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ABSTRACT

A study of vibrations and sound radiation in upright and grand pianos has been made
to determine whether the piano may be improved by altering the materials of the

component parts which are traditionally fabricated in timber.

Modal analysis and sound level measurements of an upright piano has shown that the
radiation from the case is at least 20 dB lower than the radiation from the soundboard,

and therefore the case is not a significant determinant of piano tone.

A method was developed for separating piano sound and vibrations into broadband and
tonal components and used to compare the performance of upright and grand pianos.
Using this method it was found that the broadband vibration level was twice as high

in the uprights as in the grands.

A finite element model of an upright piano was developed and used to demonstrate that
replacing the keybed with a higher impedance material than conventionally used would
reduce the key vibration level, and hence bring the uprights closer in performance to
grand pianos, and improve the ‘feel’ of the instrument for the player. The keybed of one
of a pair of identical pianos was replaced with high density fibreboard, and subsequent
objective measurements showed that the broadband component of key vibrations was
reduced by 3.2 dB while the radiated sound was unchanged. A controlled subjective
comparison between the modified and unmodified pianos undertaken by experienced
players showed that a statistically significant number preferred the modified piano, and

that the upright piano had been improved.
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G Shear modulus Pa

H(s)  Hilbert transform of s(7)
I Sound field intensity W /m?
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P Probability
R Sound reduction index
RT Reverberation time s
S Area, cross sectional area of string m?
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X(w)  Fourier transform of x(¢)
Z Characteristic impedance kg/m?s
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Ch Bending wavespeed m/s
d String diameter m
f Frequency Hz
h Plate thickness m
i V=1
m Number of half-wavelengths in plate a direction
m/ Mass per unit length kg/m
m’ Mass per unit planar area kg/m?
n Mode numbers: 1, 2, 3...
Do Atmospheric pressure Pa
v Velocity of vibration m/s
x(t) Signal in time domain
¢ Damping, expressed as a fraction of critical damping
A Wavelength m
v Poisson’s ratio
p Density kg/m?
o Radiation efficiency
T String tension N
w Angular frequency rad/s
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To avoid confusion, throughout this thesis admittance refers to the ratio of velocity

to input force, while impedance refers to material characteristic impedance, given for

solids by Z = /Ep.

Pitch notation

The scientific or American system of pitch notation is used. In this system notes are
named starting from the bass (left hand) end of the keyboard: Ay, Bbg, By, Cy... Thus
the note commonly known as ‘middle C’, or ¢’ in Helmholtz notation, is C,4, and the

note ‘concert A’, with pitch 440 Hz, is Ay.

Coordinate system

The origin is taken as the point at the leftmost end of the keyboard from the perspective
of the pianist, at the Ay key. The x axis is directed along the keyboard, while the y
axis is directed vertically up, normal to the keyboard. The z axis is normal to the
upright soundboard, pointing forward from the perspective of the pianist. The same
system is used for both upright and grand pianos, thus in the grand it is the y axis

that is normal to the soundboard.
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BAC
BC
BPC
C
CFD
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F

FE
HDF
MDF
MIDI
QS
RMS

TAC
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Broadband acceleration component
Broadband component

Broadband pressure component
Clamped support (no displacement or rotation)
Computational fluid dynamics
Digital Audio Tape

Difference limen

Free support

Finite element

High density fibreboard

Medium density fibreboard

Musical Instrument Digital Interface
Question score

Root mean square

Simple support (no displacement)
Tonal acceleration component

Tonal component

Tonal pressure component
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Glossary

action - the mechanical assembly that includes the piano keys, hammers and dampers.

admittance - a measure of the velocity with which a structure will vibrate when

excited by a given input force.

ANSYS - a commercial software package for analysing problems via finite element

methods.

antiresonance - a frequency between two modes of vibration where their contributions

interfere destructively, giving a low response amplitude.

boundary conditions - in a finite element or modal analysis problem, the boundary
conditions are the restraints imposed at the edge of a structure. Common types include

simple (no displacement) and clamped (no displacement or rotation).
cancellation - see interference.

circle of fifths - a geometric representation of the relationships between musical keys.
Keys that are adjacent on the circle of fifths differ from each other by only one sharp
or flat.

coherence - a measure of the dependance of the input and output of a system. Coher-
ence is 1 for perfect measurement of a linear system, and is lowered by nonlinearities

and measurement noise.
compass - the entire range of notes available on a given piano.

critical frequency - the frequency at which the speed of a bending wave in a structure
is equal to the speed of an incident wave in air. At this frequency, radiation from the

structure is relatively large in magnitude.

damper - the component in the piano action which returns to the string after the key

is released, quickly stopping the string vibration.

XX



damping - a measure of the rate at which a free vibration will decay, for a given

oscillating system. Where damping is low, vibrations will decay slowly.

degrees of freedom - the set of independent displacements that describe the motion

(linear or rotational) of a system.

difference limen - in human perception, the smallest difference in a stimulus that is

detectable. Also known as the just noticeable difference.

dissonance - in music, notes that do not sound well together are dissonant. Dissonance

is the opposite of consonance.
eigenmode - see mode of vibration.

filter - a process or system that allows some regions of the frequency spectrum to pass
unattenuated, while reducing the amplitude of others. Common filters include lowpass
(attenuates high frequencies), highpass (attenuates low frequencies) and comb (a series

of notches, removing harmonically related frequencies).

finite element method - method used for analysing the vibration of structures, by
dividing the structure into many smaller parts known as elements. The elements and
the relationships between them are described by a large number of equations, which

are solved simultaneously.
fortissimo - a direction for playing musical instruments meaning ‘very loudly’.

Fourier transform - a transform that decomposes a signal or function into its fre-
quency components (its spectrum). This is known as going from the time domain
to the frequency domain. The inverse Fourier transform reverses the operation. The
forward (continuous) transform is given by X (w) = [*_x(t)e"“?dt, and the reverse

transform by z(t) = [*° X (w)e™"dw. Equivalent versions are used for discrete data.
fundamental - the lowest frequency in a harmonic series, the pitch of a note.

hammer - the component in the piano action which strikes the string. The head of

the hammer is covered in felt.
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harmonics - the frequency components of a complex tone. Harmonics are integer

multiples of the fundamental for a periodic signal.

Hilbert transform - a transform that returns the complex envelope of a signal. It is

given by H(s) = £ [* s g7,

oo t—T

homogeneous - a material that has the same properties at every point, such as a

metal.

hysteresis - in an integration of partial differential equations with respect to time,

hysteretic terms are those that involve the state of a system at a previous timestep.

impedance - the characteristic impedance of a material describes the degree to which

structures made of that material will resist vibration. For solids, the impedance is

given by Z = +/Fp.

impedance hammer - a hammer used in modal analysis. The tip contains a force

transducer to measure the force input during each blow.

interference - the addition of two or more waves, which results in patterns of vibration.
Destructive interference refers to the addition of a positive and negative wave to give

an output of zero at a point.

isotropic - isotropic materials exhibit the same properties in every direction, such as

metals
key - the chord which is established as the final resolving point for a musical piece.

Matlab - a commercial software package designed for numerical computation, partic-

ularly suited to working with matrices.

modal analysis - the decomposition of the vibration of a structure into individual

modes.

mode of vibration - the natural shapes and associated frequencies with which a

structure will vibrate under free vibration.
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modulus - a measure of the stiffness of a material. It is the ratio of the rate of change

of stress with strain.
node - in a mode shape, nodes are the points at which displacement is zero.

note - a single playing of a sound of definite pitch, for example the sound made by

striking the C4 key once.

orthotropic - orthotropic materials have properties that differ in orthogonal directions,

such as wood.

overtones - see harmonics.

partials - see harmonics.

pianissimo - a direction for playing musical instruments meaning ‘very quietly’.
pitch - the fundamental frequency of a sound.

Poisson’s ratio - a measure of the tendency of a material to contract or expand in

the directions normal to an applied load.

polyphonic - music that is polyphonic contains two or more independent notes played

at the same time.

regulation - the process of softening the hammers of a piano, which tend to harden

with use. Regulation is intended to maintain the timbre of the instrument.

spectral centroid - the frequency which divides the spectrum in two, with equal
energy above and below it. A high centroid is strongly perceptually correlated with
‘sharp’ or ‘bright’ tone [Grey, 1977].

spectrogram - a graphical representation of the Fourier transform of a signal, divided
into short time windows. A three dimensional plot of energy content with respect to

time and frequency.

spectrum - a plot of the energy content of a signal with respect to frequency. It may
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be obtained via the Fourier transform.

staccato - to play notes in a manner such that silence takes up the latter part of the

time allocated to the note.
supports - see boundary conditions.

synthesis - the creation of musical notes by electronic or computational methods, as

opposed to physical vibrations.

temperament - methods of slightly altering the tuning the musical notes to allow an

instrument to be played in more than one key.
timbre - the perceived sound quality of a musical note.

transfer function - a measure of the relationship between the input and output of a

system, such as the measured velocities of two connected components.

una corda - a pedal on the grand piano that shifts the entire action to the right, so
that hammers that normally strike three strings only strike two, modifying the timbre

of the note.
voicing - see regulation.

window - a function that is zero outside of a given interval. The window is stepped
along the length of a signal, while other operations are performed such as the Fourier
transform. Within the interval the window may take many shapes which are typically
designed to reduce signal leakage. Commonly used windows include the rectangular
(all uniformly equal to one), triangular (increases linearly from 0 to 1 then decreases

to 0) and Hamming (raised cosine).
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