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Abstract

The method of feedback control on the stability of vortices is studied

for an inviscid incompressible base flow subjected to an axisymmetric dis-

turbance in a circular pipe with non-periodic boundary conditions. The

investigation first focuses on the linear asymptotic equation with the con-

trol parameter applied. This is done to investigate the dynamics of the first

growth rate branch curve because of the ease to apply constraints and the

reduced complexity (allowing for analytical solutions) of the linear asymp-

totic equation. Numerical analysis indicates that the asymptotic equation

is controllable, prompting the investigation of the same control mechanism

applied to the linear WR equation. Since the asymptotic equation is only

accurate to swirls up to and near the first growth rate branch, investigation

focuses on whether the global equation is controllable and the effectiveness

of said control mechanism. While this technique is only based on the spe-

cific solid body rotation flow (for its weakly non-linearity), investigation will

pave way for improving the control mechanism and better understanding the

dynamics of vortex stability of non-linear vortex flows.
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Chapter 1

Introduction

The field of hydrodynamic stability is a classical area of research under the

wider genre of fluid mechanics. In particular, the phenomenon of vortex

breakdown (one aspect of hydrodynamic stability) has gained steady interest

in the past 50 years with the advancement of modern technologies, produc-

ing varied application of swirling flows in both experimental and theoretical

areas. Vortex breakdown refers to the phenomenon in which the creation of

stagnation point within the flow produces a sudden change in the topology of

the streamlines. This phenomenon is widespread and involved in a variety of

applications involving swirling flow of fluids such as the delta wing of a com-

bat aircraft; the onset of instabilities of the vortex (often referred to as ’burst’

or ’breakdown’) generated at the wings are of particular concern, due to the

direct impact it has to the stability, controllability and ultimately, aircraft

performance. Many other technological applications with similar concerns

exist, such as hydro-cyclone separators, combustion chambers, and meteoro-

logical studies, all of which involves in one form or another, the swirling flow

of fluids in general.

Swirling flows (or ‘vortices’) generally refers to spinning currents of liquid

or gas (fluids), which are in spiral motion of a center with closed streamlines.

The spinning nature of fluids allows for the use of cylindrical coordinates

(r, θ, x) to better express the dynamics of flows. The two main types of

vortices are free (irrotational) vortex, and forced (rotational) vortex, the
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CHAPTER 1. INTRODUCTION

former describes a flow where the azimuthal velocity v of the flow changes as

a function of the radius r, and the azimuthal velocities of each contour are

different. The latter vortex refers to an ideal flow named solid body rotation,

unlike the free vortex, the lack of shearing force allows the vortex to move as

a whole, all contours are locked in with one another, and the motion looks

akin to a solid cylinder rotating. This ideal flow with the lack of shear force

allows for simplification of many complicated situations involved with the

vortex breakdown phenomenon, and will be the focus of this paper while

investigating the principles of different aspects involved in the stability of

the vortex.

Classical stability by Lord Rayleigh [11] (Rayleigh 1916) details the study

of vortex stability in an infinitely long pipe by setting periodic inlet and out-

let conditions (for other papers on classical results refer to [7] (Leibovich

1984), [1] (Ash & Khorrami 1995), and [14] (Synge 1933)). This allowed the

establishment of the circulation criterion for a swirling flow in an infinitely

long, straight, circular pipe, which stated that flows are linearly neutrally

stable subjected to axisymmetric perturbations if and only if the absolute

value of the circulation function increases monotonically with the radius r

from the center [16] (Wang & Rusak 2011). One particular flow type that

always satisfy this criterion is the solid body rotation flow. When subjected

to perturbations, solid body rotational flow will always remain stable because

the criterion is always satisfied provided that the perturbation was axisym-

metrical, and inlet and outlet conditions remain periodic. Howard & Gupta

later extended this criterion to accommodate flows with an axial velocity

W (r), to show that the flow is linearly stable when subjected to axisymmet-

rical perturbations provided that the condition Φ > (dW/dr)2/4 was met [6]

(Howard & Gupta 1962), further strengthening of the criterion can be seen

in [8] (Leibovich & Stewartson 1983), [9] (Lessen, Singh & Paillet 1974) etc.

However, the strengthening and confirmation of classical theorization failed

to address an important issue that often renders experimental approaches to

the classical theory to be inaccurate, for example, instability may actually

occur for a solid body rotational flow whereas classical theory predicts sta-

bility under the required conditions. This is due to the fact that classical

2



CHAPTER 1. INTRODUCTION

theorization limits the evolution of axisymmetrical perturbations to a peri-

odic scheme of the inlet and outlet conditions of the pipe. The result is that

periodic conditions often cannot accurately reflect realistic flow physics of

the vortex, and situations that do present periodic conditions are often few

and far between. Non-periodic conditions may actually generate different

perturbation modes from periodic conditions.

Studies in [17] (Wang & Rusak 1996a) showed that non-periodic inlet and

outlet conditions do in fact interfere with the stability of the perturbation,

producing drastically different results from the classical theorization. With

the placement of these non-periodic boundary conditions, the pipe dimension

now more accurately reflects an industrial schematic of a swirling flow in a

pipe. This allowed for a more realistic simulation of the flow dynamics that

addresses the problem of the onset of instability unaddressed by classical

theory. Under this scheme, solid body rotational flow can produce positive

growth of the perturbations which may eventually lead to vortex instability

even though classical theory predicts stability, and each growth rate branch

associated with a range of swirl increases as the current swirl departs further

from Benjamin’s critical swirl [2] (Benjamin 1962). For detailed analysis and

stability of other vortex type subjected to axisymmetrical perturbations refer

to [17] (Wang & Rusak 1996a) and [18] (Wang & Rusak 1996b).

Due to the complex nature of the stability equation for general base flow

subjected to non-periodic boundary conditions, it may be difficult to ma-

nipulate the equation itself or change the dynamics by tweaking with some

constraints or conditions. Therefore it seems logical to derive some reduced

form of the stability equation that governs this problem. Essentially the focus

of the reduced form of the stability equation will be on the first few growth

rate branches of the full stability equation. By utilizing this approach, a

reduced form (or the asymptotic) stability equation that is much simplified

than its full equation counterpart can be produced. The asymptotic equation

is simpler to change and place constraints, however its downfall is that the

equation is only accurate for the first few growth rate branches, i.e., the swirl

cannot increase that far away from Benjamin’s critical swirl. Comparison will

show that subsequent growth rate branches produces a significant amount of
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CHAPTER 1. INTRODUCTION

difference which cannot be ignored, but for the purpose of the asymptotic

equation accurately predicting the first branch the accuracy is high enough.

Since the subsequent branches all behave similarly to the branch before, one

would hope that any changes made to the first branch will produce the same

effect on the later branches.

Since positive growth of the perturbation is produced by adding non-

periodic boundary conditions (for solid body rotational flow), a method for

quenching the growing perturbation or to control it was investigated in hop-

ing that the perturbation can somehow be contained to allow the vortex to

remain stable. A way to achieve this is by placing the asymptotic equa-

tion under feedback stabilization control. Essentially the feedback control

places a control parameter u(t) within the asymptotic evolution equation for

perturbation, and the control parameter can be adjusted according to the

significance of the growth of the perturbation. This approach was developed

by noting instability involves the transfer of kinetic energy of the perturba-

tion, and that certain conditions will sometimes cause the rate of transfer

or production of kinetic energy to drop, delaying the onset of instability,

while some conditions speeds up the process (for details see [19] (Wang, Tay-

lor & Ku Akil 2010) and [16] (Wang & Rusak 2011), for alternative control

method see [5] (Gallaire, Chomaz & Huerre 2004)). However, the current

control method involves a control parameter within the stream, which makes

the parameter difficult to adjust under realistic circumstances.

In this research paper, an alternative representation of the control pa-

rameter will be investigated. We will attempt to transfer the control pa-

rameter from within the stream to an equivalent condition at the inlet of the

pipe. This adjustment allows for the ease of change for the control parameter

experimentally. The development of the control parameter for the asymp-

totic equation guarantees stability for a solid body rotation flow subjected

to axisymmetrical disturbances provided that the control meets certain re-

quirements. However the asymptotic equation only accurately represents the

first growth rate branch (and the nearby swirl range), and the effect of the

control on later branches is unknown. Therefore we will attempt to develop

a new method of control for the linear Wang & Rusak equation which en-
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CHAPTER 1. INTRODUCTION

forces the effect of control by changing the circulation condition at the inlet

of the pipe. But to derive a condition for which complete control can be

achieved for this new control method, it is necessary to rescale and reduce

the linear WR equation to arrive at a third order asymptotic form of the

WR equation. Doing so allows us to investigate what the inlet condition

for circulation represents in the asymptotic equation scheme, and a require-

ment for the inlet circulation can be found. Since both equations have near

identical first growth rate branch, one would hope that for the full equation,

the first growth rate branch at the very least can be completely controlled

like the asymptotic equation; investigation will then be focused on the later

branches, which departs from the prediction of the asymptotic equation. Cur-

rently it is predicted that the eliminated terms from the reduction towards

the asymptotic equation may have minor effect close to the first branch, but

as the swirl increases further from the critical swirl, the eliminated terms

may gain importance, which can possibly eventually render the control pa-

rameter unable to stabilize the perturbation, leading to positive growth and

vortex instability. However, the new approach to control the linear WR sta-

bility problem was found to still be able to successfully suppress the growing

perturbation contrary to what was predicted. This signifies that feedback

stabilization is a robust form of stability control for solid body rotational

stability problem. Numerical analysis gave evidence of reduced effectiveness

of the control parameter, however, the control parameter after reaching the

minimum requirement is still able to control the linear WR equation, and

both the linear asymptotic equation and the linear WR equation can be con-

trolled by the feedback control mechanism with solid body rotational flow

subjected to axisymmetrical disturbance. Further investigation is needed to

verify the effectiveness of feedback control on other flow types which involves

a higher level of non-linearity effect. Since solid body rotation has a fairly

weak non-linear effect that only manifest itself for sufficiently large perturba-

tion modes, the linear WR and weakly non-linear asymptotic equation will

no longer be able to accurately describe the perturbation dynamics.
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Chapter 2

Linear Global Stability Analysis

An inviscid, incompressible, axisymmetric swirling flow subjected to in-

finitesimal axisymmetric disturbances will be examined using the Euler equa-

tions of motion. The chapter will attempt to clarify the difference between

classical stability theorization proposed by Lord Rayleigh [11] (Rayleigh 1916),

and a new stability theorization by Wang & Rusak [17] (Wang & Rusak

1996a). The lack of boundary conditions that reflects physical operations

in the classical theorization means that classical stability problem often fails

to predict instability for experimental flows that may have been stable when

subjected to periodic boundary conditions seen in the classical theory. This

problem was addressed by Wang & Rusak, by placing non-periodic boundary

conditions instead of periodic boundary conditions that produce Fourier mode

solutions. This research paper will focus mainly on solid body rotation flow

which is able to provide analytical solutions for most of the situations, and

the dynamics of the perturbations will be studied using the linear WR stability

equation proposed by Wang & Rusak. For stability analysis of alternative flow

profiles, some involving viscosity, see excellent research papers [20] (Wang &

Rusak 1997), [4] (Galleire & Chomaz 2004) which discuss said flows leading

to vortex breakdown.
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2.1. CLASSICAL (LOCAL) STABILITY PROBLEM

2.1 Classical (Local) stability problem

For the purpose of this paper, the phenomenon of vortex breakdown will

be examined under a few restrictions placed on the base flow and its pertur-

bations, the necessity of these restrictions shall be explained in later section

where they serve the purpose of simplification. We consider a flow model of

an inviscid, incompressible, and axisymmetric flow field in a straight with

no bends cylindrical pipe. To examine this flow field we will need to utilize

the Euler equations of motion (for hydrodynamics), and for the convenience

of calculation the equations will be represented in cylindrical coordinates

(r, θ, x), instead of the usual formulation in cartesian. The velocity compo-

nent of each coordinate will be represented by (u, v, w), the radial, azimuthal,

and axial velocity respectively.

Figure 2.1: Flow configuration and coordinate display.

Therefore the full Euler equations of motion in cylindrical coordinates
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2.1. CLASSICAL (LOCAL) STABILITY PROBLEM

are:

∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂θ
+ w

∂u

∂x
− v2

r
= −1

ρ

∂p

∂r
,

∂v

∂t
+ u

∂v

∂r
+
v

r

∂v

∂θ
+ w

∂v

∂x
− uv

r
= −1

ρ

1

r

∂p

∂θ
,

∂w

∂t
+ u

∂w

∂r
+
v

r

∂w

∂θ
+ w

∂w

∂x
= −1

ρ

∂p

∂x
, (2.1)

along with the equation of mass conservation:

∂u

∂r
+
u

r
+

1

r

∂v

∂θ
+
∂w

∂x
= 0, (2.2)

where the variable p represents the pressure in the system.

To analyze the stability of flow problems with the use of the cylindri-

cal equations of motion it is desirable to first look into the classical studies

conducted by Lord Rayleigh. The classical problem describes the motion

and stability/instability for two concentric rotating fluid cylinders, this re-

sult translates particularly well to the study of vortex stability since the

relation between the two concentric cylinders reflects the condition of free or

forced vortex formation. Rayleigh considered a swirling flow of an inviscid

fluid with angular velocity v = V (r) (velocity profile from the axis of rota-

tion with radius r). By simple reasoning using physical arguments, Rayleigh

derived his circulation criterion [11] (Rayleigh 1916) which stated that a nec-

essary condition for stability of a swirling flow subjected to axisymmetrical

disturbances is that the square of the circulation function does not decrease

anywhere in the flow, i.e.,

Γ =
1

r3

d

dr
(rV )2 > 0,

where K = rV is the circulation function, a function that is dependent upon

the swirl of the base flow. Note that this describes a pure vortex flow that

only depends on the radius r, there exists no axial or radial velocity, the

lack of viscosity (stemmed from inviscid flow) and shear allowed for a forced
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2.1. CLASSICAL (LOCAL) STABILITY PROBLEM

movement causing the swirling flow to move as if it were a solid cylinder.

This criterion shows that for the ideal flow of a forced vortex such as solid

body rotation subjected to infinitesimal disturbances, the vortex is linearly

stable for any swirl level. The criterion is later strengthened by Synge who

showed that by placing a strict inequality the criterion gains the property to

be also a sufficient condition for ensuring linear stability [14] (Synge 1933).

[6] (Howard & Gupta 1962) generalized this result by expanding to flows

that have both axial and radial velocity components present, which allowed

for analysis on other flow conditions such as Q-vortex model given by [7]

(Leibovich 1984).

Now consider a base flow; u = w = 0, v = V (r), and p = P (r), this flow

is in fact a steady basic solution of (2.1)-(2.2), we will perturb this flow by

an infinitesimal amount to obtain the perturbed base flow;

(u, v, w) = (ũ, V (r) + ṽ, w̃), and p = P (r) + p̃,

the substitution of this perturbed flow into (2.1)-(2.2) and eliminating high

order infinitesimal terms result in the equations of motion taking the follow-

ing form;

∂ũ

∂t
+ Ω

∂ũ

∂θ
− 2Ωṽ = −1

ρ

∂p̃

∂r
,

∂ṽ

∂t
+ Ω

∂ṽ

∂θ
+

(

dV

dr
+
V

r

)

= −1

ρ

1

r

∂p̃

∂θ
,

∂w̃

∂t
+ Ω

∂w̃

∂θ
= −1

ρ

∂p̃

∂x
, (2.3)

with the mass conservation equation;

∂ũ

∂r
+
ũ

r
+

1

r

∂ṽ

∂θ
+
∂w̃

∂x
= 0. (2.4)

(Notation used here follows classical theorisation, V (r) = rΩ(r) where the

swirl Ω(r) is an arbitrary function of r.)

These are the linearized equations of motion that describes the linearized
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2.1. CLASSICAL (LOCAL) STABILITY PROBLEM

problem for an inviscid perturbed base flow. The inviscid nature of the

base flow signifies the lack of viscosity, which allows for the elimination of

pressure relating terms, and the additional condition of axisymmetricity of

the disturbed base flow allowed further simplification through the elimination

of θ relating terms as well as partials and differentials of θ. Using equations

(2.3)-(2.4) we are able to obtain an equation that dictates an initial value

problem;

∂2

∂t2

(

∂2

∂r2
+

1

r

∂

∂r
− 1

r2
+

∂2

∂x2

)

ũ+ Γ
∂2ũ

∂x2
= 0. (2.5)

Although lacking the full picture from simplification through various con-

ditions and linearization, stability analysis on the equations do provide a

starting point for investigation on said equations. A simplistic analysis of

the stability of the perturbed flow can be achieved by utilizing normal modes

which separates the dependence of t and x with r through exponentials. Let

k be the wave number in the axial direction, it is then possible to write

ũ = û(r) exp(st+ ikx), substituting the normal mode analysis into equation

(2.5) we can obtain;

d

dr

[

dû

dr
+
û

r

]

− k2û =
k2

s2
Γû. (2.6)

In [14] (Synge 1933) it was noted that (2.6) along with boundary condi-

tions û = 0, at r = R1 = R2 (radius of the two concentric cylinders) is

of the classic Sturm-Liouville problem type, with eigenvalues k2/s2 (s is an

arbitrary constant). Synge therefore concluded using the Sturm-Liouville

theorem that the eigenvalues should all be negative if the circulation crite-

rion Γ > 0 throughout the radial direction. The wave number k must be a

real and positive quantity, which in term suggests that the variable s must

be a complex quantity, producing a purely imaginary exponent. Since the

analysis of this equation was done regarding the base flow of solid body rota-

tion, the conclusion suggested that the flow will be always stable due to the

fact that with solid body rotation flow the circulation criterion Γ will always

be positive, suggesting the flow to always be stable (for other instability phe-
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2.2. CIRCULATION, STREAM, AND VORTICITY FUNCTION

nomenon relating to classical theorization, refer to [3] (Drazin & Reid 1981)).

However, the stability assured in classical studies is rarely the case in reality

with flows often become unstable even with solid body rotation. Many re-

search papers published later have tried to rectify this problem by suggesting

many other physical mechanics which may have influenced the flow that leads

it towards instability, but the core misunderstanding of the classical stability

problem remains the same; Rayleigh stability suggested long pipe approach

with periodic boundary conditions given in the axial direction, the Fourier

mode approach allows for the separation of the axial and radial component

of any flow. This presents no problem in theorization, but in reality this is

rarely the case, often pipes are not sufficiently long enough to apply the long

pipe approach and set periodic boundary conditions for the middle section

of the pipe, which may actually be experiencing periodic boundary condi-

tions. Wang and Rusak suggested the placement of non-periodic boundary

conditions that mimics industrial operations, which allowed for predictions

of instability seen in reality [17] (Wang & Rusak 1996a). The following chap-

ters will be investigating the Wang & Rusak stability problem to clarify the

difference with classical stability, and develop further understanding of the

workings of the instability mechanism, hopefully this will lead to improved

prediction of the onset of instability that may help with the development of

some control parameter which can quench the growing perturbations.

2.2 Circulation, stream, and vorticity func-

tion

Since this research focuses on the analysis of Wang & Rusak stability

problem subjected to disturbed base flow of a solid body rotation flow, the

approach here will be different to that of the classical stability problem the-

orized by Rayleigh. While the starting point is the same (using the Euler

equations of motion), analysis of stability (hence instability) will be investi-

gated using two approaches, one being the WR stability analysis detailed in

this chapter, and the long wave asymptotic approach which shall be explained
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2.2. CIRCULATION, STREAM, AND VORTICITY FUNCTION

in the following chapter.

Following the same premise set in section 2.1, we consider an inviscid,

incompressible axisymmetric flow in a cylindrical domain. The coordinate

system remains in the cylindrical domain (r, θ, x), with the same velocity

(u, v, w) respectively for each coordinate. With the inviscid and axisymmetric

nature of the flow we can eliminate terms relating pressure and θ component

from (2.1)-(2.2). To investigate the stability of the vortex we would like to

see the motion of the flow subjected to perturbation, and the easiest way to

do this is to plot the stream lines of particles in the flow, to do so we would

like to utilize variables such as the circulation function K, azimuthal vorticity

χ (essentially the tendency of the fluid to ’spin’), and the stream function ψ.

Doing this avoids complicated manipulation involving elementary variables

such as velocity, and a compact form of the Euler equations of motion can

also be obtained (see [15] (Szeri & Holmes 1988)). Let K = rv, and the

stream function ψ is

(u,w) =
1

r

(

−∂ψ
∂x

,
∂ψ

∂r

)

,

also, the azimuthal vorticity χ is defined as

χ =
1

r

(

∂u

∂x
− ∂w

∂r

)

= − 1

r2

(

∂2ψ

∂x2
+
∂2ψ

∂r2
− 1

r

∂ψ

∂r

)

,

utilizing the three substitutions, the newly formed evolution equations writ-

ten in K, ψ, and χ is thus

∂K

∂t
+ {ψ,K} = 0, (2.7)

∂χ

∂t
+ {ψ, χ} =

1

4y2

∂(K2)

∂x
, (2.8)

where y = r2/2 is the new radial coordinate, and {f, g} represents the Poisson

bracket:

{f, g} =
∂f

∂y

∂g

∂x
− ∂f

∂x

∂g

∂y
.

(2.7) describes the transport of circulation along the path line of a par-

ticular chosen flow, and (2.8) accounts for the interaction of the azimuthal
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2.2. CIRCULATION, STREAM, AND VORTICITY FUNCTION

vorticity χ along said flow path line and vorticity which has been rescaled by

gradient of the circulation function. By placing the flow in the pipe under

certain boundary conditions that reflects realistic operation which involves a

vortex generator at one end of the pipe, working steadily and continuously, it

is now possible to investigate the instability caused by the disturbance which

is different to that of classical theorization. We assume that for all time

t ≥ 0 and for 0 ≤ y ≤ 1/2, the initial stream function is ψ(0, y, t) = ψ0(y)

and circulation function K(0, y, t) = K0(y)ωK̃0(y). The inlet conditions

must satisfy axisymmetricity, namely that they are all reduced to zero at

y = 0. ψ0(y) is the inlet volumetric flux profile, the new parameter ω is the

base swirl which is strictly positive, and the inlet circulation profile K̃0(y)

is rescaled with ω. Notice the definition of the azimuthal vorticity means

that χ(0, x, t) can be fixed by letting ψxx(0, y, t) = 0, since ψ0y is a preset

quantity at the inlet, χ(0, y, t) = −ψ0yy, and the axial component of the inlet

vorticity is removed, leaving radial components only. The inlet conditions

are set to be purely in radial direction, this is done so axial interference at

the inlet with the flow can be avoided (i.e., the flow heading in from the inlet

will remain so).

The conditions at the outlet of the pipe will also be fixed, there are two

possibilities that can be explored in this research paper, the first condition

refers to a sufficiently long pipe, where the discharged flow exhibits no radial

velocity, essentially the flow being discharged is free flowing with no alteration

at the outlet, so for all time t, ψx(L, y, t) = 0 for 0 ≤ y ≤ 1/2, L is the length

of pipe which should be >> 1 to be sufficiently long, all conditions are the

same for y negative due to axisymmetricity. This condition was used in the

analysis of Wang & Rusak stability (WR) [17] (Wang & Rusak 1996a), [18]

(Wang & Rusak 1996b). Another outlet condition refers to when the pipe

has a discharge device placed at the outlet; ψ(L, y, t) = ψ0(y) which fix the

flux profile at the outlet for all time t and 0 ≤ y ≤ 1/2. As mentioned before,

symmetry condition is placed at the center line of the pipe, i.e. ψ(x, 0, t) = 0

for 0 ≤ x ≤ L and all time t. Boundary condition will also be given for

the wall of the pipe so at y = 1/2 the stream function will be fixed at

ψ(x, 1/2, t) = ψ0(1/2) for 0 ≤ x ≤ L and all time t.
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2.3. WANG & RUSAK STABILITY PROBLEM

With the placement of the boundary conditions, the equations of mo-

tion departs from the infinite pipe, periodic boundary problem stated in the

classical analysis and becomes a non-periodic boundary value problem, and

the boundary conditions produce restriction on the equation which compli-

cates the analysis. For example, in Rayleigh stability a normal mode analysis

is able to be used since the classical approach allows the separation of the

axial component with the radial component, although this was only demon-

strated on solid body rotation base flow, separation of variables is actually

achievable for every flow under the classical scheme, but the introduction of

non-periodic boundary conditions produces two dimensional PDE which for

most base flows, will not allow the separation of variables except for solid

body rotation flow seen in [17] (Wang & Rusak 1996a). The research paper

will utilize this convenience allowed by solid body rotation flow as a ba-

sis for analyzing the new stability problem posed by non-periodic boundary

conditions of the inlet and outlet of the pipe.

2.3 Wang & Rusak stability problem

The new stability problem devised by Wang & Rusak addresses the

problem in Rayleigh stability, namely the lack of realistic boundary condi-

tions which allowed for stability of solid body rotational flow subjected to

infinitesimal disturbances, the non-periodic boundary conditions of the Wang

& Rusak stability problem produces instability of the disturbed flow when

classical theory predicts stability. To get to the WR stability problem, we

start off with defining a steady base flow much like in section 2.2;

ψ = ψ0(y), K = K0(y) =
√

ΩK̃0(y), (2.9)

the variable Ω is the square of the swirl ratio (ω) of the flow. The base flow

(2.9) is a steady solution of the equations (2.7) and (2.8) and the bound-

ary conditions posed in the previous section, it is also a solution to the

Squire-Long equation (also known as the Bragg-Hawthorne equation, for full
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derivations see [13] (Squire 1956) and [10] (Long 1953));

ψyy +
ψxx
2y

= H ′(ψ; Ω)− I ′(ψ; Ω)

2y
,

H is the total head function of the flow, H = p/ρ+ (u2 + v2 + w2)/2 where

p is the static pressure, ρ is the density of the flow, and I = K2/2.

Following the procedure in classical theorization, we will disturb the base

flow by an infinitesimal amount to analyze the dynamics of the perturbation:

ψ(x, y, t) = ψ0(y) + ǫψ1(x, y, t) + ..., (2.10)

K(x, y, t) = K0(y) + ǫK1(x, y, t)..., (2.11)

the coefficient ǫ is scaling factor where ǫ << 1, ψ1 and K1 are the arbi-

trary stream function disturbance and the circulation disturbance respec-

tively. Substituting (2.10) and (2.11) into the governing equations (2.7) and

(2.8), plus the elimination of second order ǫ terms, we will arrive at the lin-

earized equations of motion which describes the dynamics of the perturbation

of the swirling flow;

K1t + ψ0yK1x −K0yψ1x = 0, (2.12)

− K0

2y2
K1x + χ1t + ψ0yχ1x − χ0yψ1x = 0, (2.13)

χ1 is the azimuthal vroticity disturbance from substituting the stream func-

tion with disturbance term; χ1 = − (ψ1yy + ψ1xx/2y). The new governing

equations (2.12) and (2.13) must now satisfy a new set of boundary condi-

tions for the perturbations:

ψ1(x, 0, t) = 0, ψ1(x,
1

2
, t) = 0 for 0 ≤ x ≤ L,

ψ1(0, y, t) = 0, ψ1xx(0, y, t) = 0, K1(0, y, t) = 0 for 0 ≤ y ≤ 1

2
,

ψ1x(L, y, t) = 0, or ψ1(L, y, t) = 0 for 0 ≤ y ≤ 1

2
, (2.14)

from the boundary conditions above one can deduce that χ1(0, y, t) = 0, this
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simply signifies that we do not generate any azimuthal vorticity disturbance

at the inlet of the pipe.

Combining the definition of χ1 and equations (2.12) and (2.13) will lead

to a partial differential equation which the stream function disturbance ψ1 is

able to satisfy;

(

ψ1yy +
ψ1xx

2y

)

xx

+
2

ψ0y

(

ψ1yy +
ψ1xx

2y

)

xt

+
1

ψ2
0y

(

ψ1yy +
ψ1xx

2y

)

tt

+
χ0y

ψ2
0y

ψ1xt −
(

H ′(ψ; Ω)− I ′(ψ; Ω)

2y

)

ψ1xx = 0, (2.15)

this is the equation of motion in ψ1, the solution of which can be used to plot

the stream line of the perturbation. Now rearrange (2.13) into a function of

K1x and substitute it into equation (1.12) to obtain an equation in K1t:

K1t = −ψ0y
2y2

K0(y)
(χ1t + ψ0yχ1x − χ0yψ1x) +K0yψ1x, (2.16)

if we integrate (2.16) in time, we can obtain K1. The solutions of (2.15) and

(2.16) should satisfy the boundary conditions for the perturbation in (2.14).

To study the linearized stability problem for the perturbed swirling flow,

a suitable eigenmode analysis of ψ1 = φ(x, y)eσt and K1 = k(x, y)eσt will be

used (k here has been reassigned as the mode analysis form of the circulation

disturbance, instead of the wave number). In general, the variables σ, φ,

and k are complex functions. By substituting mode analysis into the above

equations (2.15) and (2.16), we can obtain a partial differential equation for

solving the stream function perturbation mode φ:

(

φyy +
φxx
2y
−
(

H ′(ϕ; Ω)− I ′(ϕ; Ω)

2y

)

φ

)

xx

+
σχ0y

ϕ2
0y

φx

+
2σ

ϕ0y

(

φyy +
φxx
2y

)

x

+
σ2

ϕ0y

(

φyy +
φxx
2y

)

= 0. (2.17)

(2.17) along with the eigenmode boundary conditions are the Wang & Rusak

stability problem for general base flow, while this equation is very useful
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for determining stability of flows numerically, it is impossible to discern the

exact nature due to the involvement of the spatial variables x and y that

does not usually allow for separation of variables. The equation can also

be simplified based on the base flow that is chosen to be applied to the

equation, by substituting for the same disturbed base flow (2.10), (2.11),

and the definition of χ, we are able to transform the Squire-Long equation

to:

−H ′′(ψ0; Ω) +
ΩĨ ′′(ψ0)

2y
=
χ0y

ψ0y

+
K0K0y

2y2ψ2
0y

,

applying this to WR stability equation will reduce the complexity of the

equation greatly. The functions φ and k must now satisfy a new set of

boundary conditions:

φ(x, 0) = 0, φ(x,
1

2
) = 0, for every 0 ≤ x ≤ L,

φ(0, y) = 0, φxx(0, y) = 0, k(0, y) = 0, for every 0 ≤ y ≤ 1

2
,

φx(L, y) = 0, for every 0 ≤ y ≤ 1

2
, (2.18)

To find k(x, y), substitute the mode analysis into equation (2.16):

σk = −ψ0y
2y2

K0(y)
(σχ∗ + ψ0yχ

∗

x − χ0yφx) +K0yφx,

where χ∗ = −(φyy + φxx/2y). From the above equation and the new set of

boundary conditions, the boundary condition k(0, y) = 0 can be replaced by

a new condition which involves φ only terms,

σk(0, y) = −ψ0y
2y2

K0(y)
(σχ∗(0, y) + ψ0yχ

∗

x(0, y)− χ0yφx(0, y)) +K0yφx(0, y)

= ψ2
0y

2y2

K0

[

φyyx(0, y) +
φxxx(0, y)

2y
+
χ0y

ψ0y

φx(0, y)

]

+K0yφx(0, y)

= φyyx(0, y) +
φxxx(0, y)

2y
+

(

χ0y

ψ0y

+
K0K0y

2y2ψ2
0y

)

φx(0, y) = 0, (2.19)

so equation (2.17) and its boundary conditions will then be purely dependent
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on φ;

φyyx(0, y) +
φxxx(0, y)

2y
−
(

H ′′(ψ0; Ω)− ΩĨ ′′(ψ0)

2y

)

φx(0, y) = 0,

for every 0 ≤ y ≤ 1

2
. (2.20)

2.4 Analysis on Solid Body Rotation flow

The WR stability problem introduced in the previous section involves

both axial and vertical component, both components are intertwined in a way

that does not allow for separation of variables from conventional methods

and for most base flows selected, this renders analytical solutions impossible,

since the stability equation cannot be solved. However there exists one base

flow which can be used to produce analytical solution much like the one

obtained in classical analysis in section 2.1, that is to utilize solid body

rotation base flow, exactly as classical analysis. Solid Body Rotation (SBR)

flow is the only base flow for which separation of variable can be achieved

for the stability equation with non-periodic boundary conditions.

So instead of the general base flow considered in the derivation of section

2.3, we now consider a columnar base flow with uniform axial speed which

describes the flow of solid body rotation:

u = 0, v = ωr, w = w0,

so now we have ψ0 = w0y, K0 = 2ωy (since K0 = ωK̃0, where K̃0 = 2y.), and

χ0 = 0, therefore ψ0y = w0, χ0y = 0 and now −H ′′(ψ0; Ω) + ΩĨ ′′(ψ0)/2y =

4ω2/(2yw2
0). The quantity w0 is chosen to be one for the convention of

numerical analysis and to simplify the equation. Equation (2.17) will now
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take the form:

(

φyy +
φxx
2y

+
Ω

2y
φ

)

xx

+ 2σ

(

φ1yy +
φxx
2y

)

x

+ σ2

(

φyy +
φxx
2y

)

= 0, (2.21)

where Ω = 4ω2. In the case of solid body rotational flow, an analytical

solution is found by noting that equation (2.21) is separable in the radial

and axial component, so a separation of variables solution can be found:

φ(x, y) = Φ(y)ϕ(x), (2.22)

where the function Φ(y) is a solution of

Φyy +
ΩB
2y

Φ = 0,

Φ(0) = Φ(
1

2
) = 0. (2.23)

Solution of (2.23) along with its boundary conditions is ΦB =
√
yJ1(
√

2ΩB
√
y),

with
√

ΩB = 2ωB = 3.83171 and is the Benjamin’s critical swirl of a solid

body rotation flow [2] (Benjamin 1962).

By substituting the separation of variables solution into (2.21), one can

obtain an ordinary differential equation in terms of ϕ(x):

ϕxxxx + 2σϕxxx +
(

Ω− ΩB + σ2
)

− 2σΩBϕx − σ2ΩBϕ = 0. (2.24)

do the same with the boundary condition (2.20):

Φyy(y)ϕxx(0) +
Φ(y)ϕxxx(0)

2y
+

4ω2

2y
Φ(y)ϕx(0) = 0,

⇒ Φ(y)

2y
(−ΩBϕx(0) + ϕxxx(0) + Ωϕx(0)) = 0,

⇒ (ΩB − Ω)ϕx(0)− ϕxxx(0) = 0. (2.25)
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From previous analysis up to the Wang & Rusak stability equation the

solution of (2.24) must then satisfy the following conditions;

ϕ(0) = 0, ϕxx(0) = 0, (ΩB − Ω)ϕx(0)− ϕxxx = 0,

ϕx(x0) = 0 for 0 ≤ x ≤ x0. (2.26)

To solve (2.24) let ϕ(x) = eax:

a4 + 2
σ

w0

a3 +

(

Ω− ΩB +
σ2

w2
0

)

a2 − 2
σ

w0

ΩBa−
σ2

w2
0

ΩB = 0,

⇒ (a2 − ΩB)(a+ σ)2 + Ωa2 = 0. (2.27)

By using the exponential to solve (2.24) the resulting equation (2.27) is now a

polynomial in terms of a, an equation which has four roots, the four roots are

the linearly independent modes of ϕ, together they form a linear combination

of the eigenmodes

ϕ(x) = C1e
a1x + C2e

a2x + C3e
a3x + C4e

a4x,

where only the real portion of these terms are taken into consideration, as

the coefficients Ci are generally complex. The coefficients can be found by

applying the boundary conditions to the above equation:

Condition (1) ϕ(0) = 0 ⇒ C1 + C2 + C3 + C4 = 0,

Condition (2) ϕxx(0) = 0 ⇒ a2
1C1 + a2

2C2 + a2
3C3 + a2

4C4 = 0,

Condition (3) (ΩB − Ω)ϕx(0)− ϕxxx(0) = 0 ⇒
(a1(ΩB − Ω)− a3

1)C1 + (a2(ΩB − Ω)− a3
2)C2

+ (a3(ΩB − Ω)− a3
3)C3 + (a4(ΩB − Ω)− a3

4)C4 = 0,
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Condition (4) ϕx(x0) = 0 ⇒ a1C1e
a1x0 + a2C2e

a2x0

+ a3C3e
a3x0 + a4C4e

a4x0 = 0.

We can form a matrix equation with the resulting system of equations

from applying the boundary conditions:











1 1 1 1

a2
1 a2

2 a2
3 a2

4

a1(ΩB − Ω)− a3
1 a2(ΩB − Ω)− a3

2 a3(ΩB − Ω)− a3
3 a4(ΩB − Ω)− a3

4

a1e
a1x0 a2e

a2x0 a3e
a3x0 a4e

a4x0





















C1

C2

C3

C4











= 0,

a nontrivial solution of the matrix equation exists if and only if

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 1

a2
1 a2

2 a2
3 a2

4

a1(ΩB − Ω)− a3
1 a2(ΩB − Ω)− a3

2 a3(ΩB − Ω)− a3
3 a4(ΩB − Ω)− a3

4

a1e
a1x0 a2e

a2x0 a3e
a3x0 a4e

a4x0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0,

by setting a particular value for the swirl, we are able to match the coefficients

ai and Ci according to the two matrix equations, this will then allow us to

determine the growth rate σ of the stability equation.
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2.5 Analysis of the perturbation growth rate

Using Matlab, the solution to this problem can be easily found. Firstly the

polynomial (2.27) is solved by matching coefficients ai to the determinant

with a preset swirl. The coefficients ai along with the preset swirl will then

be used to match for the coefficients Ci, and finally all parameters will be

used to solve for the growth rate σ according to a particular swirl. For

convenience w0 shall be set to equal to one, the length of pipe will be set as

6, and the vertical component 0 ≥ y ≥ 1/2 . The numerical values obtain

for the adjusted swirl and growth rate is then converted to true swirl ω for

better comparison with existing results:

1.9 2 2.1 2.2 2.3 2.4 2.5

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

ω

σ

Figure 2.2: Growth rate curve of solid body rotational flow.
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2 2.05 2.1 2.15 2.2 2.25 2.3

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

ω

σ

Figure 2.3: Complex modes of solid body rotational flow (first complex
branch).

The resulting plot shows three growth rate branches of the perturbations

(but not limited to), each of the branches generate two σ zero points, referred

to as critical swirls, note that there exists other branches further along the ω

axis. Figure 2.2 has solid lines representing purely real solutions, while the

dashed lines represent the real part of the complex solutions generated at

the maximum swirl points of each branch. Figure 2.3 shows the growth rate

curve of complex modes, with the dashed line representing the real part of

the complex solution, and the solid lines representing the imaginary portion

of the complex conjugate.

The relation may seem counter intuitive, as one would expect the per-

turbation growth to increase for all increasing swirls (i.e., the flow spinning

faster and faster producing growing perturbation). The discrepancy can be

explained by the added boundary conditions applied onto the flow at the

inlet and outlet unlike that of the infinite pipe approach (periodic boundary

24



2.5. ANALYSIS OF THE PERTURBATION GROWTH RATE

conditions) examined in classical results. As the swirl increases, the pertur-

bation travels upstream towards the inlet, but inlet boundary conditions will

now force the perturbation back down the stream, it is the application of the

inlet and outlet boundary condition that can be seen on the plot generating

many branches. The growth branches will increase as swirl becomes larger,

this means that eventually for a particular swirl range some sets of σ will

be large enough to cause the perturbation to grow to a point that leads to

breakdown of the vortex that was formed. This is quiet the departure from

classical results, which suggests that solid body rotation flow subjected to

infinitesimal disturbances will be stable for all time with periodic boundary

conditions. The instability of WR stability problem came from large posi-

tive growth of the perturbation which can eventually no longer be contained

causing the vortex structure to disintegrate as a result (for details see [17]

(Wang & Rusak 1996a)).

While the WR stability problem produces entirely accurate prediction

of the growth rate curve for linear perturbations of any flow, it is still a

simplified form of equations (2.7) and (2.8), since the substitution of linear

perturbation eliminates the non-linearity motion of the perturbation, but the

focus of this research paper is on solid body rotational flow which is weakly

non-linear, the difference between linear and non-linear behavior for SBR

flow is only distinguishable for very large perturbation, essentially making

the weakly non-linear motion of SBR equivalent to linear motion for a suffi-

ciently large range of swirl values, and for such large perturbations and large

swirl range both the linear and weakly non-linear equations will be inaccurate

in predicting the large, non-linear perturbation dynamics, which is outside

the scope of this research. (2.17) is still highly complex despite the simplifi-

cation from linearization, however, it is noticeable from the graph produced

by numerical interpretation that the growth rate branches follow a certain

trend, and that each branch that comes after is a larger version of the former

branch. This property can be exploited, since branches behave similarly, it

makes sense to just deal with one branch, simplify the mathematics to allow

for change of conditions or adding control terms to change the dynamics.

An asymptotic approach to the stability problem will be taken, since the
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branches behave similarly, it follows that changes applied to the first branch

should have the same effect to the subsequent branches.
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Chapter 3

Long wave (Asymptotic)

Analysis

This chapter will investigate an alternative method to study the dynamics

of the perturbed flow. The growth rate branches of the linear WR equation

signified that all branches behave in a similar manner, but with increased

values for growth rate σ as swirl increases further away from Benjamin’s

critical swirl. Noting this, it stands to reason that the complexity of the linear

WR equation can be reduced by focusing the dynamics onto the first growth

rate branch. This approach produces the asymptotic equation that accurately

predicts the dynamics of the first growth rate branch and nearby swirl range,

but the accuracy is lowered as the swirl increases. However for the purpose

of reducing the complexity of the full equation, the asymptotic equation is

able to produce the first branch accurately enough, therefore changing the

pipe dynamics or setting extra constraints should be accurately reflected back

to the full equation (at least for small swirl). For further discussion of the

non-linear asymptotic equation (non-solid body rotational base flow), refer to

[12] (Rusak, Wang, Xu & Taylor 2011).
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3.1 Weakly non-linear asymptotic analysis

Equations (2.17) and (2.21) in chapter 2 gives detailed stability relation

between the swirl and the growth rate of the perturbation for particular base

flow, and (2.21) in particular gives the relationship of solid body rotational

flow. While the equation gives accurately the eigenmodes of the growth rate

curve for linear perturbation, the equation itself is difficult to analyze and

even more so to tweak parameters or placing constraints that can eventually

change the dynamics of flow in the pipe. Therefore it seemed logical to pro-

duce an equation that is essentially a reduced form of the original equations.

Back to the full equations of motion (2.7) and (2.8), most of the parameters

are the same as the previous chapter, except now L >> 1, where L = x0.

The analysis will take on a rescaled pipe approach essentially focusing the

dynamics onto the first growth rate branch and nearby swirl levels (at near ǫ

swirl levels), with ǫ = 1/L2 as the rescaling factor so the rescaled pipe length

X =
√
ǫx and the rescaled time parameter t∗ = t/ǫ

3

2 , the asymptotic equa-

tion will focus on near Benjamin’s critical swirl levels so that ω = ωB + ∆ω,

we assume an asymptotic expansion for the flow dynamics problem:

ψ(X, y, t∗) = ψ0(y) + ǫψ1(X, y, t
∗) + ǫ2ψ2(X, y, t

∗) +O(ǫ3),

χ(X, y, t∗) = −ψ0yy(y) + ǫχ1(X, y, t
∗) + ǫ2χ2(X, y, t

∗) +O(ǫ3),

K(X, y, t∗) = ωK̃0(y) + ǫK1(X, y, t
∗) + ǫ2K2(X, y, t

∗) +O(ǫ3), (3.1)

we assume that ∆ω is of the order of ǫ, ǫ2 is of the order of ǫ2 and ǫ3 ∼ ǫ3.

The various perturbation functions must satisfy the boundary conditions;

ψ1(0, y, t
∗) = ψ1XX(0, y, t∗) = K1(0, y, t

∗) = 0 for 0 ≤ y ≤ 1

2
,

ψ2(0, y, t
∗) = ψ2XX(0, y, t∗) = K2(0, y, t

∗) = 0 for 0 ≤ y ≤ 1

2
,

ψ1X(1, y, t∗) = ψ2X(1, y, t∗) = 0 for 0 ≤ y ≤ 1

2
,

ψ1(X, 0, t
∗) = K1(X, 0, t

∗) = 0 for 0 ≤ X ≤ 1,
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ψ2(X, 0, t
∗) = K2(X, 0, t

∗) = 0 for 0 ≤ X ≤ 1,

ψ1(X,
1

2
, t∗) = K1(X,

1

2
, t∗) = 0 for 0 ≤ X ≤ 1,

ψ2(X,
1

2
, t∗) = K2(X,

1

2
, t∗) = 0 for 0 ≤ X ≤ 1, (3.2)

substituting (3.1) into equations (2.7) and (2.8) along with the set of bound-

ary conditions (3.2), and balance for the order of perturbation terms, i.e.,

expansion for χ gives

χ = −ψ0yy(y) + ǫ

(

−ψ1yy − ǫ
ψ1XX

2y

)

+ ǫ2

(

−ψ2yy − ǫ
ψ2XX

2y

)

+O(ǫ3),

which we can balance the orders to obtain:

χ0 = −ψ0yy, χ1 = −ψ1yy, ǫ2χ2 = −ǫ2ψ2yy − ǫ2ψ1XX

2y
.

Note that asymptotic method involving order balancing does not always guar-

antee the asymptotic method will work, as sometimes the variables being

asymptotically expanded end up not being able to balance out. The details

of the derivation can be seen in [12] (Rusak, Wang, Xu, & Taylor 2011).

Eventually we will arrive at a differential equation for the function ψ1:

ψ1yy =

(

χ0y

ψ0y

+ ω2
B

K̃0K̃0y

2y2ψ2
0y

)

ψ1 = 0, (3.3)

(3.3) is a differential equation involving y only, therefore we can look for a

separation of variables solution ψ(X, y, t∗) = φ1(y)A(X, t∗), where φ1 is a

function that satisfies

φ1yy =

(

χ0y

ψ0y

+ ω2
B

K̃0K̃0y

2y2ψ2
0y

)

φ1 = 0,

φ1(0) = φ1(
1

2
) = 0, (3.4)

(3.4) is the Benjamin’s eigenvalue problem where the first eigenvalue of the

problem is assigned as Benjamin’s critical swirl ωB, and the corresponding
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eigenfunction is designated as φB. Note that ǫ2ψ2(X, y, t
∗) can also be ex-

panded in a similar manner, so now we can write

ψ(X, y, t∗) = ψ0(y) + ǫφB(y)A(X, t∗) + ǫ2φ2(y)B(X, t∗) +O(ǫ3), (3.5)

and the corresponding boundary conditions for A,B, φ2, K1, K2 for all t∗ ≥ 0

are:

φ2(0) = 0, φ2

(
1

2

)

= 0,

A(0, t∗) = 0, AXX(0, t∗) = 0, AXX(1, t∗) = 0,

B(0, t∗) = 0, BXX(0, t∗) = 0, BX(1, t∗) = 0,

K1(0, y, t
∗) = 0, K2(0, y, t

∗) = 0. (3.6)

We are now able to expandK(X, yt∗) and χ(X, y, t∗) inA(X, t∗) andB(X, t∗),

following the order balancing and derivation procedures in [12] (Rusak, Wang,

Xu & Taylor 2011), we would eventually arrive at the equation in A(X, t∗)

and B(X, t∗):

(

φ2yy +

(

ω2
B

K̃0K̃0y

2y2ψ2
0y

− χ0y

ψ0y

)

φ2

)

BX

− At∗
(

ω2
BφB

K̃0K̃0y

2y2ψ3
0y

− φByy
ψ0y

)

+ AXXX
φB
2y

+ (A2)X
1

2






ω2
B

yψ
3/2
0y




K̃0K̃0y

yψ
3/2
0y





y

+
1

ψ0y

(

ψ0yyy

ψ0y

)

y




φ2
B

+ kωAX
K̃0K̃0y

2y2ψ2
0y

φB = 0, (3.7)

multiplying the above equation by φB, and integrated over 0 ≤ y ≤ 1/2. Us-

ing integration by parts on the φ2 terms along with the boundary conditions

for φ2, resulting in φ2 terms vanishing which leads to the resulting equation
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for A(X, t∗):

NsAt∗ − δAXXX +N1(A
2)X − kωN2AX = 0, (3.8)

with the variables defined as:

Ns =
∫ 1/2

0

(

ω2
B

K̃0K̃0y

y2ψ3
0y

+
χ0y

ψ2
0y

)

φ2
Bdy,

δ =
∫ 1/2

0

φ2
B

2y
dy,

N1 = −1

2

∫ 1/2

0






ω2
B

yψ
3/2
0y




K̃0K̃0y

yψ
3/2
0y





y

+
1

ψ0y

(

χ0y

ψ0y

)

y




φ3
Bdy,

N2 =
∫ 1/2

0

K̃0K̃0y

2y2ψ2
0y

φ2
Bdy.

Finally, let τ = NS/δ, α = N1/δ and β = N2/δ, which results in the

weakly non-linear model asymptotic equation for the evolution of A(X, t∗)

in the range 0 ≤ X ≤ 1:

τAt∗ = AXXX − α(A2)X + kωβAX . (3.9)

The evolution of the mode axial shape function A(X, t∗) can be viewed in

two distinct areas in which one deals with the approximated linear relation-

ship due to the minute step size in space and time (described by [17] (Wang

and Rusak 1996a), and the inclusion of a non-linear term into the original

linear relationship to approximately simulate the dynamics under non-linear

perturbation conditions, the weakly non-linearity stemmed from the simplifi-

cation during derivation, where higher order ǫ terms were dropped due to the

small effect it has on the dynamics for near Benjamin’s critical swirl levels.

Detailed analysis of the non-linear perturbation equation can be found in

[12] (Rusak, Wang, Xu and Taylor 2011).

31



3.2. ANALYSIS ON LINEARIZED ASYMPTOTIC EQUATION

3.2 Analysis on linearized asymptotic equa-

tion

Since this paper deals mostly with linear perturbations for a solid body

rotation flow, the non-linear element of the reduced equation can be taken out

by noting that the variable α = 0 which is produced by solid body rotation

flow, this result came from substituting the solid body rotational base flow

into the variables, if we let w0 = 1 as a convention for numerical analysis

and to simplify the equation, the SBR base flow variables are: ψ0 = y, χ0 =

0, K0 = ωK̃0, K̃0 = 2y, then α, β and τ becomes:

α =
N1

δ
= −1

2

∫ 1

2

0




ω2
B

y

(

4y

y

)

y



φ3
Bdy ÷

∫ 1/2

0

φ2
B

2y
dy = 0,

β =
N2

δ
=
∫ 1

2

0

4y

2y2
φ2
Bdy ÷

∫ 1/2

0

φ2
B

2y
dy = 4,

τ =
NS
δ

=
∫ 1

2

0

(

ω2
B

4y

y2

)

φ2
Bdy ÷

∫ 1/2

0

φ2
B

2y
dy = 8ω2

B = 2ΩB.

α = 0 is not to say that SBR flow with higher order perturbations behaves

linearly, but that for the non-linear effect to occur, the asymptotic equation

would have to include higher order ǫ terms to depict this effect (the linear

asymptotic equation for SBR can accurately predict non-linear SBR behavior

since SBR has very weak non-linear effect when subjected to perturbations).

This is essentially the same as if the asymptotic equation has been derived

using linear perturbations, details of which can be seen in [16] (Wang & Rusak

2011). Since non-linearity for SBR only manifest itself for large perturbation,

the dynamics for linear and weakly on-linear equation generates the same

growth rate curve. Therefore it is more convenient and accurately enough to

work with the linearized equation instead of that of the non-linear for SBR

flow.

The similarity of the growth rate for both equations would suggest that

the two equations should behave in the same manner for all growth rate

branches, due to the fact that SBR has very weak non-linear behavior, which

32



3.2. ANALYSIS ON LINEARIZED ASYMPTOTIC EQUATION

is caused by small perturbation producing an α of zero that linearizes the

non-linear asymptotic equation. So instead of adding further constraints

or changing certain conditions on an equation which cannot be analytically

solved for, we will use the simplified linear equation instead, since the focus

of the asymptotic equation of this paper is on solid body rotation flow to

begin with. In the next chapter, a control parameter will be added to the

equation, to see if the growing perturbation is able to be quenched.

The linearized equation is :

τAt∗ = AXXX + kωβAX , (3.10)

by using a suitable engenmode solution A(X, t∗) = Ā(X) exp(σ∗t∗), the

asymptotic motion equation can be transformed into the asymptotic stability

equation:

σ∗τĀ = ĀXXX + kωβĀX , (3.11)

where β = 4, and τ = 8ω2
B when substituted for solid body rotational scheme.

This stability equation is analyzed along with the non-linear asymptotic sta-

bility equation.

To ensure the accuracy of linear asymptotic equation with the linear

WR equation, both are calculated numerically and plotted under the same

solid body rotation base flow (parameters set the same as section 2.5) and

compared:
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Figure 3.1: Growth rate σ comparison (first branch).

The blue solid line represents the linear WR equation, and the red repre-

sents the linear asymptotic equation. Although the growth rate of the first

branch of both the asymptotic and WR equation exhibits very little differ-

ence, subsequent branches display a much more significant difference, this

lack of accuracy is contributed to applying the asymptotic approach to the

stability equation i.e. the smaller terms of the equation were dropped after

rescaling using ǫ. Since ǫ is of the order ω−ωB, the difference in subsequent

branches becomes much larger as ω moves further away from ωB .
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Figure 3.2: Growth rate σ comparison (large swirl).

This lack of accuracy for the subsequent branches is what prompted the

main focus of this research paper, that although the linear asymptotic equa-

tion’s perturbation can be totally controlled by the feedback stabilization

method, the status of the same control onto the linear WR equation with

the same base flow is currently unknown, therefore we would like to investi-

gate if the control method introduced in the next chapter on the asymptotic

equation can be translated onto the linear WR equation, and whether or

not the method would yield similar results for both the asymptotic and the

WR equation. In [12] (Rusak, Wang, Xu & Taylor 2011) it was shown that

non-linear asymptotic equation demonstrated uncontrollable perturbations,

the controllability depended on two parameters, α and δ, where α relates

to the degree of non-linearity and δ is the amount of perturbation present.

The combination of the two together ultimately dictates if instability can be

delayed or sped up, but the presence of non-linearity signified that eventually

the stability always cannot be controlled by feedback stabilization (detailed
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in next chapter). However, without the non-linearity by using SBR flow (for

sufficiently small perturbation), it can be found that the perturbation is con-

trollable by meeting a certain requirement. Since linear asymptotic equation

is a reduction of the full equation, it was generally predicted that reduction

of full equation may have the same effect as linearization, which may produce

uncontrollable instability, when the same control is applied to the linear WR

equation. Fortunately, the same control is able to stabilize the vortex even

for the linear WR equation, which shall be discussed in the next chapter.
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Chapter 4

Feedback Control Analysis

The theorization of the asymptotic equation greatly reduces the complexity

of the linear WR stability problem, this allowed for easier application of con-

straints on to the stability equation. Therefore we seek some control variable

to quench the growing perturbation, since the use of non-periodic boundary

conditions produces instability for solid body rotational flow. Theorization

will start by noticing the onset of instability relates directly to the production

of kinetic energy of the flow (for details on transfer of kinetic energy see [19]

(Wang, Taylor & Ku Akil 2009) and [16] (Wang & Rusak 2011)), therefore

a control parameter that reduces the production of kinetic energy was intro-

duced [12] (Rusak, Wang, Xu & Taylor 2011). Analysis showed that control

parameter can successfully control the perturbation for solid body rotational

flow for the linear asymptotic equation (provided that the control parameter

meets certain requirements), however the asymptotic equation is only accu-

rate for low swirl levels. In this paper the effect of the control parameter on

the linear WR stability equation will be investigated to see if the control can

still be effective as the swirl increases to the second and third branch and so

forth, this is done by developing a new method which the effect of control is

enforced by adjusting the circulation at the inlet, this novel approach gives

physical meaning to the control parameter, and feasibility of application.
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4.1. CONTROL IMPLEMENTATION

4.1 Control implementation

Now that instability of solid body rotation has been established using

boundary conditions that reflects realistic pipe conditions, it is desirable to

find ways that are able to diminish this growing effect experienced by per-

turbations that eventually leads to vortex breakdown. Studies in [16] (Wang

& Rusak 2011) on the energy transfer mechanism of the perturbed flow on

the linear WR stability equation indicated that the transfer of kinetic energy

played an important role in the dynamics of the vortex. At near critical

swirl level, the production and loss of kinetic energy of the perturbed flow

may ultimately determine whether the onset of vortex breakdown can be

delayed. Studies suggested that for general flows such as Lamb-Oseen or Q

vortex, even though the flow is at near critical level, changes such as pipe

contraction and compressibility increases the loss of kinetic energy which

leads to a delay of vortex breakdown, while mechanisms such as slight vis-

cosity, inlet vorticity disturbances add to production of kinetic energy, which

ultimately promotes the onset of vortex instability before swirl reaches the

critical level. The importance of this mechanism leads to further investiga-

tion in [12] (Rusak, Wang, Xu, and Taylor 2011) and [16] (Wang & Rusak

2011), this time conducted on the asymptotic equation. It stands to reason

that an effective way to delay the onset of instability will need to be investi-

gated in an energy point of view, which led to the implementation of feedback

stabilization, involving a control parameter that can be tweaked in order to

produce a net loss of kinetic energy eventually leading to stable flow.

Consider equation (3.9), we will now introduce a control term u(t∗) into

the equation:

τAt∗
︸ ︷︷ ︸

[A]

= AXXX
︸ ︷︷ ︸

[B]

−α(A2)X
︸ ︷︷ ︸

[C]

+kωβAX
︸ ︷︷ ︸

[D]

+u(t∗)
︸ ︷︷ ︸

[E]

, (4.1)
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and its boundary conditions:

A(0, t∗) = AXX(0, t∗) = AX(1, t∗) = 0, t∗ ≥ 0,

A(X, 0) = f(X), for 0 < X < 1.

It is desirable to determine a function u(t∗) so that the energy will decay

to zero or stay bounded in some sense (preferably in an exponential relation-

ship). To calculate the energy, we multiply equation (4.1) with the multiplier

AXX and integrate over the rectangle R defined by 0 < X < 1 and 0 < t < T :

∫ ∫

R
τAXXAt∗dXdt

∗

︸ ︷︷ ︸

[A]

= τ
∫ T

0

(

[AXAt∗ ]
X=1
X=0 −

∫ 1

0
AXAXt∗dx

)

dt

= −τ
∫ ∫

R
AXAXt∗dXdt

∗

= −τ
∫ ∫

R

1

2

∂

∂t∗
(AX)2dXdt∗

= E(0)− E(T ),

where we define the associated kinetic energy to be

E(t∗) =
τ

2

∫ 1

0
(AX)2dX, (4.2)

also,

∫ ∫

R
AXXAXXXdXdt

∗

︸ ︷︷ ︸

[B]

=
∫ T

0

1

2
[(AXX)2]X=1

X=0dt
∗

=
1

2

∫ T

0
(AXX(1, T ))2dt∗,
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−α
∫ ∫

R
(A)2
XAXXdXdt

∗

︸ ︷︷ ︸

[C]

= −2α
∫ ∫

R
AAXAXXdXdt

∗

= −α
∫ T

0

(

[A(AX)2]X=1
X=0 −

∫ 1

0
(AX)3dX

)

dt∗

= α
∫ ∫

R
(AX)3dXdt∗,

kωβ
∫ ∫

R
AXXAXdXdt

∗

︸ ︷︷ ︸

[D]

=
1

2
kωβ

∫ T

0
[(AX)2]X=1

X=0dt
∗

= −1

2
kωβ

∫ T

0
(AX(0, t∗))2dt∗,

∫ ∫

R
AXXu(t∗)dXdt∗

︸ ︷︷ ︸

[E]

= −
∫ T

0
AX(0, t∗)u(t∗)dt∗,

leads to the following relationship in energy:

E(T )− E(0) =− 1

2

∫ T

0
(AXX(1, t∗))2dt∗ − α

∫ ∫

R
(AX)3dXdt∗

+
1

2
kωβ

∫ T

0
(AX(0, t∗))2dt∗ +

∫ T

0
AX(0, t∗)u(t∗)dt∗. (4.3)

The first term of the right hand side of equation (4.3) can be seen to

always have a stabilizing effect (always produce negative change in energy).

The second term however can have both stabilizing and destabilizing effect.

When current swirl ω1 is smaller than critical swirl ω, AX is positive which

will create a stabilizing effect, but at current swirl larger than critical swirl,

AX is negative along most of the pipe, the term transforms from loss of

energy to production of energy. The third term depends on the difference

between swirl and Benjamin’s critical swirl. Notice that there is competition

between the second and the third term, since stabilizing of one term would

mean destabilizing of the other term due to kω involved in the third term.

Lastly the fourth term is the one with the control parameter implemented; it

must be sufficiently large to overcome the total destabilizing effect produced
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by the second and third term.

To investigate the control parameter, we will look at the case of α = 0

which is directly applicable to solid body rotation flow, and linearize the

equation;

E(T )− E(0) =− 1

2

∫ T

0
(AXX(1, t∗))2dt∗

+
1

2
kωβ

∫ T

0
(AX(0, t∗))2dt∗ +

∫ T

0
AX(0, t∗)u(t∗)dt∗

≤ 1

2
kωβ

∫ T

0
(AX(0, t∗))2dt∗ +

∫ T

0
AX(0, t∗)u(t∗)dt∗. (4.4)

We will introduce a feedback law here for the control parameter:

u(t∗) = −1

2
γAX(0, t∗), (4.5)

where γ > 0 is some constant representing control gain, so now the relation

(4.4) is:

E(T ) ≤ E(0) +
1

2
(kωβ − γ)

∫ T

0
(AX(0, t∗))2dt∗ ≤ 0, (4.6)

provided that γ is sufficiently large, and γ ≥ kωβ, we can achieve E(0) >

E(T ), and the overall energy will be non-increasing. This feedback stabiliza-

tion method shows that provided the correct control parameter is chosen, the

perturbation can be effectively controlled for all swirl levels as long as the dy-

namics are under linear regime. As previously mentioned, by adding a control

function into the evolution equation, one would hope that the kinetic energy

calculated would decrease to zero as time goes to infinity: E(T )→ 0, t∗ →∞.

The best case scenario would be that the energy decays uniformly in an ex-

ponential relationship, in which case there are positive constants C and µ

such that:

E(t∗) ≤ CE(0)e−µt
∗

for all situations with finite energy.
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4.2 Alternative control parameter represen-

tation

In the previous section the control parameter was introduced, and the deriva-

tion was based on feedback stabilization introduced within the equation. Al-

though the parameter itself is essentially a constant (subjecting to initial

condition AX(0)), it is very difficult to implement physically while the pa-

rameter is inside the equation as it is the same as adjusting the flow inside of

the pipe. Therefore we seek an alternative representation of the same control

parameter, turning it from a control parameter inside the pipe to a boundary

condition at the inlet of the pipe. By doing so the control parameter gains

physical meaning, the flow can now be changed at the inlet of the pipe to

adapt to the situation that is needed to stabilize the perturbation.

Let the pure time component be A0, the equation is then divided into

two sections where A0 denotes time portion of the pipe and AL denotes the

spatial portion of the pipe, and A = A0 +AL is then the superposition of the

time and space of the pipe dynamics. Since AXXX and AX does not involve

time variation terms the pure time portion of the equation is then:

τA0
t∗ = u(t∗) = −1

2
γAX(0, t∗)

⇒
∫ t

0
τA0
t∗dt = −

∫ t

0

γ

2
AX(0, t∗)dt

⇒ A0 = −
∫ t

0

γ

2τ
AX(0, t∗)dt, (4.7)

by setting α = 0 in equation (4.1), the linearized controlled asymptotic

equation is:

τAt∗ = AXXX + kωβAX + u(t∗), (4.8)

substitute in A = A0 + AL into equation (4.8):

τ(A0 + AL)t∗ = (A0 + AL)XXX + kωβ(A0 + AL)X + u(t∗)

⇒ τALt∗ + τA0
t∗ = ALXXX + kωβA

L
X + u(t∗). (4.9)
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Since τA0
t∗ = u(t∗), we can cancel the two terms in (4.9), yielding:

τALt∗ = ALXXX + kωβA
L
X . (4.10)

Now to redefine the boundary condition A(0, t∗) = 0:

A0(t∗) + AL(0, t∗) = −
∫ t

0

γ

2τ
AX(0, t∗)dt+ AL(0, t∗) = 0

⇒ AL(0, t∗) =
∫ t

0

γ

2τ
AX(0, t∗)dt

⇒ ALt∗(0, t
∗) =

γ

2τ
ALX(0, t∗), (4.11)

other boundary conditions attached with the linearized asymptotic equation

remains the same. To analyze this new relation that transformed the feedback

stabilization into an initial control problem we utilize normal mode analysis

to seek solution(s), let AL = a(X)e−iσ
∗t∗ , this is used to decouple the time

and spatial component of the equation. Substitute this into equation (4.10):

−iτσ∗a(X)e−iσ
∗t∗ = aXXX(X)e−iσ

∗t∗ + kωβaX(X)e−iσ
∗t∗

⇒ −iτσ∗a(X) = aXXX(X) + kωβaX(X), (4.12)

we can therefore obtain the stability equation with new control parameter.

Now an alternative approach has been obtained, the control parameter

has been shifted from being inside of the pipe to the beginning of the pipe. If

we continued with derivation such as what has been demonstrated in section

1.4, a similar matrix can obtained, due to the third order nature of the

asymptotic stability equation, the size of the matrix will be 3× 3 instead of

4×4. However the matrix analysis fails due to a significant error produced in

the formulation, once the matrix is formed, the some of the elements involved

in the matrix are divided by σ∗, i.e., the matrix analysis approach fails at

critical swirls. This is a significant hurdle that needs to be overcome since

with the control parameter added, we would like to analyze when the growth

rate branches will be completely controlled, meaning that the maximum point
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of a growth rate branch will be at exactly zero, so as the swirl gets closer

to the critical swirl, the matrix approach produces inaccuracies due to σ∗

tending towards zero.

To overcome this division by zero problem with σ∗, we will now use shoot-

ing method matching the boundary conditions with the differential equation

directly to calculate the solution instead of the determinant method; first

convert the differential equation into a system of equations, let Z1 = a,

Z2 = aX , and Z3 = aXX :

dZ1

dX
= Z2,

dZ2

dX
= Z3,

dZ3

dX
= σ∗τZ1 − kωβZ2, (4.13)

with the initial conditions:

a(0) =
γ

2τσ∗
aX(0), aX(0) = 1, aXX(0) = 0, (4.14)

At the beginning of the shooting method, an arbitrary σ∗ will be chosen

(should still be sufficiently close to actual value) to shoot for the outlet

condition with a range of swirl values. The system of equations will be solved

according to this preset σ∗ and the control parameter γ, then the system of

equations will be solved again, but this time with a new σ∗ stepped by an

infinitesimal amount ∆σ∗. This is done so that the Newton-Raphson method:

xn+1 = xn −
f(xn)

f ′(xn)
,

can be utilized to obtain an accurate value for the true σ∗ for the swirl chosen

shooting for the outlet condition. Numerically represented, f(xn) is equiva-

lent to the solution calculated using the preset σ∗, and the difference between

the second solution for the system of equations and the first solution divided

by the step in σ∗, which is ∆σ∗, represent the finite difference approximation

of f ′(xn). xn represents the previous σ∗ (or the preset σ∗ for the first step),
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take away the fraction to obtain the new (more accurate) σ∗ which is xn+1.

This procedure is set within a loop to improve the accuracy of the growth rate

calculated until the accuracy has surpassed a certain expectation, then the

entire process is executed again for the next swirl inside the range of swirls

to produce an accurate (to a certain degree) growth rate branch. With this

method not only can we solve the problem but we can also calculate the

progression of the eigenmodes much easier with better accuracy.

The control parameter u(t∗) stated in equation (4.5) along with the con-

dition that γ ≥ kωβ suggests that when γ = kωβ, the perturbation can be

just totally controlled, and the energy of the perturbation will be bounded.

If we place 1/2 together with kωβ (essentially γ/2) to be one variable as

per the derivation of this section, we can notice that the roles of constants

and variables can be exchanged (for the purpose of analysis). γ = kωβ can

be kept as the constant depending on the swirl given, and the control gain

can now be the original constant 1/2. So for the case when the equation is

just totally controllable, there must exist some control gain that has to equal

to 1/2, and for anything larger can be viewed as γ > kωβ. So instead of

changing γ, one can change the constant attached to it instead.

4.3 Numeric prediction theory

To have a sense of whether the numerical methods are calculating correct

and accurate results, the critical swirls which generates zero point σ∗ can be

determined theoretically, therefore to have an indication of where and how

the eigenmodes will proceed with control parameter, we can try to find when

the control parameter will cause the critical swirls to be exactly the maximum

value of each branch, indicating exact control, and subsequently higher values

of the control parameter will also completely control the growth rate. To

find the control parameter value that first completely controls the growth

rate branch in the asymptotic equation, we look at the original asymptotic

control problem, instead of the converted boundary condition control:
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AXXX + kωβAX − σ∗τA−
γ

2
AX(0) = 0

AXX(0) = 0 AX(1) = 0 A(0) = 0

Another way to view this equation is to see this as an inhomogeneous

differential equation, since AX(0)γ/2 is a constant, and AX(0) = 1. To solve

this equation, we will take the approach of forming a characteristic polyno-

mial and a particular integral to obtain a full solution using superposition.

First the characteristic polynomial, eaX :

a3eaX + kωβae
aX − σ∗τeaX = 0

⇒ a3 + kωβa− σ∗τ = 0

since we want to find the critical swirls for which the growth rate σ∗ = 0:

a3 + kωβa = 0 ⇒ a(a2 + kωβ) = 0

so a = 0, and a = ±
√
kωβi, now form the characteristic equation:

A(X) = C1 sin
√

kωβX + C2 cos
√

kωβX + C3

by fitting initial conditions AXX(0) = 0 and A(0) = 0, C2 and C3 can be

eliminated, let α = γ
2

and combining with particular integral to obtain:

A(X) = C1 sin
√

kωβX +
α

kωβ
X

In the derivation it was assumed that AX(0) = 1 and AX(1) = 0, we will

now fit the solution with the two equation:

For AX(0) = 1 ⇒ C1

√

kωβ cos(0) +
α

kωβ
= 1

⇒ C1 =
(

1− α

kωβ

) 1√
kωβ
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For AX(1) = 0 ⇒ C1

√

kωβ cos(
√

kωβ) +
α

kωβ
= 0

⇒ cos(
√

kωβ) = − 1

C1

α

(kωβ)
3

2

combining the two equations together to obtain:

cos(
√

kωβ) = − α

(kωβ)
3

2

1
1√
kωβ
− α(kωβ)−

3

2

=
−α

kωβ − α

⇒ cos(
√

kωβ) =
α

α− kωβ
since α = γ/2 we let δ = 1/2 so that γ/2 = δkωβ, substituting into the above

equation:

cos(
√

kωβ) =
δkωβ

δkωβ − kωβ
=

δ

δ − 1
(4.15)

The left hand side of (4.15) is a cosine function with a range limit of −1

or 1, to find the case when the eigenvalues are just totally controlled (max

σ∗ = 0), equate δ/(δ − 1) = −1, to find δ = 1/2. The control parameter is

now changed to a constant, at exactly half, the eigenvalues are all exactly

controlled for the third order asymptotic equation, for cases smaller than

half, the eigenvalues will be unable to be controlled since δ/(δ − 1) < −1

producing more zero points indicating the existence of positive eigenvalues.

If the control parameter is larger than half, δ/(δ − 1) > −1, the invalid

equation indicates that there exists no zero σ∗ points, and the eigenvalues are

all controlled. Counter intuitively, excess amount of control actually reduces

the effectiveness of feedback stabilization, with the best control scenario at

δ ≈ 1, the closer it is to one, the more effective the control parameter is. So

to ensure the accuracy of the growth rate branches using numerical methods
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we will now calculate the critical swirls:

cos(
√

kωβ) = −1

this indicates that zero points will occur at odd number of π:

kω =
2ωB(ω − ωB)

ǫ
=

(nπ)2

4

⇒ ω =
ǫ(nπ)2

8ωB
+ ωB

where n = 1, 3, 5, 7....., the position number of each element is representative

of the branch number. Since ωB = 1.915855 according to the above formula,

the first zero point should occur at ω1 = 1.933743, the zero point of the second

branch at ω2 = 2.076841 and the third zero point will be at ω3 = 2.363037.

4.4 Effectiveness of control (Asymptotic)

With the shooting method, and the alternative representation of the control

parameter, we are able to accurately produce the growth rate branches by

finding a particular growth σ∗ and perform shooting for the outlet condition

with the matching swirl. Numerical analysis will start from control parameter

of 0.5, since in the last section it was noted that at 0.5 the linear asymptotic

equation should be able to be just completely controlled (since kωβ/2 is

the minimum requirement for control), therefore we should expect to see all

growth rate branches falling below the zero mark. For the case of control

= 0.5:
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Figure 4.1: Swirl ω (=
√

Ω/2) against growth rate σ comparison (Con-
trol=0.5)

This is the case as stated in the original theory of feedback control, that in

order to fully control the growth rate, the control parameter must be some

constant that is ≥ kωβ/2. So for control parameter set at exactly kωβ/2,

we should be able to see the growth rates being just completely controlled

as can be seen in the above figure. Although this case has been proven

in the derivation of the control parameter, it is reassuring to see numerical

interpretation matching the theory. It can also be noted that the complex

branches developed from the respective real branches are totally controlled

as well, and the complex branches exhibit slight damping behavior.
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Figure 4.2: Swirl ω (=
√

Ω/2) against growth rate σ comparison (Con-
trol=0.95)
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Figure 4.3: Swirl ω (=
√

Ω/2) against growth rate σ comparison (Con-
trol=1.3)

Figures 4.2 and 4.3 show the behavior of the growth rate branches near

the control parameter of one (or γ = 2kωβ) for the case of solid body rotation.

The figures show the first three branches of the growth rate, notice that as the

control parameter is increased from 0.5; the branches are being stretched and

transported down the swirl axis. Figure 4.2 showed a significant lowering of

the growth rate branches, signifying the effectiveness of the control parameter

increases as the control parameter itself increase. Although figure 4.3 seems

to suggest that with a control parameter of 1.3, the overall effect of the control

seems to be weaker than figure 4.2 with a control parameter of 0.95, the two

figures does not exhibit a significant amount of difference, both control gains

can still effectively control the perturbation growth rate. The two figures

indicate that there is some optimal control gain that exists between 0.95 and

1.3, which is calculated to be one in the previous section.
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Figure 4.4: Swirl ω (=
√

Ω/2) against Rescaled growth σ comparison (Con-
trol=5)

Figure 4.4 showed the dynamics of the growth rate branches with a con-

trol parameter of 5. We can see that this figure exhibits significantly less

branch lowering than the three previous scenarios, the effectiveness of control

is approaching the case of control = 0.5, this showed that the effectiveness

of control is significantly reduced as it passes a particular value, but as the

control increase, the branches are being transferred further down the swirl

axis, this suggests that the larger the control parameter, the larger the swirl

is needed to move from the first branch to later branches. This is impor-

tant particularly since we know that the first growth rate branch is accurate

enough to represent the linear WR stability equation, so the dynamics of the

controlled asymptotic equation should be the exact same (or similar) for the

controlled linear WR equation. Complete control of the first branch would

suggest complete control for the WR equation as well, even if we don’t know

the dynamics of later branches for the WR equation, increasing the control
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parameter transfers the first branch along the swirl axis, and larger swirls are

needed to reach later branches that may still have positive growth rate, hence

delaying the onset of instability. However, control gain of 5 still produced

a growth rate branch plot that indicates significant loss in the effectiveness

of control, signifying that excessive control is actually unnecessary and may

actually reduce the effect.
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Figure 4.5: Eigenmode A(X) for specific swirl ω (for control = 0, 0.5, 0.95, 5
left to right).

The four plots show the evolution of the eigenfunction with a specific

swirl value (hence a specific growth rate), the figure shows normal evolution

with no control, as the swirl increases, the mode shape starts to change, the

increase in swirl causes the mode shape to create more bends as can be seen in

plot with a control of zero. By placing a control parameter, the mode shape

behavior clearly exhibit the transportation effect. As the control parameter

is increased, the mode shape creates less bends and starts to resemble the
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shape of modes with smaller swirl when there is no control, although the

negative growth rate cannot be easily seen from the mode shape plots, the

transportation of the growth rate branches down the swirl axis can be seen

clearly.

4.5 Linear WR motion equation with control

In section 3.2 it was shown that there exist differences between the growth

rate branches of the asymptotic equation and the linear WR stability equa-

tion. The level of difference for each branch increases in magnitude as the

current swirl moves further away from Benjamin’s critical swirl (ωB), however

the first branch was deemed accurate enough due to the difference between

the two equations to be insignificant when compared to branches further

along the swirl axis. This allowed the asymptotic equation to provide an

accurate depiction of the dynamics of the linear WR stability equation for at

most the first growth rate branch and nearby swirl levels i.e., ω−ωB is small

enough to be in the order of ǫ. Section 4.1 saw the introduction of a control

parameter in hoping that the growth rate σ can in some way be suppressed,

delaying the onset of vortex instability. Theoretical analysis has proven that

for the linear asymptotic equation (α = 0 equivalent to solid body rotational

flow) the first growth rate branch can in fact be totally controlled, providing

that the control parameter meets the condition γ ≥ kωβ. This is particularly

interesting since the first growth rate branch of the asymptotic equation is

near identical to that of the linear WR equation, therefore similar dynamics

should govern both equations for the first growth rate branch. We will look

for a way to control the linear WR problem by altering the inlet condition,

since this is more practical to implement than involving the motion equa-

tion itself with the control parameter, and through the inlet condition that

involves the control we are able to investigate whether or not this method

allows for stability of the linear WR problem. We will attempt to control

the perturbation by changing the circulation of the inlet flow, the adjustment

will be according to the dynamics of the flow itself, exhibiting feedback effect,
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to deduce the requirement for complete control to occur for the perturbation

and what to set for the inlet circulation for stability, the motion equation for

solid body rotation flow and its boundary conditions needs to be determined

first. We start by revisiting (2.15):

(

ψ1yy +
ψ1xx

2y

)

xx

+
2

ψ0y

(

ψ1yy +
ψ1xx

2y

)

xt

+
1

ψ2
0y

(

ψ1yy +
ψ1xx

2y

)

tt

+
χ0y

ψ2
0y

ψ1xt −
(

H ′(ψ; Ω)− I ′(ψ; Ω)

2y

)

ψ1xx = 0,

the focus of this research is on the stability of the solid body rotational

flow subjected to disturbances, therefore we shall simplify the above equa-

tion through substituting parameters for solid body rotation base flow. By

substituting u = 0, v = ωr, and w = w0 (hence ψ0 = y, K0 = 2ωy, and

χ0 = 0), (2.15) is simplified and separation of variables is now possible. w0 is

chosen to be one as a convention and to further simplify the equation, after

substitution we obtain:

(

ψ1yy +
ψ1xx

2y

)

xx

+ 2

(

ψ1yy +
ψ1xx

2y

)

xt

+

(

ψ1yy +
ψ1xx

2y

)

tt

+
4ω2

2y
ψ1xx = 0. (4.16)

Now we look for a separation of variables solution ψ(x, y, t) = Φ(y)ϕ(x, t),

where Φ is a function of Benjamin’s eigenvalue problem (2.13). Substitute

the separation of variables solution into (4.17);

(

Φyyϕ+
Φϕxx

2y

)

xx

+ 2

(

Φyyϕ+
Φϕxx

2y

)

xt

+

(

Φyyϕ+
Φϕxx

2y

)

tt

+
4ω2

2y
Φϕxx = 0, (4.17)

notice that the same substitution of Φyy = −ΩB/2yΦ can be used following

the derivation of section 2.4, apply the substitution to obtain an equation
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with the elimination of y component;

− ΩBϕxx + ϕxxxx − 2ΩBϕxt + 2ϕxxxt − ΩBϕtt + ϕxxtt + Ωϕxx = 0

⇒ ϕxxxx + (Ω− ΩB)ϕxx + 2ϕxxxt + ϕxxtt − 2ΩBϕxt − ΩBϕtt = 0. (4.18)

The exact same procedure can be performed on equation (2.16), substitute for

solid body rotational flow, and then utilize a separation of variables solution

ψ1(x, y, t) = Φ(y)ϕ(x, t), K1 = Φ(y)k(x, t), and Φyy:

Φkt = − 2y2

2ωy

[

−
(

−ΩB
2y

Φϕ+
Φϕxx

2y

)

t

+

(

−ΩB
2y

Φϕ+
Φϕxx

2y

)

x

]

+ 2ωΦϕx

⇒ kt =
1

2ω
ϕxxx +

(

2ω − ΩB
2ω

)

ϕx +
1

2ω
ϕxxt −

ΩB
2ω

ϕt. (4.19)

Eventually we would arrive at the linear WR motion equation with its bound-

ary conditions for solid body rotational flow:

ϕxxxx + (Ω− ΩB)ϕxx + 2ϕxxxt + ϕxxtt − 2ΩBϕxt − ΩBϕtt = 0

ϕ(0, t) = 0, ϕxx(0, t) = 0, ϕx(x0, t) = 0,

kt(0, t) =
1

2ω
ϕxxx(0, t) +

(

2ω − ΩB
2ω

)

ϕx(0, t), (4.20)

the three inlet boundary conditions basically dictates that the flow coming in

from the inlet is not changed, the flux, vorticity and circulation are all what

has been preset for the flow coming into the pipe, and the outlet bound-

ary condition states that the flow remains what has reached the outlet if

the flow is not subjected to control, in the approach to control the pertur-

bation for the linear WR equation, we choose to alter the inlet circulation

kt(0, t), originally the inlet circulation is set as zero for the non-control case,

now we can alter the inlet circulation to try to stabilize the unstable flow

caused by growing perturbation according to the dynamics of the flow. To

determine what is required of the inlet circulation to completely control the

positive growth rates of the perturbation, we can look to the derivation of

the reduction of linear WR equation to the third order asymptotic form. The
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reason for choosing the inlet circulation is so that a feasible control involving

changing the circulation only can be achieved, whereas altering other inlet

conditions involve changing the flux and motion of the incoming flow that

may be complicated in realizing.

To arrive at some control parameter that the inlet circulation should be

set to in order to achieve control, equations (4.18) and (4.19) shall be rescaled

according to section 3.1, using the rescaling parameter ǫ = 1/L2, the rescaled

variables are:

x⇒ X, X =
√
ǫx

t⇒ t∗, t∗ = ǫ
3

2 t

σ ⇒ σ∗, σ∗ =
σ

ǫ
3

2

Ω = 4ω2, ΩB = 4ω2
B, kω = 2ωB

ω − ωB
ǫ

, (4.21)

we can expand and rescale (Ω− ΩB) using (4.21):

(Ω− ΩB) = 4(ω2 − ω2
B)

= 4[(ω − ωB)2 + 2ωωB − 2ω2
B]

= 4
[
ǫ

ǫ
(ω − ωB)2 +

ǫ

ǫ
2ωB(ω − ωB)

]

= 4[(ω − ωB)2 + kωǫ]. (4.22)

Notice that from (4.21), ϕ(x, t) = Ψ(X, t∗), and the derivative becomes

ϕx(x, t) = ΨX(X, t∗)
√
ǫ, ϕt(x, t) = Ψt∗(X, t

∗)ǫ3/2. Utilize (4.21) to rescale

(4.18):

ǫ2ΨXXXX + ǫ
[

4
(

(ω − ωB)2 + kωǫ
)]

ΨXX

+ ǫ32ΨXXXt∗ + ǫ4ΨXXt∗t∗ − ǫ22ΩBΨXt∗ − ǫ3ΩBΨt∗t∗ = 0, (4.23)

divide (4.23) by ǫ2 to obtain the rescaled version of linear WR motion equa-
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tion;

ΨXXXX +
4(ω − ωB)2

ǫ
ΨXX + 4kωΨXX

+ ǫ2ΨXXXt∗ + ǫ2ΨXXt∗t∗ − 2ΩBΨXt∗ − ǫΩBΨt∗t∗ = 0. (4.24)

To produce an asymptotic form of the linear WR motion equation, elimi-

nation of the higher order terms O(ǫ) on equation (4.24) will be done, note

that for the asymptotic equation the range of swirl shall be confined to within

the first growth rate branch and nearby swirl levels, this confinement keeps

ω−ωB within the order of ǫ, and the equation (4.24) can be simplified through

4(ω − ωB)2/ǫ ∼ ǫ, therefore we can obtain the fourth order asymptotic form

of the linear WR motion equation;

ΨXXXX + 4kωΨXX − 2ΩBΨXt∗ = 0

⇒ 2ΩBΨXt∗ = ΨXXXX + 4kωΨXX . (4.25)

The same procedure is applied to (4.19) as well;

ǫ
3

2κt∗ = ǫ
3

2

1

2ω
ΨXXX + ǫ

1

2

(

2ω − ΩB
2ω

)

ΨX + ǫ
5

2

1

2ω
ΨXXt∗ − ǫ

3

2

ΩB
2ω

Ψt∗

⇒ κt∗ =
1

2ω
ΨXXX +

4kω
2ω

ΨX −
ΩB
2ω

Ψt∗ , (4.26)

set κt∗(0, t
∗) to produce a boundary condition at the intlet for the motion

equation:

κt∗(0, t
∗) =

1

2ω
ΨXXX(0, t∗) +

4kω
2ω

ΨX(0, t∗), (4.27)

other boundary conditions include

Ψ(0, t∗) = 0, ΨXX(0, t∗) = 0, ΨX(1, t∗) = 0, (4.28)

in keeping the convention of numerical analysis in previous chapters, the

length of the pipe is set to be L = 6, hence at the end of the pipe X = 1.

To obtain a motion equation analogous to the asymptotic equation of (3.10),
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equation (4.25) will be integrated in X:

∫ X

0
(ΨXXXX + 4kωΨXX)dX =

∫ X

0
2ΩBΨXt∗dX

ΨXXX + 4kωΨX − 2ΩBΨt∗

− [ΨXXX(0, t∗) + 4kωΨX(0, t∗)] = 0, (4.29)

2ΩBΨt∗(0, t
∗) is eliminated by using the boundary condition Ψ(0, t∗) = 0.

To eliminate the inlet conditions in (4.29), we notice that the condition for

circulation at the inlet has a similar form to the inlet conditions that we

are trying to eliminate, by setting the inlet circulation to be equal to zero

(2ωκt∗(0, t
∗) = 0), we can completely eliminate the extra terms in (4.29), this

presents us with the third order asymptotic form of the linear WR equation

of motion with no control:

ΨXXX + 4kωΨX − 2ΩBΨt∗ = 0,

Ψ(0, t∗) = 0, ΨXX(0, t∗) = 0, ΨX(1, t∗) = 0,

which is in the same form as the linear third order asymptotic motion equa-

tion. However, when (4.29) is compared to the linear third order asymptotic

equation that involves a control term (4.8), we are able to see that instead of

eliminating the extra terms, they can be set to be equal to the control param-

eter u(t∗). By doing so the definition of the inlet circulation now changes,

and 2ωκt∗(0, t
∗) can now be altered as a control condition to stabilize the

perturbation. Following the formulation for the control parameter in sec-

tion 4.1, we can arrive at the conclusion that the inlet circulation condition

2ωκt∗(0, t
∗) must be equal to the feedback control parameter u(t∗), therefore

a new condition at the inlet where the circulation of the flow at the inlet can

be changed to stabilize the perturbation can be formulated:

2ωκt∗(0, t
∗) = u(t∗) =

1

2
γΨX(0, t∗) = ΨXXX(0, t∗) + 4kωΨX(0, t∗), (4.30)
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the linear WR motion equation with control is therefore:

ϕxxxx + (Ω− ΩB)ϕxx + 2ϕxxxt + ϕxxtt − 2ΩBϕxt − ΩBϕtt = 0,

ϕ(0, t) = 0, ϕxx(0, t) = 0, ϕx(x0, t) = 0,

ϕxxx(0, t) =
1

2
γϕx(0, t)− (Ω− ΩB)ϕx(0, t), (4.31)

changing the inlet condition of ϕxxx(0, t) is equivalent to changing the inlet

circulation kt(0, t), rescaling can also be performed to produce the control

problem for the linear WR motion equation that involves rescaled time and

pipe length for better comparison with previous numerical results. The con-

trol problem above is still a form of feedback stabilization, changing the inlet

circulation is dependent on the dynamics of the perturbation.

In deducing what the inlet circulation should be in order to control the

third order asymptotic form of the linear WR motion equation, the relation

2ωkt∗(0, t
∗) = u(t∗) is the new boundary control method for the reduced

form of the inlet circulation κt∗(0, t
∗), by letting this equal to the control

parameter u(t∗)/2ω, it is possible to completely control the growth rate of

the perturbation for swirl near the Benjamin’s critical swirl. However when

the reduced terms of κt∗(0, t
∗) is added to produce the control problem for the

linear WR motion equation, the additional terms may change the growth rate

of the perturbations, since only the growth rate near ωB can be accurately

determined by the reduced equation. For γ = kωβ the first growth rate

branch can still be completely controlled, since swirl range is still near the

critical swirl, however, for swirl range further away from the critical swirl, the

terms eliminated after reduction from both the linear WR motion equation

and boundary condition κt∗(0, t
∗) may play a larger role in reducing the effect

of the control parameter, which may lead to instability as the swirl increases.
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4.6 Effectiveness of control

To analyze the control problem of the linear WR motion equation, we use

suitable eigenmode analysis ϕ(x, t) = ϕ̃(x)eσt and k(0, t) = k̃(0)eσt on the

control problem (4.31):

ϕ̃xxxx + (Ω− ΩB)ϕ̃xx + 2σϕ̃xxxt + σ2ϕ̃xx − 2ΩBσϕ̃x − ΩBσ
2ϕ̃ = 0,

ϕ̃(0, t) = 0, ϕ̃xx(0, t) = 0, ϕ̃x(x0, t) = 0,

ϕ̃xxx(0, t) =
1

2
γϕ̃x(0, t)− (Ω− ΩB) ϕ̃x(0, t), (4.32)

this is the control problem for the linear WR stability equation, which is

used to analyze the relationship between σ and ω under feedback stabiliza-

tion control method, the control parameter here can still be considered as

kωβ/2 instead of kωβ, which signifies that changing the constant is the same

as changing kωβ, and we shall call the constant the control gain. In section

3.2, a noticeable difference between the asymptotic equation and the linear

WR equation with no control can be seen, particularly in later branches where

the linear WR equation produces smaller positive growth rate branches. This

difference suggests that the eliminated terms when reducing to the asymp-

totic equation plays a larger part in later branches, causing the growth rate

to decrease, a preliminary deduction can be seen from the linear WR stability

equation, since all the eliminated terms involves the growth rate σ, and their

collective effect decreases the growth rate branch while σ remains positive,

the collective effect should be to increase the growth rate branches when σ

is negative. Section 4.4 showed total controllability of all branches for the

asymptotic equation, this suggests that total control is achieved by reducing

the equation, therefore a counter argument can be formulated, that with the

unreduced linear WR equation, the terms that were reduced may play an

important role on later branches which concerns whether or not these later

branches can be controlled. Section 3.2 suggests these reduced terms have

a largely negative effect while σ is positive, which would lead one to deduce

that at the control gain of 0.5, the later branches may not be able to be

controlled due to the reduced terms (since σ being negative should create
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a largely positive effect on the growth rate branches). To investigate this,

numerical analysis will be done on the control problem for the linear WR

equation, at control gain of = 0.5:
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Figure 4.6: Perturbation growth of linear WR equation (Control gain = 0.5).

numerical analysis is done on the rescaled parameters of the pipe, where

X = 1 is the rescaled full length of the pipe, this is done as a convention

for numerical analysis. Fortunately at the same requirement for the control

parameter linear WR equation showed similar behavior to the asymptotic

equation. At the control gain of 0.5, both equations can totally control all

the growth rate branches, with the complex branches also exhibiting damp-

ening effect. Numerical analysis suggests that even with the reduced terms

present, the positive effect they have on the growth rate branches can still

be controlled by the controlled term, reinforcing the robustness of feedback

control on both equations with a solid body rotational base flow subjected

to axisymmetric disturbances. At control = 0.95:

62



4.6. EFFECTIVENESS OF CONTROL

1.9 2 2.1 2.2 2.3 2.4 2.5
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

ω

σ

Figure 4.7: Asymptotic and WR at control of 0.95.

figure 4.7 shows the growth rate curves of both the asymptotic equation

and the linear WR equation with control, blue line represents the linear WR

equation while the red represents asymptotic motion. From this figure we

can see clearly that the effectiveness of the feedback stabilization method is

less effective against the linear WR equation, the larger the swirl the less

the growth rate branch lowering, also the transportation of the growth rate

branches down the swirl axis is also less prominent than the asymptotic

equation, although complex modes exhibit less dampening, the difference is

not very discernable, the main difference is the maximum swirl points for

each branches where the respective complex modes start.

At control = 1.3:
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Figure 4.8: Linear WR equation (Control gain = 1.3).

Increasing the control parameter follows the same trend as the asymptotic

equation with control, with the optimal control somewhere between 0.95 and

1.3, however, the numerical prediction theory only works with the asymptotic

equation, this means that the optimal control for the linear WR equation

is not necessary at control gain = 1. In fact, at control gain of 1.3, the

reduced effectiveness of the control parameter seems to be stronger than the

asymptotic equation, which suggests the optimal control gain to be smaller,

but very close to 1. The growth rate branches still exhibit translation across

the swirl axis, shifting to the right as the swirl is increasing.

At control = 5:
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Figure 4.9: Linear WR equation (Control gain = 5).

From figures 4.7, 4.8, and 4.9 it is possible to discern that the effectiveness

of the control term is reduced. When compared to the asymptotic equation,

the lowering effect of the growth rate branches is reduced, and the trans-

porting effect is also reduced, this phenomenon can be contributed to the

existence of the reduced terms in the linear global equation, since they were

shown to have an overall positive effect on the growth rate branches (for

σ negative) when there is no control, it is possible they exhibit the same

behavior when there is control, which is proven by the numerical analysis.
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Figure 4.10: Eigenmode Ψ(X) for specific swirl ω (for control = 0, 0.5, 0.95, 5
left to right).

Figure 4.10 showed a similar behavior of the eigenmodes to the asymptotic

equation eigenmodes in section 4.4. The transporting effect can be easily

discerned in the figure; however, it is noticeable that the transporting effect

was reduced, since a control parameter of 0.5 showed less flattening of the

curve near the end of the pipe (resembles the eigenmode with less swirl when

there is no control), whilst the same control for the asymptotic equation has

the eigenmode show more flattening of the curve (resembling eigenmode with

larger swirl when there is no control), another indication that the effect of

the control parameter is reduced when applied to the linear WR equation.
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Concluding Remarks

The placement of non-periodic boundary conditions allowed for prediction

of instability of seemingly stable flow under classical theorization, now the

stability equation can reflect realistic operations of the swirling flows. The

ability to build models that accurately interprets the dynamics of pertur-

bation enabled further research to improve the understanding of the vortex

stability problem. By adding a control mechanism to the linear asymptotic

equation, we gain the ability to control the growing perturbation by altering

the generation of kinetic energy of the flow. However, adding control to the

asymptotic equation only allows for accurate depiction of the dynamics for

swirls near Benjamin’s critical swirl, i.e., ω − ωB must be in the order of ǫ,

the limitation of the asymptotic equation only allows for accurate prediction

of the first growth rate branch and nearby swirls, also the control parameter

being inside the flow makes physical alteration of the control parameter dif-

ficult. Therefore an alternative representation of the control parameter was

developed; the new control parameter switches the control from inside the

flow to a condition at the inlet of the pipe.

Numerical analysis in section 4.3 showed that for the control parameter

to be equal to the requirement for γ, the growth rate branches can be just

completely controlled. By increasing the control gain one can notice that

the effectiveness of control increases, but peaks at control gain = 1, which is

γ = 2kωβ, any control gain value larger than this reduces the effectiveness

of the control parameter, hence reducing the lowering of the growth rate

branches. But an interesting effect of increasing the control parameter is

that the growth rate branches are transported down the swirl axis, now a

larger swirl is needed to depart from the first growth rate branch. Since the

asymptotic equation accurately predicts the dynamics of the first growth rate

branch, the larger the control gain, the larger the swirl is needed to reach

the second growth rate branch, and since the first branch can always be
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controlled (provided that γ meets the requirement), the onset of instability

is delayed in the sense that a larger than before swirl is needed to reach the

later branches that may cause instability (having positive growth rate).

To investigate whether the actual growth rate branches can be completely

controlled, a method was developed for the linear WR equation, where the

effect of control is applied by changing the inlet condition for the circulation

of the flow. This is a new control method since the linear WR equation is

different to the asymptotic equation, the two control problems do not share

the same control method, however, it is still possible to derive a condition

for the inlet circulation to control the first growth rate branch, this is done

by rescaling and reducing the linear WR equation to the same form as the

linear asymptotic equation, and matching the inlet circulation condition with

the control parameter that was set for the linear asymptotic equation, this

allows for the development of a condition that needs to be fulfilled for the

inlet circulation in order for the first branch to be totally controlled. We

are able to investigate the unsolved problems with the asymptotic equation,

since the asymptotic equation is a reduced form of the linear WR equation,

it was generally predicted that the terms eliminated due to reduction should

have a stronger effect as the swirl increases, and that for the control gain

of 0.5 (when the first branch can be just completely controlled) the later

branches along the swirl axis may actually have positive growth rate, since

the effect of the reduced terms are more prominent in later branches (shown

in section 3.2, there exists significant difference in later growth rate branches

between the asymptotic and WR equations). Numerical analysis showed that

linear WR equation follows a similar pattern to the asymptotic equation, and

the results were different from what was expected. At control gain of 0.5,

the linear WR stability equation produced a growth rate branch plot that

shows the growth rate branches can be totally controlled as well, contrary

to what was expected. Increasing the control gain also follows the same

pattern seen in the asymptotic equation, with branch lowering peaking at

control gain of close to one, similar to the asymptotic equation. However,

the main difference between the two equations is that the transportation

effect of the growth rate branches down the swirl axis with increasing control
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gain is lower in the linear WR case than the asymptotic case. This seems

to suggest that with the reduced terms intact, the growth rate branches now

require a higher control gain to transport the branches as far as the same case

seen in asymptotic equation. So even though the linear WR equation with

control can still be completely controlled for all growth rate branches of the

solid body rotation flow, the reduced terms reduces the effect of the control

parameter on the perturbation, a swirl level less than what was require to

reach the second growth rate branch in the asymptotic equation can then

reach the second branch for the linear WR equation.

This signifies that for flows that may produce non-linear effects on the

stability equations, the control term may not be as effective as the linear case

suggests, and investigation on the effectiveness of the control parameter on

the non-linear asymptotic equation needs to be done to clarify the usefulness

and the ability to control the growing perturbation for feedback stabilization.

A better understanding in the mechanism of perturbation with some control

method may ultimately pave way to a successful control method that allows

for absolute control even with the non-linear effect present.
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