The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author’s permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence.

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.
THERMAL TREATMENT OF NEW ZEALAND KING SALMON

(ONCORHYNCHUS TSHAWSCHA):

PHYSICO-CHEMICAL AND SENSORY PROPERTIES

AND THE ROLE OF ASTAXANTHIN IN LIPID OXIDATION

DANAÉ SONJA LARSEN

A thesis submitted in fulfilment of the requirements for the degree of doctor of philosophy, The University of Auckland, 2011.
ABSTRACT

New Zealand King salmon is an extensively farmed aquaculture species in New Zealand and around the world as Chinook. It is an excellent source of omega-3 fatty acids (ω-3 FA) and the potent antioxidant astaxanthin. Apart from the rising popularity of consuming raw salmon, in many Western countries such as New Zealand, King salmon is generally consumed after some type of thermal treatment. However, prior to this study there was no literature detailing the affect of thermal treatment on the ω-3 FA content, astaxanthin content and other physico-chemical and sensory properties, or the effect on the microstructure and lipid distribution in King salmon. Therefore, a comprehensive examination of the effect of the thermal treatments on these properties was conducted.

Farmed King salmon was prepared according to common thermal treatment technique; raw, poaching, steaming, microwaving, oven baking, pan frying and deep frying (in sunflower oil). The nutritional significance of King salmon was confirmed by the high levels of ω-3 FA that were well preserved regardless of thermal treatment method, which was in contrast to a comparison fish, Yellowtail kingfish. A hypothesis of internal protection of omega-3 long chain polyunsaturated fatty acids (ω-3 LCPUFA) in King salmon by the endogenous antioxidant astaxanthin was studied. The concentration of astaxanthin in King salmon flesh was not significantly decreased due to thermal treatment. Astaxanthin was also shown for the first time, to be an effective antioxidant in a fish meat model system and fish oil model systems. Astaxanthin was affected significantly by light and the presence of oxygen in the system, as it was most effective at preventing and slowing lipid oxidation in the closed fish oil model systems. The microstructure and lipid distribution of King salmon was studied using novel methods in the field of fish research, magnetic resonance imaging (MRI), confocal laser scanning microscopy (CLSM) and environmental scanning electron microscopy (ESEM). Microstructural changes occurred which were linked to the moisture content, total extractable lipid content and sensory properties and further enhanced the understanding of their effects to the consumer appeal of King salmon. Oven baked and pan fried King salmon had the greatest consumer acceptance with the highest overall degree of likeness (DOL) ratings in the sensory evaluation and interestingly were among the thermal treatment methods, which best preserved the ω-3 LCPUFA. This trend was also observed with the poached King salmon, which was least liked during sensory evaluation and had the lowest absolute amounts of the ω-3 LCPUFA among the thermal treatment methods.

Overall, the importance of King salmon as an aquaculture species has been confirmed. This study successfully applied novel techniques and ideas to the field of fish research to increase the understanding of the physico-chemical and sensory properties, microstructure and role of astaxanthin in lipid oxidation, ultimately highlighting the nutritional benefits and sensory acceptance for the consumer.
Dedicated to Wayne, Margaret and Alisha Larsen
AKNOWLEDGEMENTS

I would like to thank the following people who helped me during the course of my PhD studies at the University of Auckland:

Dr Siew-Young Quek for her advice and encouragement throughout this research and Dr Laurence Eyres for his enthusiasm, expertise and valuable ideas.

The New Zealand King Salmon Company, for providing the King salmon and allowing me the opportunity to conduct this research.

Don Everitt of NZKS, for his help, encouragement and feedback during this research. Cindy Steele and Richard Smith of NZKS, for their expertise and organisation of the King salmon deliveries.

Dr Michael Bruce of NIWA, for his help in providing the Yellowtail kingfish for the research.

Sreeni Pathirana for her expertise and help with the GC.

Hilary Holloway for her expertise and enthusiasm in helping me with the CLSM at the Biomedical Imaging Research Unit (BIRU).

Dr Beau Pontré, for his enthusiasm and help using the MRI at the Centre for Advanced Magnetic Resonance Imaging (CAMRI).

Catherine Hobbis at the Research Centre for Surface and Materials Science (RCSMS) for her help with using the ESEM.

The Foundation for Research Science and Technology and the University of Auckland for funding this research.

And last but not least I would like to thank my family, friends and food science colleagues for their patience, encouragement, support and understanding throughout the years while working towards the completion of my PhD. I deeply appreciate everything you have done for me.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>II</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>III</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>IV</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>V</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>VIII</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XI</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>XII</td>
</tr>
</tbody>
</table>

CHAPTER ONE GENERAL INTRODUCTION

1.1 INTRODUCTION

1.2 KING SALMON (*Oncorhynchus tshawytscha*)

1.3 AQUACULTURE IN NEW ZEALAND

1.3.1 KING SALMON AQUACULTURE

1.4 PHYSICO-CHEMICAL PROPERTIES OF FISH

1.4.1 FISH LIPIDS

1.4.1.1 FATTY ACIDS IN FISH

1.4.1.2 HEALTH BENEFITS OF OMEGA-3 FATTY ACIDS

1.4.1.3 EFFECT OF THERMAL TREATMENT ON FATTY ACIDS

1.4.1.4 LIPID OXIDATION

1.4.2 ASTAXANTHIN

1.4.2.1 ASTAXANTHIN AS AN ANTIOXIDANT

1.4.2.2 HEALTH BENEFITS OF ASTAXANTHIN

1.4.2.3 EFFECT OF THERMAL TREATMENT ON ASTAXANTHIN

1.5 SENSORY PROPERTIES IN FISH

1.5.1 TEXTURE

1.5.1.1 EFFECT OF THERMAL TREATMENT ON TEXTURE

1.5.2 COLOUR

1.5.2.1 EFFECT OF THERMAL TREATMENT ON COLOUR

1.5.3 FLAVOUR AND AROMA

1.6 MICROSTRUCTURE OF FISH

1.7 OBJECTIVES

CHAPTER TWO PHYSICO-CHEMICAL PROPERTIES OF KING SALMON

2.1 INTRODUCTION

2.2 METHOD FOR THERMAL TREATMENT OF FISH MUSCLE

2.2.1 MATERIALS

2.2.2 FISH SAMPLING METHOD

2.2.3 THERMAL TREATMENT PROCEDURE

2.3 INSTRUMENTAL COLOUR ANALYSIS

2.4 INSTRUMENTAL TEXTURE ANALYSIS

2.5 MOISTURE CONTENT DETERMINATION

2.6 LIPID EXTRACTION FROM FISH TISSUE

2.6.1 MATERIALS

2.6.2 SAMPLE PREPARATION

2.6.3 LIPID EXTRACTION PROCEDURE

2.7 FATTY ACID ANALYSIS

2.7.1 PROCEDURE FOR METHYLATION OF FATTY ACIDS

2.7.2 GAS CHROMATOGRAPHY

2.8 STATISTICAL ANALYSIS

2.9 RESULTS

2.9.1 INSTRUMENTAL COLOUR

2.9.1.1 INSTRUMENTAL COLOUR OF KING SALMON

2.9.1.2 INSTRUMENTAL COLOUR OF YELLOWTAIL KINGFISH

2.9.2 INSTRUMENTAL TEXTURE ANALYSIS

2.9.2.1 INSTRUMENTAL TEXTURE ANALYSIS OF KING SALMON

2.9.2.2 INSTRUMENTAL TEXTURE OF YELLOWTAIL KINGFISH

2.9.3 YIELD

2.9.4 MOISTURE CONTENT
2.9.5 TOTAL EXTRACTABLE LIPID CONTENT 43
2.9.6 FATTY ACID PROFILE 45
2.9.6.1 FATTY ACID PROFILE OF KING SALMON 45
2.9.6.2 OMEGA-3 FATTY ACIDS IN KING SALMON 50
2.9.6.3 RATIO OF OMEGA-3/OMEGA-6 FATTY ACIDS IN KING SALMON 51
2.9.6.4 FATTY ACID PROFILE OF YELLOWTAIL KINGFISH 52
2.9.6.5 OMEGA-3 FATTY ACIDS IN YELLOWTAIL KINGFISH 56
2.9.6.6 RATIO OF OMEGA-3/OMEGA-6 FATTY ACIDS IN YELLOWTAIL KINGFISH 58
2.10 DISCUSSION 59
2.11 SUMMARY 68

CHAPTER THREE SENSORY EVALUATION OF KING SALMON 70
3.1 INTRODUCTION 70
3.2 SENSORY EVALUATION METHOD 70
3.2.1 PANELLISTS 71
3.2.2 TEST LOCATION, CONDITIONS AND SETUP 71
3.2.3 SAMPLE PREPARATION AND PRESENTATION 72
3.2.4 DATA ANALYSIS 72
3.3 RESULTS 73
3.3.1 TOTAL DATA SET 73
3.3.1.1 DEMOGRAPHIC INFORMATION 73
3.3.1.2 EVALUATION OF SENSORY PROPERTIES IN KING SALMON 75
3.3.1.3 COLOUR 78
3.3.1.4 TEXTURE 79
3.3.1.5 AROMA 80
3.3.1.6 FLAVOUR 81
3.3.1.7 OVERALL PREFERENCE 82
3.3.1.8 CORRELATION WITH INSTRUMENTAL MEASUREMENTS 82
3.3.2 ETHNICITY BASED DATA 84
3.3.2.1 DEMOGRAPHIC INFORMATION 84
3.3.2.2 SENSORY EVALUATION 89
3.3.2.3 EUROPEAN GROUP 89
3.3.2.4 SOUTHEAST ASIAN GROUP 90
3.3.2.5 CHINESE GROUP 91
3.3.2.6 INDIAN/SRI LANKAN GROUP 92
3.4 DISCUSSION 93
3.5 SUMMARY 98

CHAPTER FOUR MICROSTRUCTURE AND LIPID DISTRIBUTION IN KING SALMON 99
4.1 INTRODUCTION 99
4.2 MATERIALS AND METHODS 101
4.2.1 MAGNETIC RESONANCE IMAGING METHOD 101
4.2.2 CONFOCAL LASER SCANNING MICROSCOPY 101
4.2.3 ENVIRONMENTAL SCANNING ELECTRON MICROSCOPY 102
4.3 RESULTS 103
4.3.1 MAGNETIC RESONANCE IMAGING AND THE LIPID DISTRIBUTION OF KING SALMON 103
4.3.2 USING CONFOCAL LASER SCANNING MICROSCOPY TO EXAMINE THE MICROSTRUCTURE OF KING SALMON 105
4.3.3 USING ENVIRONMENTAL SCANNING ELECTRON MICROSCOPY TO UNDERSTAND THE MICROSTRUCTURE OF KING SALMON 111
4.4 DISCUSSION 120
4.4.1 LIPID DISTRIBUTION AND MICROSTRUCTURE 120
4.5 SUMMARY 129

CHAPTER FIVE LIPID OXIDATION AND THE ROLE OF ASTAXANTHIN IN KING SALMON 130
5.1 INTRODUCTION 130
5.2 QUANTIFICATION OF ASTAXANTHIN FROM FISH MUSCLE 132
5.2.1 MATERIALS 132
5.2.2 PHOTOMETRIC DETERMINATION OF CAROTENOIDS AND ASTAXANTHIN IN FISH MUSCLE 132
5.2.3 EXTRACTION METHODOLOGY 132
5.3 FISH MEAT MODEL SYSTEM 133
Figure 4.1 MR image of raw king salmon (A), showing myosepta (1) and white muscle (2). (B) shows raw king salmon indicating the dark muscle (1). (C) shows raw king salmon with dark muscle and myosepta (1) and white muscle (2). (D) shows raw king salmon indicating the dark muscle (1) and myosepta (2). (E) shows raw king salmon with dark muscle, myosepta (1) and white muscle (2). (F) shows raw king salmon with dark muscle, myosepta (1) and white muscle (2). (G) shows raw king salmon indicating the dark muscle (1) and myosepta (2). (H) shows raw king salmon with dark muscle and myosepta (1) and white muscle (2). (I) shows raw king salmon indicating the dark muscle (1) and myosepta (2).

Figure 4.2 MR images showing the white muscle and myosepta of thermally treated king salmon.

Figure 4.3 CLSM image showing an example of selective staining and image contrasts.

Figure 4.4 Example of selective staining of myosepta from raw king salmon stained with acridine orange and Nile blue A.

Figure 4.5 CLSM image of raw white muscle of king salmon (A) showing adipocytes (1), lipid droplets (2) and muscle fibres (3). The excised raw myosepta (B) shows adipocytes (1) and lipid droplets (2).

Figure 4.6 CLSM image of oven baked king salmon (A) showing muscle fibres (1) and lipid droplets (2). A CLSM image of pan fried king salmon (B) shows lipid droplets (1) and unidentified 'black areas' (2).

Figure 4.7 CLSM image of poached king salmon (A) showing rupture muscle fibres (1), intact muscle fibres (2) and lipid droplets (3). The steamed king salmon (B) image shows gaps between the muscle fibres (1), muscle fibres (2) and lipid droplets (3).

Figure 4.8 CLSM image of microwaved king salmon (A) showing lipid droplets (1) and unidentified material (2). The image of the deep fried king salmon (B) shows lipid droplets (1).

Figure 4.9 ESEM image of the surface of white muscle (A) showing adipocytes/lipid droplets (1) and muscle fibres (2). The myosepta from raw king salmon (B) shows adipocytes and lipid droplets (1).

Figure 4.10 ESEM image of the outside surface of oven baked king salmon (A) showing granular aggregates (1) and gel (2). The outside surface of pan fried king salmon (B) shows granular aggregates (1), coagulated proteins (3) and cut surfaces (2).

Figure 4.11 ESEM image of the outside surface of steamed king salmon (A) showing pores (1), coagulated proteins (2) and height differences in the sample (3). (B) is an enlargement of the pores in steamed king salmon (1).

Figure 4.12 ESEM image of the outside surface of poached king salmon (A) showing coagulated proteins (1) and gel (2). (B) shows the outside surface of deep fried king salmon.

Figure 4.13 ESEM image of the outside surface of microwaved king salmon (A) showing granular aggregation (1), pores (2) and coagulated proteins (3). (B) shows an enlargement of a pore in microwaved king salmon (1).

Figure 4.14 ESEM image of the inside of raw king salmon (A) showing muscle fibres (1) and adipocytes/lipid droplets (2). (B) shows the inside of oven baked king salmon, with areas of lipids (1) and lipid droplets (2).

Figure 4.15 ESEM image of the inside of pan fried king salmon (A) showing muscle fibres (1), granular aggregation (2), gel (3) and coagulated protein (4). (B) shows pan fried myosepta from king salmon, with concave 'voids' (2).

Figure 4.16 ESEM image of the inside of steamed king salmon (A) showing muscle fibres (1), lipid droplets (2), granular aggregation (3) and coagulated proteins (4). (B) shows the inside of poached king salmon, with muscle fibres (1) and lipid pooling (2).

Figure 4.17 ESEM image of the inside of microwaved king salmon (A), showing coagulated proteins and granular aggregation. (B) is an enlargement of pores in microwaved king salmon (1).

Figure 4.18 ESEM image of the inside of deep fried king salmon, showing coagulated proteins and granular aggregation (1).

Figure 5.1 TBARS of the fish meat model systems during the storage trial at 4°C.

Figure 5.2 Photographs of the hoki oil and king salmon oil controls and the open model systems treated with 50 ppm and 100 ppm antioxidants.

Figure 5.3 Photographs of the hoki oil and king salmon oil controls and the closed model systems treated with 50 ppm and 100 ppm antioxidants.

Figure 5.4 Weight gain (%) of the 50 ppm open fish oil model systems during the storage trial at 60°C for 14 days.

Figure 5.5 Weight gain (%) of the 100 ppm open fish oil model systems during the storage trial at 60°C for 14 days.

Figure 5.6 PV of open fish oil model systems containing 50 ppm antioxidants and controls stored at 60°C for 14 days.

Figure 5.7 PV of open fish oil model systems containing 100 ppm antioxidants and controls stored at 60°C for 14 days.

Figure 5.8 PV of closed fish oil model systems containing 50 ppm antioxidants and controls stored at 60°C for 14 days.

Figure 5.9 PV of closed fish oil model systems containing 100 ppm antioxidants and controls stored at 60°C for 14 days.

Figure 5.10 TBA values of the open fish oil model systems containing 50 ppm antioxidants and controls stored at...
FIGURE 5.11 TBA VALUES OF THE OPEN FISH OIL MODEL SYSTEMS CONTAINING 100 PPM ANTIOXIDANTS AND CONTROLS STORED AT 60°C FOR 14 DAYS .. 154
FIGURE 5.12 TBA VALUES OF 50 PPM CLOSED MODEL SYSTEMS DURING THE STORAGE TRIAL AT 60°C .. 156
FIGURE 5.13 TBA VALUES OF 100 PPM CLOSED MODEL SYSTEMS DURING THE STORAGE TRIAL AT 60°C .. 156
FIGURE 5.14 THE CONTENT OF SELECTED D-3 PUFA (A=ALA AND B=EPA) IN KING SALMON OIL AND HOKI OIL CONTROLS AND HOKI OIL OPEN MODEL SYSTEMS CONTAINING 100 PPM ANTIOXIDANTS .. 158
FIGURE 5.15 THE CONTENT OF SELECTED D-3 PUFA (C=DPA AND D=DHA) IN KING SALMON OIL AND HOKI OIL CONTROLS AND HOKI OIL OPEN MODEL SYSTEMS CONTAINING 100 PPM ANTIOXIDANTS .. 159
FIGURE 5.16 THE CONTENT OF SELECTED D-3 PUFA (A= ALA AND B= EPA) IN KING SALMON OIL AND HOKI OIL CONTROLS AND HOKI OIL CLOSED MODEL SYSTEMS CONTAINING 100 PPM ANTIOXIDANTS .. 162
FIGURE 5.17 THE CONTENT OF SELECTED D-3 PUFA (C= DPA AND D= DHA) IN KING SALMON OIL AND HOKI OIL CONTROLS AND HOKI OIL CLOSED MODEL SYSTEMS CONTAINING 100 PPM ANTIOXIDANTS .. 163

FIGURE A.1 Roche SalmoFan™ .. 202
FIGURE A.2 IDENTIFIED FATTY ACIDS IN SUNFLOWER OIL .. 203
FIGURE A.3 UNIVERSITY OF AUCKLAND ETHICS APPROVAL .. 204
FIGURE A.4 BOX AND WHISKER PLOTS OF THE INTENSITY RATINGS AND DOL RATINGS OF COLOUR (A), AROMA (B), FLAVOUR (C) AND TEXTURE (D) FROM THE EUROPEAN GROUP .. 209
FIGURE A.5 BOX AND WHISKER PLOTS OF THE INTENSITY RATINGS AND DOL RATINGS OF COLOUR (A), AROMA (B), FLAVOUR (C) AND TEXTURE (D) FROM THE SOUTHEAST ASIAN GROUP .. 210
FIGURE A.6 BOX AND WHISKER PLOTS OF THE INTENSITY RATINGS AND DOL RATINGS OF COLOUR (A), AROMA (B), FLAVOUR (C) AND TEXTURE (D) FROM THE CHINESE GROUP .. 211
FIGURE A.7 BOX AND WHISKER PLOTS OF THE INTENSITY RATINGS AND DOL RATINGS OF COLOUR (A), AROMA (B), FLAVOUR (C) AND TEXTURE (D) FROM THE INDIAN/SRI LANKAN GROUP .. 212
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Texture analyser parameters for different probes</td>
<td>25</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Gas chromatography conditions</td>
<td>28</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Instrumental colour analysis of raw and thermally treated king salmon</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Instrumental colour analysis of raw and thermally treated yellowtail kingfish</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Identified FA (% of total extractable FA) in raw and thermally treated king salmon</td>
<td>47</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Identified FA (g FA/100 g fresh salmon) in raw and thermally treated king salmon</td>
<td>48</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Total Ω-3 FA and Ω-6 FA in raw and thermally treated king salmon</td>
<td>52</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Identified FA (% of total extractable FA) in raw and thermally treated yellowtail kingfish</td>
<td>53</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Identified FA (g FA/100 g fresh yellowtail kingfish) in raw and thermally treated yellowtail kingfish</td>
<td>54</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Total Ω-3 FA and Ω-6 FA in yellowtail kingfish</td>
<td>58</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Ethnicities of sensory evaluation panellists</td>
<td>71</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Means of intensity ratings and DOL in thermally treated king salmon</td>
<td>76</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Correlations of intensity ratings and DOL from the sensory evaluation in thermally treated king salmon</td>
<td>77</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Correlations of DOL and overall DOL from the sensory evaluation in thermally treated king salmon</td>
<td>77</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Model systems in the fish meat model system storage trial</td>
<td>133</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Model systems for open and closed fish oil storage trial</td>
<td>137</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Concentration of astaxanthin and % astaxanthin retention in raw and thermally treated king salmon</td>
<td>141</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Difference in tBars of the fish meat model systems between day 0 and 3 and day 0 and 7 during the storage trial at 4°C</td>
<td>143</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Instrumental colour analysis of open model systems during the storage trial at 4°C</td>
<td>147</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Instrumental colour analysis of closed model systems during the storage trial at 60°C</td>
<td>147</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Induction times, day of 1% weight increase and PV and TBA values (at the day of 1% weight increase) for the open fish oil model systems</td>
<td>149</td>
</tr>
<tr>
<td>Table 5.8</td>
<td>Losses of Ω-3 LCPUFA between 0 and 5 days, 0 and 7 days and 0 and 14 days in the open model systems</td>
<td>160</td>
</tr>
<tr>
<td>Table 5.9</td>
<td>Losses of Ω-3 LCPUFA between 0 and 5 days, 0 and 7 days and 0 and 14 days in the closed model systems</td>
<td>164</td>
</tr>
<tr>
<td>Table A.1</td>
<td>Individual lipid classes (mg/100 g) of king salmon detected according to the peak areas identified by the iatroscan</td>
<td>215</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

2-thiobarbituric acid (TBA)
Aliphatic hydrocarbon (AH)
Alpha-linolenic acid (ALA)
Alpha-tocopherol (α-tocopherol)
Cholesterol (CHO)
Confocal laser scanning microscopy (CLSM)
Diaclyglycerol (DAG)
Degree of likeness (DOL)
Docosahexaenoic acid (DHA)
Docosapentaenoic acid (DPA)
Eicosapentaenoic acid (EPA)
Environmental scanning electron microscopy (ESEM)
Fatty acid (FA)
Fatty acid alcohol (FAI)
Free fatty acid (FFA)
Gas chromatography (GC)
Hours (h)
Hydrocarbons (HC)
Ketone (KET)
Magnetic resonance (MR)
Magnetic resonance imaging (MRI)
Malonaldehyde (MA)
Malonaldehyde equivalents (MA eq)
Mass spectrometric imaging (MSI)
Milliequivalents peroxides (meq)
Minutes (min)
Monoacylglycerol (MAG)
Monounsaturated fatty acid (MUFA)
National Heart Foundation of Australia (NHFA)
National Institute of Water & Atmospheric Research (NIWA)
National Oceanic and Atmospheric Administration (NOAA)
New Zealand (NZ)
New Zealand King Salmon Company (NZKS)
Omega-3 fatty acids (Ω-3 FA or ω-3 FA)
Omega-3 long chain polyunsaturated fatty acids (ω-3 LCPUFA)
Omega-6 fatty acids (ω-6 FA)
Peroxide value (PV)
Phospholipid (PL)
Polyunsaturated fatty acid (PUFA)
Principal component (PC)
Principal component analysis (PCA)
Region of interest (ROI)
Saturated fatty acid (SFA)
Seconds (s)
ThioBarbituric Acid Reactive Substances (TBARS)
Triacylglycerol (TG)
US Food and Drug Administration (FDA)
Waxy ester (WE)
World Health Organisation (WHO)