondary path model

is considered. In this case, the acoustic noise is a band-limited white signal of band-width Bw = 0.8,

and the secondary path model is set to M1. Two simulation experiments for relatively small step-size of

µ = 0.005 and relatively large step-size of µ = 0.05 are conducted. The variation of4Jex (n) for each

experiment is plotted in Figure 7.4d. Similar to the previous cases, the agreement between the theoretical

and simulation results is evident.

The above simulation experiments can be repeated for different cases with different step-sizes, acoustic

noise signals, and secondary path models. However, in all of the cases, the theoretical model, given

by Eqs. (3.66) and (3.67) in Chapter 3, can effectively describe system behaviours in the simulation.

In fact, the agreement between the theoretical and simulation results takes away the ambiguity of the

independence assumptions used in the derivation of the theoretical model developed in Chapter 3. The

verification of this model is important at this stage because this model is used in Chapters 4-6 to derive

theoretical expressions for formulating behaviours of FxLMS-based ANC systems. The validity and

accuracy of each expression is discussed in the following sections separately.

7.2 Stability Behaviours

In this section, the validity of the theoretical expression for the step-size upper-bound µmax, given in Eq.

(4.43), is confirmed using different computer simulations. Also, it is confirmed that influences of the

acoustic noise band-width and secondary path models on µmax can be formulated by using Eqs. (5.23)

and (6.26), respectively.

7.2.1 Step-Size Upper-Bound

The existence of an step-size upper-bound (µmax) can be proved by using computer simulation. For

this purpose, different simulation experiments with different step-sizes (µ) are conducted. For example,

Figure 7.5 shows variations of the MSE function in the simulated system for three different step-sizes.

In all the three cases, a broad-band white noise and a perfect secondary path model are used. Referring

to this figure, it can be seen that when µ is set to 0.02 or 0.08, the system becomes stable but when it is

set to 0.12, the system becomes unstable. Hence, µmax should be between 0.08 and 0.12.

In order to find a more accurate value for µmax, more simulation experiments are conducted. The step-

size µ should be changed incrementally (e.g. with the small incremental step of 0.001) until the simulated

system becomes unstable. For each value of µ, 100 independent simulation runs are repeated and the

number of stable experiments is considered as the percentage of the stable experiments. The results can
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Figure 7.5: Variations of MSE function for three different step-sizes in computer simulation (broad-band reference
signal, perfect secondary path model)
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Figure 7.6: Verification of the proposed theoretical expression for µmax using computer simulation
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secondary path model)
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be plotted as shown in Figure 7.6. According to this figure, when µ is below 0.089, all the simulation

experiments are stable (µD = 0.089) and when µ is beyond 0.099, there is no stable experiment (µU =

0.102). Accordingly, it can be deduced that µmax locates between µD and µU . To obtain a particular

value, it is assumed that

µmax ≈
µD + µU

2
(7.3)

Now, substituting the obtained values of µD and µU into Eq. (7.3) results in

µmax ≈ 0.0955, in simulation (7.4)

On the other hand, a theoretical value for µmax can be obtained by using Eq. (4.43). Note that Eq. (4.43)

can apply to this simulation experiment because a broad-band reference signal and a perfect secondary

path model are used. Before achieving this, secondary path parameters should be computed. For the

secondary path impulse response, shown in Figure 7.1, ‖s‖, and Deq, can be computed by using Eqs.

(3.60) and (4.8) as

‖s‖ = 1.1440 (7.5)

and

Deq = 3.0263 (7.6)

Substituting these values and also substituting σ2
x = 1 into Eq. (4.43), the theoretical upper-bound for

the step-size is computed as1

µmax = 0.0971, in theory (7.7)

Comparing the two values of µmax, obtained in Eqs. (7.4) and (7.7), confirms the validity and accuracy

of Eq. (4.43) .

In ideal conditions and for a perfectly accurate µmax, it is expected that for step-sizes below µmax, all

(%100) of simulation runs become stable and for step-sizes beyond µmax, none (%0.00) of simulation

runs become stable. Therefore, if the theoretical value of µmax = 0.0971, is accurate enough, then for

µ < 0.0971), %100 of simulation runs should become stable and for µ > 0.0971, none of them (%0.00)

should become stable. Figure 7.6 shows the difference between this ideal expectation in theory and the

results obtained from computer simulation. The agreement between the results is evident in this figure.

7.2.2 Influences of Acoustic Noise Band-Width on Step-Size Upper-Bound

In order to determine influences of the acoustic noise band-width on µmax in the computer simulation,

the process, described in Subsection 7.2.1, is repeated for 10 values of the acoustic noise band-width

(Bw = 0.1, 0.2, . . . , 1). For example, variations of the MSE function for three different values of Bw
are shown in Figure 7.7. For each experiment, an actual value for µmax can be obtained, based on the

method described in Subsection 7.2.1. The results can be then plotted as a function of Bw, as shown in

Figure 7.8. Also, the theoretical results, obtained by plotting Eq. (5.23) with respect to Bw, is shown in

this figure. The agreement between the theoretical and experimental curves is evident.
1The adaptive filter length is set to L = 12
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Figure 7.8: Verification of the proposed theoretical expression for formulating influences of acoustic noise band-
width on µmax

7.2.3 Influences of Control Path Models on Step-Size Upper-Bound

Now, it is desired to confirm the validity of Eq. (6.26), which formulates influences of secondary path

models on µmax. For this purpose, the simulation experiment, described in Subsection 7.2.1, is repeated

for the two different imperfect models, shown in Figure 7.2 and also for another imperfect model, intro-

duced later.

Experiment 1: In the first experiment, the imperfect secondary path model M1 (shown in Figure 7.2a)

is used. Figure 7.9 shows variations of the MSE function in the simulated system when µ is set to 0.02,

0.08 and 0.12. As shown earlier in Figure 7.5, in the case of using a perfect secondary path model, the

simulated system becomes unstable when µ is set to 0.12. However, referring to Figure 7.9, it can be

seen that, in the case of using the imperfect model M1, the system can retain its stability even if µ is set

to 0.12. This is because the imperfect model M1 causes µmax to increase.

Now, in order to estimate µmax from simulation results, µ is incrementally changed with incremental step

of 0.001. For each value of µ, 100 independent simulation runs are conducted and the number of stable

runs are recorded. The results are then plotted as a function of µ in Figure 7.10a. Also, the theoretical

value of µmax, obtained by using Eq. (4.43), is shown in this figure (µmax = 0.0971). As mentioned

in Chapter 4, Eq. (4.43) does not consider effects of imperfect secondary path models, resulting in the

disagreement between the simulation results and the theoretical results, obtained from Eq. (4.43). In

Figure 7.10 , the theoretical µmax, computed by using Eq. (6.26) is also shown (µmax = 0.1631). As

can be seen, the simulation result is in a good agreement with this theoretical result. This is because in the

derivation of Eq. (6.26), the deviation of the secondary path model from the actual system is considered.

Experiment 2: In the second experiment, the imperfect secondary path model M2 is used. In this

situation , the simulated system becomes unstable even when µ is set to 0.08, as shown in Figure 7.11.

This is because the imperfect model M2 causes µmax to decrease below 0.08. In order to estimate µmax
from simulation results, the procedure conducted in Experiment 1, is repeated. The obtained results

are then plotted in Figure 7.12. As can be seen, simulation and experimental results are in an excellent

agreement.
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Figure 7.9: Variations of MSE function for different step-sizes in computer simulation (broad-band white acoustic
noise, secondary path model M1)
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Figure 7.10: Verification of the proposed theoretical expression for formulating influences of imperfect secondary
path models on µmax (imperfect model used: M1)
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Figure 7.11: Variations of MSE function for different step-sizes in computer simulation (broad-band white acous-
tic noise, secondary path model M2)
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Figure 7.12: Verification of the proposed theoretical expression for formulating influences of imperfect secondary
path models on µmax (imperfect model used: M2)
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Figure 7.13: Impulse responses of secondary path model M3

Experiment 3: In the last experiment, the imperfect model, shown in Figure 7.13 (M3) is used. In this

case, no step-size can be found so that the simulated system becomes stable. For example, Figure 7.14

shows variations of the MSE function for the three values of the step-size, as used in the previous exper-

iments. As can be seen, in all cases, the system becomes unstable. This behaviour can be also described

by using the theoretical results obtained in Chapter 6. According to Eq. (6.26), for the imperfect model

M3 the step-size upper-bound is µmax = −0.0018. Therefore, there is no positive value for the step-size

which causes the system to become stable.

Based to the results obtained from experiments 1-3, it can be seen that Eq. (6.26) can efficiently formulate

influences of imperfect secondary path models on the step-size upper-bound.

7.3 Steady-State Behaviours

This section verifies the theoretical expression, given for the steady-state residual noise power in Eq.

(4.22). Also, it is shown that influences of the acoustic noise band-width and secondary path model on

the steady-state performance can be precisely formulated by using Eqs. (5.26) and (6.32).

7.3.1 Steady-State Residual Acoustic Noise Power

As one of the theoretical contributions of this thesis, Eq. (4.22) gives a closed-form expression for

the steady-state residual noise power when a general secondary path is considered. Simulation results

confirm the validity and accuracy of this expression. For example, in Figure 7.5, horizontal lines show
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Figure 7.14: Variations of MSE function for different step-sizes in computer simulation (broad-band white acous-
tic noise, secondary path model M3)
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Figure 7.15: Verification of the proposed theoretical expression for steady-state noise power

the theoretical steady-state level of each MSE function. These lines are obtained by using Eq. (4.22). As

can be seen, for all of the three cases shown in this figure, the theoretical results are in a good agreement

with simulation results.

Note that, for computing the theoretical steady-state MSE level using Eq. (4.22), it is required to compute

constant Jo. This parameter can be computed by substituting the reference signal statistics into Eqs.

(2.17), (2.18) and (2.23). For the broad-band reference signal and physical plant, used in the computer

simulations, this value is obtained as

Jo = 9.6864× 10−4 (7.8)

In order to show the general validity of Eq. (4.22), more simulation experiments with different step-sizes

are conducted. The results can be then plotted as a function of the step-size, as shown in Figure 7.15.

In this figure, the theoretical curve is obtained by plotting Eq. (4.22) with respect to µ. As can be seen,

theoretical and simulation results are in an excellent agreement.
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7.3.2 Influences of Acoustic Noise Band-Width on Steady-State Performance

In order to investigate influences of the acoustic noise band-width (Bw) on the steady-state performance

of the simulated system, the simulation experiment, discussed in Subsection 7.3.1, should be repeated

for different values of Bw. In this case, Eq. (4.22) does not give an accurate theoretical estimate for

the steady-state residual noise power. This is because in the derivation of this equation, a broad-band

acoustic noise is considered. Instead of this equation, Eq. (5.26) can be used. For example, Figure

7.16 shows variations of the steady-state residual acoustic noise power with respect to the step-size for

Bw = 0.8. The three curves, shown in this figure, are obtained from the computer simulation, Eq.

(4.22) and Eq. (5.26), respectively. As can be seen, Eq. (5.26) can precisely consider the influence of

the acoustic noise band-width on the steady-state residual noise power. The results obtained from other

simulation experiments with different values for Bw leads to the same conclusion.

7.3.3 Influences of Control Path Models on Steady-State Performance

Now the validity of Eq. (6.32), which formulates influences of imperfect secondary path models on

the steady-state residual noise power, is shown. For this purpose, the simulation experiment, described

in Subsection 7.3.1, is repeated for two different imperfect models, shown in Figure 7.2. In the first

experiment, the imperfect model M1 and the broad-band acoustic noise (Bw = 1) with the flat spectrum,

shown in Figure 7.3, are used. This experiment is repeated for different values of the step-size and the

obtained results are then plotted as a function of the step-size in Figure 7.17a. The theoretical result,

shown in this figure, is obtained by plotting Eq. (6.32) with respect to the step-size. As can be seen, the

two curves are in an excellent agreement.

In the second experiment, the imperfect model M2 and a band-limited acoustic noise with Bw = 0.8 are

used. Similar to the previous case, this experiment is repeated for different step-sizes and the obtained

results are then plotted in Figure 7.17b. The agreement between theoretical and simulation results is

evident. Therefore, the expression given in Eq. (6.32) can precisely formulate influences of secondary

path models on the steady-state residual noise power.

7.4 Convergence Speed

This section shows that the expression, developed for the convergence speed measure in Chapter 4, can

efficiently determine the convergence speed of the simulated FxLMS-based ANC system. It is also

shown that influences of the acoustic noise band-width and secondary path model on this parameter can

be formulated, as described in Chapters 5 and 6.

7.4.1 Convergence Speed in Simulation

In order to show the validity of the proposed theoretical expressions for the convergence speed measure,

the simulation results are plotted in standard linear scale. The theoretical value of the convergence speed
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Figure 7.18: Convergence speed of MSE function for different values of step-size
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Figure 7.19: Convergence speed of MSE function for different values of acoustic noise band-widths

measure ω can be computed by using Eqs. (4.46), (5.30) or (6.39). In this case, the slope of the following

line can represent the theoretical convergence speed of the simulated system.

J (n) = σ2
d − ωn (7.9)

where σ2
d = 1 is power of the primary noise and n is the discrete time index .

Figure 7.18 shows variations of the MSE function for different values of the step-size in the standard

linear scale. At this stage, a broad-band acoustic noise and a perfect secondary path model (as assumed

in Chapter 4) are used in the computer simulation. For the three cases, shown in Figure 7.18, values of

the convergence speed measure ω can be computed by using Eq. (4.46) as 0.0171, 0.0476 and 0.0305.

Based on these values for ω, the theoretical line, given in Eq. (7.9) can be then plotted. As can be seen,

for all cases, the slope of this line (that is ω) can efficiently represents the convergence rate of the MSE

function in transient conditions .

7.4.2 Influences of Acoustic Noise Band-Width on Convergence Speed

Now, different band-limited acoustic noise signals are used in the computer simulation. For example,

three acoustic noise signals with band-widths of 0.1, 0.5 and 0.9 are generated by the computer, and then
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Figure 7.20: Convergence speed of MSE function for different values of acoustic noise band-widths and different
secondary path models

used in three different computer simulation experiments. The results are shown in Figure 7.19. In this

figure, the theoretical line of J (n) = σ2
d − ωn is also shown. Note that, in this case, the value of ω must

be computed from Eq. (5.30) because this equation can consider the acoustic noise band-width. As can

be seen, there is a good agreement between the slope of this line and the transient convergence rate of the

MSE function in all the three cases. This agreement can be also shown for other band-limited acoustic

noise signals.

7.4.3 Influences of Control Path Models on Convergence Speed

Different imperfect secondary path models are used in the computer simulation. In this case, the conver-

gence speed measure can be computed from Eq. (6.39) as this equation considers imperfect secondary

path models. In the first experiment, a broad-band acoustic noise and the secondary path model M1 are

used. In the second experiment, the band-width of the noise is changed to 0.5. Finally, in the third ex-

periment, the acoustic noise band-width is changed to 0.8 and the secondary path model is also changed

to M2. The results are shown in Figure 7.20. As can be seen in this figure, there is a good agreement

between the slope of the theoretical line J (n) = σ2
d − ωn and the convergence rate of the simulated

system in all of the cases.
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Chapter 8

Root Locus of FxLMS Adaptation Process

Based on the novel model, developed in Chapter 3, Chapters 4-6 perform a comprehensive analysis with

the purpose of formulating behaviours of the FxLMS adaptation process in ANC systems. However,

when developing a control mechanism for the FxLMS adaptation process is desired, this model is not

useful. This is because this model is formulated in terms of the second-order moments of the adaptive

weights while the system state variables are the first-order moments of the adaptive weights.

This chapter applies the Root Locus Theory to derive a novel model for the FxLMS adaptation process

in ANC systems. This model is formulated in terms of the first-order moments of the adaptive weights;

therefore, it can be used for designing a control mechanism for the FxLMS adaptation process. The

development of this control mechanism is left to Chapter 9.

8.1 FxLMS Characteristic Equations

In this section, a characteristic equation for the first-order moments in the FxLMS adaptation process is

derived. Also, a characteristic equation for the excess-MSE function is derived. It is shown that these

two equations are only different in a static gain and, thereby, their roots in the z-plane follow similar loci.

8.1.1 Characteristic Equation for First-Order Moments

In Chapter 2, it is shown that the FxLMS adaptation process can be modelled by using Eq. (2.80) as

c̄ (n+ 1)− c̄ (n) + µσ2
x

Q−1∑

q=0

s2
q c̄ (n− q) = 0 (8.1)

where σ2
x is the power of the reference signal, µ is the adaptation step-size and vector c̄ (n) contains the

first-order moments of the adaptive weights. The characteristic equation, corresponding to Eq. (8.1), can

thus be obtained by mapping this equation into the z-domain as

(z − 1) + µσ2
x

Q−1∑

q=0

s2
qz
−q = 0 (8.2)

103
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By multiplying Eq. (8.2) by zQ−1, the characteristic equation becomes

zQ − zQ−1 + µσ2
xG (z) = 0 (8.3)

where transfer function G (z) is defined as

G (z) =

Q−1∑

q=0

s2
qz
Q−q−1. (8.4)

Eq. (8.3) represents a parametric characteristic equation for the FxLMS adaptation process (where µ is

the scalar parameter).

8.1.2 Characteristic Equation for Excess-MSE Function

A dynamic model for the excess-MSE function is proposed in Chapter 4 earlier. Referring to this model,

it can be seen that the excess-MSE is a linear combination of the second-order moments of the adaptive

weights. This is while the dynamic model, given in Eq. (8.1), is in terms of the first-order moments of the

adaptive weights. Since there is no analytical relationship between the first and second-order moments,

it is not possible to derive the dynamic model, given in Eq. (8.1), from the one derived in Chapter 4

or vice-verse. However, there is an interesting correspondence between these two models. This issue is

discussed in the following.

From the block diagram, shown in Figure 4.2, the characteristic equation, corresponding to the excess

MSE function, can be obtained as

1− z−1 + γσ2
x

Q−1∑

q=0

s2
qz
−q−1 (8.5)

where scalar parameter γ can be obtained from Eq. (4.12) as

γ =
β

σ2
x

= µ
(

2− µ ‖s‖2 σ2
x (L+ 2Deq)

)
(8.6)

By multiplying Eq. (8.5) by zQ, the characteristic equation becomes

zQ − zQ−1 + γσ2
xG (z) = 0 (8.7)

where transfer function G (z) is defined in Eq. (8.4) earlier. Comparing the characteristic equations,

given in Eqs. (8.3) and (8.7), shows that they are only different in their scalar parameter (static gains µ

and γ); therefore, their roots in the z-plane follow similar loci.

8.1.3 Root Locus Criteria

Dynamics of any system can be analysed by finding the roots of its characteristic equation. This equation

can be represented by a standard polynomial for a linear system. Unfortunately, determining all the roots
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of a general parametric polynomial, e.g. those given in Eqs. (8.3) or (8.7), is an unsolved problem in

mathematics. However, the trajectory of the roots with respect to a scalar parameter can be plotted by

the Root Locus Method [68, 69]. In fact, this method examines how the roots of a polynomial change as

a scalar parameter varies. To plot a root locus for a system or process, its characteristic equation should

be written in the root locus form that is

1 + kH (z) = 0 (8.8)

where H (z) is called the open loop transfer function and k is the scalar parameter of the characteristic

equation, called the root locus parameter. According to the root locus theory, the root locus is the set of

values of z for which the amplitude criterion,

|kH (z)| = 1 (8.9)

and the phase criterion,

]H (z) = π (8.10)

are satisfied as k varies. The root locus consists of a number of branches. For k = 0 the roots of the

characteristic equation locate on the start points of the root locus branches. These roots move on the root

locus branches as k increases from zero to infinity.

Now, the FxLMS characteristic equation, given in Eq. (8.3), should be expressed in the root locus form.

For this purpose, after dividing both side of Eq. (8.3) by zQ − zQ−1, the following equation is obtained.

1 + µσ2
x

G (z)

zQ − zQ−1
= 0 (8.11)

Eq. (8.11) gives the FxLMS characteristic equation in the root locus form. From this equation, the

FxLMS open loop transfer function can be expressed as

H (z) =
G (z)

zQ − zQ−1
(8.12)

and the FxLMS root locus parameter can be expressed as

k = µσ2
x (8.13)

Also, from Eq. (8.7), it can be shown that the open loop transfer function for the characteristic equation

corresponding to the excess-MSE function dynamics is similar to the one given in Eq. (8.12). The

difference between the two systems is only due to the scalar parameter.

8.2 FxLMS Root Locus

As another contribution of this thesis, this section develops fundamental rules, governing the FxLMS

root locus. Also, this section derives closed form expression for main parameters of this root locus,

including start points, asymptotes, departure angles and breakaway points.
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Figure 8.1: An example for FxLMS root locus when s0 = s1 = s2 = 0, s3 = s4 = 1 and s5 = 0.8

8.2.1 Number of Branches

According to the root locus theory, the number of branches of a root locus is equal to the number of poles

of its open loop transfer function H (z). For the FxLMS adaptation process, this function is given in Eq.

(8.12). Based on this equation, it can be shown that H (z) has Q poles:

NP = Q (8.14)

where NP denotes number of the poles of H (z). Hence, it can be deduced that the FxLMS root locus

has Q branches. Hereafter, these branches are denoted by B1, B2, ...and BQ.

As a particular example, for the secondary path impulse response, given by parameters s0 = s1 = s2 =

0, s3 = s4 = 1 and s5 = 0.8, transfer functions G (z) and H (z) can be computed as

G (z) = z2 + z + 0.8 (8.15)

and

H (z) =
z2 + z + 0.8

z6 − z5
(8.16)

In this caseNP = Q = 6 and, therefore, the FxLMS root locus contains 6 distinct branches. Trajectories

of these branches in the z-plane can be numerically computed in MATLAB. The set of these branches

compose the FxLMS root locus for the given secondary path. The obtained root locus, which is plotted

in Figure 8.1, can be considered as the numerical result.

In the following, properties of the FxLMS root locus with a general secondary path are analytically

studied and closed-form expressions for formulating main parameters of this root locus are derived. The

sample root locus plot, given in Figure 8.1, is used to show the validity of the obtained results. Later,

more examples are discussed.
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8.2.2 Start Points

In the FxLMS root locus, the start point of B1 locates at z = 1 and those of B2, B3, ... and BQ locate

commonly at z = 0.

Proof: according to the root locus theory, start points of B1, B2, ...and BQ locate at the poles of H (z).

Let us assume that pq is the start point of Bq. In this case, pq can be expressed as

pq = argz

{
1

H (z)
= 0

}
(8.17)

Combining Eqs. (8.12) and (8.17) results in

pq = argz
{
zQ − zQ−1 = 0

}
⇒




p1 = 1

p2, p3, . . . , pQ = 0
(8.18)

Therefore, for each branch of the root locus, there is a finite start point in the z-plane. Also, the start point

ofB1 always locates at z = 1 and those ofB2, B3, ... andBQ always locate at z = 0. In other words, the

location of the start points of the FxLMS root locus is constant and independent of the secondary path.

The validity of this theoretical finding can be seen in the root locus sample, shown in Figure 8.1 (in this

figure, start points are marked by ’x’).

8.2.3 End Points

A certain number of branches of the FxLMS root locus end at finite points in the z-plane and the rest of

them approach infinity.

Proof: end points of B1, B2, ...and BQ locate at the zeros of H (z). Let us assume that zq is the end

point of Bq. In this case, zq can be expressed as

zq = argz {H (z) = 0} (8.19)

Combining Eqs. (8.12) and (8.19) results in

zq = argz {G (z) = 0} (8.20)

Therefore, unlike start points, end points are not constants and their location is a function of secondary

path parameters. In this case, these points can not be given by a closed-form expression. However, it is

obvious from Eq. (8.12) that the number of zeros of H (z) can be less than the number of branches (that

is Q). This is because, an actual secondary path is usually associated with a time delay and, thereby, the

first few coefficients of its impulse response are likely to be zero.

Assuming that the first Q0 coefficients of a general secondary path impulse response are zero (or assum-

ing that the secondary path impulse response is associated with a time delay of Q0 samples), it can be

stated that

s0 = s1 = . . . = sQo−1 = 0, (8.21)
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H (z) can be then expressed as

H (z) =

Q−1∑

q=0

s2
qz
Q−q−1

zQ − zQ−1

(8.22)

=
s2
Q0
zQ−Q0−1 + s2

Q0+1z
Q−Q0 + . . .+ s2

Q−1

zQ − zQ−1
(8.23)

As can be seen, the numerator of H (z) is a polynomial of order Q−Q0 − 1; therefore, H (z) can have

only Q−Q0 − 1 finite zeros:

NZ = Q−Q0 − 1 (8.24)

where NZ denotes the number of H (z) zeros. Based on the above discussion, the FxLMS root locus has

Q−Q0 − 1 end points but it has Q distinct branches in the z-plane. In this case, the branches for excess

poles must approach one asymptote each. Accordingly, the number of branches approaching to infinity

(or the number of asymptotes) is Q0 + 1.

For the example, shown in Figure 8.1, the three first coefficients of the secondary path impulse response

are zero (Q0 = 3). Consequently, G (z) and H (z) have only 2 finite zeros at which two branches of the

root locus can end. These points are marked by “o” in Figure 8.1. As can be seen, B4 and B5 ends at

these points. The other 4 branches approach infinity along with 4 distinct asymptotes of the root locus.

This is in an excellent agreement with the above theoretical findings.

8.2.4 Asymptotes

Asymptotes of the FxLMS root locus originate from a centroid point on the real axis, given by

xA =
1 +

(
sQ0+1

sQ0

)2

Q0 + 1
(8.25)

Also, these asymptotes form the following angles with the real axis.

ϕk =
(2k + 1)

Q0 + 1
π k = 0, 1, ..., Q0 (8.26)

where Q0 is the time delay, associated with the secondary path impulse response.

Proof: according to the root locus theory, asymptotes of the root locus originate on the real axis from the

centroid point xA, given by

xA =

∑
pq −

∑
zq

NP −NZ
(8.27)

and form angles with respect to the real axis of

ϕk =
(2k + 1)

NP −NZ
π k = 0, 1, ..., NP −NZ (8.28)
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NP and NZ are computed earlier in Eqs. (8.14) and (8.24). Also, from Eq. (8.18), it can be shown that

∑
pq = 1 (8.29)

Accordingly, the only unknown term of Eq. (8.27) is
∑

zq. This term is evaluated in the following. In

linear Algebra, it is known that the summation of the roots of a general polynomial of form

f (z) = aNz
N + aN−1z

N−1 + . . .+ a0 = 0 (8.30)

can be expressed as ∑
[zeros of f (z)] = −aN−1

aN
(8.31)

Therefore, for the FxLMS open loop transfer function, given in Eq. (8.23), it can be shown that

∑
zq =

∑
[zeros of G (z)] = −

(
sQ0+1

sQ0

)2

(8.32)

Now, substituting Eqs. (8.14), (8.24), (8.29) and (8.32) into (8.27), the location of the centroid point is

computed as

xA =
1 +

(
sQ0+1

sQ0

)2

Q0 + 1
(8.33)

Also, asymptotes angles can be obtained by substituting Eqs. (8.14) and (8.24) into (8.28) as

ϕk =
(2k + 1)

Q0 + 1
π k = 0, 1, ..., Q0 (8.34)

For the sample root locus, shown in Figure 8.1, xA can be obtained by setting Q0 = 3, sQ0 = s3 = 1

and sQ0+1 = s4 = 1 in Eq. (8.25) as xA = 1
2 . Also, the angles of the 4 asymptotes can be obtained

by setting Q0 = 3 in Eq. (8.34) as ϕ1 = π
4 , ϕ2 = 3π

4 , ϕ3 = 5π
4 and ϕ4 = 7π

4 . The centroid point and

specified 4 asymptotes are shown in Figure 8.1. As can be seen, analytical and numerical results are in

an excellent agreement.

8.2.5 Departure Angles

The departure angles of the FxLMS root locus branches from their start points can be formulated as

θq =




π, q = 1

2(q−2)
Q−1 π, q = 2, 3, ..., Q

(8.35)

Proof: the departure angles of the root locus branches from their start points can be obtained by using

the root locus angle criterion, given in Eq. (8.10). Let us assume that θq is the departure angle of Bq
from its start point at z = pq. According to the root locus theory, provided that pq is a single pole of
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H (z), θq is given by

θq = π −
NZ∑

k=1

] (zk, pq)−
NP∑

k=1
k 6=q

] (pk, pq) (8.36)

where ] (x, y) denotes the angle between complex numbers x and y. If pq is a multiple pole of order M ,

departure angles of the M branches departing from this point (Bq, Bq+1, . . . and Bq+M−1), are given by

θq+m =
2m+ 1

M
π − 1

M

NZ∑

k=1

] (zk, pq)−
1

M

NP∑

k=1
pk 6=pq

] (pk, pq) , m = 0, 2, . . . ,M − 1 (8.37)

Since the numerator of H (z) has only real coefficients, its roots (z1, z2, . . . , zNZ
) are necessarily real or

complex conjugates; therefore, for a pq on the real axis, e.g. p1 = 1, it can be shown that

NZ∑

k=1

] (zk, p1) =

NZ∑

k=1

] (zk, 1) = 0 (8.38)

Also, it can be shown from Eq. (8.18) that

NP∑

k=1
pk 6=pq

] (pk, p1) =

NP∑

k=1
pk 6=pq

] (0, 1) = (NP − 1)] (0, 1) = 0 (8.39)

Now, substituting Eqs. (8.38) and (8.39) into (8.36) results in

θ1 = π (8.40)

Therefore, the departure angle of B1 from its origin at z = p1 is π. In other words, this branch departs

from z = 1 along the real axis and towards the origin. The remainder of branches depart from the

multiple pole locating at the origin with the order of M = Q− 1. Similar to the previous case, it can be

shown that
NZ∑

k=1

] (zk, pq) =

NZ∑

k=1

] (zk, 0) = 0 (8.41)

and
NP∑

k=1
pk 6=pq

] (pk, pq) =

NP∑

k=1
pk 6=0

] (pk, 0) = ] (1, 0) = π (8.42)

Substituting these results into Eq. (8.37) results in

θ2+m =
2m

Q− 1
π, m = 0, 1, . . . , Q− 2 (8.43)
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This equation gives the departure angle of B2, B3, . . . and BQ−1. In order to obtain a single and unified

equation for all of the departure angles, Eq. (8.43) can be re-expressed as

θq =
2 (q − 2)

Q− 1
π q = 2, 3, ..., Q (8.44)

Now, combining Eqs. (8.40) and (8.44) results in

θq =




π, q = 1

2(q−2)
Q−1 π, q = 2, 3, ..., Q

(8.45)

For the root locus, shown in Figure 8.1, the departure angles can be computed by setting Q = 6 in Eq.

(8.35) as θ1 = π, θ2 = 0, θ3 = 2π
5 , θ4 = 4π

5 , θ5 = 6π
5 and θ6 = 8π

5 . As can be seen, analytical and

numerical results are in a perfect agreement.

8.2.6 Real Sections

The only interval on the positive real axis, which belongs to the FxLMS root locus, is (0, 1).

Proof: an interval on the real axis belongs to the root locus if the open loop transfer function H (z) has

an odd number of zeros and poles to its right. According to Eq. (8.12), the zeros of H (z) are identical

to the roots of G (z).

H (z) = 0⇔ G (z) = 0 (8.46)

Since all the coefficients of G(z) are positive real scalars, the real roots of G(z) can be only negative.

Therefore, G (z) has no real roots to the right of the imaginary axis. However, G(z) may have complex

conjugate pairs of roots with positive real parts. As a conclusion, the roots of G(z), which have positive

real parts, are complex conjugate pairs. Therefore, G (z) and, consequently, H (z) has an even number

of roots to the right side of any point in the positive real axis. Besides, H (z) has only a single pole at

z = 1. Considering this pole, the following statements can be deduced.

• H (z) has always an even number of roots and zeros to the right side of any point in (1,+∞);

therefore this interval does not belong to the FxLMS root locus.

• H (z) has an odd number of zeros and poles to the right side of any point in (0, 1); therefore this

interval always belongs to the FxLMS root locus.

However, some intervals of the negative real axis may belongs to the FxLMS root locus, depending on

the order of the repeated zero at the origin and the location of the other zeros of G (z). However, these

possible intervals have less degrees of importance, compared to the interval of (0, 1). Later it is shown

that the interval of (0, 1) is the most important part of the FxLMS root locus.
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8.2.7 Breakaway Points

The FxLMS root locus always has a breakaway point on the interval of (0, 1) given by

xB =
Deq

Deq + 1
(8.47)

where Deq is the secondary path equivalent delay (as defined in Chapter 4).

Proof: breakaway points occur when branches of the root locus coincide. If z = zB is a breakaway point

of the root locus then it satisfies the breakaway point equation given by

zB = argz

{
∂

∂z

1

H (z)
= 0

}
(8.48)

Substituting Eq. (8.12) into (8.48) results in the following breakaway points equation.

(QzB −Q+ 1)G (zB)−
(
z2
B − zB

)
Ǵ (zB) = 0 (8.49)

where

Ǵ (z) =
∂G (z)

∂z
(8.50)

In the previous subsection, it is shown that the real axis between 0 and 1 always belongs to the FxLMS

root locus; also, in Subsection 8.2.2, it is shown that both of z = 0 and z = 1 are start points of the

FxLMS root locus. Therefore, there is always a real breakaway point xB on the real interval (0, 1). In

the following the location of xB is computed. For this purpose, the breakaway point equation, given in

Eq. (8.49), is re-expressed as

Ǵ (xB)

G (xB)

(
x2
B − xB

)
−QxB +Q− 1 = 0 (8.51)

Assuming that xB is close to 1, the following approximation can be made.

Ǵ (xB)

G (xB)
≈ Ǵ (1)

G (1)
(8.52)

Now, it is required to estimate Ǵ(1)
G(1) . Setting z = 1 in Eq. (8.4) results in

G (1) =

Q−1∑

q=0

s2
q = ‖s‖2 (8.53)

Moreover, the following equation can be obtained from Eq. (8.4).

z−(Q−1)G (z) =

Q−1∑

q=0

s2
qz
−q (8.54)
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Differentiating both sides of Eq. (8.54) gives

− (Q− 1) z−QG (z) + z−Q+1Ǵ (z) = −
Q−1∑

q=0

qs2
qz
−q−1 (8.55)

Now, setting z = 1 in Eq. (8.55) results in

− (Q− 1)G (1) + Ǵ (1) = −
Q−1∑

q=0

qs2
q (8.56)

Combining Eqs. (8.53) and (8.56) results in

Ǵ (1) = (Q− 1)

Q−1∑

q=0

s2
q −

Q−1∑

q=0

qs2
q (8.57)

Dividing both sides of Eq. (8.57) by G (1) and, then, using Eq. (8.53) leads to write

Ǵ (1)

G (1)
= Q− 1−

Q−1∑

q=Q0

qs2
q

Q−1∑

q=Q0

s2
q

(8.58)

As can be seen, the secondary path equivalent delay (as defined in Chapter 4) appears in the left side of

Eq. (8.58). Therefore;
Ǵ (1)

G (1)
= Q− 1−Deq (8.59)

Now, substituting Eq. (8.59) into (8.51) results in the following equation for xB .

(Q− 1−Deq)
(
x2
B − xB

)
−QxB +Q− 1 = 0 (8.60)

This second-order equation can be re-written as:

(Q− 1−Deq) (xB − 1)2 − (1 +Deq)xB +Deq = 0 (8.61)

The first term can be neglected because the answer is close to 1 : (xB − 1)2 ≈ 0. Thus,

− (1 +Deq)xB +Deq = 0 (8.62)

Solving this equation results in

xB =
Deq

Deq + 1
(8.63)

This equation shows that the secondary path equivalent delay (Deq) is an important factor in the location

of the FxLMS root locus breakaway point. In the next section it is shown that the location of this point

has an important role in dynamic behaviours of the FxLMS adaptation process. Before achieving this,
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let us check the validity of Eq. (8.63) in the sample root locus plot, shown in Figure 8.1. For this root

locus, Deq can be computed as

Deq =
3× 12 + 4× 12 + 5× 0.82

12 +×12 +×0.82
= 3.8636 (8.64)

Setting Deq = 3.8636 in Eq. (8.47) results in

xB =
3.8636

3.8636 + 1
= 0.794 (8.65)

The location of this point is also shown in the root locus plot, shown in Figure 8.1. According to this

figure, it can be seen that Eq. (8.47) can efficiently evaluate the location of the breakaway point in the

FxLMS root locus.

8.3 Discussion and Examples

From the FxLMS root locus rules, derived in the previous section, it can be deduced that branches of

the FxLMS root locus have some typical trajectories independent of secondary path parameters. In

this section, these trajectories are discussed. Also, several examples are used to support the theoretical

findings.

8.3.1 Typical Trajectory of B1

It can be seen that B1 always starts at z = 1 and moves towards the origin on the real axis. This branch

leaves the real axis once it reaches the breakaway point xB . After that, this branch may end at a complex

zero of H (z) or approach an asymptote of the root locus. The trajectory of B1 just after departing from

its start point (or before reaching the breakaway point) is independent of the secondary path parameters;

however, the location of xB and the possible end-point/asymptote are functions of secondary path para-

meters. In Figure 8.2, three different examples of the FxLMS root locus with different secondary paths

are shown. In the first example, B1 approaches an asymptote after leaving the breakaway point (Figure

8.2a). In the second example, B1 ends at a finite zeros inside the unit circle (Figure 8.2b) and in the third

example, this branch ends at a finite zeros outside the unit circle (Figure 8.2c). As can be seen, although

the end point of B1 is different in each example, its trajectory before reaching the breakaway point is

constant (typical). This typical trajectory is shown in figure 8.3.

8.3.2 Typical Trajectory of B2

As another typical behaviour of the FxLMS root locus, B2 starts at z = 0 and moves towards the unit

circle on the positive real axis. This branch leaves the real axis once it reaches the breakaway point xB
in such a way that points of this branch remain complex conjugates of those of B1. This branch may

end at a zero of H (z), which is the complex conjugate of the end point of B1, or approach an asymptote

of the locus. Before reaching the breakaway point, the trajectory of B2 is independent of the secondary
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Figure 8.2: FxLMS root locus plots for three different secondary paths
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Figure 8.3: Typical trajectories of B1 and B2 before reaching the breakaway point xB

path parameters; however, after reaching this point, this trajectory is affected by the secondary path

parameters (similar to B1). Three different examples of trajectories of B2 are shown in plots of figure

8.2. As can be seen, the end point of B2 in each example is different but its trajectory before reaching

the breakaway point is constant (typical). This typical trajectory is also shown in figure 8.3.

8.3.3 Typical Trajectories of Other Branches

Branches B3, B4, . . . , and BQ start at z = 0 (with different departure angles) and move towards the unit

circle. They end at the zeros of H (z) or approach the asymptotes. According to Eq. (8.35), departure

angles of these branches form the origin is independent of the parameters of the secondary path; however,

they are depended on the order of the secondary path (Q).

8.3.4 Dominant Pole of FxLMS Adaptation Process

According to the typical trajectories of the FxLMS root locus branches, discussed above, it can be de-

duced that the root moving onB1 is closer to the unit circle than the other roots. Therefore, the dominant

pole of the FxLMS root locus (which is the dominant pole of the FxLMS adaptation process) always

locates on B1. This theoretical finding can be seen in all of the previous examples (shown in Figure 8.2).

Based on this finding, the next chapter develops a mechanism to improve the dynamic behaviour of the

FxLMS adaptation process.



Chapter 9

Dominant Pole Localisation of FxLMS
Adaptation Process

In the previous chapter, it was shown that the FxLMS adaptation process has a dominant pole, governing

the adaptation process dynamics. However, there is no control mechanism in the FxLMS algorithm

which enable us to localise this pole.

This chapter develops a mechanism for localising the dominant pole of the FxLMS adaptation process,

resulting in the development of a new adaptation algorithm. After introducing this algorithm in Section

9.1, it is shown that its update equation is similar to that of the FxLMS algorithm. However, in the

proposed algorithm, the weight vector should be first filtered by a simple recursive filter before being

updated. For this reason, this algorithm is called Filtered Weight FxLMS (FwFxLMS) in this thesis.

Section 9.2 shows that filtering weights in the FwFxLMS algorithm results in the creation of a simple

zero in the open loop transfer function of the adaptation process. Section 9.3 shows how the location of

this open loop zero pushes the dominant pole of the adaptation process towards the origin and, thereby,

the adaptation process becomes faster.

9.1 Filtered Weights FxLMS Algorithm

This section introduces the FwFxLMS algorithm, in which the weight vector is filtered by using a simple

recursive filter before being updated. Also, this section shows that the proposed algorithm behaves

similar to the FxLMS in steady-state conditions; therefore, steady-state performance of this algorithm is

the same as that of the FxLMS algorithm.

9.1.1 Update Equation

The FwFxLMS update equation is given by

w (n+ 1) = w̃ (n) + µe (n)

Q−1∑

p=0

spx (n− p) (9.1)

117
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where w̃ (n), called the filtered weight vector, is obtained by passing the weight vector w (n) through a

recursive filter with the transfer function given by

A (z) =
1− ξ

1− ξz−1
(9.2)

Obviously, internal stability of A (z) requires −1 < ξ < 1. Here, it is assumed that ξ is a positive scalar

between 0 and 1:

0 < ξ < 1 (9.3)

Later, the logic behind the current form of A (z) and choice of ξ will be apparent. Assuming that a (n)

is the inverse z-transform of A (z), the filtered weight vector w̃ (n) can be expressed as

w̃ (n) = a (n) ∗w (n)

= (1− ξ) w (n) + ξw̃ (n− 1)

= w (n)− ξ [w (n)− w̃ (n− 1)] (9.4)

By using Eqs. (9.1) and (9.4), the FwFxLMS algorithm can be implemented.

9.1.2 Alternative Expression for Update Equation

Now, it is required to express the FwFxLMS update equation in terms of the rotated weight misalignment

vector. For this purpose, both sides of Eq. (9.1) should be modified as follows.

FT [w (n+ 1)−wopt] = FT [w̃ (n)−wopt] + µe (n)

Q−1∑

p=0

spF
Tx (n− p) (9.5)

By using the definitions given in Eq. (2.43) for the rotated reference vector: z (n) = FTx (n) and Eq.

(2.47) for the misalignment weight vector: c (n) = FT [w (n)−wopt], Eq. (9.5) can be expressed as

c (n+ 1) = FT [w̃ (n)−wopt] + µe (n)

Q−1∑

p=0

spz (n− p) (9.6)

Now, vector process u (n) is defined as

u (n) = FT [w̃ (n)−wopt] (9.7)

Combining Eqs. (9.4) and (9.7) results in

u (n) = FT [w (n)− ξ [w (n)− w̃ (n− 1)]−wopt] (9.8)

which can be modified to

u (n) = FT [w (n)−wopt]− ξ
{
FT [w (n)−wopt]− FT [w̃ (n− 1)−wopt]

}
(9.9)
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The misalignment vector c (n) and the vector process u (n) appear in Eq.(9.9); thus

u (n) = c (n)− ξ [c (n)− u (n− 1)] (9.10)

Now, from Eqs. (9.4) and (9.10), it can be deduced that

u (n) = a (n) ∗ c (n) (9.11)

Combining Eqs. (9.7) and (9.11) results in

FT [w̃ (n)−wopt] = a (n) ∗ c (n) (9.12)

Finally, substituting Eq. (9.12) into (9.6) gives

c (n+ 1) = a (n) ∗ c (n) + µe (n)

Q−1∑

p=0

spz (n− p) (9.13)

Eq. (9.13) represents an alternative expression for the FwFxLMS update equation. This equation will be

used in the analysis performed in this chapter.

9.1.3 Update Equation in Steady-State Conditions

In systems theory, the steady-state gain of a transfer function, e.g. A (z), can be expressed as

Ass = lim
z→1

A (z) (9.14)

Substituting Eq. (9.2) into (9.14) results in

Ass = lim
z→1

1− ξ
1− ξz−1

(9.15)

Therefore,

Ass = 1 (9.16)

This means that A (z) behaves similar to an identity filter in steady-state conditions. Therefore, the

update equation of the FwFxLMS algorithm becomes similar to that of the FxLMS algorithm in steady-

state conditions. Consequently, steady-state performances of both algorithms are identical. This finding

will be verified later by using computer simulations.

9.2 FwFxLMS Characteristic Equation

Taking the statistical expectation from both sides of Eq. (9.13) results in

c̄ (n+ 1) = a (n) ∗ c̄ (n) + µ

Q−1∑

p=0

spE {z (n− p) e (n)} (9.17)
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Now, replacing e (n) with the alternative expression given in Eq. (2.72) results in

c̄ (n+ 1) = a (n) ∗ c̄ (n) + µ

Q−1∑

p=0

spE {z (n− p) eo (n)}

−µ
Q−1∑

p,q=0

spsqE
{
z (n− p) zT (n− q) c (n− q)

}
(9.18)

Since the optimum residual noise eo (n) and the acoustic noise are statistically independent, the second

term in Eq. (9.18) is zero. Also, considering the statistical independence of the adaptive weights and

acoustic noise samples, the third term in this equation can be simplified. Therefore, Eq. (9.18) can be

expressed as

c̄ (n+ 1) = a (n) ∗ c̄ (n)− µ
Q−1∑

p,q=0

spsqE
{
z (n− p) zT (n− q)

}
E {c (n− q)} (9.19)

Now, substituting Eqs. (2.52) and (2.76) into Eq. (9.19) results in

c̄ (n+ 1) = a (n) ∗ c̄ (n)− µΛ

Q−1∑

p=0

s2
pc̄ (n− p) (9.20)

For a broad-band white noise (Λ = σ2
xI), Eq. (9.20) can be simplified to

c̄ (n+ 1) = a (n) ∗ c̄ (n)− µσ2
x

Q−1∑

p=0

s2
pc̄ (n− p) (9.21)

By taking the z-transform from both sides of Eq. (9.20), the FwFxLMS characteristic equation is ob-

tained as

z −A (z) + µσ2
x

Q−1∑

p=0

s2
pz
−p = 0 (9.22)

Now, substituting Eq. (9.2) into (9.22) results in

z − 1

1− ξz−1
+ µσ2

x

Q−1∑

p=0

s2
pz
−p = 0 (9.23)

which can be written in the standard form of

1 + µH̃ (z) = 0 (9.24)

where

H̃ (z) =
(z − ξ)G (z)

zQ+1 − zQ (9.25)

Comparing Eqs. (8.12) and (9.25) shows that

H̃ (z) =
z − ξ
z

H (z) (9.26)
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Therefore, the FwFxLMS open loop transfer function H̃ (z) has one more zero (at z = ξ) and one more

pole (at the origin) in addition to the zeros and poles of the FxLMS open loop transfer function H (z).

Accordingly, the following statements can be expressed:

ÑP = NP + 1 (9.27)

and

ÑZ = NZ + 1 (9.28)

where ÑP and ÑZ denote the number of poles and zeros of H̃ (z), respectively. In fact, filtering the

weight vector using the proposed form of A (z) introduces a finite real zero to the open loop transfer

function of the characteristic equation. In the following, it is shown that dynamics of the FwFxLMS

adaptation process can be controlled by localising this zero. This is the main privilege of the FwFxLMS

algorithm, compared to the FxLMS algorithm.

9.3 FwFxLMS Root Locus

This section develops the fundamental rules, governing the FwFxLMS root locus, and compares them

with those of the FxLMS.

9.3.1 Number of Branches

As mentioned in Section 8.2.1, the number of branches of a root locus is equal to the number of poles

of its open loop transfer function. Since H̃ (z) has one pole more than H (z), the FwFxLMS root locus

has one branch more than the FxLMS root locus. Accordingly, this root locus has Q+ 1 branches. Here,

these branches are denoted by B̃1, B̃2, ...and B̃Q+1.

9.3.2 Start Points

In the FwFxLMS root locus, the start points of B̃1 is located at z = 1 and those of B̃2, ...and B̃Q+1 are

located at z = 0, commonly.

Proof: the start points of B̃1, B̃2, ... and B̃Q+1 are located at the poles of H̃ (z). Let us assume that p̃q is

the start point of the q-th branch, B̃q. In this case, p̃q can be expressed as

p̃q = argz

{
1

H̃ (z)
= 0

}
(9.29)

Combining Eqs. (9.25) and (9.29) results in

p̃q = argz
{
zQ+1 − zQ = 0

}
⇒




p̃1 = 1

p̃2, p̃3, . . . , p̃Q, p̃Q+1 = 0
(9.30)
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Therefore, each branch of the root locus has a finite start point in the z-plane; that of B̃1 is located at

z = 1 and those of B̃2, ...and B̃Q+1 are all located at z = 0.

9.3.3 End Points

The FwFxLMS root locus has a finite end point in the real axis inside the unit circle, unlike the FxLMS

root locus.

Proof: end points of B̃1, B̃2, ... and B̃Q+1 locate at the zeros of H̃ (z). Let us assume that z̃q is the end

point of the q-th branch, B̃q. In this case, z̃q can be expressed as

z̃q = argz

{
H̃ (z) = 0

}
(9.31)

Combining Eqs. (9.25) and (9.31) results in

z̃q = argz {(z − ξ)G (z) = 0} (9.32)

Since s2
0, s

2
1, . . . , s

2
Q−1 are positive scalars, G (z) can not have any zeros on the positive real axis. How-

ever, (z − ξ) has a positive real zero inside the unit circle (since 0 < ξ < 1). As a result, the FwFxLMS

root locus has a single positive real zero inside the unit circle at z = ξ. Therefore, one of the branches of

this root locus ends at a point on the positive real axis inside the unit circle, unlike the FxLMS root locus.

This is one of the main distinctions between the FxLMS and FwFxLMS root loci. In the next sections, it

is shown that the branch, on which the dominant root moves, ends at this point.

9.3.4 Asymptotes

Asymptotes of the FwFxLMS root locus originate on the real axis at a centroid point (denoted by x̃A),

given by

x̃A = xA −
ξ

Q0 + 1
(9.33)

Also, these asymptotes form the following angles with the real axis.

ϕ̃k =
(2k + 1)

ÑP − ÑZ

π k = 0, 1, ..., Q0 (9.34)

where Q0 is the time delay, associated with the secondary path impulse response.

Proof: according to the root locus theory, x̃A can be obtained by using the following formulation.

x̃A =

∑
p̃q −

∑
z̃q

ÑP − ÑZ

(9.35)

From Eqs. (9.27) and (9.28), it can be shown that

ÑP − ÑZ = NP −NZ = Q0 + 1 (9.36)
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Also, from Eq. (9.30), it can be shown that

Q−1∑

q=0

p̃q = 1 (9.37)

and from Eq. (9.26), it can be shown that

∑
z̃q = ξ +

∑
zq (9.38)

where zq is the q-th zero of G (z). The sum of G (z)’s zeros are computed in Eq. (8.32). Using this

equation in Eq. (9.39) results in
∑

z̃q = ξ −
(
sQ0+1

sQ0

)2

(9.39)

Now, substituting Eqs. (8.14), (8.24), (9.37) and (9.39) into (9.35), the location of the centroid point x̃A
is computed as

x̃A = xA −
ξ

Q0 + 1
(9.40)

Also, according to the root locus theory, the angles of the asymptotes with respect to the real axis are

formulated by

ϕ̃k =
(2k + 1)

ÑP − ÑZ

π k = 0, 1, ..., ÑP − ÑZ (9.41)

Substituting Eqs. (9.27) and (9.28) into (9.41) results in

ϕ̃k = ϕk k = 0, 1, ..., Q0 (9.42)

As can be seen in Eq. (9.42), the angles of the asymptotes in both of the FxLMS and FwFxLMS root

loci are equal.

9.3.5 Departure Angles

The departure angles of B̃1, B̃2, ...and B̃Q+1 from their start points can be formulated as

θ̃q =




π, q = 1

2(q−2)
Q π, q = 2, 3, ..., Q+ 1

(9.43)

Proof: let us assume that θ̃q is the departure angle of B̃q from its start point at z = p̃q. Assuming that p̃q
is a single pole of H̃ (z) and based on the same logic used in Eq. (8.36), θ̃q can be expressed as

θ̃q = π −
ÑZ∑

k=1

] (z̃k, p̃q)−
ÑP∑

k=1
k 6=q

] (p̃k, p̃q) (9.44)
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Also, if p̃q is a multiple pole of order M , departure angles of the M branches departing from this point

(B̃q, B̃q+1, . . . and B̃q+M−1), can be computed as

θ̃q+m =
(2m+ 1)

M
π − 1

M

ÑZ∑

k=1

] (z̃k, p̃q)−
1

M

ÑP∑

k=1
p̃k 6=p̃q

] (p̃k, p̃q) , m = 0, 1, . . . ,M − 1 (9.45)

Since (z − ξ)G (z) has only real coefficients, its roots (that are zeros of H̃ (z)) are necessarily negative

real or complex conjugates. Therefore, for p̃1 = 1, it can be shown that

ÑZ∑

k=1

] (z̃k, p̃1) =

ÑZ∑

k=1

] (z̃k, 1) = 0 (9.46)

Also, since p̃1 = 1 is a simple pole, from Eq. (9.30), it can be shown that

ÑP∑

k=1
p̃k 6=p̃q

] (p̃k, p̃1) =

ÑP∑

k=1
p̃k 6=p̃q

] (0, 1) =
(
ÑP − 1

)
] (0, 1) = 0 (9.47)

Now, substituting Eqs. (9.46) and (9.47) into (9.44) results in

θ̃1 = π (9.48)

Therefore, the departure angle of B̃1 from its start point at z = p̃1 is π. In other words, this branch

departs from z = 1 along with the real axis and towards the origin. The remaining Q branches depart

from the multiple pole locating at the origin with the order of M = Q. Similar to the previous case, it

can be shown that (for p̃2, p̃3, . . . , p̃Q+1 = 0)

ÑZ∑

k=1

] (z̃k, p̃q) =

ÑZ∑

k=1

] (z̃k, 0) = 0 (9.49)

and
ÑP∑

k=1
p̃k 6=p̃q

] (p̃k, p̃q) =

ÑP∑

k=1
p̃k 6=0

] (p̃k, 1) = ] (0, 1) = π (9.50)

Substituting these equalities into Eq. (9.45) results in

θ̃2+m =
2m

Q
π, m = 0, 1, . . . , Q− 1 (9.51)

In order to obtain a single equation for all of the departure angles, Eq. (9.51) can be re-expressed as

θ̃q =
2 (q − 2)

Q
π q = 2, 3, ..., Q+ 1 (9.52)
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Now, combining Eqs. (9.48) and (9.52) results in

θ̃q =




π, q = 1

2(q−2)
Q π, q = 2, 3, ..., Q+ 1

(9.53)

9.3.6 Real Sections

It can be shown that (ξ, 1) is the only interval on the positive real axis, which belongs to the FwFxLMS

root locus.

Proof: an interval on the real axis belongs to the FwFxLMS root locus if H̃ (z) has an odd number of

zeros and poles to its right. According to Eq. (9.25), the zeros of H̃ (z) are identical to the roots of

(z − ξ)G (z).

H̃ (z) = 0⇔ (z − ξ)G (z) = 0 (9.54)

Accordingly, the zeros of H̃ (z) include the zeros of G (z) and a single zero at z = ξ (where 0 < ξ < 1).

As explained in Chapter 8, G (z) has an even number of roots to the right side of any point in the positive

real axis. Therefore, H̃ (z) has an even number of zeros to the right side of any point in (ξ,+∞) and an

odd number of zeros to the right side of any point in (0, ξ). Now, considering the single pole of H̃ (z) at

z = 1, the following statements can be deduced.

• H̃ (z) has an even number of zeros and poles to the right side of any point in (1,+∞); therefore

this interval does not belong to the FwFxLMS root locus.

• H̃ (z) has an odd number of zeros and poles to the right side of any point in (ξ, 1); therefore this

interval always belongs to the FwFxLMS root locus.

• H̃ (z) has an even number of zeros and poles to the right side of any point in (0, ξ); therefore this

interval does not belong to the FwFxLMS root locus.

From the above discussion, it can be deduced that (ξ, 1) is the only interval on the positive real axis, which

belongs to the FwFxLMS root locus. However, some intervals of the negative real axis may belong to the

FwFxLMS root locus, depending on the order of the repeated zero at the origin and the location of the

other zeros of G (z). It is later shown that (ξ, 1) is the most important part of the FwFxLMS root locus.

9.3.7 Breakaway Points

The FwFxLMS root locus does not necessarily have a breakaway point on the positive real axis inside

the unit circle, unlike the FxLMS root locus. If the control parameter ξ is set to a value in the following

interval, then there is no breakaway point on the real section of the root locus.

2− xB − 2
√

1− xB < ξ < 1 (9.55)

Proof: here, it is desired to obtain a range of values for ξ for which the FwFxLMS root locus has

no breakaway point on (ξ, 1). Any breakaway point in the FwFxLMS root locus should satisfy the
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breakaway point equation of

x̃B = argz

{
∂

∂z

1

H̃ (z)

}
= 0 (9.56)

On the other hand, differentiating Eq. (9.26) results in

∂

∂z

1

H̃ (z)
=

z

z − ξ ×
(
∂

∂z

1

H (z)

)
− ξ

(z − ξ)2 ×
1

H (z)
(9.57)

From Eq. (8.12), it can be shown that

∂

∂z

1

H (z)
=

zQ−2

G2 (z)

{
(Qz −Q+ 1)G (z)−

(
z2 − z

)
Ǵ (z)

}
(9.58)

Now, substituting Eqs. (8.12) and (9.58) into (9.57) results in

∂

∂z

1

H̃ (z)
=

zQ−1

(z − ξ)2G2 (z)

{
[(Qz −Q+ 1) (z − ξ)− ξ (z − 1)]G (z)−

(
z2 − z

)
(z − ξ) Ǵ (z)

}

(9.59)

Combining Eqs. (9.56) and (9.59) gives the following breakaway point equation.

{(Qx̃B −Q+ 1) (x̃B − ξ)− ξ (x̃B − 1)}G (x̃B)−
(
x̃2
B − x̃B

)
(x̃B − ξ) Ǵ (x̃B) = 0 (9.60)

Equivalently,

(Qx̃B −Q+ 1) (x̃B − ξ)− ξ (x̃B − 1)−
(
x̃2
B − x̃B

)
(x̃B − ξ)

Ǵ (x̃B)

G (x̃B)
= 0 (9.61)

If there is a breakaway point in the FwFxLMS root locus, it should be close to z = 1; therefore, the

following assumptions can be made (similar to those made in Chapter 8 for the FxLMS root locus)

x̃2
B − x̃B = (x̃B − 1)2 + x̃B − 1 ≈ x̃B − 1 (9.62)

and
Ǵ (x̃B)

G (x̃B)
≈
Ǵ (1)

G (1)
(9.63)

Using these two assumptions, Eq. (9.61) can be simplified to

(Qx̃B −Q+ 1) (x̃B − ξ)− ξ (x̃B − 1)− (x̃B − 1) (x̃B − ξ)
Ǵ (1)

G (1)
= 0 (9.64)

Now, substituting Eq. (8.59) into (9.64) results in

(1 +Deq) x̃
2
B − (2ξ + ξDeq +Deq) x̃B + ξ (1 +Deq) = 0 (9.65)

which can be expressed as

x̃2
B −

(
ξ +

Deq + ξ

1 +Deq

)
x̃B + ξ = 0 (9.66)
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Since Deq � 1 and 0 < ξ < 1, this equation can be approximated by

x̃2
B −

(
ξ +

Deq

1 +Deq

)
x̃B + ξ = 0 (9.67)

As can be seen, the FxLMS breakaway point xB , as given in Eq. (8.47), appears in the breakaway point

equation of the FwFxLMS root locus. Thus,

x̃2
B − (ξ + xB) x̃B + ξ = 0 (9.68)

Note that in the above FwFxLMS breakaway point equation, x̃B is the unknown variable and xB is a

known parameter. This quadratic equation (which is in form of x̃2
B + bx̃B + c) has no real answer if its

discriminant (4 = b2 − 4c) is negative:




b = − (ξ + xB)

c = ξ
⇒ 4 = (ξ + xB)2 − 4ξ

Thus, any value of ξ, for which there is no breakaway point on (ξ, 1) in the FwFxLMS root locus, satisfies

(ξ + xB)2 − 4ξ < 0 (9.69)

This inequality can be expanded as follows.

ξ2 + 2 (xB − 2) ξ + x2
B < 0

⇒ 2− xB − 2
√

1− xB < ξ < 2− xB + 2
√

1− xB (9.70)

It can be shown that for xB > 0 the following inequality always holds.

2− xB + 2
√

1− xB > 1 (9.71)

Using this result and considering 0 < ξ < 1, Eq. (9.70) becomes

2− xB − 2
√

1− xB < ξ < 1 (9.72)

Accordingly, if ξ satisfies the above inequality then the FwFxLMS root locus has no breakaway point on

(ξ, 1).

9.4 Properties of the FwFxLMS Root Locus

From the root locus rules, derived in the previous section, it can be shown that the FwFxLMS root locus

branches have some typical trajectories in the z-plane. This section discussed these trajectories.



128 Dominant Pole Localisation of FxLMS Adaptation Process

z−plane

1

−1

ξ

B̃1

Figure 9.1: Typical trajectories of B1 in FwFxLMS root locus
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Figure 9.2: FwFxLMS root locus when s0 = s1 = s2 = 0, s3 = s4 = 1 and s5 = 0.8 and ξ = 0.7

9.4.1 Typical Trajectory of B̃1

As a typical property of the FwFxLMS root locus, B̃1 always starts at z = 1 and moves towards the

origin on the real axis. If the control parameter ξ satisfies the inequality given in Eq. (9.70), then there

is no breakaway point on the interval of (ξ, 1). This causes B̃1 to continue its trajectory on the real axis

until it reaches the end point at z = ξ. This typical trajectory is shown in Figure 9.1.

Figure 9.2 shows the FwFxLMS root locus for the example, described in Chapter 8, and when ξ is set

to 0.7. As can be seen, there is no breakaway point on the trajectory of the dominant root (branch B1)

and, therefore, the interval of (ξ, 1) is considered as the first branch of the root locus. (compared to the

FxLMS root locus shown in Figure 8.1). This plot is obtained using numerical methods in MATLAB;

however, the validity of all of the analytical rules, described in Section 9.3, can be seen in this plot.
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9.4.2 Typical Trajectories of other branches

Other branches of the FwFxLMS root locus B̃2, B̃4, . . . , and B̃Q start at z = 0 with individual departure

angles and move towards the unit circle. They end at the zeros of H̃ (z) or approach the asymptotes.

According to Eq. (9.53), departure angles on these branches form the origin is independent of the para-

meters of the secondary path; however, they are dependant of the order of the secondary path.

9.4.3 Dominant Pole of FwFxLMS Adaptation Process

Based on the typical trajectories of the FwFxLMS root locus branches, described above, it is expected that

the nearest root to the unit circle is located on B̃1. Therefore, this branch contains the dominant root of

the FwFxLMS characteristic equation. This property is common in both of the FxLMS and FwFxLMS

root loci. However, in the FxLMS root locus, B1 detours towards the unit circle once reaching the

breakaway point. Therefore, the maximum distance of the dominant root from the unit circle is equal to

the distance of the breakaway point to z = 1. In the FwFxLMS root locus there is no breakaway point

and, therefore, the root moving on B̃1 can get closer to the origin (until it reaches the branch end point

at z = ξ). As a result, the dominant pole can be pushed towards the origin and, therefore, the dynamic

of the FwFxLMS adaptation process becomes faster than that of the FxLMS.

9.5 Computer Simulation

This section verifies the validity and accuracy of the theoretical results, obtained in this chapter, by using

computer simulation. Each curve is obtained by averaging over 100 simulation runs with independent

noise sequences. In the simulation experiment, the impulse responses of the primary and secondary paths

are similar to those used in Chapter 7. Also, the secondary path model is a perfect model and the acoustic

noise is an stochastic white noise of power 1 (σ2
x = 1), generated by the computer.

In the first experiment, the FxLMS algorithm is used. The root locus of the adaptation process, performed

by this algorithm, is plotted in Figure 9.3a. As can be seen, the branch containing the dominant root (B1)

returns towards the unit circle after reaching the breakaway point xB . In the second experiment, the

FwFxLMS algorithm with ξ = 0.7 is used. The root locus of the adaptation process, performed by this

algorithm, is plotted in Figure 9.3b. As can be seen, the extra root of the FwFxLMS algorithm removes

the breakaway point from the trajectory of the dominant root. In the third experiment, the FwFxLMS

algorithm with ξ = 0.5 is used. The root locus of the adaptation process, performed by this algorithm, is

plotted in Figure 9.3c. As can be seen, the extra root of the FwFxLMS algorithm removes the breakaway

point from the trajectory of the dominant root and, also, this trajectory can come closer to the origin,

compared to the second experiment. Therefore, it is expected that the dominant root of the FwFxLMS

algorithm in the third experiment become closer to the origin, compared to the dominant root of the

FwFxLMS algorithm in the second experiment. Also, it is expected that both the dominants roots of

these two experiments to be closer to the origin than that of the first experiment. Therefore, the second

experiment should be faster than the first experiment and the third experiment should be even faster than

the second one.
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Figure 9.3: Root loci of the simulated FxLMS and FwFxLMS algorithms
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Figure 9.4: Dynamic behaviours of first-order moments in FxLMS and FwFxLMS adaptation processes

Figure 9.4 shows dynamics of two different elements (4th and 6th elements) of the weight vector w (n)

in the three experiments conducted above. Each curve is obtained by averaging over 100 independent

data sets; consequently, these curves can be considers as the mean of the selected adaptive weights. Other

elements of this vector also have the same behaviours. As expected, the adaptive weights converge to

their steady-state levels faster in the third experiments, compared to the adaptive weights in the other

two experiments. This issue can be also seen for other weights. Also, it can be seen that the steady-state

levels of the weights are the same in all the experiments. This is in a good agreement with the theoretical

results obtained in Section 9.1.3.

Figure 9.5 shows the MSE function in three experiments conducted above. As can be seen, the con-

vergence speed of the MSE function directly related to the convergence speeds of the adaptive weights.

According to the figure, this function has the same steady-state level in the FxLMS and the two Fw-

FxLMS algorithms but this function converges to its steady-state level faster when the FwFxLMS is

used. Also, by decreasing ξ in the FwFxLMS algorithm, the convergence speed of the MSE function is

increased. This is in an excellent agreement with the theoretical results, obtained in this chapter.
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Figure 9.5: Dynamic behaviour of the MSE function in FxLMS and FwFxLMS adaptation processes
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Chapter 10

Experimental Realisation

The experimental ANC setup, developed for and used in this research, has been designed based on a

basic system, implemented in the University of Auckland Signal Processing Laboratory [70, 71]. This

system is developed further for this research to implement a high performance ANC system with the

ability of executing different ANC algorithms, e.g. FxLMS and FwFxLMS.

Section 10.1 introduces the developed experimental setup and its major components. In this section,

two different FPGA designs which are separately developed for executing the FxLMS and FwFxLMS

adaptation algorithms are described. Section 10.2 describes the methods applied for measurements and

computations of basic parameters, which are required in numerical analysis of experimental results. Sec-

tion 10.3 uses the obtained experimental results to validate the theoretical expressions derived in Chapters

3-6 for formulating behaviours of FxLMS-based ANC systems. Finally, Section 10.4 discusses the per-

formance of the proposed ANC algorithm (FwFxLMS) in practise and compares it with the FxLMS

algorithm.

10.1 Experimental Setup

Figure 10.1 shows the schematic diagram of the developed ANC setup. As can be seen, the ANC setup

is developed to create a silence zone at the end of an acoustic duct. The length, width and height of

this duct are 150cm, 30cm and 25cm, respectively. This duct is constructed from 1.8cm thick medium

density fibre-board and its interior is carpeted. The major electro-acoustical hardware used in this setup

are introduced below.

10.1.1 Microphones

Two similar AKG-D770 dynamic microphones are used in the experimental setup. The first microphone,

which is used as the reference microphone, is placed at the beginning of the duct where the noise source

is located. The output of this microphone can be considered as the reference signal x (n). The second

microphone, which is used as the error microphone, is placed at the end of the duct, where the desired

silence zone is created. The output of this microphone can be considered as the error signal e (n).

133
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Figure 10.1: Schematic diagram of experimental ANC setup

10.1.2 Control Loudspeaker

The ANC setup includes a control loudspeaker to generate the anti-noise signal in the acoustic duct. This

loudspeaker is driven by the control signal generated by the digital control system. It is important that

the frequency response of the control loudspeaker is as flat as possible over the frequency range of the

noise to be controlled. A Phonic SEp 207 powered loudspeaker with on-board 20W power amplifier is

used as the control loudspeaker in this experimental setup.

10.1.3 Digital Electronic Control System

The major component of any ANC device is a real-time DSP controller, where the ANC algorithm is

implemented. In our experimental ANC setup, a Compact RIO 9014 (cRIO 9014) which is an embedded

real-time controller, made by National Instrument (NI), is used. The cRIO utilises an embedded Xilinx

FPGA chassis with a 40MHz clock [72]. This chassis is connected to the reference and error microphones

through two separate NI 9233 I/O modules, which are 24-bit analog to digital converters. Also, this

chassis is connected to the control loudspeaker through a NI 9263 I/O, which is a 16-bit digital to analog

converter. The connections between the cRIO, FPGA chassis, microphones and control loudspeaker are

shown in Figure 10.1.

The combination of the FPGA chassis, real-time controller, and I/O modules creates a complete stand-

alone embedded system. As can be seen in Figure 10.1, the only output module is connected to the 2nd

channel of the FPGA chassis. Also, the two input modules are connected to the 3rd and 4th channels.
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The FPGA circuitry in the chassis controls each I/O modules and passes data to the controllers through

a local PCI bus using built-in communication functions. The FPGA design of the ANC algorithm can be

developed by using the LabVIEW FPGA Module and compiled into a bit-stream file for download onto

the cRIO, where the design is synthesised in the FPGA chip.

10.1.4 Real-Time Software

In this research, a general multi-threading structure for the implementation of real-time ANC algorithms

(software) in cRIO is developed. Both the FxLMS algorithm and its novel alternative (FwFxLMS), can

be implemented in this structure. FPGA designs for both of these algorithms are detailed below.

10.1.4.1 Multi-threading Structure for ANC

Using LabVIEW graphical programming environments, we can take full advantages of the multi-core

processing power in the FPGA design of the experimental ANC setup. As shown in Figure 10.2, three

loops execute in separate threads while abstracting the details of thread management away from the

developer. In the following, these threads and their functions are introduced, separately.

10.1.4.2 Reading Thread

The first thread, called “reading thread”, reads data from the NI 9233 input modules, connected to the

error and reference microphones. After reading data from input modules, they are filtered using a low-

pass filter with the cut-off frequency of 1500 Hz and a high-pass filter with the cut-off frequency of 75

Hz. The obtained signals are labelled as “Reference” and “Error”. They are then stored in the cRIO

memory. The FPGA design for the implementation of this thread is shown in Figure 10.2a .

10.1.4.3 Process Thread

The second and the most important thread, called “process thread”, is responsible for performing the

ANC algorithm and computing the anti-noise signal in accordance with the reference and error signals.

These two signals are continuously stored into cRIO memory by the reading thread, as described above.

Once the anti-noise signal is computed, it is labelled as “Antinoise” and then it is stored in the cRIO

memory. The structure of this thread is shown in Figure 10.2b. The detail of the FPGA designs for both

the FxLMS and FwFxLMS algorithms are available in Appendix.

10.1.4.4 Writing Thread

The third thread, called “Writing Thread” is responsible for placing the anti-noise signal into the first

channel of the NI 9263 output module, which directly drives the control loudspeaker. The anti-noise

signal is continuously computed by the process thread so the writing thread can read it from the cRIO

memory. The FPGA design of this thread is shown in Figure 10.2.
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Figure 10.2: A general multi-threading structure for FPGA design of ANC algorithms
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Figure 10.3: Power spectrum of acoustic noise injected in acoustic duct

10.2 Measurement and Computation of Parameters

This section describes the methods applied for measurements and computations of basic parameters,

required for the analysis of experimental results. Subsection 10.2.1 computes the parameters of the

acoustic noise signals, injected into the acoustic duct. Subsection 10.2.2 explains how the minimal MSE

level can be computed from the measured data. Subsection 10.2.3 explains how the actual secondary

path and its models are identified. Also, this subsection computes ‖s‖2 and Deq for the actual secondary

path and the perfectness ratios ρ1, ρ2 and ρ3 for each secondary path model used in the experiments.

10.2.1 Acoustic Noise Parameters

In the experiments, reported below, two different acoustic noise signals are injected into the acoustic

duct. For the generation of both of them, a white acoustic noise is used. This noise is then passed

through two different band-pass filters. The outputs of the band-pass filters are stored into two separate

files in WAVE format. These files can be played by using a computer and loudspeaker.

The first signal is obtained by passing the original white noise through a band-pass filter with the band-

width of 1000 Hz, minimum frequency of 50 Hz and maximum frequency of 1050 Hz. The gain of this

filter is adjusted such that the power of the reference signal is limited to σ2
x ≈ 6 W. The power spectrum

of the produced noise is shown in figure 10.3a. Since the operational sampling frequency of the ANC
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system is set to 5554 Hz1, the normalised band-width of this signal can be computed as depicted in

Section 5.1.1:

Bw =
1000

1
2 × 5554

= 0.36 (10.1)

The second signal is obtained by passing the original noise through a band-pass filter with the band-

width of 500 Hz, minimum frequency of 50 Hz and maximum frequency of 550 Hz. Similar to the

previous case, the gain of this filter is adjusted in such that the power of the obtained signal is limited

to σ2
x ≈ 6 W. The power spectrum of this noise is shown in figure 10.3b. For this acoustic noise, the

normalised bandwidth Bw can be computed as

Bw =
500

1
2 × 5554

= 0.18 (10.2)

The above values of Bw are used in Section 10.3 for the analysis of experimental results.

10.2.2 Minimal MSE Function

For the analysis of experimental results, it is essential to have an estimate value for the minimal MSE

level, which can be interpreted as the minimum achievable residual acoustic noise power in the duct.

Obviously, this parameter cannot be directly measured. However, we can estimate this parameter by

using acoustic signals measured in the duct.

As mentioned in Subsection 10.1.1, the reference microphone measures the reference signal x (n). Also,

it is obvious that when the cancelling loudspeaker is not activated, the error microphone measures only

the primary noise d (n). Therefore, signals x (n) and d (n) are available in the experimental setup control

system. These signals are then transferred to LabVIEW, where they can be stored into an ASCII text file.

This file is used by a MATLAB function to compute Jo based on Eq. (2.23)2. Using this method, for the

acoustic noise with the power spectrum, shown in Figure 10.3a, Jo can be found as

Jo = 0.0377W (10.3)

This means that in the optimal case, an ANC system can reduce the power of this noise by about

10 log Jo
σ2
x

= −22 dB. Also, for the acoustic noise with the power spectrum, shown in Figure 10.3b,

Jo can be found as

Jo = 0.0241W (10.4)

Similarly, this value of Jo shows that in the optimal case, an ANC system can reduce this noise by about

10 log Jo
σ2
x

= −24 dB. The above estimate values for Jo are later used in Section 10.3 for the analysis of

experimental results.
1The sampling frequency of the developed system is equal to the operating frequency of the while-loop in the process thread.

The ratio of the operating frequencies of the reading and process threads while loops (in the FPGA design) should be an integer
fraction otherwise the operating frequency of the system will vary over time. Based on this logic, the process thread while-loop
frequency is set to 5554 Hz which is 1

9
of the reading while-loop frequency (50KSample/s) [70].

2The statistical expectation operator is estimated by averaging over 1024 consecutive samples of matrices, vectors or signals.
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10.2.3 Secondary Path Parameters

Using the real-time secondary path identification system, integrated in the experimental setup, the sec-

ondary path impulse response in the acoustic duct can be estimated precisely. After estimating the

impulse response, its coefficients are downloaded from the cRIO memory into LabVIEW, where they

can be exported to an ASCII text file. This file is then used by a MATLAB function to compute the

secondary path equivalent delay Deq, as defined in Eq. (4.8). Also, this function computes ‖s‖2, as the

sum of squares of secondary path impulse response coefficients.

The impulse response, estimated by the experimental setup, is shown in Figure 10.4a. This figure is

directly exported from LabVIEW. Using this impulse response and based on the steps described above,

the parameters of the actual secondary path can be computed as follows.

Deq = 42.39 (10.5)

and

‖s‖2 = 0.4684 (10.6)

The above values ofDeq and ‖s‖2 are used in Sections 10.3 for the analysis of experimental results. Note

that this impulse response can be considered as a nearly perfect secondary path model, as it is measured

precisely and the actual ANC system operates with this secondary path.

Now, two imperfect secondary path models are generated. The first imperfect model (̂s1) is measured

when an extra noise source exists outside the acoustic duct. In this case, the noise generated by this

source is not included in the identification algorithm; consequently, the impulse response, measured by

the identification system, becomes noisy and deviates from the actual system (s). Figure 10.4b shows

the estimated impulse response in this condition. This impulse response is stored in an ASCII text file so

that a MATLAB function can use it to compute its perfectness ratios by using Eqs. (6-13)-(6.15) as

ρ1 = 1.1393 (10.7)

ρ2 = 0.9085 (10.8)

ρ3 = 1.0251 (10.9)

The second model (̂s2) is measured when the upper side of the duct is partially opened. In this case, the

acoustic impedance of the duct secondary path is affected by the outside impedance and it is expected

that the total impedance of the secondary path becomes lower. Figure 10.4c shows the impulse response

measured in this condition. Similar to the previous case, this impulse response is stored in an ASCII text

file so that a MATLAB function can use it to compute its perfectness ratios as

ρ1 = 0.3597 (10.10)

ρ2 = 0.9153 (10.11)

ρ3 = 0.2009 (10.12)
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Figure 10.4: Actual secondary path impulse response and its imperfect models
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Table 10.1: Values of basic parameters used in analysis of experimental results

Bw Jo (W) ρ1 ρ2 ρ3

Experimental Condition 1 0.36 0.0377 ≈ 1 ≈ 1 ≈ 1

Experimental Condition 2 0.18 0.0241 ≈ 1 ≈ 1 ≈ 1

Experimental Condition 3 0.36 0.0377 1.1393 0.9085 1.0251

Experimental Condition 4 0.18 0.0241 0.3597 0.9153 0.2009

10.3 Behaviours of Implemented ANC System

This section uses the developed experimental setup to show the practical validity of the theoretical results,

derived in Chapters 3-6. The agreement between experimental and theoretical results are demonstrated

by using several experiments, conducted in different conditions.

Experimental condition 1: in all the experiments conducted under this condition, the acoustic noise with

the power of σ2
x = 6 W and band-width of Bw = 0.36 is injected into the duct. The power spectrum of

this noise is shown in Figure 10.3a. For this acoustic noise, the minimal MSE level is given in Eq. (10.3)

as Jo = 0.0377 W. In these experiments, the nearly perfect secondary path model, shown in Figure

10.4a, is uploaded into the cRIO memory. Accordingly, it is expected that all the perfectness ratios of

this model are nearly equal to 1.

Experimental condition 2: in this condition, the acoustic noise with the power of σ2
x = 6 W and band-

width of Bw = 0.18 is injected into the duct. The power spectrum of this noise is shown in Figure 10.3b.

For this acoustic noise, the minimal MSE level is given in Eq. (10.4) as 0.0241 W. The secondary path

model, uploaded into cRIO memory is remained unchanged. Therefore, it is still expected that all the

perfectness ratios of the model are nearly equal to 1.

Experimental condition 3: in this condition, the acoustic noise, injected into the duct, is similar to

the one used in the first experimental conditions; however, the secondary path model, shown in Figure

10.4b is uploaded in to the cRIO memory, instead of the nearly perfect model. As mentioned in Section

10.2.3, this model is identified when an external noise source is located close to the error microphone.

Accordingly, this model is considered as an imperfect model. As shown in Eqs. (10.7)-(10.9), the

perfectness ratios of this model are ρ1 = 1.1393, ρ2 = 0.9085 and ρ3 = 1.0251.

Experimental condition 4: in all the experiments, conducted in this condition, the acoustic noise, in-

jected into the duct, is similar to the one used in the second experimental conditions and the imperfect

secondary path model, shown in Figure 10.4b is uploaded in to the cRIO memory. As shown in Eqs.

(10.10)-(10.12) the perfectness ratios of this mode are ρ1 = 0.3597, ρ2 = 0.9135 and ρ3 = 0.2009.

In the above mentioned conditions, several experiments with different values of the step-size are con-

ducted. For each experiment, the output of the error microphone is monitored, recorded and analysed in

the LabVIEW environment. The obtained results can be then compared with the theoretical results. For

obtaining the theoretical results from the proposed expressions, appropriate values of Bw, Jo, ρ1, ρ2 and
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Figure 10.5: Variation of residual acoustic noise power in the implemented ANC system (under experimental
condition 1)

ρ3 should be used (these values are obtained in Section 10.2). For the sake of clarity, these values are

collected in Table 10.1.

10.3.1 System Stability in Practise

Different experiments, conducted in the experimental condition 1, show that when µ < 1.300 × 10−3,

the implemented ANC system is always stable. For example, the residual acoustic noise power for the

step size µ = 0.700 × 10−3 is shown in Figure 10.5. This plot is directly exported from the LabVIEW

environment, where the noise power is estimated by using recorded samples of the residual acoustic

noise. Different experiments with different step-sizes show that when 1.300×10−3 < µ < 1.550×10−3

the system starts diverging after a short time (becomes unstable); and when µ > 1.550×10−3 the system

starts diverging from the beginning. These observations are recorded in Table 10.2. According to this

table, it can be concluded that a practical µmax is located between 1.300 × 10−3 and 1.550 × 10−3.

However, it is not technically possible to estimate any specific value for µmax from the experimental

results. This is because of the experimental conditions uncertainties such as changing characteristics

of the surrounding environment, non-stationary behaviours of the background noise and uncertainties

associated with physical plants, control systems and measurement devices .

Now, by substituting the parameters, given in Table 10.1, into Eq. (5.23), the theoretical value of µmax
can be obtained as µmax = 1.448 × 10−3. It means that, in theory, for µ < 1.448 × 10−3 the system

always becomes stable and for µ < 1.448×10−3, the algorithm always diverges. This result is in a good

agreement with the experimental results described above.

Here, the minimum relative error between the practical and theoretical results can be obtained as the

relative difference of the theoretical value of µmax and the maximum step-size for which the ANC system

is stable in practise (e.g. this value is 1.300 × 10−3 in the above experiment). Similarly, the maximum

relative error can be obtained as the relative error between the theoretical value of µmax and the minimum

step-size for which the ANC system is always unstable in practise (e.g. this value is 1.550× 10−3 in the

above experiment). The obtained values of µmax and the corresponding relative errors are recorded in

Table 10.2.

The above experimental process can be repeated when the ANC setup operates in different experimental

conditions (e.g. those described in Section 10.3). The obtained experimental results, along with the
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theoretical results are collected in Table 10.2. Also, the relative error between the theoretical and exper-

imental results are shown in this table. Note that, when the setup operates in the experimental condition

2, the theoretical value of µmax should be computed by using Eq. (5.23) and when it operates in the

experimental conditions 3 and 4, this value should be computed by using Eq. (6.26).

As can be seen in Table 10.1, the proposed theoretical formulation for µmax can efficiently estimate this

parameter with the relative error between −15% and 10%. The existence of this error can be justified

because in theory it is not possible to consider the following issues.

1. Changing characteristics of the surrounding environment.

2. Non-stationary behaviours of the background noise.

3. Uncertainties associated with physical plants, control systems and measurement mechanisms.

Apart from this unavoidable error, the proposed formulation for µmax is a very significant step towards

matching available theoretical and experimental findings. This is because the commonly-used expression

for µmax, which was derived in [8, 48], can only apply to un-realistic cases with pure delay secondary

paths, broad-band acoustic noise signals and perfect secondary path models. However, the proposed

formulation can apply to a general case with an arbitrary secondary path, arbitrary acoustic noise band-

width, and arbitrary secondary path model.

10.3.2 Steady-State Performance in Practise

In Chapters 4-6, different equations for evaluating the residual acoustic noise power in steady-state con-

ditions (σ2
e ) are derived. Eq. (4.22) gives this quantity for an ideal case with a broad-band acoustic noise.

Eq. (5.26) gives this quantity for a more realistic case with a band-limited acoustic noise. Also, Eq.

(6.32) consider the secondary path model imperfectness in this quantity. In the following, the practical

validity of these equations are investigated by using the developed experimental setup.

Initially, the implemented ANC system is activated in the experimental condition 1 and the step-size is

set to a relatively small number (about 0.1 of its corresponding upper-bound). After a long time, when

the system reaches its steady-state conditions, the power of the residual noise is computed in LabVIEW.

Now, the step-size is incrementally increased and the system is re-started again. For each step-size,

the above experiment is repeated and the steady-state power of the residual noise is measured. The

measured data can be plotted as a function of the step-size, as shown in Figure 10.6a. For each step-

size, the theoretical value of the steady-state residual acoustic noise can be also computed by using the

closed-form expression given in Eq. (5.26) and the parameters given in Table 10.1. The results can be

then plotted as another function of the step-size. This function is plotted by using a red line in Figure

10.6a. Also, the minimum attainable noise power (Jo) is shown in this figure .

For the other three experimental conditions, the same process can be repeated. The obtained experi-

mental results are plotted in Figures 10.6b, 10.6c and 10.6d. Note that, when the system operates in the

experimental condition 2, the theoretical results can be obtained by using Eq. (5.26) and when it operates

in experimental conditions 3 and 4, the theoretical results can be obtained by using Eq. (6.32).
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Figure 10.6: Steady-state residual acoustic noise power in the implemented ANC setup
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As can be seen in plots of Figures 10.6, the theoretical and practical results are in a good agreement. The

existence of the small offset between the experimental and theoretical results is due to the non-ideal ex-

perimental conditions. The agreement between the theoretical and experimental results, shown in Figure

10.6, confirms that the proposed formulations can effectively estimate the steady-state performance of

practical FxLMS-based ANC systems.

10.3.3 Convergence Speed in Practise

In Chapters 4-6, closed-form expressions for the transient convergence speed measure of FxLMS-based

ANC systems (ω) is derived. This parameter is expected to determine the convergence speed of these

systems in different working conditions. Eq. (4.46) estimates this measure for an ideal case with a broad-

band acoustic noise. Eq. (5.30) estimates this measure for a more realistic case with a band-limited

acoustic noise. Also, Eq. (6.39) consider the secondary path model imperfectness in this parameter.

Herein, it is desired to investigate the practical validity of these equations. For this purpose, the transient

convergence speed of the implemented ANC system should be evaluated by using available measure-

ments. As shown in Chapter 7, the convergence speed measure ω can be interpreted as the slop of the

residual noise power once the FxLMS algorithm starts operating (in transient conditions). Therefore, in

order to estimate this slope in practise, the average speed at which the residual noise power reduces to

−6 dB is measured. This speed can be evaluated by using the following formulation.

ω ≈ 1.5071

N6dB

W

Sample
(10.13)

where 1.5071 is equivalent to −6 dB reduction in the acoustic power when the reference power is

σ2
x = 6 W, and N6dB is the time index at which the steady-state residual noise power is attenuated for

6 dB.

For each experiment with a particular value of the step-size, N6dB can be measured in real-time and then

it can be recorded in the LabVIEW environment. By using this measured value, ω can be evaluated from

Eq. (10.13). This process can be repeated for different experimental conditions (e.g. those introduced

in Section 10.3). The obtained results can be plotted as a function of the step-size, as shown in plots

of Figure 10.7. Also, for each experiment, the theoretical value of ω can be computed by substituting

corresponding parameters, given in Table 10.1, into Eqs. (5.30) or (6.39). For the first two experiments,

in which a nearly perfect secondary path model is used, Eq. (5.30) should be used and for the last two

experiments in which two different imperfect secondary path models are used, Eq. (6.39) should be used.

According to Figure 10.7, the theoretical results are in a good agreement with the experimental res-

ults. This agreement confirms the validity and accuracy of the proposed closed-form expressions for the

transient convergence speed of FxLMS-based ANC systems.

Also, it can be seen in plots of Figure 10.7 that, in all experimental conditions, the implemented ANC

system has its fastest convergence speed when the step-size is about half of its upper-bound. This ob-

servation is in an excellent agreement with the theoretical findings, given in Eqs. (4.48), (5.32) and

(6.45).
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Figure 10.7: Transient convergence speed of the implemented ANC setup
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Figure 10.8: Residual acoustic noise power, obtained by using implemented FwFxLMS-based ANC system with
µ = 0.700× 10−3 under first experimental conditions.

10.4 Experimental Results with FwFxLMS-Based ANC System

This section shows the efficiency of the FwFxLMS adaptation algorithm in practise. This algorithm is

developed in Chapters 8 and 9, as one of the contributions of this thesis. For the practical verification of

this algorithm, the FPGA design, described in Appendix, is implemented in the cRIO FPGA chassis. This

design can be developed by the modification of the FPGA design for the FxLMS-based ANC system,

described in Section 10.2. The experimental results, obtained from this new setup, can be compared with

the results obtained from the implemented FxLMS-based ANC system.

As mentioned in Chapter 9, the steady-state performance of the FwFxLMS algorithm is similar to that of

the FxLMS algorithm; however, we expect this algorithm to be faster than the FxLMS algorithm. Here,

the acoustic noise with the power spectrum shown in Figure 10.3a, is injected into the duct. The residual

acoustic noise is measured by the error microphone and it is then recorded in LabVIEW. Based on this

recording, the residual acoustic noise power can be computed in LabVIEW .

As mentioned in Chapter 9, in the FwFxLMS algorithm the control parameter ξ should be set. The

allowed range of ξ can be obtained by setting Deq = 42.39 into Eqs. (8.47) and (9.55) as 0.72 < ξ < 1.

In the first experiment, the system is started with ξ = 0.9. Figure 10.8a, shows the variation of the

acoustic noise power when µ = 0.700× 10−3 and ξ = 0.9. In this experiment, the value of the step-size

and also the experimental condition are similar to the first experiment, described in Subsection 10.3.1.
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Therefore, the residual acoustic noise power, shown in Figure 10.5 can be used as a reference for the

evaluation of the experimental results, obtained here.

Comparison of the two plots shown in Figures 10.5 and 10.8a, shows that when the implemented FxLMS-

based ANC system is used, the residual noise power reaches its steady state level after about 0.12

seconds and when the implemented FwFxLMS-based ANC system is used this time reduces to about

0.10 seconds. Also, from these two figure it can be seen, that the steady-state performance of the two

ANC systems are similar. Accordingly, the proposed ANC algorithm can efficiently improve the adapt-

ation process dynamics in ANC systems, without changing its steady-state performance.

Now, ξ is set to a smaller number: ξ = 0.75. In this case, it is expected that the system becomes even

faster, as described in Section 9.3. Figure 10.8b shows the variation of the residual acoustic noise power

in this case. As can be seen in this figure, the system reaches its steady-state level in about 0.08 seconds;

therefore, the attenuation is achieved faster, compared to the two previous cases.

The above experiment can be repeated for different values of ξ, located between 0.72 and 1. For each

experiment, the time in which the system reaches its steady-state conditions can be recorded. The results

can be then plotted with respect to ξ, as shown in Figure 10.9. As expected, this figure shows that by

decreasing ξ, the implemented system dynamics become faster. This is in an excellent agreement with

the theoretical results, discussed in Chapter 9 .
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Chapter 11

Conclusions and Future Work

This chapter gives concluding remarks and highlights the major contributions of this thesis. It also

presents directions for future research, based on the findings of this thesis.

11.1 Conclusions

The prime goal of this study has been a comprehensive theoretical analysis of FxLMS-based ANC sys-

tems in realistic conditions in which actual ANC systems work. This analysis has been performed based

on two different approaches.

In the first approach, attention has been focused on the derivation of general closed-form expressions

for parameters relevant to stability behaviours of ANC systems, such as the step-size upper-bound,

steady-state performance, and convergence speed. These expressions have been derived based on a

novel stochastic model for ANC systems.

In the second approach, attention has been focused on the dynamics of the FxLMS adaptation process in

ANC systems. The root locus method has been found to be a a powerful tool for the analysis and control

of ANC systems dynamics.

The main contributions of this thesis are summarised individually below.

11.1.1 Closed-form Expression for Step-Size Upper-bound

A relatively comprehensive expression for the upper-bound of the step-size, beyond which FxLMS-

based ANC systems become unstable, has been derived in this thesis. This expression, given in Eq.

(4.43), is in the form of the commonly-used one, previously derived by Elliott for pure delay secondary

paths. However, instead of the physical time delay which appeared in Elliott’s expression, a hypothetical

parameter has appeared in the newly-derived expression. This novel parameter, which is called the

secondary path equivalent delay in this thesis, can be computed for any arbitrary secondary path, unlike

the secondary path time delay which is a physical parameter related to only pure delay secondary paths.
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Also, influences of the acoustic noise band-width and secondary path modelling error on the step-size

upper-bound have been investigated. It has been shown that these influences can be included in the

closed-form expression, obtained for the step-size upper-bound. As an elegant result, the final expression

for the step-size upper-bound, given in Eq. (6.26), can apply to realistic ANC systems with arbitrary

secondary paths, arbitrary secondary path models, and band-limited acoustic noise signals.

11.1.2 Closed-form Expression for Steady-State Performance

A closed-form expression for the steady-state residual noise (power) level has been derived. Also, a

closed-form expression for the misadjustment level, determining the relative distance between the actual

and optimal steady-state noise levels, has been developed. Influences of the acoustic noise band-width

and secondary path modelling error on these two expressions have been formulated. The final expression,

given in Eq. (5.27) and (6.33), can apply to realistic ANC systems with arbitrary secondary paths,

arbitrary secondary path models, and band-limited acoustic noise signals. It has been shown that an

imperfect secondary path model does not necessarily cause the steady-state performance to be degraded.

This is an interesting result which has been supported by simulation and experimental results in this

thesis.

11.1.3 Closed-form Expression for Convergence Speed Measure

A novel measure for the evaluation of the convergence speed of the MSE function in FxLMS-based ANC

systems has been introduced. A closed-form expression for this measure has been derived, considering a

general secondary path. Influences of the acoustic noise band-width and secondary path modelling error

on this measure have been investigated. By the analysis of this measure, it has been shown that increasing

the noise band-width always causes the convergence speed of the system to be decreased. Also, it has

been proved that an imperfect secondary path model does not necessarily causes the convergence speed

to be degraded. However, it is impossible that an imperfect secondary path model causes both the steady-

state performance and convergence speed of ANC systems to be improved.

Maximising the proposed convergence speed measure with respect to the step-size shows that the max-

imum convergence speed can be achieved when the step-size is set to the half of its upper-bound. The

ratio of this step-size to its upper-bound (that is 0.5) is independent of the noise band-width and second-

ary path model. Therefore, no matter what the noise band-width is or what the secondary path model

is, the maximum attainable convergence speed can be achieved by setting the step-size to half of its

upper-bound.

11.1.4 Root Locus Plot of FxLMS Adaptation Process

A characteristic equation for the FxLMS adaptation process has been derived. Trajectories of the roots

of this equation in the z-plane are determined as a function of step-size. As an interesting result, it has

been found that the dominant root of this equation always moves on the first branch of the root locus.

Also, it has been shown that there is always a breakaway point on this branch, limiting the dominant root
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to become very close to the origin. Therefore, the location of this breakaway point is a limiting factor for

the FxLMS adaptation process dynamics.

A closed-form expression for the location of the breakaway point in the FxLMS root locus has been

derived. The secondary path equivalent delay has appeared in this expression. It was interesting to find

that in both of the analyses performed in this thesis, the novel parameter of the secondary path equivalent

delay has appeared. This is while the two analyses are completely independent; the first of which is

based on the stochastic modelling of the MSE function and the second of which is based on the root

locus analysis of the FxLMS adaptation process.

11.1.5 FwFxLMS Adaptation Algorithm

A mechanism for the localisation of the dominant root of the FxLMS characteristic equation, has been

developed in this thesis. This mechanism can be considered as a novel ANC algorithm, called the Fw-

FxLMS algorithm. It has been shown, that the FwFxLMS algorithm is able to remove the breakaway

point from the FxLMS root locus, so the dominant root of the root locus can move closer to the ori-

gin in the z-plane. This means that the convergence speed of the adaptation process can become faster,

compared to that of the original FxLMS algorithm. It has been mathematically proved that steady-state

behaviours of the FwFxLMS algorithm is similar to that of the FxLMS; therefore this algorithm has no

effect on the steady-state performance of active noise control.

11.1.6 Multi-threading Structure for Implementation of Real-Time ANC Algorithms

This thesis has developed and applied a general multi-threading structure for the implementation of

different real-time ANC algorithms using LabVIEW FPGA Module. This structure partitions the ANC

software into three loops which should be executed in separate threads while abstracting the details

of thread management away from the developer. Both the traditional FxLMS algorithm and its novel

alternative (FwFxLMS algorithm) have been implemented using this structure successfully.

11.2 Directions For Future Work

Active noise control is a multi-disciplinary research area with a huge number of modern applications. In

this section the possible research work which can be conducted based on the contributions of this thesis

are proposed.

11.2.1 Noise Colour Influences

In the analysis of stochastic adaptation algorithms, when it is desired to derive analytical expression for

the parameters relevant to the adaptation process operation, it is usually acceptable to assume that the

training data is a broad-band white stochastic signal so that its frequency spectrum is flat over the entire

of frequency range. This thesis starts its analysis with this assumption and then extends it to a more
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general case with band-limited white signals. This is because, even if the acoustic noise is white, its

frequency spectrum cannot be flat over the entire frequency range in practise.

However, in some applications of active noise control, the acoustic noise is not white. In this case,

influences of acoustic noise colours on the performance of the ANC algorithm should be studied. This

research can be conducted based on the theoretical model, developed in Chapter 3 of this thesis. As

mentioned in Chapter 3, this model can apply to any general acoustic noise. However, when we have

intended to derive analytical results from this model in Chapters 4-6, we have had to simplify it by

assuming a white acoustic noise (broad-band or band-limited). Removing the constraint caused by this

simplifying assumption is another interesting area of research which can be focused on based on this

thesis.

11.2.2 Intentional Misadjustment of Secondary Path Model

In Chapter 6, it has been shown that the secondary path modelling error does not necessarily cause the

steady-state performance or convergence speed of FxLMS-based ANC systems to be degraded. However,

this error cannot cause both of these parameters to be improved. In some applications of active noise

control, the convergence speed of the adaptation algorithm is not an important issue. On the other hand,

there are some other applications for which degrading steady-state performance is tolerable. Finding

a mechanism for intentional misadjustment of the secondary path model in order to make a trade-off

between the steady-state performance and convergence speed is another area of research, suggested by

this thesis.

11.2.3 Other Applications

Applications of the FxLMS adaptation algorithm are not only limited to active control of acoustic noise.

This algorithm can be used in a wide range of adaptive control applications such as adaptive echo cancel-

lation, vibration control and adaptive inverse control. The theoretical results, contributed in this thesis,

are derived based on the analysis of this algorithm in the active noise control framework and termino-

logy. This analysis can be also performed for other applications and based on their relevant terminologies.

However, the logic behind the analysis is the same as the logic used in this thesis.
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Appendix A

FPGA Designs

A.1 FPGA Design for FxLMS-Based ANC Systems

The FPGA design for the FxLMS-based ANC system, developed for this research, performs four consecutive tasks.
Here, these tasks and their FPGA designs are detailed separately.

A.1.1 Task 1: constructing the reference vector

The first task constructs an addressable memory block from the reference signal. Other tasks can use this memory
block as the reference vector x (n). Figure A.1 shows this memory block (shown by “Reference”) and how the
stored value of the reference signal is written in it. As seen in the figure , the length of the memory block (which
is the length of the reference vector) is set to 256 (L = 256).

A.1.2 Task 2: computing the filtered reference vector

The second task is for computing the filtered reference vector f (n) using an available estimate model of the
secondary path. The FPGA design for the secondary path identification system is developed in [70]. Figure
A.2 shows the FPGA design for computing the filtered reference vector. As shown in this figure, this task uses
the “Reference” memory block, constructed by Task 1. Also, it uses the “SP Model” memory block, which
contains secondary path model parameters, estimated by the secondary path identification system. The values of
the reference signal and secondary path model parameters are read from “SP Model” and “Reference” memory
blocks and the filtered reference signal is computed from these values. Another addressable memory block, labelled
as “Filtered x”, is then constructed from the values of the filtered reference signal.

A.1.3 Task 3: updating weight vector

The third task is for updating the adaptive weight vector w (n) using the filtered reference vector, stored in the
memory. The FPGA design, developed for the implementation of this task is shown in Figure A.3. The past values
of the adaptive weights are read from an addressable memory block, shown by “Weights”. After updating these
weights by using the FxLMS algorithm, they are again stored in the same memory block. Obviously, this memory
block should initiated when the ANC system starts operating.

i
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Figure A.1: FPGA design for task 1: constructing an addressable memory block of reference signal
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Figure A.2: FPGA design for task 2: filtering reference signal
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Figure A.3: FPGA design for task 3: FxLMS update equation
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Figure A.4: FPGA design for task 4: computing anti-noise signal
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Figure A.5: FPGA design for task 3 in FwFxLMS ANC system

A.1.4 Task 4: computing anti-noise signal

The final task is for computing the anti-noise signal y (n) from the data stored in the memory blocks. For this
purpose, the values of the weights and reference signals can be read from addressable memory blocks “Reference”
and “Weights”. The anti-noise signal can be then computed from these values by using Eq. (2.1). The computed
anti-noise signal is labelled as “Antinoise” and stored in the cRIO memory so that the writing thread can read it.
The FPGA design for performing this task is shown in Figure A.4.

A.2 FPGA Design for FwFxLMS-Based ANC System

The main body of the FxLMS and FwFxLMS based ANC systems are the same. For implementing the FwFxLMS-
based ANC system, all the FPGA designs (4 tasks) described above should be used; however, the FwFxLMS update
equation should be used instead of the FxLMS update equation (task 3). The main difference in the two design is
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that, in the new task the data stored in “FWeights” is used for updating the weight vector, instead of that stored in
the “Weights”. Figure A.5 shows the FPGA design for the implementation of this task. “FWeights” is obtained by
filtering the weight vector, stored in “Weights”.


	thesisconsent
	Author of thesis

	THESIS Final
	Front Matter
	Abstract
	Publications
	Contents
	List of Figures

	Introduction 
	Physical Principles of Active Noise Control 
	Acoustic Wave Propagation 
	Superposition Property
	Acoustic Wave Interference

	How to Create a Silence Zone
	ANC Physical Mechanism
	Digital Electronic Control System
	Secondary Path Constraint
	Reference Signal Measurement Constraint

	Adjustment of ANC Controller

	Adaptive Active Noise Control
	Adaptive Identification of ANC Controller
	ANC Algorithms 
	Frequency Domain ANC Algorithms
	Sub-Band ANC Algorithms


	FxLMS Adaptation Process
	Performance of FxLMS Adaptation Process
	Adaptation Step-Size 
	Secondary Path Modelling Error 

	Thesis Contributions
	Thesis Organisation

	Basic Principles of FxLMS Algorithm 
	Single Channel Feed-forward ANC 
	Control Signal
	Actual Secondary Path
	Secondary Path Model

	Algorithm Derivation 
	Modelling Residual Noise
	Optimal ANC Controller 
	Gradient-Based Optimisation

	Rotated Vectors
	Auto-Correlation Matrix 
	Rotated Reference Vector
	Rotated Weight Misalignment Vector

	Independence Assumptions 
	Primary Independence Assumption
	Secondary Independence Assumption
	Independence of Weights and Reference Signal

	Basic Model for FxLMS-Based ANC 
	Alternative Expression for FxLMS Update Equation
	Alternative Expression for Residual Acoustic Noise
	Dynamics of First-Order Moments


	Stochastic Model for FxLMS-Based ANC
	MSE Function
	Excess-MSE Function 
	Variation of Al(n) 
	Variation of Bl(n)
	Stochastic Model for Excess-MSE Function

	Analysis of FxLMS-Based ANC Systems Considering General Secondary Paths
	System Model with General Secondary Path
	Steady-State Performance 
	Steady-State Residual Noise Power
	Misadjustment Level

	Stability Analysis 
	Stability in Steady-State Conditions
	Stability in Transient Conditions 
	Step-Size Upper-Bound

	Convergence Speed
	Convergence Speed Measure
	Fastest Convergence Speed 

	Simplified Cases 
	Identity Control Path (LMS Algorithm)
	Pure Delay Secondary Path 

	Summary

	Influences of Acoustic Noise band-width on FxLMS-Based ANC Systems
	Band-Limited White Signal
	Power Spectrum 
	Application of Szego Theorem

	System Model with Band-Limited Acoustic Noise
	System Behaviours with Band-Limited Acoustic Noise
	Step-Size Upper-Bound 
	Steady-State Performance
	Convergence Speed 

	Tonal Acoustic Noise
	Summary

	Influences of Secondary Path Models on FxLMS-Based ANC Systems
	System Model with Imperfect Secondary Path Model
	System Behaviours with Imperfect Secondary Path Models
	Step-Size Upper-Bound
	Instability Caused by Secondary Path Models
	Steady-State Performance
	Convergence Speed

	Discussion
	Summary

	Behaviours of FxLMS-Based ANC Systems in Computer Simulation
	Verification of the Proposed Model
	Dynamic Simulation

	Stability Behaviours
	Step-Size Upper-Bound 
	Influences of Acoustic Noise Band-Width on Step-Size Upper-Bound
	Influences of Control Path Models on Step-Size Upper-Bound

	Steady-State Behaviours
	Steady-State Residual Acoustic Noise Power
	Influences of Acoustic Noise Band-Width on Steady-State Performance
	Influences of Control Path Models on Steady-State Performance

	Convergence Speed
	Convergence Speed in Simulation
	Influences of Acoustic Noise Band-Width on Convergence Speed
	Influences of Control Path Models on Convergence Speed


	Root Locus of FxLMS Adaptation Process
	FxLMS Characteristic Equations
	Characteristic Equation for First-Order Moments
	Characteristic Equation for Excess-MSE Function
	Root Locus Criteria 

	FxLMS Root Locus
	Number of Branches 
	Start Points 
	End Points
	Asymptotes
	Departure Angles
	Real Sections
	Breakaway Points

	Discussion and Examples
	Typical Trajectory of B1
	Typical Trajectory of B2
	Typical Trajectories of Other Branches
	Dominant Pole of FxLMS Adaptation Process


	Dominant Pole Localisation of FxLMS Adaptation Process
	Filtered Weights FxLMS Algorithm 
	Update Equation
	Alternative Expression for Update Equation
	Update Equation in Steady-State Conditions

	FwFxLMS Characteristic Equation
	FwFxLMS Root Locus
	Number of Branches 
	Start Points 
	End Points
	Asymptotes
	Departure Angles
	Real Sections
	Breakaway Points

	Properties of the FwFxLMS Root Locus
	Typical Trajectory of B"0365B1
	Typical Trajectories of other branches 
	Dominant Pole of FwFxLMS Adaptation Process

	Computer Simulation

	Experimental Realisation
	Experimental Setup
	Microphones 
	Control Loudspeaker
	Digital Electronic Control System 
	Real-Time Software
	Multi-threading Structure for ANC 
	Reading Thread
	Process Thread
	Writing Thread


	Measurement and Computation of Parameters 
	Acoustic Noise Parameters
	Minimal MSE Function
	Secondary Path Parameters

	Behaviours of Implemented ANC System
	System Stability in Practise
	Steady-State Performance in Practise
	Convergence Speed in Practise

	Experimental Results with FwFxLMS-Based ANC System

	Conclusions and Future Work
	Conclusions
	Closed-form Expression for Step-Size Upper-bound
	Closed-form Expression for Steady-State Performance
	Closed-form Expression for Convergence Speed Measure
	Root Locus Plot of FxLMS Adaptation Process
	FwFxLMS Adaptation Algorithm
	Multi-threading Structure for Implementation of Real-Time ANC Algorithms

	Directions For Future Work
	Noise Colour Influences
	Intentional Misadjustment of Secondary Path Model
	Other Applications


	Bibliography
	FPGA Designs
	FPGA Design for FxLMS-Based ANC Systems
	Task 1: constructing the reference vector
	Task 2: computing the filtered reference vector
	Task 3: updating weight vector
	Task 4: computing anti-noise signal

	FPGA Design for FwFxLMS-Based ANC System





