

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Hemispheric Asymmetries in the Attentional Blink

By Antje Holländer 2004

Department of Psychology, University of Auckland, Auckland, New Zealand

A thesis presented to the University of Auckland in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD)

Table of contents

List of Figures	5
List of Tables	9
Abstract	10
List of Symbols/Abbreviations	12
Acknowledgements	14
Chapter 1	15
General Introduction	15
RSVP Method	16
The Attentional Blink and Lag 1 Sparing	19
The Role of Task Difficulty on the Blink Magnitude	22
Conditions that Trigger the Attentional Blink	25
The Requirement of a Target Task	25
Masking as a Modulator of the Attentional Blink	26
Masking the Target Item	27
Masking the Probe Item	28
Probe/Target-Distractor Discriminability	29
The Nature of the Target and the Probe	31
Models of the Attentional Blink	34
The Inhibition Model/Gating Theory	35
The Interference Model	37
Dwell-Time Model	39
Two-Stage Model	
Central Interference Theory	
Overview	
Neuropsychological Issues raised by the Attentional Blink	
Electrophysiological Approaches	
Aims of this Research	50

Chapter 2	
Experiment 1 53	
Introduction	
Method54	
Participants	
Stimuli	
Procedure	
Results	
Discussion	
Experiment 2	
Introduction	ĺ,
Method	1
Participants	
Stimuli	5
Procedure	
Results	2
Target Detection	2
Probe Detection	2
Between-Stream Presentations	
Within-Stream Presentations	5
Discussion67	
Experiment 3 69	1
Introduction	9
Method69	3
Participants	5
Stimuli	C
Procedure7	C
Results7	C
Target Location	(
Probe Detection	-

Between-Stream Presentations	
Within-Stream Presentations	
Discussion	
Deficits Found during the Same Stream Condition	
Deficits Found during the Opposite Stream Condition	
Denoits Found during the opposite outcam commission	
Chapter 3	
Experiment 4	79
Introduction	
Method	81
Participants	
Acquisition of cycle phase/mood	
Stimuli	
Procedure	
Results	
Target Identification	
Probe Detection	
Between-Stream Presentation	
Within-Stream Presentation	
Hormone/Behaviour Relationships	
Effects of Mood	
Discussion	
Chapter 4	100
Experiment 5	
Introduction	100
Method	
Participants	
Stimuli and Tasks	101
Procedure	
EEG Acquisition	
Results	104
Behavioural Results	104

ERPs to Probe Item
ERPs to Target Item
Discussion
Experiment 6 120
Introduction
Method
Participants
Stimuli and Task
Procedure
EEG Acquisition
Results
Behavioural Performance
ERPs to Probe Item 126
Discussion
Chapter 5

General Discussion	135
What explains the LVF advantage?	
At what processing stage does the AB occur?	141
Overall Summary	

Reference List	144
Appendix	161

List of Figures

Figure 1.1.	Schematic representation of stimulus presentation.	18
	Inhibition Model/Gating Theory (Raymond et al., 1992)	
	Interference Model (Shapiro et al., 1994)	
Figure 1.4.	Two-Stage Model (Chun & Potter, 1995)	41

- Figure 2.1. Mean percentage of correct report of the probe, given that the target item was correctly reported, as a function of the eight post-target positions of the probe in Experiment 1. The solid line represents the control condition, the dotted line the experimental condition.
 Figure 2.2. Schematic representation of stimulus presentation in Experiments 2 and 3. In this example, the target and probe were presented in opposite streams.

- Figure 3.1. Mean performance of correct probe report in left and right visual fields when the target and the probe were presented in opposite visual fields, given that the target item was correctly reported, as a function of both post-target positions of the probe, shown separately for experimental and control conditions in the menses. . 89 Figure 3.2. Mean performance of correct probe report in left and right visual fields when
- Figure 3.3. Mean performance of correct probe report in left and right visual fields when the target and the probe were presented in opposite visual fields, given that the target item was correctly reported, as a function of both post-target positions of the probe, shown separately for experimental and control conditions in the menses. 90

Figure 4.1. Position of the 129 electrodes on the head. Full circles indicate electrodes
closest to the positions of the 10-20 system. The labels accord to the international
10-20 system
Figure 4.2. Mean percentage of correct report of the probe, given that the target item
was correctly identified, as a function of the eight post-target positions of the probe.
The solid line represents the control condition, the dotted line the experimental
condition
Figure 4.3. Global field power (GFP) comparing the experimental condition with the
control condition in the blink and no-blink periods, and comparing the blink with the
no-blink period for the control and experimental condition. The arrows indicate the
centre of the time windows selected for further analysis
Figure 4.4. Scalp distribution for the averaged difference waveforms control/blink minus
experimental/blink and experimental/no-blink minus experimental/blink for TW 2
(260-340 ms)
Figure 4.5. ERPs elicited by probe items in probe present trials (6A) and ERPs elicited
by distractors in the positions corresponding to the probe in probe absent trials
(6B), recorded at electrode 37 (equivalent to C3 of the international 10-20 system),
with negative activation showing up 112
Figure 4.6. LORETA source estimations showing areas that are differentially activated
for the experimental and control conditions during the blink, and thus represent the
AB, by analysing the difference waveform control/blink minus experimental/blink for
TW 2 (260-340 ms). The scale bar indicates the strength of activation, with lighter
areas indicating increased activity
Figure 4.7. Global field power (GFP) for the control and experimental condition related
to correct identified target items for probe absent trials. The arrow indicates the
centre of the time window for further analysis
Figure 4.8. ERPs elicited by correct identified target items, recorded at electrode 129
(equivalent to Cz of the international 10-20 system), with negative activation
showing up
Figure 4.9. Bliss-symbols (N=24) used as stimuli 122
Figure 4.10. Schematic representation of stimulus presentation for Experiment 6 123
Figure 4.11. Mean percentage of correct report of the probe, given that the target item
was correctly identified, as a function of the eight post-target positions of the probe.

	the determinantal
	e solid line represents the control condition, the dotted line the experimental
con	ndition
Figure 4	4.12. Global field power (GFP) comparing the experimental condition with the
cor	ntrol condition in the blink and no-blink periods, and comparing the blink with the
	-blink period for the control and experimental condition. The arrows indicate the
cer	ntre of the time windows selected for further analysis
Figure 4	4.13. Scalp distribution for the averaged difference waveforms control/blink
mir	nus experimental/blink and experimental/no-blink minus experimental/blink for
TV	V 1 (240-320 ms)
Figure	4.14. ERPs elicited by probe items in probe present trials recorded at electrode
	, with negative activation showing up
	4.15. LORETA source estimations showing areas that are differentially activated
	r the experimental and control conditions during the blink, and thus represent the
AB	3, by analysing the difference waveform control/blink minus experimental/blink for
	N1 (240-320 ms). The scale bar indicates the strength of activation, with lighter
	eas indicating increased activity

List of Tables

Table 1.1. Classification of existing models regarding the AB
Table 3.1. Regression weights (β) of the multiple regression, with AB in the LVF and
RVF as dependent variables, and estradiol and progesterone levels as predictors
for both sessions

Abstract

The *attentional blink* (AB) refers to a decrement in detecting the occurrence of a probe item if it closely follows a previous target item in a stream of stimuli in rapid serial visual presentation (RSVP). In a series of experiments I investigated the question of hemispheric asymmetries in the AB.

Experiment 1 was a simplification of the experiment by Raymond et al. (1992) to determine whether the particular stimuli and task conditions of my study would produce an AB. In Experiments 2 and 3, two RSVP streams were presented in parallel, one in each visual field. The AB occurred only when participants both identified and located the target, and not when they simply located it. When targets and probes were both presented in the right visual field (RVF), the typical AB pattern was obtained, sparing probes in the first post-target location ("lag 1 sparing"). However, the AB was greatly attenuated when both target and probe were in the left visual field (LVF). When target and probe were in different spatial locations, there was a strong decrement in detecting the probe in the first post-target position—again more marked in the RVF. Cross-stream decrements may reflect the transient effects of shifting attention, while the AB itself appeared to be largely restricted to within-stream sequences, and to processing by the left cerebral hemisphere.

Experiment 4 was a further behavioural study, in which I examined differences in functional cerebral asymmetries modulated by gonadal steroid hormones during the menstrual cycle in women. Twenty-one right handed women, with regular menstrual cycle, were tested with a double RSVP task (one stream in each visual field) during the low steroid menses and the high steroid midluteal phase. An AB was obtained bilaterally in the midluteal phase, while during menses the probe detection deficit was evident only

in the RVF. Low steroid levels appeared to stabilize functional cerebral asymmetries. In contrast, high levels of estradiol and progesterone in the midluteal phase appeared to reduce functional asymmetries due to a selective enhancement of the AB in the right hemisphere.

In Experiment 5 and 6 I recorded event-related potentials (ERPs) to examine the temporal course of the AB. Probe-related ERPs were compared between the control condition and the experimental condition when the probe was presented in the blink period (post-target position 2-4) and in the no-blink period (post-target position 6-8). In the control condition in which the subjects were told to ignore the target, there was a negative peak around 300 ms following the probe, regardless of whether the probe was presented during the blink phase or during the no-blink phase. The same peak was found for the experimental condition when the probe was presented during the no-blink phase, but was missed for probes presented during the blink phase. This finding provides strong evidence that the AB reflects an impairment in a postperceptual stage of probe processing, probably at the stage of working memory. I replicated the finding (Vogel, Luck, & Shapiro, 1998) that the AB and the P3 elicited by the target component are related. Source localisation of electrophysiological activities using low-resolution electromagnetic tomography (LORETA; Pascual-Marqui, Michel, & Lehmann, 1994) revealed reduced activation during the AB in the left cerebral hemisphere when letters were used as stimuli, whereas the right hemisphere showed reduced activation when symbols were used.

List of Symbols/Abbreviations

AB	Attentional blink
Ag	Silver
AgCI	Silver chloride
ANOVA	Analysis of variance
BA	Brodmann area
β	Regression weight
cc	Control condition
CSTM	Conceptual short-term memory
Cz	Common vertex
EC	Experimental condition
EEG	Electoencephalogram
EOG	Electooculomogram
ERPs	Event-related potentials
fMRI	Functional magnetic resonance imaging
GABA	Gamma-amino-butane-acid
GFP	Global field power
IPL	Inferior parietal lobe
LORETA	Low-resolution electromagnetic tomography
LQ	Asymmetry index
LTM	Long-term memory
LVF	Left visual field
N1	Negative deflection about 100 ms
N400	Negative deflection about 400 ms
n.s.	Not significant
Nz	Nasal vertex
P1	Positive deflection about 100 ms
P3	Positive deflection about 300 ms
PCA	Principal component analysis
PMS	Premenstrual syndrome
RSVP	Rapid serial visual presentation

RVF	Right visual field
SD	Standard deviation
sess	Session
SOA	Stimuli onset asynchrony
STC	Short-term consolidation
STCI-S18	State-trait-cheerfulness-inventory
STG	Superior temporal gyrus
STM	Short-term memory
TW	Time window
VHF	Visual half field
VSTM	Visual short-term memory

Acknowledgements

I thank my supervisors; Professor Michael Corballis and Dr Tony Lambert, and my Advisors Dr Jeff Hamm and Dr Ian Kirk for their time, ideas, helpful discussions and constructive suggestions.

In particular, I want to thank my senior supervisor, Professor Corballis, for encouraging me to convert my Master Program to a PhD Program. I want to thank him for his patience dealing with my Germanisms mixed with my English writing, and for taking time to explain to me the (for me not logical) English Grammar. Furthermore I thank him for making sure my life outside of University is sorted out, especially since I live on the other side of the world from my parents.

As a consequence of Dr Hamm's patience and illuminating explanations, the analysis of the EEG data was enjoyable. Further I want to thank him for programming all my experiments. Experiment 4 would not have been possible without the time, co-operation and experience of Dr Markus Hausmann from the Universität Bochum - Germany, whose research topic is the sex hormonal modulation of cerebral asymmetries. I want to thank him for his ideas and support.

A thank to many students and staff members of the Auckland University Department of Psychology who assisted me in various ways. I thank all participants for their time and support. A special thank to Breon Gravatt for reading my thesis although it was a marvellous sunny weekend.

Finally I thank my family and my partner for their long-term support, their faith in me and their love.