
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1

Effects of Imperfect Secondary Path Modeling on
Adaptive Active Noise Control Systems

Iman Tabatabaei Ardekani, Student Member, IEEE, and Waleed H. Abdulla, Member, IEEE

Abstract—Implementation of adaptive active noise control
(ANC) systems requires an estimate model of the secondary path
to be uploaded onto digital control hardware. In practice, this
model is not necessarily perfect; however, to avoid mathemat-
ical difficulties, theoretical analysis of these systems is usually
conducted for a perfect secondary path model. This paper con-
ducts a stochastic analysis on performance of Filtered-x LMS
(FxLMS)-based ANC systems when the actual secondary path
and its model are not identical. This analysis results in a number
of mathematical expressions, describing effects of a general sec-
ondary path model on stability, steady-state performance and
convergence speed of FxLMS-based ANC systems. As a surprising
result, it is found that intentional misadjustment of secondary
path models can enhance performance of ANC systems in prac-
tice. Theoretical results are found to be in a good agreement with
the results obtained from numerical analysis. Also, experimental
results confirm the validity and accuracy of the theoretical results.

Index Terms—Active noise control (ANS), Filtered-x LMS
(FxLMS) algorithm, imperfect secondary path modeling, real time
implementation.

I. INTRODUCTION

A CTIVE NOISE CONTROL (ANC) systems are high per-
formance and cost effective alternatives to traditional pas-

sive noise control systems [1]. These controllers can be realized
using analog or digital electronic technologies; however, real-
ization of adaptive ANC systems is only possible due to digital
technology [2]. In order to cope with environmental changes,
these systems are implemented using a digital filter updated
by an adaptation algorithm. Unfortunately, traditional adapta-
tion algorithms do not show suitable convergence behavior in
this application. This is because of the existence of an electro-
acoustic channel, called the secondary path, between the ANC
controller and the desired silence zone. To compensate for sec-
ondary path effects, Filtered-x LMS (FxLMS) algorithm was
proposed in the late 1980’s [3]–[5]. In this algorithm, the ref-
erence signal (acoustic pressure picked up from the ambient)
is filtered using an estimate model of the secondary path be-
fore being used by the algorithm. Obviously, a major drawback
of this algorithm is its need to a secondary path model, which
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Fig. 1. Existing analyses of FXLMS-based ANC systems performance.

should be obtained using either online or offline secondary path
modeling techniques [6]–[8].
Although performance analysis of FxLMS-based ANC sys-

tems have been studied by several researchers [9]–[13], this
topic is still an active area of research. Fig. 1 depicts a general
view to the research conducted on this subject; also, this figure
determines research potentials and open problems. As shown,
the authors recently reported two new stochastic analyses on
FxLMS-based ANC systems. The first of which focused on the
analysis of second-order moments of adaptive variables using
Lyapunov stability analysis [14]; and the second of which was
based on the analysis of first-order moments of adaptive vari-
ables using the root locus method [15]. The common distinc-
tion of these two analyses from other existing analyses is that
they can apply to any general secondary path. However, similar
to other existing studies, both of these studies assumed that the
FxLMS algorithm enjoys a perfect secondary path model. As
shown in Fig. 1, for simplified cases with pure delay secondary
paths and periodic noise, effects of using imperfect secondary
path models have been analyzed [16], [17]. However, for a gen-
eral secondary path and stochastic noise field, these effects have
been analyzed only when the secondary path model is assumed
to be perfect.
This paper aims to extend the analysis conducted in the au-

thors previous work [14], in order to determine effects of im-
perfect secondary path models on stability, steady state perfor-
mance and convergence speed of FxLMS-based ANC systems.
As shown in Fig. 1, the distinction of this study from existing
studies is that this study assumes a general secondary path and
stochastic noise field. The rest of this paper is organized as
follows. Section II describes mathematical model of FxLMS-

1063-6536/$26.00 © 2011 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 2. Block diagram of FxLMS-based active noise control system.

based ANC systems. Section III models dynamics of these sys-
tems. Section IV determines effects of imperfect secondary path
models on these systems. Section V suggests intentional misad-
justment of secondary path models for improving performance
of ANC systems. Section VI discusses the validity of theoretical
results using numerical analysis. Section VII shows successful
application of theoretical results in an experimental ANC setup,
implemented using FPGA technology. Section VIII represents
concluding remarks.

II. FXLMS-BASED ANC SYSTEMS

Fig. 2 shows the general block diagram of a single channel
FxLMS-based ANC system. In this figure, is the reference
signal, is the anti-noise signal generated by the ANC con-
troller, is the acoustic noise in the silence zone, and
is the residual noise in the silence zone. In practice, is
measured using a microphone, called the reference microphone,

is played using a loudspeaker, called the anti-noise source,
and is measured using another microphone, called the error
microphone. As shown, is assumed to be the response of
the linear system to . The ANC controller, which is as-
sumed to be a transversal adaptive filter, is shown by . The ac-
tual secondary path and its model are shown by and , respec-
tively. It is usually assumed that is a finite-duration impulse
response (FIR) system of length with an unknown weight
vector, represented by

(1)

This modeling assumption does not cause any constraint to this
analysis because actual acoustic signal channels have finite-du-
ration impulse responses. However, even if the actual secondary
path has an infinite-duration impulse response (IIR), it can be
represented using a FIR system of high order. Similarly, the sec-
ondary path model can be described by a FIR system of length

with the impulse response represented by weights
. This estimate impulse response can be also

represented by a weight vector as

(2)

A. Mathematical Model

According to Fig. 2, for a transversal ANC controller of
length , the residual noise can be expressed as

(3)

where and are called the reference and weight vec-
tors, respectively. The residual noise power during the adapta-
tion process, called the mean square error (MSE), is expressed
as

(4)

As shown in [5], the minimal MSE can be obtained by
setting to the Wiener–Hopf optimal vector that is

(5)

where and . By
substituting into (3) and (4), is obtained as

(6)

where denotes the power of . According to (5),
can be computed by using statistical parameters of the noise
field; however, these parameters are usually unknown. Avoiding
this problem, the FxLMS algorithm which performs a gradient-
based adaptation process on in such a way that this vector
converges to , can be used. This process can be implemented
by

(7)

where scalar is the (adaptation) step-size and vector is
given by

(8)

In practice, the weight vector is unknown and, therefore,
is estimated by

(9)

By replacing with in (7), the FxLMS algorithm is
modified to

(10)

which can be implemented using the available parameters and
the signals collected by the reference and error microphones.

B. Rotated Vectors

Usually, dynamics of FxLMS-based ANC systems are mod-
eled in terms of rotated vectors [18]. These vectors are computed
by using the rotation matrix , obtained from the diagonaliza-
tion of the auto-correlation matrix as
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(11)

where is the eigenvectors matrix, satisfying the equality of
, and diagonal matrix contains the eigenvalues of

. For a broad-band white signal of power , it can be shown
that

(12)

Now, the rotated reference vector is defined as

(13)

This vector can be also represented in form of

(14)

(15)

where denotes the th column of . Similarly, the rotated
weight misalignment vector is defined as

(16)

This vector can be also represented in form of

(17)

Equations (3), (9), and (10) can be re-expressed in terms of ro-
tated vectors as

(18)

(19)

(20)

where is the optimal residual noise, obtained by setting
in (3).

C. Independence Assumptions

The independence assumptions, proposed by Gardener [19],
are usually used in the stochastic analysis of the FxLMS algo-
rithm, such as those reported in [9]–[11] and [15]. The first in-
dependence assumption states that pair is a zero
mean independent identically distributed (iid) sequence; there-
fore

(21)

where is Kronecker delta function. Combining this as-
sumption and (12), (13) results in

(22)

The second assumptions states that is independent of the
noise process [19]. Consequently, is independent of the

rotated reference vector . Finally, the third independence as-
sumption states that for small adaptation step-sizes, adaptive
weights are statistically independent of noise samples [5]. Ac-
cordingly, rotated misalignment weights and elements of the ro-
tated reference vector are statistically independent.

III. MODELING CONVERGENCE BEHAVIOR OF FXLMS-BASED
ANC SYSTEMS

In [14], it is shown that by substituting (18) into (4) and using
the independence assumptions, the MSE function can be ex-
pressed as

(23)

where and , called the excess-MSE
function, is given by

(24)

The time difference of is defined as

(25)

By combining (19), (24), and (25), can be obtained as

(26)

where scalar functions and are given by

Appendix A shows that can be simplified to

(27)

where is defined as

(28)

Appendix B shows that can be simplified to

(29)

where constant matrix is defined as

(30)

Now, substituting (27) and (29) into (26) results in

(31)
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where coefficients and are given by

(32)

and

(33)

is the secondary path equivalent delay, defined as

(34)

In [14] and [15], the authors defined the concept of secondary
path equivalent delay for a perfect secondary path model,
as a factor limiting the convergence behavior of the FxLMS
algorithm. In fact, the expression given in (34) is an extension
of previously-derived expressions to a more general case with

. It can be seen that by setting , (34) is simplified to

(35)

which is similar to the expression derived in [14]. Note that
when the model, obtained by the secondary path identification
technique, is in form of (where is a scalar), then the in-
fluence of the model misadjustment on the system performance
can be effectively removed by scaling the adaptation step-size
by a factor of . This is because, in this case, the FxLMS up-
date equation becomes

(36)

Therefore, it can be assumed that the system model, used in
computation of is a perfect model and the adaptation step-
size in increased by a factor of . However, the misadjustment
of themodel, usually obtained by a secondary path identification
technique, is more complicated in practice. In fact if the model
is in form of , it can be considered as a perfect model.
This paper aims at considering a general case with an arbitrary
imperfect secondary path model.

IV. PERFORMANCE ANALYSIS

The dynamic model for the excess-MSE function, given in
(31), can be interpreted as the distance of the instantaneous
power of the residual noise from the minimum achievable noise
power. Based on this interpretation, performance of ANC sys-
tems in both the transient and steady-state modes can be studied
by analyzing the variation of this function during the operation
of the adaptation algorithm. This section used the model, de-
veloped for the excess-MSE function in Section III, to deter-
mine influences of imperfect secondary pathmodels on stability,
steady-state and convergence speed of FxLMS-based ANC sys-
tems. Note that, in ANC literature, the excess-MSE level is
usually referred to as the distance of the residual noise power
from its minimum level in steady state conditions [20], [21].
However, the variation of excess-MSE in both the transient and
steady-state modes is studied in this paper. For this reason, the

term “excess-MSE function” is used in this paper (rather than
“excess-MSE”).

A. Stability

Equation (24) shows that is a positive definite func-
tion of adaptation process variables. Therefore, according to
the Lyapunov stability theory, if then
is a Lyapunov function and the adaptation process converges
to its equilibrium point at origin: , corresponding to

. In transient conditions, the MSE function is far
from its optimal level: . In this case, the first term
in (27) can be neglected and, thereby, (31) can be approximated
by

(37)

According to (28), is positive definite (because
). In this case, holds if

(38)

From (33), it can be obtained that if is smaller than the fol-
lowing upper-bound (hereafter called the stability bound) then

and, thereby, the convergence of the adaptation process
to its equilibrium point is assured

(39)

By setting in (39), the stability bound of the system with
a perfect secondary path model (denoted by ) can be ob-
tained as

(40)

A similar expression for was derived in [14]. Generally,
the stability bound is a factor limiting the stability of an FxLMS-
based ANC system. Therefore, in order to investigate the influ-
ence of an arbitrary secondary path model on stability of ANC
systems, the ratio of to , called the stability ratio, can
be evaluated. This ratio is defined as

(41)

By using (39) and (40), can be obtained as

(42)

In practice, high order adaptive filters are used (large ). In this
case, (42) can be approximated by

(43)

By using (41) and (43), influences of imperfect secondary path
models on stability bound of FxLMS-based ANC systems can
be investigated in the following three different cases.

Case A1) When the correlation of the actual secondary
path and its model is negative: , the stability
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ratio becomes negative: . From (40), it can be seen
that is always positive; therefore, combining the in-
equality of and (41) results in

(44)

which means that there is no positive step-size for which
the system becomes stable.
Case A2) When , the stability ratio has a
value between 0 and 1: . In this case, is
smaller than ; therefore, the system can still become
stable (for ) but its stability bound is decreased
by a factor of .
Case A3) When , the stability ratio becomes
greater than 1: . Accordingly, becomes than

. In this case, the imperfect secondary path model
causes the stability bound of the system to be increased
(by a factor of ). The maximum possible value of can
be computed from the Cauchy Schawrs inequality as

(45)

Therefore, the necessary condition for occurring this case
(increasing the stability bound by the imperfect secondary
path model) is

(46)

B. Steady-State Performance

In steady-state conditions, the time difference of the ex-
cess-MSE becomes zero

(47)

where denotes the steady-state excess-MSE. Substi-
tuting (28) and (31) into (47) results in

(48)

By solving (48), is obtained as

(49)

By substituting (32) and (33) into (49) and simplifying the re-
sult, is obtained as

(50)

Combining (39) and (50) results in

(51)

For relatively small step-sizes , can be
approximated by

(52)

In steady-state conditions, (23) can be re-expressed as

(53)

where denotes the steady-state MSE. By substituting
into (53), the steady-state MSE can be obtained as a

function of step-size and secondary path model :

(54)

The steady-state MSE of the system using a prefect secondary
path model (denoted by ) can be obtained by setting
in (54) as

(55)

A similar expression for was derived in [21]. The steady-
state performance of an ANC system is inversely related to the
steady-state MSE. Therefore, in order to investigate influences
of a secondary path model on the steady-state performance of
the system, the ratio of to can be evaluated. This
ratio, called the steady state performance ratio, is defined as

(56)

By using (54)–(56), is obtained as

(57)

where , as defined earlier in (32). By using (43),
is simplified to

(58)

which shows the existence of a direct relationship between
and . By using (56)–(58), influences of imperfect secondary
path models on steady state performance of FxLMS-based
ANC systems can be investigated in the following three dif-
ferent cases.

Case B1)When , the steady-state ratio varies from
to ; however, since is negative, the system is

unstable (referring to Case A1).
Case B2) When , the steady state ratio has
a value between 0 and 1: . Therefore, the
steady-state performance of the system is decreased (by a
factor of ).
Case B3) When , the steady state ratio becomes
greater than 1: . In this case, the steady state per-
formance of the system is increased (by a factor of ).
However, even for , the steady-state ratio cannot
reach beyond .
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C. Convergence Speed

According to the Lyapunov stability theory, the convergence
speed of a dynamic system, is directly related to the absolute
value of its Lyapunov function time difference. As mentioned in
Section IV-A, the excess-MSE function is a Lyapunov function
of system variables. Therefore, from (37), it can be shown that
the convergence speed of FxLMS-based ANC systems has a
direct relationship to

(59)

where denotes the convergence speed of the system with im-
perfect secondary path models. For the convergence speed of
the system with a perfect secondary path model (denoted by ),
this relation becomes

(60)

In order to investigate influence of an imperfect secondary path
model on the convergence speed of ANC systems, the ratio of
to can be evaluated. This ratio, called the convergence speed
ratio, is defined as

(61)

By using (33), is obtained as

(62)

which can be simplified to

(63)

For small step-sizes, (63) can be approximated by

(64)

In practice, small step-sizes are used due to non-stationary be-
haviors of physical acoustic noise. Accordingly, (64) can effi-
ciently evaluate in practical situation; however, (63) can per-
fectly evaluate this parameter for either a small or large step-
size. Based on (61) and (64), influences of imperfect secondary
path models on convergence speed of FxLMS-based ANC sys-
tems can be investigated in the following three different cases.

Case C1)When the correlation of the actual secondary path
and its model is negative: , the convergence speed
ratio becomes negative: . This conditions
also satisfies ; therefore, this case is equivalent

to Case A1 in which the system becomes unstable.
Case C2)When , the convergence speed
ratio has a value between 0 and 1: . In this
case, is smaller than ; therefore, the convergence speed
is decreased (by a factor of ).
Case C3) When , the stability ratio becomes
greater than 1: . Accordingly, becomes greater
than . In this case, the convergence speed of the system
is increased by a factor of . The maximum possible

value of can be computed from the Cauchy Schawrs
inequality as

(65)

which equals to the inverse of . Therefore, the nec-
essary (not sufficient) condition for occurring this case (in-
creasing the convergence speed by the imperfect secondary
path model) is

(66)

Comparing this case and Case A3 shows that occurrence of
these two cases for a given secondary path model is impos-
sible. This is because the necessary condition for the occur-
rence of Case B3 is but the necessary condition
for the occurrence of Case C3 is . As a result, it
is not possible that a given imperfect secondary path model
causes both the stability bound and convergence speed of
FxLMS-based ANC systems to be improved.

V. INTENTIONAL MISADJUSTMENT OF SECONDARY
PATH MODELS

From the above discussion, the following rules, governing in-
fluences of imperfect secondary path models on FxLMS-based
ANC systems, can be derived.

Rule1) Case A1 occurs only when holds, resulting
in the occurrence of Case B1. Also, ,
resulting in the occurrence of Case C1.
Rule2) Case A2 occurs only when holds,
resulting in the occurrence of Case B2.
Rule3) Case A3 occurs only when holds, resulting
in the occurrence of Case B3.
Rule4) The occurrence of Case A3 is possible if

holds; on the other hand the occurrence of Case C3 is
possible if holds. Therefore, Cases A3 and C3
can not occur with each other.

By applying these rules, influences of secondary path models
on FxLMS-based ANC systems can be classified into four com-
posite cases, as shown in Fig. 3. For each composite case, the
behavior of the system is described in Table I. According to
this table, the first composite case occurs when A1, B1, and C1
occur, resulting in the instability of the system due to the use of
imperfect secondary path models. The second composite case
corresponds to the occurrence of A2, B2, and C2, resulting in
decrease in the stability-bound, steady state performance and
convergence speed of the system. The third composite case oc-
curs when A2, B2, and C3 occurs, resulting in decrease in the
stability bound and steady state performance and increase in
the convergence speed. Finally, the fourth composite case oc-
curs when A3, B3, and C2 occur, resulting in increase in both
the stability bound and steady-state performance and decrease
in the convergence speed. However, as mentioned earlier, the
steady-state performance can not considerably improve in this
case.
As a surprising result, imperfect secondary path models do

not necessarily degrade all of the stability bound, steady state
performance or convergence speed of FxLMS-based ANC sys-
tems. Therefore, intentional misadjustment of secondary path
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Fig. 3. Composite cases (possible combinations of cases).

TABLE I
COMPOSITE CASES OF INFLUENCES OF IMPERFECT SECONDARY PATH MODELS

ON FXLMS-BASED ANC SYSTEMS

models can improve stability bound or steady state performance
of these systems, at the cost of decreasing their convergence
speed (the forth composite case). Also, it can improve conver-
gence speed of these systems at the cost of degrading their sta-
bility bound and steady-state performance (the third composite
case).
In practice, since small step-sizes are used , the

ANC system can easily tolerate a moderate decrease in the sta-
bility bound. For example, if the ratio of stability for a particular
secondary path model is , then the stability bound is
decreased by a factor of 0.5. However, since the step-size is ad-
justed far from the original , the newmaximum bound does
not result in instability. Moreover, it can be found out that, for
small step-sizes, the ratio of steady-state performance always
remains around 1. As a particular example, when ,
the steady-state ratio can be obtained from (58) as

, which is a number close to 1 (because small
results in small ). Therefore, since the steady state perfor-

mance is decreased by a factor of , its variation can be
neglected. According to this discussion, it can be stated the the
disadvantages of the third composite case can be tolerated by
the practical ANC systems. Now, the question to be answered
is: for a particular secondary path model with a stability ratio
smaller than 1 (e.g., ), how much improvement in the
convergence speed is achievable? In other words, if the cost of
using an imperfect secondary path model with a stability ratio
smaller than 1 is justified, what is the maximum achievable ben-
efit to the convergence speed?
From Cauchy–Schwarz inequality, it can be shown that

(67)

which is equivalent to

(68)

Fig. 4. Impulse responses of actual secondary path and its models used in com-
puter simulation; dashed lines: actual system; solid lines: models.

Therefore, when the stability ratio is smaller than 1, the max-
imum achievable convergence speed ratio equals to the inverse
of the stability ratio. In the above example, where , the
maximum achievable convergence speed ratio is and its
thus expected that a suitable imperfect secondary path model
can cause the convergence speed of the system to be increased
by a factor of up to 2.

VI. SIMULATION RESULTS

Simulation results shows the validity of the proposed theo-
retical results. Fig. 4 shows the impulse response of the actual
secondary path used in computer simulation, as well as those of
4 imperfect models of it. As can be seen, model 1 is a nearly
perfect model but models 2, 3, and 4 are deviated from the per-
fect model. In simulation, the filter length is set to
and the primary noise is a computer-generated white se-
quence of real numbers with mean zero and variance . In
these conditions, the minimal MSE can be computed using (6)
as . For each model, ratios , , and can
be computed by using (43), (58), and (64).
For model 1 (perfect model), all of the performance ratios are

equal to one. Also, the equivalent delay of the secondary path
can be obtained using (34) as , the upper-bound of
the step-size can be obtained using (40) as , and
the steady state MSE can be obtained using (55) as
22.95 dB. These values can be considered as the reference

values.
For model 2, the stability ratio is , the steady-

state ratio is and the convergence speed ratio is
. This situation is an example for the occurrence

of the fourth composite case; it is thus expected that the sta-
bility bound is increased by a factor of 1.6216, the steady-state
performance is slightly increased by a factor of 1.0156 and the
convergence speed is decreased by a factor of 0.4066.
For model 3, the stability ratio is , the steady-

state ratio is and the convergence speed ratio is
. In this situation, the third composite case occurs.

Consequently, it is expected that the stability bound is decreased
by a factor of 0.3880, the steady-state performance is slightly
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Fig. 5. Mean square error obtained from simulation experiments.

decreased by a factor of 0.9407 and the convergence speed is
increased by a factor of 1.7575.
For model 4, the stability ratio is , therefore,

since the first composite case occurs, the system becomes un-
stable. For each model, the operation of the FxLMS-based ANC
system is simulated in MATLAB. The MSE function is computed
by averaging the square error signal over 200 different runs with
independent sequences of noise. The result is plotted in Fig. 5.
As can be seen, for all models, the result is in an excellent agree-
ment with the analytical result. According to this figure, it is ev-
ident that the effect of using imperfect secondary path models
on the convergence speed of FxLMS-based ANC systems is
significant but this effect on steady-state performance of these
systems is neglectable. The interesting result is gaining a con-
vergence speed higher than the reference speed when imperfect
model 3 is used.

VII. EXPERIMENTAL RESULTS

Fig. 6 shows the schematic diagram of the experimental adap-
tive ANC setup in this research. Fig. 7 shows a photo of the
actual system. The acoustic duct with dimensions of 150 cm
31 cm 23 cm is constructed from 1.8 cm thick medium den-

sity fiber-board, with carpeted interiors. This duct was equipped
with the following electro-acoustic components:
1) reconfigurable field-programmable gate array (FPGA)
Chassis (NI 9104), which utilizes an embedded Xilinx
FPGA chip (clocked at 40 MHz);

2) 400MHz high performance real-time digital controller (NI
CRIO-9014) [22];

3) 24-Bit analog input module (NI 9233);
4) 16-Bit analog output modules (NI 9263);
5) two microphones with cardioid response pattern (AKG-
D770), used as the reference and error microphones;

6) loudspeaker with on-board 20 W power amplifier (Phonic
SEp 207), used as the anti-noise source.

The combination of the reconfigurable chassis, real-time con-
troller, and I/O modules creates a complete stand-alone em-
bedded system. The FPGA circuitry in the chassis controls each
I/O module and passes data to the controllers through a local
PCI bus using built-in communication functions. The FPGA de-
sign of the ANC system should be developed in LAB VIEW
FPGA Module and compiled into a bit-stream file for down-
load onto CRIO, where the design is synthesized in the FPGA

Fig. 6. Schematic diagram of experimental setup.

Fig. 7. Experimental setup: (a) general view, (b) interior view of acoustic duct,
and (c) CRIO embedded system and its connections.

chip. The real-time system has two modules; the first of which
is a real-time adaptive LMS algorithm for offline secondary
path modeling. This model (which is assumed to be a perfect
model) is then uploaded onto the memory of the FPGA chassis.
The second module or main module, is a real-time adaptive
FxLMS-based ANC system. Note that, in all the experiments,
the step-size is set to a small number below than 0.1 ; ac-
cordingly, (43), (58), and (64), which are derived assuming a
small step size, are valid.
In the first experiment, the secondary path model (model 1

shown in Fig. 8 is the one uploaded in the memory before con-
ducting the experiment. It can be assumed that this model is a
perfect model; therefore all of the ratios are equal to one. The
power of the residual noise obtained from this experiment is
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Fig. 8. Impulse responses of actual secondary path and its models in experi-
ments; dashed lines: actual system; solid lines: estimated models.

Fig. 9. Residual noise power obtained by using experimental ANC system.

shown in Fig. 9(a). As can be seen, the residual noise power
converges to 22 dB after about 1900 ms. This result is consid-
ered as the reference result for the next experiments.
In the second experiment, the position of the error micro-

phone is unchanged; therefore, the actual secondary path re-
mains identical to that of the previous experiment. However,
an imperfect secondary path model with the impulse response,
shown in Fig. 8 (model 2) is used. By using (43), (58), and (64)
the ratios of imperfect secondary path model can be obtained as

, and . Therefore; it is
expected that, the convergence speed of the system is decreased
and its steady state performance remains untouched. The power
of the residual noise obtained from this experiment is shown in
Fig. 9(b). As can be seen, this signal power reach about the ref-
erence level of 22 dB after about 3000 ms.
In the third experiment, the secondary path model is inten-

tionally adjusted to model 3 (shown in Fig. 8. However, since
the error microphone position is unchanged the actual secondary
path remains constant. For the secondary path model used in
this experiment, , , and .
Therefore, it is expected that the steady state performance of
the system remains untouched but its convergence speed is in-
creased by a factor of about 1.5479. The power of the residual
noise obtained from this experiment is shown in Fig. 9(c). Ac-
cording to this figure, the residual noise power reach about the
reference level of 22 dB after about 1200 ms. As expected, in-
tentional misadjustment of the secondary path model into model
3, causes the overall performance of the ANC system to be im-
proved.

VIII. CONCLUSION

The stochastic analysis of the FxLMS-based ANC systems,
conducted in the authors previous work, has a good potential to
be extended for more general cases. As an effort to extend this
analysis, it is assumed that the secondary path model used by the
FxLMS algorithm is not a perfect model. The results obtained
from this analysis consists of a number of mathematical expres-
sion, describing influences of imperfect secondary path models
on the stability bound, steady-state performance and conver-
gence speed of FxLMS-based ANC system. As a surprising re-
sult, it is found out that intentional misadjustment of secondary
path models can improve convergence rate of these systems at
the cost of decreasing their stability bound and steady-state per-
formance. It is shown that the moderate decrease of the stability
bound is tolerable and, also, the effects of imperfect secondary
path model on the steady-state performance is not considerable.
Therefore, it is suggested to improve the convergence speed of
the FxLMS-based ANC systems by misadjusting the secondary
path model used in the FxLMS algorithm.

APPENDIX A
COMPUTATION OF

By defining

(69)

can be expressed as

(70)

Assuming that the data sequence (reference signal) is indepen-
dent of the MSE function, and using (23), is simplified to

(71)
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From (14) and (20), the term appeared
in (71) can be expanded to

(72)

Substituting (15) into (72) results in

(73)
Now, combining (21) and (73) results in

(74)

From (11) ; therefore

(75)

where denotes the vector norm and vector is defined in (2).
Now, combining (71) and (75) results in

(76)

Subsequently, combining (76) and (70) gives as shown in
(27).

APPENDIX B
COMPUTATION OF

By defining

(77)

can be expressed as

(78)

Using (18), can be expanded to

(79)

The first term is zero because according to the second and third
independence assumptions the reference signal is a zero mean

signal and independent of the weight vector and the optimum
error. Therefore, can be simplified as

From (11) it can be obtained that . Using this
identity in the above expression for results in

(80)

which can be expressed as

(81)

where is defined as

(82)

In [14], it was shown that

(83)

Now, combining (81) and (83) results in

(84)

where is defined as

(85)

For slow adaptation process, it can be assumed that
; therefore, from (24) and (85)

it can be approximately obtained that

(86)

Using the approximation given in (86), (84) is simplified to

(87)
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Using the recursive property of (87), is expanded to

... (88)

Since , can be approximated by its two first terms

(89)
Now, substituting into (78), is obtained as

(90)

For slow adaptation process, it can be approximately assumed
that , so (90) can be approximated
by

(91)
where constant matrix is defined in (30). Using this matrix,
it can be shown that

(92)

Finally, can be expressed as shown in (29).
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