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ABSTRACT 
This document reviews currently proposed IPv4-IPv6 translation 
techniques and describes a simple performance study of three 
open-source IPv4-IPv6 translators. The purpose of this document 
is to introduce the fundamental ideas behind NAT-PT, NAT64 and 
HTTP proxy and to measure the performance effect on round-trip 
time of using these translators in a simple network with up to 100 
simultaneous connections.   

Categories and Subject Descriptors 
C.2.6 [Computer-communication Networks]: Internetworking – 
routers.  

General Terms 
Measurement, Performance, Experimentation. 

Keywords 
IPv6, NAT-PT, NAT64. 

1. INTRODUCTION 
Each device connected to the Internet needs at least one Internet 
Protocol (IP) address, used to route packets destined to the device 
or originated from the device. 

 The current IPv4 [2] uses a 32-bit address space which can hold 
up to four billion (232) addresses at most. Due to constant growth, 
the global IPv4 address pool is almost exhausted [1]. 

IPv6 [3] has slowly started to be deployed, replacing IPv4 with a 
128-bit address space. It allows a theoretical maximum of 3.4 × 
1038 addresses and it is expected to solve the address shortage 
problem. However, IPv6 is not backward compatible with IPv4. 

We expect a long transition period, during which IPv4 and IPv6 
must coexist in the Internet. During this time, various IPv4-IPv6 
coexistence techniques such as tunnels will play a critical role. At 
some time, IPv6-only hosts will appear in large numbers, but 
many existing servers will support only IPv4. Most coexistence 
techniques will not help in this case: only some kind of translation 
of the packet stream will allow an IPv6-only client to 
communicate with an IPv4-only server. This paper is focused on 
these translation techniques.   

We will present efficiency comparisons between three different 
IPv4-IPv6 translation techniques which have been defined and 
implemented. We are not aware of any other published 

measurement studies of this topic. In Section 2, we describe the 
fundamental algorithms of NAT-PT, Stateful NAT64 and HTTP 
Proxy. In section 3, we describe an experimental environment to 
measure simple translation efficiency and how it scales up with 
increasing numbers of connections. In sections 4 and 5, we 
present and discuss results from the experiments. 

2. TRANSLATION TECHNIQUES 
2.1 A. Network Address Translation – 
Port Translation 
Basic Network Address Translation (NAT) translates an IPv4 
address and a port number to a different IPv4 address and port 
number, in order to allow multiple client devices to share a single 
IPv4 address. Network Address Translation – Protocol 
Translation (NAT-PT) [4] similarly assigns a shared IPv4 address, 
and a translated port number, to an IPv6 client that uses NAT-PT 
to connect to a remote IPv4-only server. Each IPv6 client is 
assigned an IPv4 address and a translated port number when it 
starts a new flow through the NAT-PT. The IPv6 header from the 
client is translated into an IPv4 header, using the assigned address 
and port number, and the resulting packet is sent to the destination. 
Any IPv4 response packet from the server is also translated back 
to an IPv6 packet through NAT-PT, using the address and port 
information stored from the previous translation. If no IPv6 
address information is found for such an IPv4 packet, the packet 
is silently discarded. 

NAT-PT also includes dynamic translation of DNS queries and 
responses, but this does not affect the results given in this paper. 

2.2 B. Stateful NAT64 
Stateful NAT64 [5] formally replaces NAT-PT as an IETF 
Proposed Standard. Stateful NAT64 (often abbreviated as 
NAT64) uses a similar packet translation mechanism to NAT-PT, 
and requires a Binding Information Base and a Session table to 
maintain information about each session between IPv4 and IPv6 
hosts (see Fig. 1 for an example). A Binding Information Base 
entry stores IPv6 address, port, shared IPv4 address and port of an 
IPv6 node. The session table entry stores two 5-tuples of packet 
headers, summarizing session information about the 
communicating nodes in both IPv4 and IPv6 forms. 
NAT64 also uses a shared IPv4 address to proxy for an IPv6 host 
when establishing a session with an IPv4 host. The translation 
procedure is very similar to NAT-PT in Section A above. In place 
of a DNS translator, NAT64 requires an associated DNS64 server, 
which synthesizes DNS responses rather than translating them; 



this too does not affect the results in this paper. The other 
differences from NAT-PT are clarifications based on practical 
experience. They give no grounds to anticipate substantial 
changes in performance. 

2.3 C. HTTP Proxy 
An HTTP proxy [6] running in a dual-stack (IPv4 plus IPv6) host 
can be used to convert an IPv4 HTTP message into IPv6 or vice 
versa. The HTTP proxy mediates an HTTP session between IPv4 
and IPv6 nodes by establishing a session to each node. When it 
receives an HTTP packet from either host destined to the other, it 
rebuilds an HTTP packet with the same HTTP content but using a 
different IP version. Logically, the original packet is not 
translated but recreated as a different packet with the same HTTP 
content. 

3. EXPERIMENT ENVIRONMENT 
The purpose of this experiment is to understand performance 
differences between the three techniques described above. We 
built a simple client – server network with IPv4-IPv6 translators 
deployed in a dual-stack host in the middle (Fig. 2). We sent 
HTTP packets from the client to the server and back through the 
translators, with various numbers of simultaneous connections, 
and measured the Round Trip Time of the packets returned. The 
packets themselves had two different sizes, referred to as “small” 
and “large”. 

3.1 Machines involved 
There are three nodes involved in this experiment, an IPv6 client, 
an IPv4-IPv6 translator and a simple web server. All three were 
PCs running Linux and appropriate open source software. 

The IPv6 client is set to send various sizes of HTTP packets to the 
simple web server and measures the Round-Trip Time (RTT) 
between an HTTP message sent and an HTTP reply received from 
the web server; this is of course distinct from the underlying TCP 
RTT. The client normally has only IPv6 enabled and is connected 
to our IPv6-only network. 

The IPv4-IPv6 translator sits in the middle between the client and 
web server. It is normally connected with the client via an IPv6 

interface and the server via an IPv4 interface, so it is able to 
communicate with both nodes. The translator performs IPv4-IPv6 
packet translation by intercepting all the packets that enter one 
interface and sending translated packets to the other interface. In 
the tests using native IPv4 or IPv6, this device acts as a regular IP 
router. 

The simple web server receives each HTTP packet sent from the 
client through the translator and sends an HTTP reply packet back 
to the client. 

The client, translator and HTTP server each has Ubuntu 9.1 
karmic (kernel 2.6.31-16) as its operating system. The client has 
an Intel Core 2 Duo E8400 CPU with 3GHz, 3.2GB DDR2 
memory and Intel 82567-LM-3 Gigabit network connection 
controller card. The translator and HTTP server both have an Intel 
Atom 330 CPU with 1.60GHz, 2GB DDR2 memory and a 
Realtek RTL8111/8168B PCI Gigabit Ethernet controller card. 

3.2 Measurements 
• The client sends two different packets for each set of 
experiments. One is a small HTTP request packet with size 107 
bytes and another is a large HTTP request using an HTTP POST 
header with 1200 bytes of random characters in the contents, 
which makes an overall packet size of 1382 bytes. 

• The client establishes 1 to 100 simultaneous connections with 
the server for each set of experiments. Each connection is used to 
send 10000 identical HTTP request packets and receive 10000 
HTTP responses each time. 

• The translators used in this experiment are naptd [7] from 
Lukasz Tomicki, Ecdysis from Viagenie [8] and Apache HTTP 
proxy server [9]. These translators implemented NAT-PT [4], 
NAT64 [5] and HTTP proxy [6] respectively and each was used 
for a set of experiments. The performance of these translators was 
measured and compared both with each other and with native 
IPv4 and IPv6 connections. 

 
Figure 1. Basic translation of Stateful NAT64 



• The web server serves two different HTTP responses. One is a 
small HTTP response containing a single-character string “a” and 
another is a large HTTP response with a random string of length 
1083. Both types of response are used for each experiment.  

3.3 Domain name service handling 
We deployed a DNS-ALG translator for NAT-PT, a DNS64 
synthesizing resolver [10] for NAT64, and a BIND9 DNS server 
for the Apache HTTP proxy server. The client sends a DNS 
lookup for the web server when it needs to discover its IP address. 
The DNS request is sent to the central machine containing the 
translator, and the relevant DNS record is hard coded in the DNS 
server in this machine, with no further lookup required. The DNS 
response packet is captured by DNS-ALG or DNS64 as 

applicable and an IPv6 response is created by translation (DNS-
ALG) or synthesis (DNS64). In the case of the HTTP proxy, DNS 
lookup is performed from the proxy server, not the client. This 
can make a small difference in the performance measurement of 
the translator, since the other two translation techniques do not 
require the machine where the translator is installed to initiate 
DNS lookup. However, the DNS response is always cached after 
the initial lookup, so the single DNS lookup has negligible impact 
on the average RTT measured over 10000 tests. 

4. EXPERIMENT AND RESULTS 
During the experiment we have measured performance of the 
three IPv4-IPv6 translators, as well as of native IPv4 and IPv6 
connections, with all other conditions held constant, giving a total 
of five sets of results, each ranging up to 100 simultaneous 
connections carrying 10000 HTTP transactions.  

Note that we use the terms NAT-PT and NAT64 to represent the 
naptd and Ecdysis NAT64 implementations. However, we did not 
compare the intrinsic efficiency of the NAT-PT and NAT64 
specifications, but only of the selected open source 
implementations. 

4.1 Experiment Procedure 
1) For each set, the client sends one DNS lookup for the web 
server to the DNS server, which is the dual-stack machine with 
translator. In case of the HTTP proxy server, this DNS lookup is 
performed by the proxy server, therefore no DNS lookup is 
performed by the client nor is the DNS answer sent to the client; 
otherwise the DNS answer is sent back to the client from the DNS 
server’s local record.  

 
2) The client establishes a single TCP connection to the web 
server through the IPv4-IPv6 translator after it receives the DNS 
answer. (In the native IP tests, the TCP connection is via the 
router.) 
3) When the connection is established, the client sends a small 
HTTP request for a web page to the web server using IPv6. This 
packet is translated in the middle by IPv4-IPv6 translator and sent 
to the web server.  
4) A small HTTP response from the web server is also translated 
and sent back to the client and the time between the HTTP request 
sent and the HTTP response received is recorded. 
5) For each connection, 10000 HTTP requests are sent and the 

time is recorded for each HTTP request and response.  
6) After a single connection, two simultaneous connections are 
established and do the same procedure from 2) to 5).  
7) Increase number of simultaneous connections to 3, 4, 5, 10, 20, 
30, 50, and 100 and do the same procedure from 2) to 5). 
8) Keep the HTTP request size small while changing the HTTP 
response size to large, and otherwise do the same procedure from 
2) to 7). 
9) Change the HTTP request size to large and HTTP response size 
to small, and otherwise do the same procedure from  2) to 7). 
10) Disable the IPv4-IPv6 translators and enable IPv4 only in all 
three machines involved. Do the same procedure from 2) to 9) 
with native IPv4 connection. 
11) Disable IPv4 and enable IPv6 only in all three machines 
involved and do the same procedure from 2) to 9) with native 
IPv6 connection.  
12) Collect RTT data based on the procedure above for each 
IPv4-IPv6 translator and for the native connections. 
13) Classify the results based on the request/response sizes. 
Fig. 3, 4 and 5 show the results for a range of conditions. Each 
figure shows boxplots, indicating in µs the median RTT as well as 
its statistical range, for native IP and the three translation methods. 
For each boxplot, dots represent each RTT measured from the 
translator on the bottom of X-axis. The upper quartile, median and 
lower quartile for each translator is represented as a solid box. We 
report the observed variations in RTT in percentage terms; the 
significance of these changes in practice is discussed in section 5. 

 
Figure 2. Network structure of the experiment 



 
Figure 3. Boxplot of RTT vs Translator with small request / small response 

4.2 Small HTTP request, Small HTTP 
response (Fig. 3) 
There appear to be noticeable differences between the average 
RTT of IPv4-IPv6 translators and native connections. 
Among the translators, NAT64 gave the shortest median RTT for 
both single connections and any number of simultaneous 
connections. It is, however, 46% slower than the median RTT of 
native IPv6 with a single connection. The median RTT of NAT64 
increased steadily with the number of simultaneous connections, 
up to 20 simultaneous connections. The median RTT of NAT-PT 
increased rapidly with the number of simultaneous connections, 
even though the RTT of NAT-PT with few connections is similar 
to the RTT of NAT64. The variability of the RTT of NAT-PT 

also increased rapidly with the number of simultaneous 
connections. With 100 simultaneous connections, the median 
RTT of NAT-PT is 140% more than the median RTT of a native 
IPv6 connection. The median RTT of the HTTP proxy is also 
similar to NAT64 with a small number of simultaneous 
connections, and increases steadily as the number of connections 
increases. Above 50 simultaneous connections the median RTT of 
HTTP proxy settles down. The median RTT of the HTTP proxy 
with 100 simultaneous connections is 99% more than the median 
RTT of native IPv6 connection. 
The median RTTs of native IPv6 and IPv4 connection do not 
differ much for any number of simultaneous connections.  The 
median RTT of native IPv4 is only slightly faster than IPv6. 

 
Figure 4. Boxplot of RTT vs Translator with small request /large response 



   
Figure 5. Boxplot of RTT vs Translator with large request / small response 

4.3 Small HTTP request, Large HTTP 
response (Fig. 4) 
With a large response size, we find a similar pattern of RTT 
values to section IV.B. We observe a noticeable difference of 
median RTT between native connections and translators. 
Among the translators, NAT64 gives the lowest median RTT for 
any number of simultaneous connections. Compared to native 
IPv6 connection, NAT64 was only 46% slower when there was a 
single connection and 50% slower when there were 100 
simultaneous connections. For NAT-PT, increasing the number of 
simultaneous connections caused the median RTT and variation to 
increase considerably compared to other translators, even though 
the median RTT of a single connection was similar to that for 
NAT64. Compared to a native IPv6 connection, the median RTT 
of NAT-PT was 140% greater when there were 100 simultaneous 
connections. The HTTP proxy showed a similar median RTT as 
in section IV.B. It showed 99% greater median RTT compared to 
the native IPv6 connection when there were 100 simultaneous 
connections. 

4.4 Large HTTP request, small HTTP 
response (Fig. 5) 
With a large request size we have observed an interesting pattern 
of the median RTT of NAT64. With a small number of 
simultaneous connections, the median RTT of NAT64 is the 
largest among the three translators. The median RTT of NAT64 
with a single connection was 50% greater than the median RTT of 
native IPv6 connection, while NAT-PT and HTTP proxy were 
only 28% and 37% greater respectively (Fig. 5, left). After 
studying the code, and even with the assistance of the developers 
of Ecdysis NAT64, we were unable to explain its anomalous 
performance in this case. There is no theoretical reason to expect 
this anomaly, so we concluded that it was due to an unidentified 
implementation detail. 
However, as the number of simultaneous connections increased, 
the median RTT of NAT-PT increased rapidly, while the median 

RTT of NAT64 did not increase much above 30 simultaneous 
connections. With more than 10 simultaneous connections, the 
median RTT of NAT-PT was greater than the median RTT of 
NAT64. With 100 simultaneous connections, the median RTT of 
NAT64 was 83% slower than the native IPv6 connection, while 
NAT-PT was 130% slower.  The median RTT of the HTTP proxy 
increased rapidly until the number of simultaneous connection 
reached 50, but with more than 50 simultaneous connections the 
median RTT of HTTP proxy did not increase much more. The 
median RTT of the HTTP proxy was 69% slower than the native 
IPv6 connection with 100 simultaneous connections. 

5. DISCUSSION 
When we analyzed the specifications of NAT-PT, NAT64 and 
HTTP proxy, we developed a hypothesis about efficiency of 
translation based on the algorithmic structure of each translator. 
Firstly, we expected both NAT mechanisms to be more efficient 
than the HTTP proxy, since it has to rebuild every packet it 
receives from each node, executing full TCP processing as well as 
some application layer copying. 

Secondly, we expected NAT-PT to be most efficient when there 
are a small number of simultaneous connections across the 
translator, because it has a somewhat simpler algorithm than 
NAT64, implying less load on the translator. With many 
simultaneous connections, we expected NAT64 to be most 
efficient, since it has a well-defined binding information 
management algorithm, which should more effectively manage a 
large amount of session state.   

During the experiment, NAT-PT was less efficient than we 
expected. The median RTT of NAT-PT was greater than that of 
NAT64 with a single connection for all three sets of experiments. 
As the number of simultaneous connections increased, the median 
RTT of NAT-PT increased most rapidly among the translators in 
all conditions, and with 100 connections the median RTT of 
NAT-PT was the slowest among the translators, as expected. 

NAT64 was the most efficient IPv4-IPv6 translator during the 
experiment, except in the set with large HTTP requests. Also, the 



rate of increase of the median RTT with more connections was 
the least among the three translators. However, with large HTTP 
requests and few simultaneous connections, NAT64 had relatively 
inefficient translation. As noted above, this is most likely an 
implementation effect.  

The HTTP proxy was more efficient than we expected. The 
median RTT with the HTTP proxy was slowest among the three 
translators with few simultaneous connections, except in the set 
with large HTTP requests where NAT64 was the slowest. 
However, with a large number of simultaneous connections, the 
HTTP proxy showed relatively efficient translation, always 
beating NAT-PT and usually close to NAT64. It appears that the 
processing cost of TCP and  application layer copying scales 
almost as well as that of  IP header translation. 

The question arises whether the differences in RTT that we 
observed in laboratory conditions would matter in practice. The 
RTT for a simple HTTP command and response over the Internet 
will typically be in the range 10ms to 200ms, depending on 
circumstances. The worst case increase in median RTT due to 
translation that we observed was approximately 3ms. This will not 
significantly affect the user experience in most cases. On the other 
hand, the increased RTT reflects processing time in the translation 
device.  A site operating a translator must ensure that it does not 
become a bottleneck. 

6. CONCLUSION 
In this paper we have compared translation efficiency between 
IPv4-IPv6 translators and native connections. Our study is based 
on our understanding of various IPv4-IPv6 packet translation 
techniques and we focused on measuring realistic performance 
metrics on a simple network. We have tested three open-source 
software packages: naptd (implementation of NAT-PT), Ecdysis 
(implementation of NAT64), and Apache HTTP proxy, by 
sending an HTTP over TCP over IPv6 packet to travel through 
each translator to be translated to IPv4, with the reply coming 
back from the IPv4 network through the translator. 
The study showed that Ecdysis NAT64 is reasonably efficient in 
practice, except perhaps for a network which has a significant 
amount of large outbound packets and few simultaneous 
connections. With a small network, NAT64 works relatively 
efficiently compared to other translation techniques. If only native 
IPv6 connection is available and no other IPv4-IPv6 coexistence 
technique can be used, we recommend deploying NAT64 in order 
to communicate with IPv4 servers via an IPv6 connection. If only 

HTTP traffic is required, a dual stack Apache HTTP proxy is a 
reasonable alternative. 
Our results and conclusions apply only to the particular 
implementations we have tested. As commercial implementations 
of NAT64 appear, they should be tested in a similar way to 
investigate their scaling behavior. It would also be of interest to 
test high-performance HTTP proxies, since our results show that 
it is not a foregone conclusion that NAT64 is faster or scales 
better than a proxy in all circumstances. 
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