http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
LATERAL LINE AND OLFACTORY SENSORY SYSTEMS IN THE BIOLOGY OF THE BANDED KOKOPU *Galaxias fasciatus*

By
Cindy F. Baker

A THESIS
Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of philosophy

University of Auckland
May, 2000
The banded kokopu, *Galaxias fasciatus*, is one of the five diadromous galaxiid species, which form the basis of New Zealand’s recreational and commercial whitebait fishery. With a continual decline in the abundance of whitebait species, additional knowledge on factors affecting galaxiid populations is crucial. This thesis examines the use of olfactory and lateral line sensory systems in the biology of banded kokopu as both adults and juveniles (whitebait).

The feeding biology of banded kokopu adults was investigated through olfactory source localisation. In the presence of a 2 cm s⁻¹ current flow, fish used both olfaction and the superficial neuromasts of the lateral line system to locate the food source. A physical block of one olfactory nostril did not affect the olfactory search strategy employed by banded kokopu.

Banded kokopu whitebait were tested for their response to adult galaxiid odours. Migratory whitebait exhibited a species-specific attraction to adult conspecifics. There was no response shown to odours from adults of other galaxiid species, the inanga (*G. maculatus*) or koaro (*G. brevipinnis*) at any concentration tested. This pheromonal attraction may play an important role in habitat selection during migration.
The effect of poor water quality on sensory performance was also investigated. After exposure to 0.5 μg Cd²⁺ l⁻¹ for 48 hours, the attraction to adult pheromones had been eliminated, indicating this level of cadmium exposure had impaired olfactory function. The lateral line system was not blocked until a concentration of 2 μg Cd²⁺ l⁻¹. Whitebait were also tested for a preference/avoidance response at 2 μg Cd²⁺ l⁻¹ and showed neither a preference for, or an avoidance of, a concentration which would disable both the lateral line and olfactory sensory systems. This concentration is within the current water quality criteria for protection of aquatic life. The disabling of these sensory systems may render migratory cues undetectable, affecting habitat selection by whitebait, which may ultimately affect the distribution of banded kokopu populations.

This thesis furthers our understanding of the mechanisms of migration and feeding in banded kokopu. The use of both the lateral line and olfactory sensory systems in the location of food odours by adult fish provides the first demonstration of the use of the lateral line system in olfactory source localisation in fish. The importance of water quality in the detection of possible migratory cues has been illustrated with cadmium, where inhibition of sensory systems rendered pheromonal cues undetectable. The pheromonal attraction exhibited by whitebait to adults provides a possible migratory cue used by whitebait in locating habitat for colonisation. The identification of a migratory cue could help in the conservation of banded kokopu populations and in the management of New Zealand’s whitebait fishery.
ACKNOWLEDGMENTS

I would firstly like to thank my supervisor John Montgomery for his continued guidance and support. Thank you to the University of Auckland for providing the Doctoral Scholarship which enabled me to complete my doctorate and to John Macdonald for supplying me with office space, a computer and reading my thesis draft. I am also indebted to Athol Adams, who provided the experimental whitebait.

A special thank you to Vivian, Adrian and Iain of Graphics, who catered to my every whim, providing service with a smile and pleasant conversation. Thank you to Percy, Brian and Rabendra for readily supplying me with tools and performing odd-jobs on request.

A big thank you to Matthew Halstead for his continued friendship plus statistical and computer support. To Serena, thank you for your friendship and enduring sharing a room with me. A special thank you to Lance for the many late night fishing expeditions he suffered and for the technical support in creating experimental setups.

Last but not least I wish to thank my parents for the endless generosity and support they have shown me throughout my education.
CONTENTS

ABSTRACT ... i

ACKNOWLEDGMENTS ... iii

LIST OF FIGURES ... vi

LIST OF TABLES ... viii

CHAPTER 1 – General Introduction ... 1
1.1 Lateral Line and Olfactory Sensory Systems 1
1.2 The Banded Kokopu ... 3

CHAPTER 2 – The sensory basis of olfactory search behaviour in
banded kokopu .. 7
2.1 Introduction .. 7
2.2 Materials and Methods .. 11
 2.2.1 Experimental Animals .. 11
 2.2.2 Experimental Apparatus .. 11
 2.2.3 Experimental Protocol ... 13
 2.2.4 Sensory Deprivation .. 14
 2.2.5 Food Odour Stimulus .. 15
 2.2.6 Scanning Electron Microscopy (SEM) Procedure 16
2.3 Results .. 17
 2.3.1 Normal Fish ... 17
 2.3.2 Superficial Ablated Fish ... 23
 2.3.3 Right Nostril Plugged Fish 28
2.4 Discussion .. 33
CHAPTER 3 – Species-specific attraction of migratory banded kokopu whitebait to adult pheromones

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>41</td>
</tr>
<tr>
<td>3.2 Materials and Methods</td>
<td>44</td>
</tr>
<tr>
<td>3.2.1 Experimental Animals</td>
<td>44</td>
</tr>
<tr>
<td>3.2.2 Experimental Apparatus and Protocol</td>
<td>44</td>
</tr>
<tr>
<td>3.2.3 Odour Water Collection</td>
<td>47</td>
</tr>
<tr>
<td>3.3 Results</td>
<td>49</td>
</tr>
<tr>
<td>3.4 Discussion</td>
<td>53</td>
</tr>
</tbody>
</table>

CHAPTER 4 – Sensory deficits induced by cadmium in banded kokopu whitebait

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>58</td>
</tr>
<tr>
<td>4.2 Materials and Methods</td>
<td>62</td>
</tr>
<tr>
<td>4.2.1 Experimental Animals</td>
<td>62</td>
</tr>
<tr>
<td>4.2.2 Cadmium and Water Quality</td>
<td>62</td>
</tr>
<tr>
<td>4.2.3 Olfaction Experiments</td>
<td>62</td>
</tr>
<tr>
<td>4.2.4 Lateral Line Experiments</td>
<td>64</td>
</tr>
<tr>
<td>4.2.5 Cadmium Avoidance</td>
<td>67</td>
</tr>
<tr>
<td>4.3 Results</td>
<td>68</td>
</tr>
<tr>
<td>4.3.1 Olfactory Deprivation</td>
<td>68</td>
</tr>
<tr>
<td>4.3.2 Lateral Line Deprivation</td>
<td>70</td>
</tr>
<tr>
<td>4.3.3 Cadmium Avoidance</td>
<td>77</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>78</td>
</tr>
</tbody>
</table>

CHAPTER 5 – General Discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Ecological Implications</td>
<td>87</td>
</tr>
<tr>
<td>5.2 Summary</td>
<td>96</td>
</tr>
</tbody>
</table>

REFERENCES

v
LIST OF FIGURES

1.1 The banded kokopu, *Galaxias fasciatus* 4
2.1 The experimental apparatus used to examine odour search behaviour in *G. fasciatus* ... 12
2.2 Representative search tracks of normal *G. fasciatus* within an odour plume ... 18
2.3 The proportion of heading and turning angles observed for normal *G. fasciatus* whilst searching inside the odour plume... 19
2.4 The proportion of heading angles observed for normal *G. fasciatus* whilst searching outside of the odour plume in the presence of a 2 cm s⁻¹ current flow .. 20
2.5 Uniform probability plots .. 21
2.6 Scanning electron micrographs of a section from the infraorbital region of *G. fasciatus* .. 24
2.7 Representative search tracks of *G. fasciatus* without superficial neuromasts within an odour plume 25
2.8 The proportion of heading and turning angles observed for *G. fasciatus* without superficial neuromasts whilst searching inside the odour plume .. 26
2.9 Representative search tracks of *G. fasciatus* with their right nostril plugged within an odour plume .. 29
2.10 The proportion of heading and turning angles observed for *G. fasciatus* with their right nostril plugged whilst searching within the odour plume .. 30
3.1 The experimental choice chamber ... 45
3.2 Mean number of *G. fasciatus* present in each chamber when subjected to different volumes of odour water from each galaxiid species ... 50
4.1 Housing tank and experimental apparatus used for the rheotaxis experiments .. 65
4.2 Mean number of *G. fasciatus* present in each chamber when subjected to adult pheromones after different levels of cadmium exposure ... 69
4.3 Mean number of *G. fasciatus* present in each chamber when subjected to adult pheromones after recovery from cadmium exposure ... 71
4.4 Mean number of *G. fasciatus* exhibiting rheotaxis under different experimental treatments ... 72
4.5 The recovery rate of rheotaxis in *G. fasciatus* whitebait exposed to 2 µg Cd$^{2+}$ l$^{-1}$ for 48 hours ... 73
4.6 Mean number of *G. fasciatus* present in each chamber when given the choice between clean freshwater and water containing 2 µg Cd$^{2+}$ l$^{-1}$... 76
LIST OF TABLES

2.1 The average heading and turning angles for each treatment group of *G. fasciatus* in still water and the presence of a 2 cm s\(^{-1}\) current flow whilst searching inside the odour plume 17

2.2 The average heading angle of normal *G. fasciatus* outside of the odour plume in the presence of a 2 cm s\(^{-1}\) current flow 20

2.3 The average time taken to reach the odour source for each treatment group of *G. fasciatus* in still water and the presence of a 2 cm s\(^{-1}\) current flow .. 23

2.4 The average search velocity inside and outside of the odour plume for each treatment group of *G. fasciatus* in still water and the presence of a 2 cm s\(^{-1}\) current flow .. 28

2.5 The proportion of left and right turns made by normal and right nose plugged *G. fasciatus* in still water ... 31

2.6 The average swim velocity in the absence of an odour plume for each treatment group of *G. fasciatus* in still water and the presence of a 2 cm s\(^{-1}\) current flow ... 32

3.1 Chi-square analysis of the mean number of *G. fasciatus* present in each chamber under different experimental conditions 51