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Abstract

In this note we represent the well known discrete time stochastic volatility
(SV) model with a leverage effect and the SV model of Jacquier, Polson and
Rossi (JPR) (2002) using Gaussian nonlinear state space forms with uncorrelated
measurement and transition errors. With the new representations, we show that
the JPR specification does not necessarily lead to a leverage effect and hence is not
theoretically justified. Empirical comparisons of these two models via Bayesian
MCMC methods reveal that JPR’s specification is not supported by actual data
either. Simulation experiments are conducted to study the sampling properties of
the Bayes estimator for the conventionally specified model.

JEL classification: C11, C15, G12
Keywords : Bayesian estimation; State space models; Leverage effect; Quasi maxi-

mum likelihood.

1 Introduction

Markov Chain Monte Carlo (MCMC) methods have become one of the most important
tools for estimating stochastic volatility (SV) models since it was introduced in Jacquier,
Polson and Rossi (1994) to analyze the basic (ie lognormal) SV model. In a Monte Carlo
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study, Andersen, Chung and Sorensen (1999) compared the finite sample performances
of various methods for estimating the lognormal SV model and found that MCMC is
the most efficient tool. Their finding is not surprising since MCMC provides a fully
likelihood-based inference.

Motivated by the empirical evidence that the basic SV model can be too restrictive
for many financial time series, Jacquier, Polson and Rossi (2002) (JPR hereafter) extend
their earlier work to analyze a SV model which generalizes the basic SV model in two
different dimensions, one by replacing the Gaussian innovation by a fat-tailed distribu-
tion of innovations and one by incorporating the so-called leverage effect. The SV model
with a leverage effect (which is also termed the asymmetric SV (A-SV hereafter) model
in Harvey and Shephard (1996)) is particularly important from the finance perspective
and is connected directly to the continuous time SV models widely used in the finance
literature on option pricing; see for example Hull and White (1987), Wiggins (1987),
and Chesney and Scott (1989). Since the parameter which captures the leverage effect
is of critical importance, JPR study the sampling properties of the Bayes MCMC esti-
mator using Monte Carlo experiments and find little loss in precision from adding the
leverage parameter into the basic model. They also fit the model to many real financial
time series sequences and find overwhelming evidence of a strong leverage effect in most
financial time series considered.

Although we find the proposed MCMC algorithm and simulation and empirical re-
sults in JPR very interesting, their specification of the A-SV model leaves us a bit puz-
zled. First, their specification does not correspond to the well known continuous time
A-SV model commonly used in the finance literature and hence it is less useful from
theoretical (such as option pricing) viewpoints. In fact, their specification is not even
consistent with the efficient market hypothesis because the model is not a martingale
sequence, as noted in Harvey and Shephard (1996). Second, we find their specification is
empirically inferior to the conventional specification when SP500 data are used. Third,
since their specification is of little theoretical relevance as well as of limited empirical
importance, the sampling properties presented in their paper are not practically very
useful.

One purpose of this note is to clarify the puzzle. To achieve this objective, we
derive a Gaussian nonlinear state space representation of the conventionally specified
A-SV model. Using the new representation we show that the conventional specification
can capture the leverage effect, but the same argument is not necessarily true for the
specification in JPR. We then fit both models to a commonly used stock index based on
the all purpose Bayesian software package BUGS, as described in Meyer and Yu (2000)
and show that JPR’s specification is inferior, judged by Bayesian statistical criteria.
The remainder of the note is organized as follows. Section 2 derives the state space
representation of both models and explains why the leverage effect may not be warranted
in JPR’s specification. Section 3 fits both models to an SP500 index. In Section 4, we
present the sampling properties of the conventionally specified A-SV model. Section 5
concludes.
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2 State Space Representation of A-SV Models

In the finance literature on option pricing, the A-SV model is often formulated in terms
of stochastic differential equations. The widely used lognormal A-SV model specifies the
following equations for the logarithmic asset price s(t) and the corresponding volatility
σ2(t),  ds(t) = σ(t)dB1(t),

d ln σ2(t) = α + β ln σ2(t)dt + σvdB2(t),
(2.1)

where B1(t) and B2(t) are two Brownian motions, corr(dB1(t), dB2(t)) = ρ and s(t) =
ln S(t) with S(t) being the asset price. When ρ < 0 we have the leverage effect. This
negative correlation implies that a negative shock to the return increases the debt-equity
ratio of a firm and so increases the riskiness of the firm in subsequent periods (see e.g.
Black (1976)).

In the empirical literature the above model is often discretized to facilitate estima-
tion. For instance, the Euler-Maruyama approximation leads to the following discrete
time A-SV model:  Xt = σtut,

ln σ2
t+1 = α + φ ln σ2

t + σvvt+1,
(2.2)

where Xt = st+1 − st is a continuously compounded return, ut = B1(t + 1) − B1(t),
vt+1 = B2(t + 1)− B2(t), φ = 1 + β. Hence, ut and vt are independent iid N(0, 1) and
corr(ut, vt+1) = ρ. This model is estimated by quasi maximum likelihood in Harvey and
Shephard (1996) and by MCMC in Meyer and Yu (2000).

Comparing equation (2.2) with equation (8) in JPR, we note a small but impor-
tant difference. Instead of assuming corr(ut, vt+1) = ρ, JPR adopt the specification
of corr(ut, vt) = ρ. To fully understand the difference and also their linkage to the
leverage effect, it is convenient to adopt the Gaussian nonlinear state space form with
uncorrelated measurement and transition equation error terms. To do this, denote
wt+1 ≡ (vt+1 − ρut)/

√
1− ρ2 and rewrite equation (2.2) as Xt = σtut,

ln σ2
t+1 = α + φ ln σ2

t + ρσvσ
−1
t Xt + σv

√
1− ρ2wt+1,

(2.3)

where wt is iid N(0, 1) and corr(ut, wt+1) = 0.
Obviously ln σ2

t+1 is a linear function of Xt and ∂ ln σ2
t+1/∂Xt = ρσv/σt. Therefore,

if ρ < 0 and holding everything else constant, a fall in the stock return (ie Xt < 0) leads
to an increase of ln σ2

t+1 and hence σ2
t+1.

Using the same approach, we rewrite equation (8) in JPR in the following Gaussian
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nonlinear state space form: Xt = σtut,

ln σ2
t = α + φ ln σ2

t−1 + ρσvσ
−1
t Xt + σv

√
1− ρ2wt,

(2.4)

where wt is iid N(0, 1) and corr(ut, wt) = 0. It is apparent in equation (2.4) that ln σ2
t

is related to Xt in a more complicated nonlinear way. Define

F (ln σ2
t , Xt) ≡ ln σ2

t − α− φ ln σ2
t−1 − ρσvσ

−1
t Xt − σv

√
1− ρ2wt.

The implicit function theorem implies that

∂ ln σ2
t

∂Xt

= − ∂F/∂Xt

∂F/ ln σ2
t

=
ρσv/σt

1 + 0.5ρσvut

. (2.5)

Similarly we can show that

∂ ln σ2
t+1

∂Xt

=
ρσvσt+1/σt

1 + 0.5ρσvut+1

. (2.6)

While the numerators in (2.5) and (2.6) are always negative when ρ < 0, the denomina-
tors can be either positive or negative. As a result, there is no guarantee that the partial
derivative will always be negative and hence the leverage effect is not warranted.1

3 Estimation of A-SV models

MCMC estimation of the conventionally specified A-SV model can be done by using the
state space representation (2.3) which leads to a log-concave full conditional distribution.
In consequence, one can employ the adaptive rejection sampling algorithm of Gilks and
Wild (1992). Alternatively, one can make use of the all purpose Bayesian software
package BUGS, based on a different representation introduced in Meyer and Yu (2000).
The full conditional distribution based on this alternative representation is, however,
no longer log-concave and hence a Metropolis-Hastings (MH) updating step is needed.
An advantage of the latter approach is that it can be easily modified to deal with
JPR’s specification. This alternative representation of the A-SV model is obtained by
specifying the state and observation equations as follows:

ht+1|ht, α, φ, σ2
v ∼ N(α + φht, σ

2
v),

Xt|ht, ht+1, α, φ, σ2
v , ρ ∼ N

(
ρ

σv

eht/2(ht+1 − α− φht), e
ht(1− ρ2)

)
.

1Given empirically possible values of ρ and σv, however, it appears much more likely for the denom-
inator to take a negative value than a positive value. For example, the largest leverage effect reported
in the literature is -0.66 (see Harvey and Shephard (1996)) and the largest estimate of σv is 0.85 (see
Mahieu and Schotman (1998)). To ensure a leverage effect, ut has to take a value larger than -3.565
and this occurs with probability 0.9998.
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Regarding the prior distributions, for the parameters φ and σ2
v , we follow exactly the

prior specifications of Kim, Shephard and Chib (1998): σ2
v ∼ Inverse-Gamma(2.5,0.025)

which has a mean of 0.167 and a standard deviation of 0.024 and φ∗ ∼ Beta-distribution
with parameters 20 and 1.5 which has a mean of 0.167 and a standard deviation of 0.86
and 0.11, where φ∗ = (φ+1)/2. The correlation parameter ρ is assumed to be uniformly
distributed with support between -1 and 1 and hence is completely flat.

In all cases we choose a burn-in period of 10,000 iterations and a follow-up period
of 100,000. The MCMC sampler is initialized by setting φ = 0.98, σ2

v = 0.025, and
ρ = −0.5. BUGS code can be downloaded from my web site

http://yoda.eco.auckland.ac.nz/∼jyu/research.html

4 Empirical Comparison of A-SV Models

As argued in Section 2, the SV model corresponding to the continuous time model is
different from the JPR specification which does not necessarily imply a leverage effect.
However, nothing says the continuous time model is some form of “truth” and hence it is
interesting to compare the empirical performance of these two alternative specifications.
To do this, we employ a commonly used dataset which contains 2023 daily returns of
S&P500 from 1980 to 1987. The same dataset is also used in JPR.

Since neither specification is nested by each other, we cannot use the classical likeli-
hood ratio test to compare the performances of these two alternative models. Bayesian
comparison is often made using the Bayes factor which involves the calculation of the
marginal likelihood of the competing models. There are various ways to calculate the
marginal likelihood. For instance, Kim et al. (1998) and Chib, Nardari and Shephard
(2002) have shown how to compute the marginal likelihood at the posterior mean using
the approach suggested by Chib (1995). However, this marginal likelihood approach re-
mains a computationally intensive task and is not a particularly user-friendly tool. JPR
propose an interesting way to calculate the Bayes factor by making use of the special
structure of the models and priors. In this paper, we follow Newton and Raftery (1994)’s
suggestion which uses the harmonic mean of the sampled likelihood values as a simu-
lation consistent estimator of the required marginal likelihood. Alternative Bayesian
comparison can be made via information criteria. In this paper we employ the newly
developed deviance information criterion (DIC) proposed by Spiegelhalter, Best, Carlin
and van der Linde (2002). As shown in Berg, Meyer and Yu (2002), DIC is a particularly
user-friendly and effective tool for comparing SV models.

In Table 1 we summarize the results from estimation and model comparison, includ-
ing the posterior means, standard deviations (SD), 95% Bayes confidence intervals for
all the parameters, the harmonic mean estimates of log marginal likelihood, and DIC for
both models. Although the leverage effect in both models is significant, it is markedly
smaller in JPR’s model. This suggests that if the leverage effect were estimated from
JPR’s model, it would be underestimated in magnitude by about 20%. Using the log
marginal likelihood values we obtain the Bayes factor of the conventional A-SV model
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over JPR’s A-SV model which is 2.44× 1014. The evidence strongly favors the conven-
tional specification against JPR’s specification. The same conclusion is also drawn from
the comparison of the DIC values.2

An alternative way for comparing these two models is to nest both the models into
a single model. To do so, consider the following specification, Xt = σtut,

ln σ2
t+1 = α + φ ln σ2

t + σvvt+1,
(4.7)

with ut

vt+1

 iid∼ N

 0

0

 ,

 1 ρ1

ρ1 1

 and

 ut

vt

 iid∼ N

 0

0

 ,

 1 ρ2

ρ2 1

 .

In this model we allow correlation at both time lags, but with different degrees of
correlation. If ρ1 = 0, we have JPR’s A-SV model. If ρ2 = 0, we have the conventionally
used A-SV model.

To make use of the all purpose Bayesian software package BUGS, we obtain the
following state and observation equations for the encompassed model:

ht+1|ht, α, φ, σ2
v ∼ N(α + φht, σ

2
v),

Xt|ht+1, ht, ht−1, α, φ, σ2
v , ρ1, ρ2, ∼ N

(
eht/2

σv

(ρ2(ht − α− φht−1) + ρ1(ht+1 − α− φht)),

eht(1− ρ2
1 − ρ2

2)

)
.

We adopt the same prior distributions for φ and σ2
v as before. For ρ1 and ρ2 we assume

a uniform prior with support between -1 and 1. Table 2 reports the estimation results,
including the posterior means, standard deviations, 95% Bayes confidence intervals for
all the parameters and the harmonic mean estimates of log marginal likelihood. The
posterior mean of ρ1 is -0.2939 while the posterior mean of ρ2 is -0.2140. They compare
to the posterior mean of -0.3179 in the conventional A-SV model and the posterior
mean of -0.2599 in JPR’s A-SV model. The 95% posterior credibility interval for ρ1

is [−0.4490,−0.1443] which indicates the presence of a significant negative correlation
between ut and vt+1. The 95% posterior credibility interval for ρ2 is [−0.3619,−0.0828]
which suggests some but weaker evidence of negative correlation between ut and vt.
The marginal likelihood values from the encompassed model and JPR’s model differs by
2.03 × 1011. The evidence strongly favors the encompassed specification against JPR’s
specification. On the other hand, the marginal likelihood values from the conventional
specification and the encompassed model differs by 1200.03 which favors the conventional
specification against the encompassed specification. The overall ranking of three models
is the conventional A-SV model comes first, followed by the the encompassed A-SV
model and then by JPR’s A-SV model.

2One has to choose the model with the smallest value of DIC.
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5 Simulation Results

Since JPR’s specification of the leverage effect is neither theoretically appealing nor em-
pirically supported, the sampling properties of Bayes estimators reported in their paper
are less practically relevant. Although the sampling properties of MCMC estimates of
the continuous time SV model with the leverage effect are examined in Eraker, Johannes
and Polson (2002), to the best of our knowledge, the sampling properties of MCMC es-
timates of the discrete time SV model with a correctly specified leverage effect remain
unknown. On the other hand, understanding the finite sample performance of MCMC
estimates is important from several aspects. First, it provides the reliability of MCMC
estimates of the A-SV models, in particular of the new parameter, ρ. Second, since
many more estimation tools have been developed to estimate the discrete time A-SV
model than to the continuous time A-SV model, it is interesting to compare directly
the performance of MCMC estimates with other estimates in the discrete time context.
In this section, sampling experiments are designed to obtain sampling properties of the
proposed MCMC estimates in the conventionally specified discrete time A-SV model.3

In the first experiment we use the similar parameter setting as in JPR. We simulate
100 samples of 1000 observations from the A-SV model (2.2). Simulation results such
as the sample average and sample root mean square error (RMSE) are given in Table 3.
The evidence proposed in Table 3 shows that Bayes estimates have very good sampling
properties.

In the second experiment we adopt a parameter setting as in Harvey and Shephard
(1996) that enables us to compare the relative efficiency of our Bayes estimate to the
quasi-maximum likelihood (QML) estimate of Harvey and Shephard (1996). Table 4
reports the means and RMSEs of all the estimates. The simulation results for the
QML estimates are obtained directly from Harvey and Shephard (1996). Our results
are computed using 100 replications whereas Harvey and Shephard’s results are based
on 1000 replications. As expected, since MCMC is a fully likelihood-based method, it
always performs better than QML. For example, relative efficiency of QML to MCMC
in terms of the RMSE’s are 0.5633, 0.7071 and 0.5909 respectively for ρ, φ and ln σ2

v .

6 Conclusions

In this note we propose a Gaussian nonlinear state space representation of both the
classical A-SV model and the A-SV model of JPR. Using the new representation, we
show that the leverage effect is not warranted in JPR’s model. Moreover, our empirical
analysis demonstrates that JPR’s model is dominated by the classical A-SV model.
Combined, the results necessitate a revaluation of the sampling properties of Bayes
estimators.

3The sampling properties of MCMC estimates for the SV model with the fat-tailed error distribution
have been obtained in Chib et al. (2002).
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Table 1: Empirical Results for S&P500

Conventional A-SV JPR A-SV

Mean SD 95% CI Mean SD 95% CI

φ .972 .0091 (.9511, .9871) .9769 .0081 (.9587, .9902)

σv .1495 .020 (.1139, .1928) .1347 .0183 (.1031, .1759)

ρ -.3179 .0855 (-.4749, -.1428) -.2559 .0941 (-.4384, -.07295)

Log Marg Lik -2801.6626 -2832.4874

DIC 5441.740 5453.140
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Table 2: Empirical Results of Encompassed Model

Mean SD 95% CI

φ 0.9758 0.0085 (0.9568, 0.9898)

σv 0.1435 0.0199 (0.1097, 0.1859)

ρ1 -0.2939 0.078 (-0.4490, -0.1443)

ρ2 -0.2140 0.0715 (-0.3619, -0.0828)

Log Marg Lik -2808.7527

Table 3: Simulations for MCMC Estimates of the Conventional A-SV Model when the
Sample Size is 1000

True Value Mean RMSE

ρ -0.6 -0.564 0.085

φ 0.95 0.945 0.0145

σv 0.26 0.254 0.037

Table 4: Simulations to Compare MCMC and QML Estimates of the Conventional A-SV
Model when the Sample Size is 1000

MCMC QML

True Value Mean RMSE Mean RMSE

ρ -0.9 -0.8815 0.0445 -0.911 0.079

φ 0.975 0.9732 0.00495 0.974 0.007

ln σ2
v -4.605 -4.595 0.2086 -4.617 0.353

10


