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Abstract

The aim of this note is to plug an important gap in our understanding
of the epistemic foundations of uncertainty-averse behavior. For Choquet
expected utility maximizers (Schmeidler (1989)), the beliefs which motivate
uncertainty-averse choice are frequently identified using Dow and Werlang’s
(1994) notion of support for conver capacifies. Building on the work of
Morris (1997), we present a new, preference-based belief operator which is is
shown to characterize such epistemic inferences. This makes their behavioral
foundations transparent, and enables readier comparison with alternative

epistemic models for such behavior.

Economists, and especially game theorists, are frequently interested in the
beliefs which motivate choice behavior. Such beliefs are often imputed from some
representation of the decision-maker’s preferences. The probability in a represen-

tation of subjective expected utility (SEU) preferences, for example, is commonly
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taken to encapsulate the decision-maker’s various epistemic attitudes. More con-
troversially, the conver capacity in a Choguet expected utility (CEU) representa-

tion of uncertainty-averse preferences is often given a similar interpretation?!.

It is an important task to connect such epistemic models to preferences, so
that their behavioral foundations are made explicit. Morris (1997) makes a useful
contribution to this endeavor. The purpose of the present note is to extend the
work of Morris, and in particular to clarify the basis for epistemic inferences
based on uncertainty-averse CEU preferences (Schmeidler (1989)). These are a
proper subset of the marmin ezpected utility (MMEU) preferences of Gilboa and
Schmeidler (1989), and are particularly prominent in economic applications of

CEU%

We discuss the relationship between Morris’ preference-based belief operators,
and extant notions of support for convex capacities. It is shown that a signifi-
cant gap exists in our understanding of the behavioral foundations of Dow and
Werlang’s (1994) support concept (DW-support), which is commonly adopted
in applications of CEU3. In section 3 we present two results which help to es-
tablish these foundations. First, it is shown that Morris’ weak belief operator
characterizes the intersection of the DW-supports. Second, a new belief opera-
tor — firm belief — is defined, and is shown to provide a similar characterization
for the union of DW-supports. Firm belief is thus an important concept for

understanding uncertainty-averse decision-making.

The note concludes with some general thoughts on the potential pitfalls in

trying to identify epistemic motivations for uncertainty-averse choice behavior.

!See Dow and Werlang (1994), Eichberger and Kelsey (1994, 1995), Marinacci (1996) and
Mukerji (1995, 1997), among others.

8ee, for example, the references in note 1.

3See, for example, Eichberger and Kelsey (1994, 1995), Marinacci (1996) and Mukerji (1895).



1. Uncertainty-averse preferences

In Morris (1997), acts are elements of RS, being mappings from a finite state space
{2, to monetary outcomes. However, since MMEU and Schmeidler’s (1989) version
of CEU are both derived within the “two-stage” framework of Anscombe and
Aumann (1963), we shall adapt Morris’ analysis to that framework. In particular,
we take outcomes to be elements of the (mixture) set X of all (monetary) lotteries

on R having finite support.

We consider the uncertainty-averse CEU preference orderings on X**: that is
to say, preference orderings which satisfy axioms (i), (ii), (iv), (v) and (vii) of

Schmeidler (1989), plus “uncertainty aversion” (Schmeidler (1989, p.582)).

Such preferences may be represented by an affine utility function, u : X — R,
and a convex capacity on §2. The latter is a mapping? v : P(Q) — [0,1] which
satisfies the following conditions: v(0) = 0, v(R?) = 1, v(E) < v(F) whenever
E C F, and (convexity) w(EUF)+v(ENF) > v(E)+v(F) for any E, F € P({).
The components v and v combine to represent preferences > as follows: given

any two acts f and g,

frg iff /(uof)dvz-/(uog)dfv (1.1)
Q Q
The integral in (1.1) is the Choguet integral (see Choquet (1953-4)).

Such preferences also have an equivalent MMEU representation, involving the
same utility function, and a closed, convex set of probabilities on 2 obtained as
the core of v (Schmeidler (1989, Proposition)):

f>=g if min /(uof)dpz min /(uog)dp
pEcore(v) Jo pecore(v) Jn

where®

core(v) = {p € A(Q)| p(E) > v(E) YE € P(Q)}.

“The notation P(Q) indicates the set of all subsets of £,

*We use A({2) to denote the set of probabilities on (.



Consider uncertainty-averse preferences >, with CEU representation (u,v).
For ease of comparison with Morris (1997), let us define the induced ordering®
»* on R® by the condition: = »* y if f = g for some f,g € X% such that
u(f) = = and u(g) = y. This ordering is well-defined, and may be taken to be
complete without loss of generality (see Gilboa and Schmeidler (1989, Lemmas

3.2 and 3.3)).

We adopt a couple of common notational conventions. If x € R, we take
the liberty of interpreting x as a constant vector in R® as convenient. When
{A1, Az, ...,Ap} is a partition of Q, and 2* € R® for each ¢ € {1,2,...,n}, then
(xh, » 24, , -, ,) denotes the vector with w component equal to the z%, such

that w € A;.

We shall express Morris’ belief operators in terms of =%. The formalities
will therefore be identical, but the interpretation slightly different. While his
preferences are defined on vectors of monetary outcomes, ours are defined on
vectors of von Neumann-Morgenstern utility outcomes. Provided one assumes,
within Morris’ framework, his monetonicity postulate [P5*], nothing of conceptual
substance will be lost in this translation. That is, all the belief operators discussed
here and in Morris (1997) are defined entirely in terms of the ordinal ranking of
outcomes in each state. In particular, none of the belief operators depends on the

particular utility function u employed in the CEU representation of preferences.

For the remainder of the paper, we shall suppose that at each state w € (,
the decision-maker has uncertainty-averse CEU preferences >,, over X“ (and an
associated ordering »* over R"). We shall use v, to denote the convex capacity

in any CEU representation of >,.

5The superscript in >* reflects the fact that u is defined only up to positive linear trans-
formations (ef. v, which is uniquely determined) in the CEU representation of » (Schmeidler

(1989, Thecrem)).



2. Possibility correspondences and capacity supports

A belief operator B : P(}) — P(Q) specifies the decision-maker’s beliefs at each
state. Event E C {1 is believed at w € § if w € B(E). Any belief operator is

required to satisfy the following four intuitive restrictions’:

B1: B(Q2)=Q.
B2: B(#) =0.
B3: B(E)YNB(F) C B(ENF).
B4: ECF = B(E)C B(F).
Given a belief operator B, we may define the associated possibility correspon-

dence P : 2 — P*(Q), where P*(Q2) denotes the set of all non-empty subsets of

Q, as follows:
Plw) = ﬂ{E| w € B(E)}.

If B satisfies [B1]-[B4], we may recover B from P using

B(E) = {w e Q| P(w) C E}.

Morris (1997) defines (inter alia) the following two belief operators based on

preference information®.

Definition 2.1. Given {(=.,, =3)} cq, the Savage belief operator is defined by

B3(E) = {we I(:J:E, yEe) = (zp, 2zge) forall x,y,z € RQ} .

"Observe that [B3] and [B4] together imply B(E) N B(F) = B(ENF).
*Definitions 2.1 and 2.2 below adapt Morris’ Definitions 1 and 3 respectively to our preference

framework. We have also denoted the two operators somewhat differently.



Definition 2.2. Given {(>., >2)} let

well?
PY(w) = {o' € Q|(Ve > y) (3z < y) such that (z(n, ze) =Ly}
The weak belief operator is defined by

BY(E) = {we Q| PY(w) C E}.

The Savage belief operator satisfies [B1]-|B4] for the class of CEU prefer-
ences (Morris (1997, Theorem 2). However, weak belief may violate [B2], even
if we restrict attention to uncertainty-averse CEU preferences (cf. Morris (1997,
Example 3)). For instance, if [}] > 1, and v,(E) = 0 for every E # €, then
PYW(w) = 0 and hence w € B(#).

If =, is an SEU ordering, then v, is a probability, and PV (w) = P5(w) is its
support (Morris (1997, Example 1)).

For general uncertainty-averse CEU orderings, P (w) may differ from P%W (w).
The former is the outer support (Ryan (1998, Definition 8 and Lemma 1)) of v,,.
This notion of support is employed in Groes et al.(1998) and Lo (1995, Chapter
3), the latter in an MMEU context, so these authors adopt (at least implicitly)
the Savage belief operator in order to impute epistemic motivations for choice

behavior.

The weak belief correspondence PW(w) is equivalent to the LM-support of
vy (Morris (1997, Examples 3 and 4)). The terminology “LM-support” is due to
Ryan (1998), but the concept originates in Lo (1995, Chapter 3) and Marinacci
(1996), and refers to the set

ﬂ supp(p) = {w' € Q| v,({'}) > 0} (2.1)
pecore(v,)

In particular, convexity of v,, implies
{o € Q] v,({w'}) > 0} = {w' €Q|v,(FU{u'}) > v,(E) VEC {3}

(cf. Morris (1997, Example 4)).



3. Characterizing Dow and Werlang’s (1994) supports.

Unfortunately, neither P (w) nor P¥(w) are able to characterize one of the most
commonly encountered support concepts for convex capacities — that defined by
Dow and Werlang (1994), and dubbed DW-support in Ryan (1998). The set
A C Q2 is a DW-support of the convex capacity v if A is C-minimal with respect
to the property that v(A°) = 0. That is, v(A°) = 0, and v(B°) > 0 whenever B

is a proper subset of A.

The DW-support does not lead directly to a possibility correspandence, since
it is well-known (Dow and Werlang (1994, p.311)) that a convex capacity may
have more than one DW-support?. However, the union and intersection of the
DW-supports determine two natural bounds on any possibility correspondence
derived from the DW-support concept. We shall provide a preference-based char-

acterization for each of these.

Given uncertainty-averse CEU preferences =, DW (=) will denote the set of

DW-supports of the convex capacity in any CEU representation of >. Let
P¥(w) = [ J{A|A e DW(=,)}

and
PMw) = [J{AlA€ DW (=)},

Proposition 3.1. PNw) = P¥(w).

Proof: We must show that P"(w) is the LM-support of v,,. That P"(w) contains

the LM-support of v,, is obvious from (2.1) and the monotonicity of v,,. Let us

*In particular, the negative belief operator (Morris (1997, p.230))
B (E)={we Q| un,(E°) =0}

does not satisfy [B3] (although [B1], [B2] and [B4] are easily verified). As an illustration, take
E ={1,2} and F = {1,3} in Dow and Werlang’s (1994, p.311) example of a convex capacity
with multiple DW-supports.



prove the reverse inclusion. Suppose that v,({w'}) = 0, so that ' is not an
element of the LM-support of v,,. We must show that ' ¢ P*(w). To do so, we
shall indicate how to construct a DW-support for v,, which excludes w’. Begin
with the set E(® = O\ {w'} and observe that w,, (Q\E(O)) =0. If v,(B) >0
for every proper subset B of E(® we are done. If not, let E) be any proper
subset of E(® which satisfies v, (QNEM) = 0. Continuing in this fashion, and
observing that v, (0°) = v,(Q) = 1, we shall obtain some E( % ¢ which is a

DW-support of v, and excludes o’. a

Therefore, the intersection of DW-supports induces an epistemic model based
on Morris’ weak belief. Definition 2.2 provides a preference-based characterization

of such beliefs.

By contrast, the possibility correspondence PY(w) is obtained from a belief
operator which is distinct from both Savage and weak belief, and is in fact inter-

mediate between these two. In particular,
P¥(w) = PNw) € PY(w) C P3(w),

and both containments may be strict.

That PAw) C PY(w) is obvious, and the possibility of strict inclusion follows

from the existence of convex capacities with non-unique DW-supports.

The inclusion PY(w) C P3(w) is easily confirmed by noting that every DW-
support is contained in the outer support!®. To see that the inclusion may be
strict, suppose that A C Q, with 1 < |A| < |©|, and consider the convex capacity
v, defined as follows: v,(2) = 1, v,(E) = 05if A C E # Q, and v, (E) = 0
otherwise. One may easily determine that Q is the outer support of v, while A

is the union of its DW-supports (which consist of the singleton subsets of A).

YIfw' € O\ P%(w), then (Morris (1997, Example 4)) v, ({'} U E) = v,(E) for any E. Thus,
if A is a DW-support of v,, we must have A C PS(w), since v, ({w'} U A°) = v, (A%) = 0.



It therefore remains to provide a preference characterization for the belief

operator associated with PV(w).

Definition 3.2. Given {(>., >=%)},cq, the firm belief operator is defined as
BY(E) = {we Q|(W € E°) (VF € Q) (3z,y,2 € R withz > )

such that (zp\{w!}, chU{wl}) >_‘Z: (CL‘F, ch)} .

If E is firmly believed, then it is always possible to compensate for a reduction in
the utility obtained some previously “good” state w’ € E° by suitably increasing

the utility obtained in the remaining “good” states.
Proposition 3.3. The operator BY satisfies [B1]~[B4].

Proof: [Bl] and [B4] are trivially satisfied. To verify [B2], note that for each
w € f, it is always possible to find «’ and F such that v,(F\{w'}) = 0 and
vw(F) > 0 (since v, is monotone, v,(0) = 0 and v,(2) = 1). Finally, [B3] must
obtain, since (E'N F)¢ = E°U F*. O

Proposition 3.4. BY(E) = {w € Q| P¥(w) C E}.

Proof: Let us first observe that «' € PY(w) if and only if there exists a DW-
support of v, containing «’. This is the case if and only if there exists some
E C {'}¢ such that v, (E™\{w'}) = 0 and v,(E®) > 0. The “only if” part
is obvious (take E to be the DW-support which contains ', with ' removed).
For the converse, we may construct a DW-support for v,, containing ' as fol-
lows. Begin with E U {w'}. Note that v, (E\{w'}) = v, (EU{'})?) = 0. If
v, ((F U {w'})°) = 0 for some proper subset F of E, replace EU{w'} with FU{w'},
and so on (cf. the proof of Proposition 3.1). This process will terminate at some

(possibly empty) B € E such that v, (BU{w'})°) =0 and v, (FU{o'})) >0

9



for every proper subset F' of E. The set B U {«'} will be a DW-support for v,
since v,(A°) > v, (E°) > 0 for any A C B.

We may now apply Ryan (1998, Proposition 1(iii)) to conclude that o’ €
PY(w) if and only if there exists some E C {w'}¢ such that

(zge, y) =0 (2B\(w'}r YBL{W'})
for all z,y,2z € R with = > y.

Since PY(w) C E if and only if ' ¢ PY(w) for every w' € EF, the result

follows. O

4. Discussion

Epistemic inferences about uncertainty-averse CEU maximizers are typically made
on the basis of some support concept for convex capacities, used in the manner
of a possibility correspondence. This note has identified the preference-based

notions of belief which are implicit in these epistemic inferences.

It is clearly valuable to have the behavioral foundations for epistemic infer-
ences thereby made explicit. However, there remains the important question of

how the modeller is to choose a suitable (preference-based) notion of belief.

Divergence of the various belief operators creates a modelling quandary, and
one should proceed with due caution. For example, I have argued elsewhere!! that
when weak and firm belief diverge (i.e. when P*(w) # PY(w)), a misspecification
of the state space may be indicated, thus rendering any epistemic inferences highly

questionable.

Indeed, not all rational choice behavior need be motivated by beliefs. It is

well-known, for example, that the maximin decision criterion is compatible with

18ee especially the discussion in section 5 of Ryan (1998).
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uncertainty-averse CEU preferences. Maximin would seem to be a “beliefs-free”
decision rule; or at least, its application keeps the decision-maker’s beliefs hidden
from view. One should therefore not be over-zealous in the search for an epistemic

motivation for all choice behavior.
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