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Abstract

HAC estimation commonly involves the use of prewhitening filters based on simple
autoregressive models. In such applications, small sample bias in the estimation of au-
toregressive coefficients is transmitted to the recoloring filter, leading to HAC variance
estimates that can be badly biased. The present paper provides an analysis of these issues
using asymptotic expansions and simulations. The approach we recommend involves the
use of recursive demeaning procedures that mitigate the effects of small sample autore-
gressive bias. Moreover, a commonly-used restriction rule on the prewhitening estimates
(that first order autoregressive coefficient estimates, or largest eigenvalues, greater than

0.97 be replaced by 0.97) adversely interferes with the power of unit root and KPSS tests.
We provide a new boundary condition rule that improves the size and power properties of
these tests. Some illustrations are given of the effects of these adjustments on the size and
power of KPSS testing. Using prewhitened HAC estimates and the new boundary condi-
tion rule, the KPSS test is consistent, in contrast to KPSS testing that uses conventional
prewhitened HAC estimates (Lee, 1996).

Keywords: Autoregression, Bias, HAC estimator, KPSS testing, Long run variance, Prewhiten-
ing, Recursive demeaning.
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1 Introduction

Following earlier research in time series on spectral estimation, numerous estimators have been

proposed in the econometric literature to provide heteroskedasticity and autocorrelation con-

sistent (HAC) variance matrix estimates. The literature, which includes long run variance

(LRV) matrix estimation, has considered kernel choice, automated bandwidth selection proce-

dures, and prewhitening/recoloring filters. The latter are now routinely used in applications

and are built into some software packages, encouraging their widespread use. It is recognised

that the performance of HAC estimators and the properties of associated testing procedures

can be unsatisfactory in small samples and various methods, including bootstrap procedures,

have been proposed to correct the size distortion resulting from HAC estimation even when

there is only one regressor(e.g., Kilian, 1999a and Mark, 1995).

It is known that a major factor in the finite sample size distortions of test statistics con-

structed with HAC estimators is the small sample bias of prewhitening coefficients. For exam-

ple, Phillips and Sul (2003) demonstrate how serious HAC estimation bias can be when the

prewhitening filter is based on a simple autoregression. Even though the bias in autoregression

may itself be small and is often ignored in estimation and testing, the resulting bias in HAC

estimation can be quite large due to the nonlinear nature of the recoloring filter. Andrews and

Monahan (1992) report an important finding that prewhitened LRV estimators provide less

size distortion than Newey and West (1987, 1994) type estimators because prewhitened LRV

estimators are less median biased downward.

Some of the implications of bias in HAC estimation on the size distortion of test statistics

can be illustrated by a simple cointegrating regression example. Figs. 1 and 2 display the

empirical distributions of some popular LRV estimates and associated t-ratio statistics in the

context of the cointegrating equation yt = a+βxt+ut, where ut = ρut−1+εt and xt = xt−1+et
with α = 0, β = 1 and the innovation vector (et, εt) is iid N(0, I2) for T = 100. Testing in this

model requires an estimate of the LRV of ut, which has the value Ωu = 100 when ρ = 0.9. In

fig. 1, NW4 and NW10 denote LRV estimates based on Newey and West (1987) using 4 and 10

lags, respectively, and QSPWOLS is the LRV estimator in Andrews and Monahan (1993) with

a quadratic spectral (QS) kernel using prewhitening (PW) and ordinary least squares (OLS) to

remove the mean. As is apparent, NW4 and NW10 both produce seriously downward-biased

estimates of Ωu, which in turn produce an upward size distortion in t-tests that use these

LRV estimates. QSPWOLS is also biased downward, although not as seriously as the NW

estimates, so the upward size distortion of tests based on this estimator is not as serious but

is still present.

Fig. 2 displays the corresponding distributions of the t-statistic (β̂ − 1)/Ω̂β for testing the
null hypothesis H0 : β = 1, where β̂ is the OLS estimate of β, Ω̂2β = Ω̂

2
u

³PT
t=1 (xt − x̄)

´−1
and

Ω̂2u is the corresponding estimate of Ωu in the cointegrating regression. Evidently, the t-statistics
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Figure 1: Empirical cdf of various LRV estimators (true Ωu = 100).
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Figure 2: Empirical cumulative density of t−statistics based on various HAC estimators.
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based on the NW10 and NW5 estimates have substantial size distortion. As shown in the figure,

for a test with nominal 5% size, these procedures for constructing the test statistic have actual

sizes around 12% and 16%, respectively. The t-statistic based on the QSPWOLS estimate of

the LRV substantially reduces this size distortion but some mild upward size distortion is still

evident.

The underlying theme of the present work is a simple consequence of these observations.

This paper seeks to develop a flexible and convenient bias correction method that can be

applied to prefiltering in HAC estimation. We review some existing bias correction methods for

multivariate autoregression in models with fitted means (where the bias effects are worse) and

select some candidate procedures for implementation in HAC estimation based on recursive

demeaning and detrending methods. Some analysis is provided of the recursive demeaning

procedure proposed by So and Shin (1999b) and Phillips, Park and Chang (2001) for reducing

bias in autoregression, from which we develop a modified recursive detrending method. These

methods provide some computationally convenient bias correction tools for practical work.

Once the bias in the fitted autoregressive coefficients is corrected, the finite sample performance

of the prewhitened HAC and LRV estimators is generally improved. Figs. 1 and 2 show the

impact of recursive demeaning (RD) on the prewhitened QS estimate and its corresponding

t- ratio. QSPWRD exhibits less downward-bias in the estimation of Ωu than the other LRV

estimates and removes the upward size distortion in the t-test.

Simulation evidence shows that the power of tests based on HAC estimators is very de-

pendent in finite samples on the variance of the HAC estimator used in the construction of

the test, with larger HAC variance generally worsening test power. This dependence plays a

large role in affecting the power of stationarity tests such as the KPSS and variable additional

tests. For example, Lee (1996) reported that KPSS tests based on NW-type HAC estimators

suffer from serious size distortion but have reasonable size-adjusted power, while those based

on prewhitened HAC estimators provide much less size distortion but suffer from very poor

power and can, in fact, be inconsistent. Fig 1 provides some intuitive explanation of Lee’s

findings. In the use of autoregressive prewhitened HAC estimators, a commonly-used restric-

tion rule on the autoregressive estimates (viz., that an autoregressive estimate, or latent root,

greater than 0.97 be replaced by 0.97) interferes with size as well as power in unit root and

stationarity tests. This rule is used to avoid distortions that occur in prewhitening when esti-

mates are very close to unity. In fact, the prewhitened estimates using this rule do reduce the

size distortion in other estimates such as the NW estimates, but they still have a substantially

thicker right tail than NW estimates.We examine alternative boundary restrictions in place

of the 0.97 rule and propose a new sample-size-dependent rule that, when an autoregressive

estimate is greater than 1-1/
√
T , it be replaced by 1-1/

√
T . Under this new rule, the power of

tests based on LRV estimators improves significantly. Fig. 1 again provides some insight into
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Figure 3: Power Functions for the t-test in a Cointegrating Regression

why this new rule improves test power. Under the new rule, the QSPWRD estimator has a

distribution in which the heavy right tail of the estimate is significantly reduced, which in turn

produces less variance in the test statistic. Fig 3 shows the corresponding size-adjusted power

functions of t-statistics with various LRV estimators. The test based on QSPWRD with the

0.97 rule provides reasonably accurate test size (as seen in Fig. 2) but has substantially less

power than tests based on NW estimates of the LRV and also less power than tests based on

the QSPWOLS LRV estimate. On the other hand, with the new rule implemented the power

of the test based on QSPWRD is substantially improved. Moreover, as we will show, under

the new rule the powers of both KPSS and unit root tests are also significantly improved and

the KPSS test is consistent under the new rule.

The remainder of the paper is organized as follows. The next section studies the analytic

form of the small sample bias in HAC estimation and develops some asymptotic approxima-

tions. Section 3 provides some small sample bias correction formulae for scalar autoregressive

prefilters. Section 4 explains how to implement the bias corrections and provides some new

restrictions on the estimates of the prewhitening coefficients. Section 5 reports the main results

of some Monte Carlo simulations. Section 6 concludes.

A final note on terminology. Much of the discussion throughout the paper is in terms of

LRV estimation because this application is so widespread. But the methods considered here

are directly applicable in the context of HAC estimation of asymptotic covariance matrices of

econometric estimates. So we sometimes use the appellation HAC interchangeably with LRV.
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2 Small sample bias in HAC estimation

A stylized setting for HAC estimation is the scalar regression model

yt = α+X 0
tβ + εt, (1)

or in demeaned form ỹt = X̃ 0
tβ + ε̃t, where β denotes the true value of the coefficients on a set

of exogenous variables Xt and where the tilde affix signifies demeaning. Robust tests about β

typically involve the use of LRV estimates of variates of the form Vt = Ztεt, where Zt is a vector

of instruments or covariates. However, since εt is unobserved, it is conventionally replaced by

estimates ε̂t constructed from regression residuals. In models where there is a fitted intercept,

as in the one just given, this will imply some process of demeaning in the construction of these

residuals. Practical implementation of robust testing therefore involves the calculation of LRV

estimate of quantities such as Ṽt = Z̃tε̂t.

Prewhitening is based on the proposition that a simple parametric specification such as the

vector autoregression

Ṽt =
pP

i=1
AiṼt−1 + Ũt, t = 1, ..., T (2)

will capture much of the temporal dependence Ṽt. In addition, Ṽt is often written as a function

of the parameters in the original regression model, e.g., as Ṽt = Ṽt(β0) in the present case.

The lag order p in (2) could be infinite, but in practical work will often be taken to be a small

integer, so that the VAR(p) model prewhitens the data and has a simple recoloring filter that

leads to the following expression for the LRV of Ṽt

Ω2V = (I −A)−1Ω2U
¡
I −A0

¢−1
, (3)

where A =
Pp

i=1Ai, and Ω2U is LRV of Ũt.
1

While finite sample bias problems have been well documented in autoregressions of the

above type, there has been little investigation of the implied bias problem in HAC estimation

that uses such prefilters. Prewhitening produces recoloring filters like (3) that are heavily

dependent on the prewhitening coefficients, and so the transmission of bias effects in HAC/LRV

estimation is potentially important. It is also known that bias problems in autoregressions are

exacerbated by demeaning and detrending (e.g., Orcutt and Winokur, 1969; Andrews, 1993).

While (2) does not itself involve an intercept or trend, the constituent variates Z̃t and ε̂t do

1The model for the prefilter can, of course, be extended to include ARMA(p,q) processes (c.f., Lee and

Phillips, 1994) in which case the model (2) has the form Ṽt =
Pp

i=1AiṼt−i +
Pq

i=1BiŨt−i and the long run

variance matrix is

Ω2V =

µ
I −

pP
i=1

Ai

¶−1 µ
I +

qP
i=1

Bi

¶
Ω2U

µ
I +

qP
i=1

B0
i

¶µ
I −

pP
i=1

Â0
i

¶−1
.
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typically involve demeaning and this contributes to bias effects in prewhitening autoregressions

with Ṽt.

Nicholas and Pope (1988), and Tjostheim and Paulsen (1983) gave some asymptotic ex-

pansion bias results for the VAR(1) model and Brannstrom(1995) extended this bias formula

to include the third order term of O
¡
T−2

¢
. In contrast to the bias formulae for scalar autore-

gressions, formulae for the VAR(p) case seem not to have been used in practice. Nicholas and

Pope (1988) gave the following bias formula for the VAR(1) case with a fitted intercept

E(Â−A) = − 1
T
C +O(T−2), (4)

where

C = G

¡I −A0
¢−1

+A0(I −A02)−1 +
mX
j=1

λj
¡
I − λjA

0¢−1Γ(0)−1. (5)

Here, we set p = 1, A = A1 and let Ũt be iid N(0, G) in (2), Γ(0) is the covariance matrix

of Ṽt, and {λj : j = 1, ..,m} are the eigenvalues of A. When the coefficient matrix A has

the appropriate companion form corresponding to a scalar AR(p) model, the bias formula (4)

includes this higher order scalar case.2

Equation (3) helps explain the problem of induced bias in HAC estimation based on pre-

filtering. The prefiltering bias in HAC estimation comes from the bias in the estimation of the

autoregressive coefficients and this becomes exaggerated as the system roots approach unity.

In this respect, the small sample bias in HAC estimation is very similar to that of the half-life

estimation of dynamic responses, for which the formula is ln(0.5)/ ln (λmin (A)) where λmin (A)

is the smallest eigenvalue of the companion matrix A. In such cases, even a small bias in the

estimation of A can cause a huge bias in HAC or half-life estimation.

To illustrate, we take a simple AR(1) process and give analytic bias formulae for the prefilter

effects using asymptotic expansions. Suppose the model for vt is

vt = µ+ ρvt−1 + ut, ut ∼ iid N(0, σ2u). (6)

Here, we allow for a fitted intercept in (6) because, as indicated earlier, vt is usually bilinear in

constituent variates that have been demeaned, so that (6) is in practice only approximate, and

simulations confirm that there is some finite sample advantage in allowing for further demean-

ing. In view of the parametric form of (6), the long run variance of yt can be parametrically

estimated by

Ω̂2v =
σ̂2u

(1− ρ̂)2
. (7)

2For the case of a scalar AR(1) with fitted mean, i.e. ṽt = ρṽt−1+ ũt with var(ũt) = σ2u, this formula reduces

as follows: A = λ = ρ, G = σ2u, and Γ(0) = σ2u/(1−ρ2), so that E(Â−A) = − 1
T
(1−ρ2)

h
1

1−ρ +
ρ

1−ρ2 +
ρ

1−ρ2
i
+

O(T−2) = − 1+3ρ
T

+O(T−2)

7



0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9

Bi
as

 R
at

io



T  50
T  100

T  500

Figure 4: Bias Ratio for T = 50, 100, 500.

where ρ̂ and σ̂2u are least squares estimates of the coefficient and error variance in (6). In the

nonparametric case, we still use the recoloring filter 1/(1 − ρ̂)2 in the final estimate, so the

effects of prewhitening in more general HAC estimation are similar in that case. Appendix A

develops an Edgeworth expansion of the distribution of Ω̂2y, from which we deduce the following

bias formula

Ea

·
σ̂2u

(1− ρ̂)2

¸
− σ2u
(1− ρ)2

= − σ2u(1 + ρ)

T (1− ρ)3
+O(T−2), (8)

giving the bias ratio
EaΩ̂

2
v

Ω2v
= 1− (1 + ρ)

T (1− ρ)
+O(T−2). (9)

Since the support of the probabilility density of ρ̂ is the whole real line and, in particular,

this density is positive at ρ̂ = 1, the distribution of σ̂2u/(1 − ρ̂)2 has no finite sample integer

moments. Hence, in the formulae above, Ea denotes expectation with respect to the Edgeworth

approximation, so (8) and (9) give moments of the approximating distribution. From (8), it

is clear that the LRV estimator (7) suffers from downward bias, and the bias is a function

of σ2u as well as ρ. Fig. 4 plots the bias ratio (9) for Ω̂
2
v, showing how increasing the value

of ρ accentuates the bias for various values of T .While the approximate bias in ρ̂ increases

linearly in ρ, the bias in Ω̂2v increases nonlinearly in ρ and the bias effects become exaggerated

as ρ approaches unity. From the asymptotic expansion for ρ̂ given in Appendix A, we obtain

the bias ratio Ea(ρ̂)/ρ− 1 = −(3 + 1/ρ)/T +O(T−2). Hence, as ρ increases toward unity, the
relative bias in the OLS estimate ρ̂ decreases, whereas the relative bias in the LRV estimate

8



given in (9) increases as ρ tends to unity. As is apparent from Fig. 4, the bias problem in LRV

estimation accelerates rapidly as ρ approaches unity.3

3 Bias Correction Methods

Since a major source of the bias in prewhitened HAC estimates originates in the bias of

the fitted coefficients that appear in the recoloring filter, one approach to bias correction in

such HAC estimates is to correct for the bias in these prewhitening coefficients. In practice,

simple autoregressive filters are the most common, so the problem becomes one of correcting

autoregressive bias.

There are two sources of bias in autoregression. The first arises from the nonlinearity of the

autoregressive estimator and its asymmetric distribution. The second is induced by demeaning

and/or deterministic trend elimination which produces residuals that are correlated with the

lagged dependent variable. Many different approaches have been suggested to correct for

this autoregressive bias. The first method relies on asymptotic expansions, using formulae

such as those given in the last section and Appendix A with estimates plugged in as values

of the unknown parameters in the expansions. Kendall (1954), Marriot and Pope (1954),

Phillips (1977), Tanaka (1983, 1984), Shaman and Stine (1988) provide bias formulae for

autoregressive models of various complexity up to an AR(6) and including cases with unknown

mean. For the unknown trend coefficient case, there are no available bias formulae in the

published literature, although in other work Phillips and Sul (2001) have obtained analytic

expansion results for this case. This method generally works well in reducing bias, at least

for moderate sample sizes, although at the cost of inflating variance. A second approach is

based on median unbiased estimation, a method suggested in Lehmann (1959) and used in

Andrews (1993) for the AR(1) case. This method relies on the availability of the exact median

function and precise distributional assumptions. It is difficult to extend to more general models,

especially when there are additional nuisance parameters. For these reasons it is less feasible

in practice than the use of asymptotic approximations. A third approach relies on sample reuse

procedures, such as the jackknife (Quenouille, 1959) and direct simulation methods based on

the bootstrap (Hansen, 1999; Kilian, 1999b). These methods can be effective in bias reduction

but the jackknife has the disadvantage that it may lead to substantial increases in variance.

Further, they are not as successful in reducing bias in nonlinear functions of the autoregressive

coefficient, as is needed here in LRV estimation (c.f., Phillips and Yu, 2003).

Next, some alternative estimators, such as the Cauchy estimator (So and Shin, 1999a,

1999b), have been suggested for use in autoregressions which are asymptotically median unbi-

3When there is a linear trend in the regression rather than simply a fitted mean as in (6), the finite sample

bias of ρ̂ is known to be more serious. Phillips and Sul (2001) provide asymptotic expansion formulae for ρ̂ in

this case.
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ased over a wide range of values of the autoregressive coefficient, including the unit root case.

We have found that this procedure generally works well in HAC/LRV estimation especially

when it is combined with recursive demeaning of the residuals and regressors. This method

will be used in what follows. Recursive demeaning (and detrending) procedures have been

found to reduce autoregressive bias in cases where there is a fitted intercept and trend. Some

extensive simulation trials that we have conducted with all of these methods in the context

of HAC estimation have shown that recursive demeaning can work very well to reduce bias

without inflating variance too much. We will discuss the recursive demeaning method used

here and report its performance in the simulations.

Appendix B provides the reasoning behind the recursive demeaning procedure. Here we

address how to construct LRV estimates to reduce the size distortion. First, rewrite (2) (with

some abuse of notation) as

V +t = AV +t−1 +
pP

i=2
Ai∆V

+
t−i + ζt, t = 1, ..., T (10)

where

V +t = Zr
t ε

r
t , and V +t−1 = Zr

t−1ε
r
t−1

and recursively demeaned quantities are denoted by the affix r. In particular,

Zr
t−i = Zt−i − Z̄t−1 for i ≥ 0 and Z̄t−1 =

1

t− 1
t−1X
s=1

Zs

εrt−i = ε+t−i − ε̄+t−1 for i ≥ 0 and ε̄+t−1 =
1

t− 1
t−1X
s=1

ε+s ,

where

ε+t = yt − β̂
0
Xt = εt + a+

³
β − β̂

´0
Xt.

Note that ε+t is effectively the residual without a fitted mean. The regressand and the first

lagged dependent variable in (10) are the product of separate recursive demeaned variables.

The regression error in (10) does not contain the overall mean of Ut, which is the second source

of small sample bias.4

The recoloring procedure is based on the estimates, ÂRD and ÂRD
i , obtained by running

least squares regression in (10). Define the residuals

ÛRD
t = Ṽt − ÂRDṼt−1 −

pP
i=2

ÂRD
i ∆Ṽt−i.

which are constructed using the data Ṽt rather than the modified V +t . This is done because the

residual ζt in (10) includes bias correction terms, which are functions of Z̄t−1ε̄t−1, in addition
4For cointegration regressions, V +

t = εrt and V +
t−1 = εrt−1.

10



to the regression error Ut. The recolored LRV estimate is then given by the formula

Ω̂2V =
³
I − ÂRD

´−1
Ω̂2U

³
I − ÂRD0

´−1
, (11)

where Ω̂2U is the estimate of LRV of Ut computed from the residuals ÛRD
t .

As an alternative to the estimate ÂRD, one may consider the Cauchy estimator

ÂRC = V̂ +0t sign
³
V̂ +t−1

´·
sign

³
V̂ +t−1

´0
V̂ +t−1

¸−1
,

where V̂ +t and V̂ +t−1 are the projection errors from the regression of V
+
t and V +t−1 on

Pp
i=2Ai∆V

+
t−i,

and sign
³
V̂ +t−1

´
= sign

³
V̂ +1t−1, ..., V̂

+
kt−1

´
where

sign
³
V̂ +i,t−1

´
=

(
1 if V +i,t−1 ≥ 0
−1 if V +i,t−1 < 0

.

Here, V̂ +i,t−1 is the i’th element of the vector V̂
+
t−1. So and Shin (1999b) argue that the Cauchy

estimator is approximately median unbiased5. As such, it may be expected to be useful in

HAC estimator prefiltering to reduce autoregressive bias in the recoloring filter.

In multivariate applications, most empirical studies assume the off-diagonal terms of the

autoregressive coefficients (i.e., the Ai in (2)) can be set to zero and neglected in HAC esti-

mation. Den Haan and Levin (2000) argue that when the cross section correlation among the

elements of Ut is high, seemingly unrelated regression (SUR) estimation with zero restrictions

on the off-diagonal terms of the autoregressive coefficients may result in more efficient HAC

estimation. Mark, Ogaki and Sul (2003) confirm that argument and find that even when the

off-diagonal terms of Ai are non-zero, SUR regression results in better finite sample perfor-

mance as long as the cross section correlation among the elements of Ut is high.

4 Use of Boundary Condition Rules

Andrews (1991) introduced the so called “0.97” rule as a boundary condition for use in

prewhitened HAC estimates. The rule ensures that whenever the roots of the (fitted coef-

ficient) characteristic equation are greater than 0.97 those roots are replaced by 0.97. Thus,

in scalar autoregressions like (6) the rule implies that if ρ̂ > 0.97, then ρ̂ is replaced by 0.97.

Although the choice of 0.97 is arbitrary and based on simulation evidence, it is widely used in

empirical work. In fact, usage is indiscriminate because the rule is applied irrespective of the

sample size.

5The Cauchy estimator is a nonlinear IV estimator - see Phillips, Park and Chang (2002) for further analysis

and discussion.
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Boundary conditions like the 0.97 rule are used to reduce distortions in prewhitened HAC

estimation, reduce variance in estimation and provide a buffer zone between the stationary and

unit root case (for which the recoloring filter is undefined). If the goal is variance reduction

while maintaining accurate test size, as Andrews (1991) suggests, a confidence interval of ρ̂

could be considered in the construction of the boundary. We therefore propose the following

alternative boundary condition rule. Let ψ be the boundary value of ρ that we choose not to

exceed. Then, in practice with a sample of size T, the operational boundary can be set as ψ

minus one or two standard errors. Using 1/
√
T as the standard error (strictly, the asymptotic

standard error of ρ̂ when ρ = 0), we set up the new boundary condition rule:

ρ̂ψ = min
h
ψ − 1/

√
T , ρ̂

i
.

This rule sets a maximum value for the autoregressive coefficient to be used in the recoloring

filter as ψ − 1/√T , which is sample size dependent and approaches ψ as T → ∞. If we set

ψ = 1, then we have

ρ̂1 = min
h
1− 1/

√
T , ρ̂

i
. (12)

To see the meaning of this restriction, suppose ρ̂ exceeds the boundary value so that

ρ̂1 = 1− 1/
√
T , Ω̂2v = T Ω̂2ε. (13)

Then (13) can be restated as

Ω̂2v = min
h
T Ω̂2ε, Ω̂

2
ε/(1− ρ̂)2

i
. (14)

It follows that the LRV estimate is bounded above by T Ω̂2ε. We may, in fact, classify ρ̂ =

1 − 1/√T as a big deviation from unity in the sense that it is a larger deviation from unity

than any root local to unity of the form ρ = 1− c/T, for some fixed localizing coefficient c and

large enough T .

The latter distinction turns out to be very important in some applications, such as tests

of stationarity or cointegration. Indeed, it is known that use of prewhitened LRV estimates

renders KPSS tests inconsistent (Lee, 1996). In effect, under the alternative of a unit root,

ρ̂→ 1 and the LRV estimate diverges. It is the rate of divergence that affects the consistency

properties of the test. In conventional prewhitened estimates (with no boundary condition),

ρ̂ = 1 + Op

¡
T−1

¢
, so that (1 − ρ̂)2 = Op

¡
T−2

¢
and Ω̂2ε/(1 − ρ̂)2 = Op

¡
T 2
¢
. The KPSS

test in this case is then of order Op (1) under the alternative of a unit root and is therefore

inconsistent.

However, under the rule (14), we find that the boundary condition limits the order of

magnitude of the long run variance estimate in the unit root case to Op (T ) . In this case, the

KPSS test has order Op (T ) and diverges, so the test is indeed consistent. The reason is that,

12



in constructing the prewhitened LRV estimate, we deliberately maintain the null hypothesis

of stationarity in setting deviations from unity in the boundary condition rule. Thus, the

maximum allowable value of ρ̂ is 1− 1/√T , so the deviation from unity is of O
³
1/
√
T
´
and

this corresponds to the
√
T convergence rate that applies under stationarity. In effect, we keep

a ‘stationary order of magnitude’ distance from unity in constructing the recoloring filter.

Monte Carlo experiments that we now discuss reveal that this new rule (12) works very

well in terms of both size and size adjusted power. The size properties are similar to those

under the 0.97 rule. But the power properties of the new rule are significantly better, as the

asymptotic theory indicated above suggests.

5 Simulation Results

We considered the impact on HAC estimation of various bias correction methods: recursive

Cauchy estimation; jackknifing; bias correction using asymptotic bias expansions; and hybird

estimators combining more than one bias correction method. To save space, we focus on

the main results and accordingly report here the finite sample performance of the recursive

demeaning and Cauchy estimators, which gave overall the best performance in HAC estimation

and applications.

First, we summarize the main simulation findings:

1. Once the small sample bias is corrected before recoloring, the finite sample performance

of prewhitened HAC estimators is dramatically improved, even when the dominant root

is close to unity.

2. The proposed new terminal condition (12) for prefiltered HAC estimation provides im-

proved finite sample performance in terms of power, especially in the context of KPSS

stationarity tests, and the coverage probabilities of confidence intervals, in comparison

with the commonly used ‘0.97 rule’.

We considered a large variety of DGPs and testing problems and to save space present here

only two cases that serve to illustrate the main findings.

DGP A: (Constant Case) The model is:

yt = a+ bxt + ut, ut = ρut−1 + et, et ∼ iidN(0, 1) (15)

xt = ρxt−1 + εt.

This is a benchmark case and is considered in Andrews and Mohanan (1992). Without

loss of generality, set a = b = 0 and prescribe the null hypothesis H0 : b = 0. The test

13



statistic is b̂2T/V̂b ∼ χ1, where V̂b =
³
T−1

PT
t=1 x

2
t

´−1
Ω̂2v

³
T−1

PT
t=1 x

2
t

´−1
and Ω̂2v is

defined in (11). We set φ = ρ2 to be 0.5, 0.7, 0.9, and 0.95. Table 1 reports the finite

sample performance of three HAC estimators. They are the Newey and West (1987)’s

Bartlett kernel estimator (NW), Andrews and Monahan (1992)’s prewhitened QS kernel

estimators depending on the prewhitening procedure. The choice of bandwidth for NW is

int
³
12 [T/100]1/4

´
where int(·) stands for integer part. We consider both OLS and RD

estimators in the regression. We use the acronym QSPWOLS for a prewhitened HAC

estimator with a QS kernel that is based on OLS regression, and PARAOLS for Den

Haan and Levin’s (1997) parameteric HAC estimator based on OLS regression. We also

considered several other kernel methods with AR(p) and MA(q) error processes. But to

save space, we do not report these results here since they are similar to those given in

Table 1.6

The major findings are as follows.

1. As in Andrews and Monahan (1992), the finite sample performance of QSPWOLS is

found to be superior to NW.

2. Once prewhitening bias is corrected, the finite sample performance of all HAC estimates

is significantly improved.

3. The choice of the restriction on the prewhitening estimator does not affect the finite

sample performance of HAC estimators when ρ is not near unity. The confidence intervals

in Table 1 are calculated based on the 0.97 rule.

DGP B: (Impact of the new rule on the KPSS test) To measure the size distortion of
the KPSS test, we use the following DGP.

yt = ρyt−1 + et, et ∼ N(0, 1). (16)

Under (16), we consider four values of ρ (0.8, 0.9, and 0.95) and obtain rejection rates

for the KPSS test. The LM test statistic is given by

LM =

PT
t=1 S

2
t

Ω̂2y
, St =

TX
t=1

ỹt

where ỹt is demeanded yt. Note that the denominator term suffers from small sample

bias. When the downward bias of Ω̂2y is corrected, the LM statistic is likely to increase in

value. Table 2 shows the results. As Cantor and Kilian (2001) point out, tests based on

the NW estimator suffer from serious size distortion. And as Lee (1996) discovered, the

6These results are available upon the request from the authors.
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QSPW estimator with the 0.97 rule suffers from conversative rather than exaggerated

size. To assess the power of KPSS tests based on these HAC estimators, we used the

following DGP:

yt = rt + et, rt = rt + ut,
¡
u0t, e

0
t

¢0 ∼ N(0, I2), λ = σ2u/σ
2
e = 10

α (17)

Table 3 reports the impact of the new rule on the power of the KPSS test. With the 0.97

rule, the power of the KPSS test converges to the nominal size of the test as λ → ±∞.

However, under the new rule, the KPSS test performs reasonable well.7

6 Concluding Remarks

This paper was motivated by the following two practical concerns. First, why do test statistics

constructed from HAC estimates typically suffer from serious size distortion in finite samples

and sometimes, as in KPSS testing, from very low power? Second, how can size distortion be

reduced and power increased in the practical implementation of robust tests?

While prefiltering can help reduce size distortion in testing where HAC estimates are used

(c.f. Fig. 1) the finite sample bias in the coefficient estimates used in the prewhitening filter can

itself cause bias in HAC estimation and testing. We propose recursive demeaning and recursive

Cauchy estimation to reduce the small sample bias in prewhitening coefficient estimates. This

procedure helps eliminate one major source of size distortion in test statistics constructed

with HAC estimator. Moreover, we provide a sample-size-dependent boundary condition rule

that substantially enhances power without compromising size. These methods are free from

distributional assumptions.

The present work does not provide bias reduction methods for the case where a linear trend

is fitted. So and Shin (1999b) have suggested a recursive detrending method, but this procedure

is dependent on nuisance parameters and our findings indicate that it does not effectively reduce

small sample bias - see Appendix C for details. A priority for future work on HAC/LRV

estimation is further study on the finite sample properties of autoregressive estimation with

trend, and the development of bias reduction methods that work under stationarity and under

a unit root.
7We also considered Park’s variable additional tests and found similar results: With the conventional 0.97

rule, the size-adjusted power of the test is close to the size. Use of the new rule dramatically increases power

without compromising size. .
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7 Appendix

Appendix A: Edgeworth Expansion Our approach follows Phillips (1977) and Tanaka

(1983) and we use the same notation as in those papers to simplify the following derivations.

The general algorithm for extracting the Edgeworth expansion is described in Phillips (2003).

Only the main results are given here to save space. We assume the generating model is

yt = µ+ ρyt−1 + ut, where ut ∼ iid N(0, σ2u), as in model (6).

Define the estimation error
√
T (Ω̂2y −Ω2y) =

√
Te(q). Then we have

e(q) = Ω̂2y − Ω2y =
σ̂2u

(1− ρ̂)2
− σ2u
(1− ρ)2

,

where

ρ̂ =
p2 − p23
p1 − p23

, σ̂2u =
p21 − 2p1p23 + 2p2p23

p1 − p23
,

p1 = y0C0y − Ey0C0y
T

=
σ2

1− ρ2
+ β2,

p2 = y0C1y − Ey0C1y
T

=
ρσ2

1− ρ2
+ β2,

p3 = β,

y is the vector of observations, y0C0y =
PT

t=1 y
2
t−1, y0C1y =

PT
t=1 ytyt−1 - see Phillips (1977)

and Tanaka (1983) for details. The error function can be rewritten as

e(q) =
p1 − p23
p1 − p2

(p1 + p2 − 2p23),

and the Edgeworth expansion depends on the derivatives of this function and cumulants of its

arguments.

The first derivatives are

e1 = −2ρ+ ρ2 − 1
(−1 + ρ)2

, e2 =
2

(−1 + ρ)2
, e3 = 2 (3 + ρ)

β

−1 + ρ
,

and the second derivatives are given by

e11 =
4

σ2
ρ2

ρ+ 1

(−1 + ρ)2
, e12 = −4 ρ

σ2
ρ+ 1

(−1 + ρ)2
, e13 = −8β ρ

σ2
ρ+ 1

−1 + ρ

e22 =
4

σ2
ρ+ 1

(−1 + ρ)2
, e23 =

8

σ2
(ρ+ 1)

β

−1 + ρ
, e33 = 2

3σ2 − 8β2 + 8β2ρ2 + ρσ2

σ2 (−1 + ρ)
.
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Following Tanaka(1983) for the exact formulae of the second (= cij) and third derivatives(=

cijk) of the cumulant functions, we find the explicit expressions

c11 = −2σ
4(1 + ρ2)

(1− ρ2)3
− 4σ2µ2

(1− ρ)4
, c12 = − 4ρσ4

(1− ρ2)3
− 4σ2µ2

(1− ρ)4
,

c13 = − 2σ2µ

(1− ρ)3
, c22 = −σ

4(1 + 4ρ2 − ρ4)

(1− ρ2)3
− 4σ2µ2

(1− ρ)4

c33 = − σ2

(1− ρ)2
, µ = β(1− ρ),

and

c111 = − 1√
T
(
8σ6(ρ4 + 4ρ2 + 1)

(1− ρ2)5
+
24σ4µ2

(1− ρ)6
), c112 = − 1√

T
(
24σ6(ρ3 + ρ)

(1− ρ2)5
+
24σ4µ2

(1− ρ)6
)

c113 = − 1√
T

8σ4µ

(1− ρ)5
, c122 = − 1√

T
(
4σ6(ρ4 + 10ρ2 + 1)

(1− ρ2)5
+
24σ4µ2

(1− ρ)6
)

c133 = − 1√
T

2σ4

(1− ρ)4
, c222 = − 1√

T
(
2σ6(ρ7 − 5ρ5 + 19ρ3 + 9ρ)

(1− ρ2)5
+
24σ4µ2

(1− ρ)6
), c333 = 0.

The unconditional asymptotic variance of e is given by

ω2 = −P
i

P
j
eiejcij = 2σ

4 3 + ρ

(1− ρ)5
,

and the Edgeworth coefficients are given by

b1 = −8
¡
ρ2 + 4ρ+ 7

¢ σ6

(1− ρ)8
,

b3 = −16 (ρ+ 1) σ6

(1− ρ)8
,

b4 = 2σ
2 ρ+ 1

(1− ρ)3
,

leading to the following coefficients that appear in the Edgeworth expansion (18) below:

c0 = − b4
2ω
+

b1
6ω3

+
b3
2ω3

=

√
2

6

5ρ2 + 32ρ+ 35³p
(3 + ρ)

´3p
(1− ρ)

,

c2 = − 1
ω3
(
b1
6
+

b3
2
)

= −
√
2

3

ρ2 + 10ρ+ 13³p
(3 + ρ)

´3p
(1− ρ)

.
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The Edgeworth expansion of the cdf of
√
T (Ω̂2y −Ω2y) has the following explicit form

P
h√

T (Ω̂2y −Ω2y) ≤ r
i
= Φ

³ r
ω

´
+

1√
T
ϕ
³ r
ω

´½
c0 + c2

³ r
ω

´2¾
+O

¡
T−1

¢
, (18)

where Φ and ϕ are the cdf and pdf of the standard normal density. Finally, the mean bias can

be obtained directly from the expression

−ω
T
(c0 + c2) = −σ2 ρ+ 1

T (1− ρ)3
+O(T−2), (19)

as discussed in Phillips (2003).

Appendix B: Recursive Demeaning

Recursive Demeaning in Autoregression Recursive demeaning and detrending meth-

ods were studied by So and Shin (1999) and Moon and Phillips (2001). The heuristic idea is

that recursive methods of demeaning and detrending reduce the second source of autoregressive

bias (discussed in the paper) that arises from the correlation between residual and regressor

induced by fitting an intercept and trend. We illustrate with the AR(1) model that forms the

basis of much prefiltering in HAC estimation. Let

yt = a+ st, st = ρst−1 + ut, (20)

and assume that ut is iid (0, σ2u). We may demean the variable yt recursively by using the

residual yt − 1
t−1

Pt−1
i=1 yi. However, to demean the regression equation in (20) it is preferable

to remove the mean as a common element from both the dependent variable and regressor as

in

yt − 1

t− 1
t−1X
i=1

yi = ρ

"
yt−1 − 1

t− 1
t−1X
i=1

yi

#
+ et. (21)

Note that because of the common recursive demeaning in (21) the error in this regression

et 6=
h
ut − 1

t−1
Pt−1

i=1 ui

i
. Let ȳt−1 = 1

t−1
Pt−1

i=1 yi, s̄t−1 =
1

t−1
Pt−1

i=1 si, and re-express (21) as

yt − ȳt−1 = ρ(yt−1 − ȳt−1) + [α− (1− ρ)ȳt−1] + ut, (22)

with α = a(1− ρ). Note that yt − ȳt−1 = st − s̄t−1, and α− (1− ρ)ȳt−1 = (1− ρ) (a− ȳt−1) =
−(1− ρ)s̄t−1. Then, (22) has the following equivalent representation

st − s̄t−1 = ρ(st−1 − s̄t−1) + ut − (1− ρ)s̄t−1. (23)

When ρ = 1, the second component in the error on this equation, viz., (1− ρ) s̄t−1, is zero.
This means that for ρ = 1, common element recursive demeaning eliminates the second source
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Figure 5: Bias components as functions of ρ.

of bias in the autoregression. When ρ < 1, the covariance between the second component and

the regressor in (23) becomes positive. In fact,

E {ut − (1− ρ)s̄t−1} {(st−1 − s̄t−1)} = (1− ρ)
TX
t=2

¡
s̄2t−1 − st−1s̄t−1

¢
=

TX
t=2

σ2uρ

t− 1
µ
1 + ρt−2 − 2

t− 1
1− ρt−1

(1− ρ)

¶
> 0.

This positive covariance assists in reducing the first source of autoregressive bias that arises

from the nonlinear form of the autoregressive estimate, as discussed earlier in the paper. Fig.

5 shows the effect of the presence of this additional component in (23) on the finite sample

autoregressive bias in (23). Evidently, the positive covariance between the second component

and the regressor in (23) has the same order of magnitude and opposite sign to the usual

downward bias of the autoregressive estimate, thereby effectively reducing autoregressive bias.

Recursive Demeaning applied to HAC Estimation We now apply recursive de-

meaning in a regression context such as (1) where HAC estimates are to be obtained by means

of an autoregressive prefilter. We start with the the regression residuals

ε̂t = εt − ε̄+
³
β − β̂

´0 ¡
Xt − X̄

¢
,
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and define

ε+t = yt − β̂
0
Xt = εt + a+

³
β − β̂

´0
Xt.

Note that ε+t is effectively the residual without a fitted mean8. Since Xt is exogenous, β̂ is

unbiased. Then, if εt had the autoregressive structure

εt = ρεεt−1 + ηt,

we would have

ε+t = a (1− ρε) + ρεε
+
t−1 + ηt +

³
β − β̂

´0
(Xt − ρεXt−1)

= a (1− ρε) + ρεε
+
t−1 + ηt + op (1) (24)

under conditions that ensure β̂ is consistent (essentially, the persistent excitation condition

that the smallest eigenvalue of
PT

t=1XtX
0
t tends to infinity). Recursive demeaning applied to

(24) leads to

ε+t −
1

t− 1
t−1X
s=1

ε+s = a (1− ρε) + ρε

Ã
ε+t−1 −

1

t− 1
t−1X
s=1

ε+s

!
− (1− ρε)

1

t− 1
t−1X
s=1

ε+s (25)

+ηt + op (1) . (26)

Observe that

1

t− 1
t−1X
s=1

ε+s = a+
1

t− 1
t−1X
s=1

εs + op (1)

ε+t−1 −
1

t− 1
t−1X
s=1

ε+s = εt−1 − 1

t− 1
t−1X
s=1

εs + op (1) .

These equations imply that the (25) can be rewritten as

εt − 1

t− 1
t−1X
s=1

εs = ρε

Ã
εt−1 − 1

t− 1
t−1X
s=1

εs

!
− (1− ρε)

1

t− 1
t−1X
s=1

εs + ηt + op (1) .

Next, if Xt has an AR(1) formulation as Xt = ρxXt−1 + et, then recursive demeaning of

this equation produces

xt − 1

t− 1
t−1X
s=1

xs = ρx

Ã
xt−1 − 1

t− 1
t−1X
s=1

xs

!
− (1− ρx)

1

t− 1
t−1X
s=1

xs + et.

Then, looking at the product variable Xtεt, which is used in HAC estimation, we may write

xrtε
r
t = φxrt−1ε

r
t−1 + ξt, (27)

8Demeaning ε+t leads directly to ε̂t, so that ε
+
t − ε̄+ = ut − ū+

³
β − β̂

´0 ¡
Xt − X̄

¢
.
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where

xrt =

Ã
xt − 1

t− 1
t−1X
s=1

xs

!
, xrt−1 =

Ã
xt−1 − 1

t− 1
t−1X
s=1

xs

!
,

εrt =

Ã
ε+t −

1

t− 1
t−1X
s=1

ε+s

!
, εrt−1 =

Ã
ε+t−1 −

1

t− 1
t−1X
s=1

ε+s

!
.

Since all of these variables are now observable, we can use (27) as the basis of an AR(1) prefilter

for the product variable Xtεt, after suitably demeaning the component variables by a recursive

procedure.

This process of recursive demeaning helps to reduce the bias in the estimation of φ. Let φ̂
r

be the estimate of φ in (27). Then, using the prefilter implied by (27) we have the following

estimate of the LRV of vt = X̃tε̂t

Ω̂2v =
Ω̂2eη³

1− φ̂
r
´2

where Ω̂2eη is the LRV of êtη̂t = x̃tût − φ̂
r
x̃t−1ût−1.

Appendix C: The Problem in Recursive Detrending Consider latent components

model

yt = α+ βt+ st, st = ρst−1 + et,

or, equivalently,

yt = a+ bt+ ρyt−1 + et, a = (1− ρ)α+ βρ, and b = (1− ρ)β.

Using this model, we proceed to show a problem that arises in the application of So and Shin

(1999b)’s recursive detrending method. Following their detrending approach, we have for data

following the model yt = d1 + d2t+ et, the recursive mean ȳt = d1 + d2
1
t

Pt
i=1 i+ ēt, and the

demeaned data

yt − ȳt = d2
t− 1
2

+ (et − ēt),

leading to the recursively estimated coefficients

d̂
(t)
2 = 2

Pt
i=1 i [yi − ȳt]Pt

i=1 i
2

, d̂
(t)
1 = ȳt − d̂

(t)
2 t̄.

Define µ̄t−1 as follows and we have

µ̄t−1 = d̂
(t−1)
1 + d̂

(t−1)
2 (t− 1) = ȳt−1 − d̂

(t−1)
2 (t̄− 1) + d̂

(t−1)
2 (t− 1)

= ȳt−1 − d̂
(t−1)
2 (t̄− t) =

1

t− 1
t−1P
i=1

yi +
1

2
d̂
(t−1)
2 (t− 1)

=
1

t− 1
t−1P
i=1

yi +

Pt−1
i=1 i [yi − ȳt−1]Pt−1

i=1 i
2

(t− 1).
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From the data generating mechanism for yt, we have the following relations:

yi − ȳt−1 = βi+ si − β(t̄− 1)− s̄t−1,
t−1P
i=1

i [yi − ȳt−1] = β
t−1P
i=1

i2 − β(t̄− 1)
t−1P
i=1

i+
t−1P
i=1

i(si − s̄t−1),Pt−1
i=1 i [yi − ȳt−1]Pt−1

i=1 i
2

(t− 1) = 1

2
β (t− 1) t− 2

2t− 1 +
Pt−1

i=1 i [si − s̄i]Pt−1
i=1 i

2
(t− 1),

and

µ̄t−1 = α+ β
1

t− 1
t−1P
i=1

i+
1

2
β (t− 1) t− 2

2t− 1 +
Pt−1

i=1 i [si − s̄i]Pt−1
i=1 i

2
(t− 1)

= α+
β

2

3t2 − 4t+ 2
2t− 1 +

Pt−1
i=1 i [si − s̄i]Pt−1

i=1 i
2

(t− 1).

Then

yt − µ̄t−1 = a+ bt+ ρ(yt − µ̄t−1)− (1− ρ)µ̄t−1 + ut. (28)

But

a+ bt− (1− ρ)µ̄t−1 =
1

2
β
(1− ρ) t2 + 2 (1 + ρ) t− 2

2t− 1 − (1− ρ)

Pt−1
i=1 i [si − s̄i]Pt−1

i=1 i
2

(t− 1)

since

ρβ + β(1− ρ)t− (1− ρ)
β

2

3t2 − 4t+ 2
2t− 1 =

1

2
β
(1− ρ) t2 + 2 (1 + ρ) t− 2

2t− 1
=

1

4
(1− ρ)βt+

1

8
(5 + 3ρ)β +O

µ
1

t

¶
.

Finally, we can rewrite (28) as

yt − µ̄t−1 = ρ(yt−1 − µ̄t−1)− (1− ρ)ωt−1 + vt, (29)

where

ωt−1 =

Pt−1
i=1 i [si − s̄i]Pt−1

i=1 i
2

(t− 1),

vt = ut +
1

4
(1− ρ)βt+

1

8
(5 + 3ρ)β +O

µ
1

t

¶
When ρ 6= 1, the error vt in (29) has a linear trend and and non-zero intercept, and when

ρ = 1, it has a non-zero intercept, so that in both cases we have Evt 6= 0. Thus, (29) does not
effectively remove the trend from the regression model or the data.
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Table 1: Size of Tests based on Various HAC Estimators
(DGP I: Constant in General Regression, ρx = ρu = ρ, and φ = ρ2)

Size = 10%, T=50 Size = 5%, T=50

φ=0.5 φ=0.7 φ=0.9 φ=0.95 φ=0.5 φ=0.7 φ=0.9 φ=0.95

ρ=0.71 ρ=0.89 ρ=0.95 ρ=0.98 ρ=0.71 ρ=0.89 ρ=0.95 ρ=0.98

NW 0.297 0.371 0.476 0.512 0.223 0.293 0.407 0.444

PARAOLS 0.200 0.252 0.340 0.377 0.136 0.187 0.275 0.314

PARARD 0.163 0.192 0.237 0.257 0.109 0.137 0.186 0.205

PARARC 0.144 0.159 0.175 0.186 0.098 0.115 0.135 0.144

QSPWOLS 0.202 0.250 0.337 0.372 0.137 0.188 0.273 0.310

QSPWRD 0.171 0.198 0.245 0.264 0.116 0.144 0.192 0.212

QSPWRC 0.150 0.167 0.182 0.193 0.103 0.120 0.142 0.151

Size = 10%, T=100 Size = 5%,T=100

NW 0.220 0.280 0.423 0.484 0.152 0.207 0.346 0.412

PARAOLS 0.156 0.195 0.296 0.345 0.100 0.135 0.231 0.273

PARARD 0.135 0.154 0.211 0.231 0.081 0.101 0.156 0.176

PARARC 0.117 0.126 0.155 0.164 0.073 0.081 0.115 0.125

QSPWOLS 0.156 0.193 0.292 0.342 0.101 0.134 0.230 0.271

QSPWRD 0.139 0.158 0.216 0.235 0.085 0.103 0.161 0.180

QSPWRC 0.124 0.131 0.161 0.171 0.076 0.084 0.119 0.130

Size = 10%, T=300 Size = 5%,T=300

NW 0.159 0.197 0.331 0.437 0.097 0.128 0.252 0.353

PARAOLS 0.126 0.146 0.215 0.269 0.069 0.085 0.147 0.203

PARARD 0.113 0.126 0.160 0.190 0.060 0.070 0.107 0.137

PARARC 0.110 0.110 0.124 0.138 0.058 0.060 0.081 0.098

QSPWOLS 0.125 0.145 0.212 0.264 0.069 0.085 0.148 0.202

QSPWRD 0.116 0.127 0.163 0.192 0.063 0.073 0.109 0.138

QSPWRC 0.113 0.115 0.127 0.140 0.059 0.062 0.084 0.101
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Table 2: Impact of New Restriction: Size of KPSS Test

QSPW with 0.97 Rule QSPW with New Rule

ρ NW OLS RD OLS RD

T=100, Rejection Rate = 10%

0.8 0.195 0.056 0.028 0.057 0.028

0.9 0.295 0.028 0.007 0.056 0.035

0.95 0.420 0.018 0.000 0.207 0.190

T=100, Rejection Rate = 5%

0.8 0.084 0.020 0.006 0.020 0.006

0.9 0.155 0.007 0.001 0.016 0.010

0.95 0.255 0.002 0.000 0.124 0.122

T=500, Rejection Rate = 10%

0.8 0.180 0.097 0.085 0.097 0.085

0.9 0.278 0.086 0.062 0.086 0.062

0.95 0.445 0.067 0.032 0.087 0.062

T=500, Rejection Rate = 5%

0.8 0.100 0.046 0.034 0.046 0.034

0.9 0.179 0.037 0.022 0.037 0.022

0.95 0.315 0.021 0.005 0.031 0.018
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Table 3: Impact of New Restriction: Power of KPSS Test

σ2u/σ
2
e 5% Test 10% Test

=10α 0.97 Rule New Rule 0.97 Rule New Rule

α NW OLS RD OLS RD NW OLS RD OLS RD

T=100

-4 0.033 0.048 0.045 0.048 0.045 0.099 0.100 0.096 0.100 0.096

-3 0.034 0.048 0.046 0.048 0.046 0.099 0.099 0.096 0.099 0.096

-2 0.040 0.057 0.055 0.057 0.055 0.111 0.116 0.111 0.116 0.111

-1 0.384 0.531 0.523 0.531 0.523 0.519 0.624 0.617 0.624 0.617

0 0.587 0.362 0.141 0.596 0.523 0.699 0.528 0.252 0.705 0.636

1 0.594 0.050 0.025 0.565 0.562 0.706 0.116 0.057 0.637 0.631

≤ 2 0.594 0.050 0.025 0.565 0.563 0.706 0.113 0.058 0.637 0.633

T=500

-4 0.044 0.047 0.047 0.047 0.047 0.097 0.100 0.099 0.100 0.099

-3 0.047 0.048 0.047 0.048 0.047 0.102 0.103 0.102 0.103 0.102

-2 0.281 0.307 0.305 0.307 0.305 0.381 0.401 0.400 0.401 0.400

-1 0.864 0.978 0.978 0.978 0.978 0.920 0.987 0.987 0.987 0.987

0 0.897 0.820 0.780 0.883 0.871 0.943 0.891 0.852 0.932 0.917

1 0.896 0.747 0.746 0.881 0.882 0.942 0.801 0.799 0.917 0.918

≤ 2 0.897 0.748 0.747 0.883 0.884 0.942 0.801 0.801 0.918 0.918
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