Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Characterisation and detection of viruses (*Cucumovirus, Potyvirus*) infecting vanilla in Réunion Island and Polynesian Islands

Karin Farreyrol

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor in Philosophy in Biological Sciences, The University of Auckland, 2005
Vanilla planifolia, Réunion Island

A. Cultivation plot under trees
B. Flowers in shade house
C. Vine bearing green pods
D. Cured beans

Pictures: K. Ferreyrol (A, B, C); N. Aikhoun (D)
Abstract

Natural vanilla (Vanilla planifolia, V. tahitensis) is economically important for a number of producing countries, but viral diseases are prejudicial to its successful cultivation. Techniques are required to detect viruses in vanilla plants in order to establish quarantine procedures and sources of virus-free planting material. This study contributed to the progress in managing viral diseases of vanilla by firstly identifying Cucumber mosaic virus (CMV, Cucumovirus) as causing severe distortion, stunting, sterility and sometimes death of vanilla plants. Vanilla CMV isolates from French Polynesia (Pacific Ocean) and Réunion Island (Indian Ocean) were classified in CMV subgroup IB, adding to the short list of subgroup IB isolates detected outside of Asia. Two isolates were putatively classified in subgroup IA, suggesting that CMV in vanilla is still evolving and/or that vanilla is infected from different sources. Subgroup II CMV from New Zealand was also experimentally infectious to V. planifolia, showing that vanilla crops should be protected from all potential sources of CMV inoculum. Existing serological and molecular detection tests were performant for the detection of CMV directly from vanilla tissue.

Secondly, this study provided the first coat protein sequence information for Vanilla mosaic virus (VanMV, Potyvirus). A Cook Islands isolate (VanMV-CI) and a French Polynesia isolate (VanMV-FP) had distinctly different coat proteins. The VanMV-FP CP N-terminus contained a stretch of amino-acid repeats (GTN) typical of natively unfolded proteins. This GTN stretch was located downstream of a DVG motif (which replaced the more common aphid transmission DAG motif), suggesting a role in improving aphid transmission, or regulating formation of the HC-virus complex.

CP core nucleotide sequence identities indicated VanMV-CI and VanMV-FP were strains of Dasheen mosaic virus (DsMV). In contrast, CP amino-acid sequence homologies between VanMV-CI and DsMV were intermediate between strains and species, and CP amino-acid homologies between VanMV-FP and DsMV were typical of distinct species. In addition, VanMV-CI and VanMV-FP had characteristic 3'NTR sequences and Nilb/CP cleavage sites, and only infected vanilla. Hence, it is proposed that VanMV-CI and VanMV-FP are considered new Potyvirus species and named Vanilla mosaic Cook Islands virus and Vanilla mosaic French Polynesia virus. Alternatively, the two isolates may be grouped under the name Dasheen mosaic virus-Vanilla (DsMV-V) and distinguished from Dasheen mosaic virus-Dasheen (DsMV-D).

Primers to VanMV-CI and VanMV-FP were designed and permitted RT-PCR detection of the viruses directly from vanilla tissue. VanMV-CI and VanMV-FP could be differentiated from DsMV and Watermelon mosaic virus (WMV-Tonga), and differentiated from each other by comparison of amplicon size. Long-term specific potyvirus diagnosis is however expected to be difficult due to potyviral variability in vanilla. Future research should concentrate on techniques such as
microarrays to permit simultaneous detection combined with specific identification of Potyvirus species. Such techniques would be beneficial to viral disease management in vanilla and many other crops.

Résumé

La vanille (Vanilla planifolia, V. tahitiensis) est une culture d’importance économique majeure pour quelques pays producteurs. Néanmoins, la présence de maladies, notamment virales, est susceptible d’affecter significativement la production. Des techniques de détection virale sont donc nécessaires à la mise en place de procédures de quarantaine et de certification phytosanitaire des boutures. En premier lieu, la présente étude a contribué à l’amélioration du contrôle des maladies virales dans les vanilleraies par l’identification du virus de la mosaïque du concombre (CMV, Cucumovirus) en tant que pathogène responsable de déformations sévères, nanisme, stérilité et parfois de la mort du vanillier. La détection fiable du CMV dans le vanillier est possible par le biais de tests ELISA et PCR existants. Des isolats de CMV du vanillier, récoltés en Polynésie Française et à l’Ile de la Réunion, ont été classés dans le sous-groupe IB des isolats de CMV, s’ajoutant à la courte liste des isolats IB hors-Asie. Deux isolats ont été provisoirement classés dans le sous-groupe IA, ce qui reflèterait une évolution en cours et/ou une origine multiple des souches de CMV infectant le vanillier. De plus, une souche de CMV appartenant au sous-groupe II a été mécaniquement transmise à des jeunes plants de V. planifolia. Ces résultats démontrent que les vanilleraies doivent être protégées de toute source potentielle de CMV.

En second lieu, cette étude a permis de déterminer pour la première fois la séquence du gène codant pour la capsides du virus de la mosaïque de la vanille (VanMV, Potyvirus). Il s’est avéré qu’un isolat des Iles Cook (VanMV-CI) et un isolat de Polynésie Française (VanMV-FP) ont des capsides différentes. La région N-terminale de la protéine de capsid du VanMV-FP possède une séquence de 76 acides aminés (GTN) typique de protéines dites ‘accordéon’. Cette séquence est située en aval d’un triplet DVG, qui remplace DAG – plus courant chez les potyvirus transmissibles par pucerons. Elle pourrait jouer un rôle d’amélioration de la transmission, ou de régulation lors de la formation du complexe HC-virus.

La comparaison des régions ‘core’ des protéines de capsid indique que le VanMV-CI et le VanMV-FP sont des souches du Dasheen mosaic virus (DsMV). Par contre, l’analyse des capsides entières place VanMV-CI à mi-chemin entre souche de DsMV et espèce potyvirale distincte, tandis que la capsides de VanMV-FP est plus clairement celle d’une espèce distincte. VanMV-CI et VanMV-FP se distinguent également du DsMV par leurs régions 3’NTR, leurs sites de clivage N1b/CP, et leur
gamme d’hôte restreinte au vanillier. Ainsi, il est proposé que VanMV-CI et VanMV-FP soient classés en tant que nouvelles espèces dans le genre *Potyvirus*, et nommés *Vanilla mosaic Cook Islands virus* et *Vanilla mosaic French Polynesia virus*. S’ils devaient être classés en tant que souches du DsMV, la distinction entre *Dasheen mosaic virus-Vanilla* (DsMV-V) et *Dasheen mosaic virus-Dasheen* (DsMV-D) devrait être considérée.

En dernier lieu, des amorces ont été sélectionnées pour la détection en RT-PCR du VanMV-CI et du VanMV-FP. Elles ont permis l’amplification d’un fragment du gène de capsid directement à partir de matériel végétal, ainsi que la différenciation des deux virus par la taille des produits d’amplification. Les amorces ont également permis de distinguer le VanMV du DsMV et du *Watermelon mosaic virus* (WMV-Tonga). Cependant, la variabilité des souches virales est susceptible d’entraîner à long terme des difficultés pour le diagnostic spécifique des potyvirus. Les futurs travaux de recherche devraient se concentrer sur la mise au point de techniques de type microarray, qui permettraient une détection à la fois spécifique et simultanée de toutes les espèces de *Potyvirus*. De telles techniques contribueraient à améliorer la protection phytosanitaire des vanilleraies et de nombreuses autres cultures.
Acknowledgements

I want to say to all potential plant virology Ph.D. students at The University of Auckland that Dr Mike Pearson is a great supervisor! Thank you Mike for your knowledge and your constant support. I consider myself very lucky to have undertaken a Ph.D. under your supervision.

Dr Michel Grisoni, from CIRAD, is another great supervisor! Thank you Michel for always being present for me, from French Polynesia or from Réunion. You always gave me high-quality advice, and promptly responded to emails. Thank you also for accepting to coach me at CIRAD Réunion during the writing phase, your help was important.

Thank you also to my advisors Dr Dave Beck and Dr Dan Cohen, from HortResearch, for regularly meeting with me to discuss research progress. Additional thanks to you Dave for accepting to supervise me even though you were leaving the research world to grow the most beautiful orchids (and thank you also for the orchids!).

I am grateful for the help I received from Dr Dave Saul and Dr Franz Pichler, who taught me the basics of phylogenetic analyses; Prof Richard Gardiner and Dr Vickery Arcus, for helpful discussions about the GTN stretch in the CP of VanMV-FP; Jean-Michel Lett for clarifying for me some principles of viral evolution; Nga Tama for providing and taking care of plants in the greenhouse; Craig Sinclair from the Auckland Domain Nurseries for providing plants; Dr John Fletcher from Crop&Food Research for providing CMV isolates; Paul Sutherland from HortResearch for performing thin section microscopy; Iain MacDonald and Adrian Turner for photography, Terry Gruijters for computer assistance, and Sunita Morar for technical help in the lab and answering always patiently to the question “Sunita where is …?”.

Thank you to the organisations and people who made this research possible: La Région Réunion for a 3-year stipend; The University of Auckland for quality education, lab space and consumables; The University of Auckland Graduate Research Fund for funding towards sequencing; The Government of French Polynesia for funding the survey in French Polynesia and for funds towards the project; the SDR (Service de Développement Rural) of French Polynesia, and particularly Maurice Wong, coordinator of the vanilla development project, for organising the survey in French Polynesia; the Embassy of France in New Zealand for funds towards the survey in Réunion Island; Dr Françoise Leclercq-Le Quillec for organising, and CIRAD Réunion for funding the survey in Réunion; Bernard Reynaud, Director of the Plant Protection Pole, for accepting to host me during the writing stage; Claude Rivièrè for sharing his office (and not putting the air conditioning on!); and Henri Brouchoud and Philippe Amiot for computer mastering. Thank you to Olivier Gambin for sending
me to New Zealand in the first place, and for showing supporting interest in my career from the start.

During the course of this Ph.D., I was the recipient of several grants that enabled me to attend conferences and present my work. I am grateful to The University of Auckland Graduate Research Fund and to the New Zealand Plant Pathological Society for several funds towards research and conferences. I also thank the New Zealand Microbiological Society for funds to attend MicroNZ2003 (Auckland, October 2003) and for discerning me the First Student Oral Presentation Price.

It was very pleasant to work at SBS, a school with such good atmosphere! Big thanks to my labmates in the Plant Science and Microbiology groups for their friendship, with special mention of Catia Delmiglio for good laughs and assistance with PCR and ELISA; Pila Kami for ghostly presence in the lab at night; Charis Shepherd for fun time-wasting playing Race Solitaire; and Dr Sam Neill for finding my ‘stolen’ samples.

I also would like to thank my ‘extended labmates’ in the Ecology Lab, particularly Tony Hickey for constant support, chocolate, advice, proofreading, chocolate, valuable friendship, and chocolate; Kirsty Russell for walks home and hand cream; Gaby de Tezanos Pinto for Spanish lessons in the tea room and salsa classes in the lab; and Carlitos Olavarria Barrera for accepting to be sworn in Spanish for the sake of my training.

Merci to the French invaders! Karine David, Alexandrine Froger, Jean-Hugues Hatier, Marc Oremus, Cyprien Bole, for bringing a french touch to an international lab, for coffee breaks, brain rests from English, and mainly for precious friendship. We will never lose our accent, but can neither speak nor write French properly anymore; we drink tea with our lunch, drink beer, watch rugby, have dinner at 6 pm … it’s a disaster!

Outside the lab I also made eternal friends, including Charlotte Clec’h, Vanessa Lisowski, Christophe Réveilloux, Eric Millet, Gautier Sergent, Khadija Azeroual, Véronique Sourice, Cyrille Douillet, Benoît Bellion, Françoise Ifrah, Paul Barron, Jay Sayer, Lise Eastgate, Fabrice Alleaume, Leuaina Va’ai, and the incredible McKessar family: Sis (Helen), thank you so much for your support, for laughs, good times, and swims; Bros (Martyn, Tim, Daniel and Jonny), thank you very much for exactly the same, apart from the swims!

A Ph.D. student needs a pressure valve or risks Permanent Head Damage (as Pila defined Ph.D.). In New Zealand I discovered Lindy Hop, a swing dance that made me truly forget about work. Thank you to Jitterbugs NZ for simply existing, and to all my dance mates there.
After several years away from home it is hard to keep track of friends. Thank you to my old friends Anne Thomas and Nathalie and Sylvain Chailly for keeping in touch with me and still being around when I came back. Thank you also to the new ones who accompanied me during the writing phase: Nathalie Ah-You and Annie Couteau, for chats and lunches; Frederic Chiroleu and Philippe Laurent for the same plus Excel and Photoshop expertise; Jacques and Ghislaine Dintinger, and Annie and Philippe for offering me the use of their houses; Jérémie Gilles and Isabelle Litrico for being the worst psychopaths. I award a very special thank you to Kenny Le Roux for creating SAP (Service of Assistance to Psychopaths) and making me his favourite client.

I still wonder how I would have achieved the Ph.D. challenge without my family. Huge loving thanks to my sister Catherine, to my brother Eric and his family Valérie, Germain and Margaux, and to Maman (Jacqueline) and Papa (Pierre), for enormous moral support on the phone and by email. Thank you so much also for financial support, and for taking very good care of me while I was writing.
Abbreviations

aa Amino-acid
ACP-ELISA Antigen-coated plate - ELISA
bp Base pairs
BSA Bovin serum albumin
BYMV Bean yellow mosaic virus
c. Approximately (circa)
CalIMMV Calanthe mild mosaic virus
cDNA Complementary DNA
CerMV Ceratobium mosaic virus
CI Cylindrical inclusion
CIRAD Centre de Coopération Internationale en Recherche Agronomique pour le Développement
CIYVV Clover yellow vein virus
CMV Cucumber mosaic virus
CP Coat protein
cv. Cultivar
CymMV Cymbidium mosaic virus
DAS-ELISA Double antibody sandwich-ELISA
DenMV Dendrobium mosaic virus
DiVY Diurus virus Y
dNTP Deoxyribonucleoside triphosphate
dsDNA Double stranded DNA
DsMV Dasheen mosaic virus
dsRNA Double stranded RNA
ELISA Enzyme-linked immunosorbent assay
EM Electron microscopy
FDGDEC Fédération Départementale des Groupements de Défense contre les Ennemis des Cultures
FDGDON Fédération Départementale des Groupements de Défense contre les Organismes Nuisibles
FP French Polynesia
i.e. That is, that is to say, in other words (id est)
IgG Immunoglobulin G
INRA Institut National de la Recherche Agronomique
LB broth Luria-Bertani broth
MAb Monoclonal antibody
ML Maximum likelihood
M-MLV Moloney Murine Leukemia Virus
MP Maximum parsimony
NI Nuclear inclusion
NJ Neighbour-joining
nt Nucleotides
NTR Non-translated region
ORF Open reading frame
ORSV Odontoglossum ring spot virus
PCR Polymerase chain reaction
PPV Plum pox virus
PSV Peanut stunt virus
PTA Potassium phosphotungstate
PtVY Pterostylis virus Y
PVP Polyvinyl pyrrolidone
RDP Recombination Detection Program
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>RdRp</td>
<td>RNA-dependent RNA polymerase</td>
</tr>
<tr>
<td>RhoVY</td>
<td>Rhopalanthe virus Y</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse Transcription</td>
</tr>
<tr>
<td>RUN</td>
<td>Reunion Island</td>
</tr>
<tr>
<td>SarVY</td>
<td>Sarcochilus virus Y</td>
</tr>
<tr>
<td>SCMV</td>
<td>Sugarcane mosaic virus</td>
</tr>
<tr>
<td>sp.</td>
<td>Species (singular)</td>
</tr>
<tr>
<td>spp.</td>
<td>Species (plural)</td>
</tr>
<tr>
<td>ssRNA</td>
<td>Single stranded RNA</td>
</tr>
<tr>
<td>TAS-ELISA</td>
<td>Triple Antibody sandwich-ELISA</td>
</tr>
<tr>
<td>TM</td>
<td>Melting (annealing) temperature</td>
</tr>
<tr>
<td>TuMV</td>
<td>Turnip mosaic virus</td>
</tr>
<tr>
<td>VanMV</td>
<td>Vanilla Mosaic Virus</td>
</tr>
<tr>
<td>VPg</td>
<td>Viral protein genome-linked</td>
</tr>
<tr>
<td>WMV</td>
<td>Watermelon mosaic virus</td>
</tr>
</tbody>
</table>
Table of contents

General introduction ... 1

Part I – Literature review .. 3

A. Virology and plant defense ... 4
1. Viral vs. cellular world .. 4
2. Definition of a virus .. 4
3. The origin of viruses ... 5
4. “The great virus come back” (Forterre 2003) ... 5
5. Virus taxonomy and nomenclature ... 5
6. The quasispecies concept ... 7
7. Processes of virus evolution ... 8
8. Phylogenetic studies of viruses .. 8
9. Viral diseases of plants .. 9
 Symptomatology ... 9
 Means of transmission ... 10
10. Biological and molecular properties of viruses of interest 10
 Cucumber mosaic virus ... 10
 The Potyvirus genus .. 12

B. The vanilla crop .. 15
1. The vanilla plant ... 15
 Taxonomy .. 15
 The cultivated species of vanilla ... 15
 Botanical characters ... 16
 The artificial pollination of vanilla flowers ... 18
 Ecology ... 18
2. The world market for vanilla .. 18
 Production and exports ... 18
 Imports and uses .. 20
 Today’s market situation ... 20
3. The cultivation of vanilla .. 20
 Propagation of vanilla .. 21
 Methods of cultivation ... 21
 Artificial pollination .. 21
 Harvesting .. 21
 Vanilla transformation (curing) .. 22

ix
C. Viral problems related to the intensive cultivation of vanilla

1. Viruses of vanilla
 Potexvirus and Tobamovirus
 Potyvirus
 Rhabdovirus

2. Effects of viruses on vanilla production

3. Management of vanilla viral diseases

D. Viral diagnosis and the need for specific detection tools

E. Aims of research

Part II – Identification and characterisation of *Cucumber mosaic virus* in vanilla

A. Identification of CMV in inoculated *Nicotiana*

1. Introduction

2. Material and methods
 Plant material
 Mechanical inoculation of alternative hosts
 Virus purification from plant material
 Electron microscopy (EM)
 Thin section microscopy
 Double Stranded (ds) RNA extraction
 Enzyme Linked ImmunoSorbent Assay (ELISA)

3. Results

 Mechanical inoculation of herbaceous indexing species
 Electron microscopy
 DsRNA extraction
 ELISA detection of CMV

4. Discussion

B. Virus collection from vanilla crops in French Polynesia and Réunion Island

1. Introduction

2. Materials and methods
 Sample collections
 Serology

3. Results

4. Discussion

 Virus incidence in vanilla crops of French Polynesia and Réunion Island
 Natural occurrence of CMV in vanilla plantations

C. Molecular characterisation of CMV isolates from vanilla

1. Introduction
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Material and methods</td>
<td>41</td>
</tr>
<tr>
<td>Virus isolates</td>
<td>41</td>
</tr>
<tr>
<td>Total RNA extraction from plant tissue</td>
<td>41</td>
</tr>
<tr>
<td>Reverse Transcription – Polymerase Chain Reaction (RT-PCR)</td>
<td>42</td>
</tr>
<tr>
<td>Plant mRNA control primers nad5 (Menzel et al. 2002)</td>
<td>42</td>
</tr>
<tr>
<td>CMV P1/P2 primers (Wylie et al. 1993)</td>
<td>42</td>
</tr>
<tr>
<td>CMV 93-309/93-359 primers (Hu et al. 1995)</td>
<td>42</td>
</tr>
<tr>
<td>Agarose gel electrophoresis</td>
<td>43</td>
</tr>
<tr>
<td>Sequencing and sequence analysis</td>
<td>43</td>
</tr>
<tr>
<td>3. Results</td>
<td>44</td>
</tr>
<tr>
<td>RT-PCR products</td>
<td>44</td>
</tr>
<tr>
<td>Plant mRNA control primers nad5 (Menzel et al. 2002)</td>
<td>44</td>
</tr>
<tr>
<td>CMV P1/P2 primers (Wylie et al. 1993)</td>
<td>44</td>
</tr>
<tr>
<td>CMV 93-309/93-359 primers (Hu et al. 1995)</td>
<td>45</td>
</tr>
<tr>
<td>Sequence data</td>
<td>45</td>
</tr>
<tr>
<td>CMV CP gene analysis</td>
<td>46</td>
</tr>
<tr>
<td>GenBank CMV sequences</td>
<td>46</td>
</tr>
<tr>
<td>Vanilla CMV sequences</td>
<td>47</td>
</tr>
<tr>
<td>RNA3 3’NTR analysis</td>
<td>54</td>
</tr>
<tr>
<td>GenBank CMV sequences</td>
<td>54</td>
</tr>
<tr>
<td>Vanilla CMV sequences</td>
<td>54</td>
</tr>
<tr>
<td>4. Discussion</td>
<td>58</td>
</tr>
<tr>
<td>D. Mechanical inoculation of Vanilla planifolia with CMV subgroup II strains</td>
<td>61</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>61</td>
</tr>
<tr>
<td>2. Materials and methods</td>
<td>61</td>
</tr>
<tr>
<td>CMV isolates</td>
<td>61</td>
</tr>
<tr>
<td>Culture in vitro and establishment in greenhouse</td>
<td>61</td>
</tr>
<tr>
<td>Mechanical inoculation</td>
<td>62</td>
</tr>
<tr>
<td>ELISA</td>
<td>62</td>
</tr>
<tr>
<td>3. Results</td>
<td>62</td>
</tr>
<tr>
<td>Mechanical inoculations</td>
<td>62</td>
</tr>
<tr>
<td>ELISA</td>
<td>62</td>
</tr>
<tr>
<td>4. Discussion</td>
<td>63</td>
</tr>
<tr>
<td>Part III – Characterisation and detection of Vanilla mosaic virus</td>
<td>65</td>
</tr>
<tr>
<td>A. Evaluation of existing serological detection methods</td>
<td>66</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>66</td>
</tr>
<tr>
<td>2. Materials and methods</td>
<td>66</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Virus collection</td>
<td>66</td>
</tr>
<tr>
<td>Virus-specific antisera</td>
<td>67</td>
</tr>
<tr>
<td>ELISA procedures</td>
<td>67</td>
</tr>
<tr>
<td>ACP-ELISA</td>
<td>67</td>
</tr>
<tr>
<td>DAS-ELISA</td>
<td>67</td>
</tr>
<tr>
<td>TAS-ELISA</td>
<td>68</td>
</tr>
<tr>
<td>3. Results</td>
<td>68</td>
</tr>
<tr>
<td>Correlation between potyvirus presence and symptoms</td>
<td>68</td>
</tr>
<tr>
<td>Specific ELISA detection of individual Potyvirus species</td>
<td>69</td>
</tr>
<tr>
<td>4. Discussion</td>
<td>72</td>
</tr>
<tr>
<td>B. Molecular characterisation of Vanilla mosaic virus</td>
<td>75</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>75</td>
</tr>
<tr>
<td>2. Material and methods</td>
<td>75</td>
</tr>
<tr>
<td>Virus isolates</td>
<td>75</td>
</tr>
<tr>
<td>Mechanical inoculation of selected hosts</td>
<td>76</td>
</tr>
<tr>
<td>Characterisation of the VanMV-CI coat protein gene</td>
<td>77</td>
</tr>
<tr>
<td>Partial virus purification</td>
<td>77</td>
</tr>
<tr>
<td>Electron microscopy</td>
<td>77</td>
</tr>
<tr>
<td>Nucleic acid extraction from partially purified virus</td>
<td>77</td>
</tr>
<tr>
<td>Reverse Transcription – Polymerase Chain Reaction (RT-PCR)</td>
<td>77</td>
</tr>
<tr>
<td>Cloning of PCR products</td>
<td>77</td>
</tr>
<tr>
<td>Sequencing</td>
<td>78</td>
</tr>
<tr>
<td>Characterisation of the VanMV-FP coat protein gene</td>
<td>78</td>
</tr>
<tr>
<td>Immunocapture-RT-PCR</td>
<td>79</td>
</tr>
<tr>
<td>Total RNA extraction from plant tissue</td>
<td>79</td>
</tr>
<tr>
<td>Reverse Transcription – Polymerase Chain Reaction (RT-PCR)</td>
<td>79</td>
</tr>
<tr>
<td>Sequence assembly and analysis</td>
<td>80</td>
</tr>
<tr>
<td>3. Results</td>
<td>80</td>
</tr>
<tr>
<td>Mechanical inoculation of selected hosts with VanMV isolates</td>
<td>80</td>
</tr>
<tr>
<td>Cook Islands sequences</td>
<td>82</td>
</tr>
<tr>
<td>French Polynesia sequence</td>
<td>85</td>
</tr>
<tr>
<td>Computer analysis of VanMV CP sequences</td>
<td>86</td>
</tr>
<tr>
<td>Search for recombination events</td>
<td>86</td>
</tr>
<tr>
<td>Sequence identities to DsMV and orchid potyviruses</td>
<td>88</td>
</tr>
<tr>
<td>Dendrograms</td>
<td>92</td>
</tr>
<tr>
<td>Computer analysis of VanMV CI-6K2-N1a sequence</td>
<td>96</td>
</tr>
<tr>
<td>4. Discussion</td>
<td>97</td>
</tr>
</tbody>
</table>

xii
The extremely restricted host range of VanMV .. 97
Unusual features in the CPs of VanMV ... 97
VanMV-CI .. 97
VanMV-FP ... 98
Classification of VanMV-CI and VanMV-FP in the Potyvirus genus 100

C. Specific detection of VanMV ... 104
 1. Introduction ... 104
 2. Materials and methods .. 104
 Virus isolates and sequence data ... 104
 Primer design method .. 105
 Primer evaluation ... 106
 Total RNA extraction from plant tissue .. 106
 Nad5 RT-PCR ... 106
 RT-PCR with vanilla virus primers .. 107
 Sequencing ... 107
 3. Results .. 107
 Existing VanMV primers .. 107
 VanMV-CI 6KF and NlaR primers ... 108
 VanMV-CI NibF and CPR primers ... 109
 VanMV-FP NibF and CPR primers ... 110
 Discrimination between VanMV and other potyviruses 112
 New VanMV primers ... 112
 Primer design ... 113
 Plant mRNA PCR results .. 117
 Preliminary PCR tests: primer selection ... 117
 Further PCR optimisation: MgCl2 and Tm gradient 118
 4. Discussion .. 120

Part IV – General discussion ... 121
 A. Summary of conclusions from the research .. 122
 1. Cucumber mosaic virus (CMV) ... 122
 2. Vanilla mosaic virus (VanMV) ... 122
 B. Significance and implications of the research ... 124
 1. Academic significance of the research ... 124
 Contribution to the knowledge on CMV ... 124
 VanMV and Potyvirus taxonomy ... 124
 Potyvirus evolution .. 125
 VanMV: a new Potyvirus species ? .. 125
VanMV-FP: a plant virus with an unstructured protein domain

2. Practical implications of the research

Disease management
Virus diagnosis
CymMV and ORSV
CMV
Potyviruses
(i) Generic detection of potyviruses
(ii) Specific identification of individual potyviruses

C. Suggestions for improvement and future research

1. Characterisation of vanilla viruses
CMV
Potyviruses

2. Development of detection methods for potyviruses
Distribution of potyvirus particles
Detection of potyviruses
Generic detection of potyviruses
Specific identification of individual potyviruses
(i) Develop monoclonal antibodies
(ii) Design other primers
(iii) Evaluate other RT-PCR formats
(iv) Develop microarrays

3. Other studies
Genetic diversity of vanilla species
Structure and function studies of the VanMV-FP coat protein

4. Concluding remarks

References
Appendices
List of tables and figures

Figure 1. The family and genera of viruses known to infect plants (van Regenmortel et al. 2000) 6

Figure 2. Genome structure of Cucumber mosaic virus (Fny strain). Reproduced from Roossinck (2001) and Palukaitis & García-Arenal (2003) ... 11

Figure 3. Organisation of the Potyvirus RNA genome, with the VPg protein covalently linked to the 5'end and the polyadenylated tail at the 3'end. The polypeptide is boxed, and the vertical lines within the box represent the different cleavage sites. The viral protein domains are explained in Table 1 13

Figure 4. A model for the reversible interaction between the potyvirus particle, the helper component and the aphid's stylet during Potyvirus aphid transmission. Amino-acid functional motifs involved in the interaction are indicated. Modified from Astier et al. (2001) ... 14

Figure 5. Monography of Vanilla planifolia (Orchidaceae). Modified from Köhler (1887) 17

Figure 6. Main vanilla producing countries .. 19

Figure 7. Severe stunting and deformation ('SD' in the text) of Vanilla tahitensis vines in French Polynesia caused by Cucumber mosaic virus (CMV). A: healthy vine; B: CMV-infected vine; C: leaf deformation; D: shoot proliferation ... 31

Figure 8. Symptoms on Nicotiana benthamiana (a, b, c, 7 days post inoculation) and N. clevelandii (d, e, f, 10 days post inoculation) following mechanical inoculation with a vanilla isolate of Cucumber mosaic virus from French Polynesia (isolate CMV-VT2). Control leaves (a, d) show no symptoms, inoculated leaves (b, e) show necrosis and vein discourlouring, and systemic leaves (c, f) show deformation, mottling, necrosis and vein discolouring .. 34

Figure 9. Map of Society Islands (French Polynesia) ... 37

Figure 10. Map of Réunion Island, showing cities where vanilla plots were surveyed 37

Figure 11. Agarose gel electrophoresis of RT-PCR products amplified from total RNA of CMV-infected vanilla leaf tissue with the Wylie et al. (1993) primers. Lanes 1-7, CMV-infected Vanilla tahitensis samples from French Polynesia; H, healthy vanilla. .. 45

Figure 12. RT-PCR amplification patterns obtained from total RNA of CMV-infected vanilla leaf tissue using primers from Hu et al. (1995). .. 45

Figure 13. Maximum parsimony tree of CMV complete CP gene sequences (65 taxa, 669 characters), with PSV-ER as the outgroup. Bootstrap values of interest are shown and discussed in the text 50

Figure 14. Maximum parsimony tree of CMV CP gene sequences minus the first 64 characters of the alignment (78 taxa, 608 characters), with PSV-ER as the outgroup. Yellow boxes indicate the FPb and FPc clusters of French Polynesian Vanilla tahitensis isolates. Bootstrap values of interest are shown and discussed in the text 51

Figure 15. Maximum parsimony tree of CMV CP gene sequences minus the first 329 characters of the alignment (94 taxa, 340 characters), with PSV-ER as the outgroup. Yellow boxes indicate the FPa, FPb and FPc clusters of French Polynesian Vanilla tahitensis isolates; the green box indicates the Réunion Island V. planifolia isolates. Bootstrap values of interest are shown and discussed in the text 52
Figure 16. Maximum parsimony tree for CMV RNA3 3’NTR sequences (34 taxa, 638 characters), with PSV-ER as the outgroup. Bootstrap values of interest are shown and discussed in the text. The subgroups IA, IB and II are shown as established by the CP gene analysis. 56

Figure 17. Maximum parsimony tree for the first 136 characters in the CMV RNA3 3’NTR sequence alignment (55 taxa), with PSV-ER as the outgroup. The yellow box indicates the French Polynesian Vanilla tahitensis isolates; the green box indicates the Réunion Island V. planifolia isolates. Bootstrap values of interest are shown and discussed in the text. ... 57

Figure 18. Electron micrograph of partially purified particles from VanMV-infected Vanilla planifolia from the Cook Islands. ... 82

Figure 19. Double product obtained by RT-PCR amplification from VanMV-CI RNA using the degenerate PV1SP6/PV2IT7 primers at different annealing temperatures (Tm). Ladder: 1kb+ (Invitrogen). 83

Figure 20. Amino-acid sequence alignment of VanMV-CI(-48) (nt: GenBank AJ616720) and VanMV-CI (GenBank AJ616721). The motifs used for the design of the CINbF and CICPR primers are underlined. The coat protein sequence is in bold. The box indicates the DAG motif. The triangle indicates the only aa difference between the two sequences, deletion excluded. 84

Figure 21. Translated sequence for the CI-6K2-Nla region of VanMV-CI (nt: GenBank AJ616722). The cleavage sites are deduced from alignment with DsMV M13 and are indicated by ♦. CI♦6K2 = Q/S; 6K2♦Nla-VPg = Q/G; Nla-VPg♦Nla-Pro = E/G. The motifs where the internal primers CICIF/CINlR bind are underlined. ... 84

Figure 22. Translated sequence for VanMV-FP (nt: GenBank AJ616719). The coat protein is in bold. The motifs used for the design of the FPNbF and FPCPR primers are underlined. The box indicates the DVG motif. The interrupted line indicates the GTN stretch. ... 85

Figure 23. Unrooted maximum likelihood tree of CP+3’NTR nucleotide sequences for Vanilla mosaic virus (VanMV) isolates CI and FP and Dasheen mosaic virus strains. Bootstrap values are for 100 replicates and are shown when < 70 %. The other clustering analysis trees are shown in Appendix 11. 87

Figure 24. Frequency distribution of the coat protein amino-acid sequence identities for a total of 30 potyviruses: 9 strains of Dasheen mosaic virus (DsMV), 19 strains of orchid potyviruses (representing 11 species) and the 2 Vanilla mosaic virus (VanMV) isolates CI and FP. Frequency is expressed as the number of values that fall within each range of percentage identities. The different brackets indicate the range of pairwise identities: A, between the definitive and/or tentative potyvirus species listed in Table 21; B, between the potyvirus strains listed in Table 21; C, between VanMV-FP and orchid potyviruses; D, between VanMV-CI and orchid potyviruses; E, between VanMV-FP and DsMV strains; F, between VanMV-CI and DsMV strains. The arrow (G) indicates the percentage identity between VanMV-FP and VanMV-CI. ... 90

Figure 25. Frequency distribution of the 3’NTR sequence identities for a total of 19 potyviruses: 9 strains of Dasheen mosaic virus (DsMV), 8 strains of orchid potyviruses (representing 7 species) and the 2 Vanilla mosaic virus (VanMV) isolates CI and FP. Frequency is expressed as the count of values that fall within each range of percentage identities. The different brackets indicate the range of identities: A, between the definitive and/or tentative potyvirus species listed in Table 21; B, between the potyvirus strains listed in Table 21; C, between VanMV (FP+CI) and orchid potyviruses; D, between VanMV (FP+CI)
and DsMV strains. The arrow (E) indicates the percentage identity between VanMV-FP and VanMV-CI.

Figure 26. Unrooted maximum parsimony tree of coat protein amino-acid sequences for Vanilla mosaic virus (VanMV) isolates CI and FP, other orchid potyviruses, and Dasheen mosaic virus strains. GenBank accession numbers and acronyms for virus taxa are listed in Table 21. Bootstrap values are for 1000 replicates and are shown when > 70%.

Figure 27. Unrooted maximum likelihood tree of CP core nucleotide sequences for Vanilla mosaic virus (VanMV) isolates CI and FP, other orchid potyviruses, and Dasheen mosaic virus strains. GenBank accession numbers and acronyms for virus taxa are listed in Table 21. Bootstrap values are for 100 replicates and are shown when > 70%.

Figure 28. Unrooted maximum likelihood tree of 3'NTR sequences for Vanilla mosaic virus (VanMV) isolates CI and FP, other orchid potyviruses, and Dasheen mosaic virus strains. GenBank accession numbers and acronyms for virus taxa are listed in Table 21. Bootstrap values are for 100 replicates and are shown when > 70%.

Figure 29. Folding of a natively unstructured protein domain upon binding to its target. Modified from Dyson & Wright (1999).

Figure 30. Position of the VanMV-CI and VanMV-FP reverse and forward primers designed for the purpose of sequencing (Part III, Section B). The numbers indicate the primer nucleotide positions on the target sequences.

Figure 31. Agarose gel electrophoresis of RT-PCR products obtained from VanMV-CI RNA extracted from partially purified particles, using the CICIF and CINbF primers.

Figure 32. Agarose gel electrophoresis of RT-PCR products obtained with the CINbF/CICPR primers, from RNA extracted from fresh VanMV-CI-infected Vanilla planifolia (lane 1), fresh DsMV-infected Colocasia esculenta (lane 2), fresh V. planifolia co-infected with WMV-Tonga and VanMV-CI (lanes 3-5), and VanMV-CI partial virus preparation (lane 6). W, water control; H, healthy vanilla.

Figure 33. Agarose gel electrophoresis of RT-PCR products obtained with the CINbF/CICPR primers, from RNA extracted from fresh VanMV-FP-infected Vanilla tahitensis (lanes 1-2) and from fresh VanMV-CI-infected V. planifolia (lanes 3-4). H, healthy vanilla; W, water control.

Figure 34. Agarose gel electrophoresis of RT-PCR products obtained from fresh VanMV-FP and VanMV-CI infected vanilla, using the CINbF/CICPR primers.

Figure 35. Agarose gel of RT-PCR products obtained with the FPNbF/FPCPR primers from RNA extracted from fresh VanMV-FP-infected Vanilla tahitensis and fresh VanMV-CI-infected V. planifolia.

Figure 36. Agarose gel of RT-PCR products obtained with the FPNbF2/FPCPR primers from RNA extracted from fresh VanMV-FP-infected Vanilla tahitensis and fresh VanMV-CI-infected V. planifolia.

Figure 37. Region of the Potyivirus genome targeted for amplification with the vanilla virus-specific primers.

Figure 38. Edited alignment used for the design of forward primers to vanilla viruses. The sequences corresponding to the virus-specific motifs used for primer design are in bold, and the primer sequences are underlined below.
Figure 39. Edited alignment used for the design of reverse primers to vanilla viruses. The sequences corresponding to the virus-specific motifs used for primer design are in bold, and the primer sequences are underlined below.

Figure 40. PCR amplification patterns obtained from different plant hosts with the use of the nad5 control primers of Menzel et al. (2002). Lane 1, 1kb+ ladder (Invitrogen); lanes 2-3, fresh Colocasia esculenta; lanes 4-5, fresh Vanilla planifolia; lanes 6-7, frozen V. tahitensis; lanes 8-9, freeze-dried Nicotiana benthamiana; w: water control.

Figure 41. RT-PCR amplification patterns obtained with the DsMV primers DF1/DR1 from total RNA extracts from DsMV-, VanMV-Cl-, VanMV-FP and WMV-infected plant material (H, healthy vanilla; W, water control).

Figure 42. RT-PCR amplification patterns obtained with the VanMV-Cl primers CIF2/CIR1 from total RNA extracts from DsMV-, VanMV-Cl-, VanMV-FP and WMV-infected plant material (H, healthy vanilla; W, water control).

Figure 43. RT-PCR amplification patterns obtained with the VanMV-FP primers FPF1/FPF2 from total RNA extracts from DsMV-, VanMV-Cl-, VanMV-FP and WMV-infected plant material (H, healthy vanilla; W, water control).

Figure 44. RT-PCR amplification patterns obtained with the WMV-Tonga primers WF1/WF1 from total RNA extracts from DsMV-, VanMV-Cl-, VanMV-FP and WMV-infected plant material (H, healthy vanilla; W, water control).

Figure 45. A proposed explanation for the absence of transitional (1') viral genomes.

Figure 46. A proposed theory for the origin of VanMV.

Table 1. Properties of the different Potyvirus proteins (reproduced from Urcuqui-Inchima et al. 2001).

Table 2. Existing detection tests for the major viruses known to infect vanilla at the start of the research project.

Table 3. Detection of Cucumber mosaic virus (CMV) in Nicotiana sp. inoculated with infected vanilla sap. Absorbances (A_{650}) are mean values for 3 replicates, 30 and 60 min after addition of the substrate.

Table 4. Viruses detected in vanilla leaf samples from French Polynesia and Réunion Island.

Table 5. Comparison to other virus surveys: (a) Wisler et al. 1987; (b) Grisoni et al. 2004; (c) Leclercq-Le Quillec et al. 1999; (d) Gourdel 2000; (e) this survey.

Table 6. Cucumber mosaic virus (CMV) coat protein gene primers and plant mRNA control primers used for RT-PCR amplification from CMV-infected vanilla material.

Table 7. CMV isolates from vanilla and the primers used for RT-PCR amplification and sequencing of 3' RNA3.

Table 8. Selected CMV RNA3 sequences from GenBank. The information is combined from GenBank and other references (Nitta et al. 1988; Owen & Palukaitis 1988; Hayakawa et al. 1989; Quemada et al. 1989; Owen et al. 1990; Wahyunli et al. 1992; Hu et al. 1995; Choi et al. 1999; Roossinck et al. 1999; Hsu et al. 2000; Chen et al. 2001c; Roossinck 2002; Lin et al. 2003). Kava3 and Kava10 were
sequenced by S. Tupouiniua (2000); the NZ100 isolate was kindly provided by J. Fletcher (Crop&Food Research, Christchurch, New Zealand) and sequenced during this work.. 48

Table 9. Coat protein gene identities (%) within and between CMV isolates from French Polynesia (FPa, b and c, as described in the text), Réunion Island (RUN), and published CMV sequences of each subgroup IA, IB and II (listed in Table 1). Numbers in brackets indicate the number of sequences. The number of characters is the number of nucleotide positions in the alignments, including the gaps.. 53

Table 10. RNA3 3'NTR identities (%) within and between CMV isolates from French Polynesia (FPa, b and c, as described in the text), Réunion Island (RUN), and published CMV sequences of each subgroup IA, IB and II (Table 8). Numbers in brackets indicate the number of sequences. The number of characters is the number of nucleotide positions in the alignments, including the gaps.. 55

Table 11. New Zealand CMV isolates used to inoculate Vanilla planifolia. 1 Crop & Food Research, Christchurch, New Zealand; 2 Ministry of Agriculture and Forestry, Auckland, New Zealand; ?, inconclusive serological data; ND, not determined.. 61

Table 12. CMV inoculations of Vanilla planifolia.. 63

Table 13. Absorbance values (A405) obtained with CMV- and mock-inoculated Vanilla planifolia plant sap. The values are means of duplicates.. 63

Table 14. Potyvirus isolates used for the evaluation of ELISA using the WMV-Tonga and VanMV antisera.. 67

Table 15. Correlation between observed symptoms and viruses detected in vanilla plots in French Polynesia and Réunion Island. M = mosaic, DM = deforming mosaic, LD = leaf deformation, SD = stunting and strong vine and leaf deformation, CS = chlorotic spots, NS = necrotic spots, OS = 'oily' spots. The figures are numbers of samples.. 69

Table 16. Comparison of the anti-Potyvirus group antiserum and the WMV-Tonga antiserum for the detection of Potyvirus isolates from Vanilla tahitensis. The A450 value for the healthy controls is the mean for 4 sap extracts. The A450 value for the virus isolates are means of duplicates. Statistics: positive, \(\frac{0.168 > X + \text{sd}}{X + \text{3sd}} \); marginal positive, \(\frac{0.047 < X + \text{sd}}{X + \text{3sd}} \); negative, \(\frac{0.033 < X + \text{sd}}{X + \text{3sd}} \). * indicates a statistical but very low positive.. 70

Table 17. Comparison of ACP- and DAS-ELISA for the detection of VanMV, 'ACP' and 'DAS'; use of complete serum; 'ACP\(\gamma\)' and 'DAS\(\gamma\)': use of purified \(\gamma\)-globulins. Mean of healthy are for 8 sap extracts. Mean of virus isolates are for duplicates.. 71

Table 18. Reaction of some vanilla Potyvirus isolates to VanMV and WMV-Tonga antibodies in a Triple Antibody Sandwich (TAS)-ELISA after 30 min.. 72

Table 19. Selected DsMV-susceptible plant species for VanMV inoculations.. 76

Table 20. Plant species inoculated with VanMV (All inoculations failed to transmit the virus).. 81

Table 21. GenBank accession numbers of Potyvirus sequences used in phylogenetic analyses. All viruses except DsMV were isolated from orchids. N.A., 3'NTR sequence not available or incomplete.. 88

Table 22. Amino-acid (aa) and nucleotide (nt) identity percentages across the whole coat protein, the coat protein core region (150 aa) and the 3' non-translated region, between various combinations of potyvirus species and strains (listed in Table 21).. 89
Table 23. *Potyvirus* nucleotide (nt) and amino-acid (aa) sequences used for the analysis of the CI-6K2-Nla region.

Table 24. Summary of the elements supporting and opposing the classification of *Vanilla* mosaic virus (VanMV)-CI and -FP as distinct *Potyvirus* species from their closest relative, *Dasheen* mosaic virus (DsMV). The comparisons are made to the DsMV strains listed in table 1, according to the ICTV species demarcating criteria (van Regenmortel et al. 2000). The CP core and CI-6K2-Nla sequence data do not figure here because they are not ICTV criteria.

Table 25. *Vanilla* virus isolates used for PCR primer testings.

Table 26. Sequences of primers designed for sequencing of VanMV in Part III, Section B. The annealing temperatures Tm were calculated in Oligo 1.2 using the ′2 AT + 4 GC′ method.

Table 27. Amino-acid motifs where the VanMV CI and FP primers hybridise in *Vanilla* mosaic virus (VanMV), *Dasheen* mosaic virus (DsMV) and *Watermelon* mosaic virus (WMV). Bold characters indicate differences with the VanMV motif that was used for primer design.

Table 28. Sequences for the *vanilla* virus-specific primers (F=forward; R=reverse).

Table 29. Physical and molecular characteristics of the *vanilla* virus primers.

Table 30. Amplicon sizes expected from RT-PCR with the *vanilla* virus primers.

Table 31. Summary of preliminary PCR results for selection of the best primer combinations to detect DsMV, VanMV-CI, VanMV-FP and WMV-Tonga.