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Abstract

Multiple cointegrating regressions are frequently encountered in empirical work as, for example, in the
analysis of panel data. When the equilibrium errors are correlated across equations, the seemingly
unrelated regression estimation strategy can be applied to cointegrating regressions to obtain
asymptotically efficient estimators. While non-parametric methods for seemingly unrelated
cointegrating regressions have been proposed in the literature, in practice, speciÞcation of the
estimation problem is not always straightforward. We propose Dynamic Seemingly Unrelated
Regression (DSUR) estimators which can be made fully parametric and are computationally
straightforward to use. We study the asymptotic and small sample properties of the DSUR estimators
both for heterogeneous and homogenous cointegrating vectors. The estimation techniques are then
applied to analyze two long-standing problems in international economics. Our Þrst application
revisits the issue of whether the forward exchange rate is an unbiased predictor of the future spot rate.
Our second application revisits the problem of estimating long-run correlations between national
investment and national saving.
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Regression
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Introduction

Multiple-equation cointegrating regressions are frequently encountered in applied research.

Many examples are found in the analysis of panel data. When the equilibrium errors are

correlated across cross-sectional units, the idea of seemingly unrelated regressions (SUR) can

be applied to cointegrating regressions to obtain asymptotically efficient estimators. Non-

parametric methods for seemingly unrelated cointegrating regressions have previously been

proposed by Park and Ogaki (1991), who applied the SUR method to generalize Park�s (1992)

Canonical Cointegrating Regression estimators and by Moon (1999) who applied the SUR
1method to generalize Phillips and Hansen�s (1990) fully modiÞed estimators. The drawback

of these SUR estimators, however, is that speciÞcation of the estimation problem is not always

straightforward in practice. One particularly troublesome feature of these estimators is that

the speciÞc form of the non-parametric transformation that is required depends on the number

of common regressors in the SUR equations.

In this paper, we propose Dynamic Seemingly Unrelated Regression (DSUR) Estimators

for estimating small systems of cointegrating regressions. We study the asymptotic and small

sample properties of the DSUR estimator which can be made fully parametric and are com-

putationally straightforward to use. The methodology is feasible for balanced panels where N

is substantially smaller than the number of time-series observations T . The asymptotic distri-

bution theory that we use is for T → ∞ and N Þxed. We consider environments where the

cointegrating vectors are homogeneous across equations and where they exhibit heterogeneity.

Cointegration vectors that exhibit cross-sectional heterogeneity can be estimated by DSUR

or by dynamic ordinary least squares (DOLS) techniques. We compare DSUR to a generalized

DOLS estimator developed by Saikkonen (1991) which, following the terminology of Park

and Ogaki (1991), we call system DOLS. System DOLS is distinguished from ordinary DOLS

proposed by Phillips and Loretan (1991), and Stock and Watson (1993) in that endogeneity

in equation i is corrected by introducing leads and lags of the Þrst difference not only of the

regressors of equation i but also of the regressors of all other equations in the system. In the

multivariate regression framework studied by Saikkonen (1991), the regressors are common in

all regression equations. Therefore, there is no efficiency gain from the SUR method just as in

the stationary case. Saikkonen (1991) shows that the system DOLS estimator is asymptotically

efficient relative to the ordinary DOLS estimator in his framework.

In our framework, we allow different regressors to appear across the various cointegrating

regression equations. As in the stationary case the SUR method can be used to gain effi-

ciency in our framework: the DSUR estimator achieves asymptotic efficiency gains over DOLS

by incorporating the long-run cross-sectional correlation in the equilibrium errors in estima-

tion. In addition, Wald statistics with limiting chi-square distributions can be conveniently

constructed to test cross-equation restrictions�such as homogeneity restrictions�on the coin-

tegration vectors. We also show that the computational burden can be lightened by focusing

1After the Þrst version of this paper was completed, we discovered that Moon and Perron (2000) also studied
dynamic SUR.
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on the more convenient but asymptotically equivalent two-step DSUR estimator. In the Þrst

step, the regressand in each equation is regressed on the leads and lags of the Þrst difference of

the regressors from all equations to control for the endogeneity problem. In the second step,

the SUR strategy is applied to the residuals from the Þrst step regressions.

When the cointegration vector is homogenous across equations, estimation can be per-

formed using a restricted version of the DSUR estimator. Restricted DSUR is is a pooled

estimator of the cointegration vector that exploits the long-run dependence across individuals

with the homogeneity restrictions across equations imposed in estimation. The comparison

estimator under cointegration vector homogeneity is panel DOLS, which has previously been

studied in the literature. Extant analyses of panel DOLS, however, have been conducted un-

der the assumption of independence across cross-sectional units. We show below that under

cross-sectional dependence, the asymptotic distribution of panel DOLS is straightforward to
2obtain. Here as well, restricted DSUR achieves asymptotic efficiency gains relative to panel

DOLS by incorporating the cross-equation dependence in the equilibrium errors in estimation.

In any Þnite sample, estimation of long-run covariance matrices can be a thorny task

upon which estimator performance may hinge. It is therefore important to know whether or

not the predictions from asymptotic theory are borne out in small samples. To address this

question, we compare the small sample performance of alternative estimators in a series of

Monte Carlo experiments. We Þnd that the asymptotic distribution theory developed for all of

the estimators work reasonably well and that there are important and sizable efficiency gains

to be enjoyed by using DSUR over the DOLS methods.

We go on to illustrate the usefulness and computational feasibility of the DSUR method by

revisiting two long-standing problems in international economics. The Þrst application revisits

Evans and Lewis�s (1995) cointegrating regressions of the future spot exchange rate on the

current forward exchange rate which asks whether the forward rate is an unbiased predictor

of the future spot rate. Using ordinary DOLS, they report a new anomaly in international

Þnance�that the slope coefficient is signiÞcantly different from 1�from which it follows that

the expected excess return from forward foreign exchange speculation is unit-root nonstation-

ary. When we update Evans and Lewis�s sample and employ DSUR, we Þnd the evidence for

a nonstationary expected excess return to be less compelling.

Our second application revisits the estimation of national saving and investment correla-

tions put forth by Feldstein and Horioka (1980). Their interpretation is that the size of the

estimated slope coefficient in a regression of the national investment to GDP ratio on the

national saving to GDP ratio is inversely related to the degree of capital mobility. Feldstein

and Horioka found that the slope coefficient in their regression was insigniÞcantly different

from 1, from which they conclude that the degree of international capital mobility is low. The

original Feldstein�Horioka analysis employed a cross-sectional regression using time-series av-

2Mark and Sul (1999) and Kao and Chiang (1998) studied the properties of panel DOLS under the assumption
of independence across cross-sectional units. Pedroni (1997) and Phillips and Moon (1998) study a panel fully
modiÞed OLS estimator also under cross-sectional independence. Moreover, the asymptotic theory employed in
these papers requires both T and N to go to inÞnity.
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erages as observations. Coakley et al. (1996) extend this work to the time-series dimension.

These authors show that under a time-series interpretation, a solvency constraint restricts the

current account balance to be stationary irrespective of the degree of capital mobility. Because

the current account is saving minus investment, it is possible that Feldstein and Horioka�s

cross-section regression may just be capturing this long-run relationship when long-run time

series averages are used for the regression. In our panel data application, we regress investment

variables onto saving variables as a system of cointegrating regressions and test the hypothesis

that the slope coefficient is 1. This provides a more direct test of the long-run relationship

implied by the solvency condition than cross-section regressions.

The remainder of the paper is organized as follows. The next section presents and discusses

the asymptotic properties of the alternative estimators that we examine. In section 2 we

conduct a Monte Carlo experiment to examine the small sample performance of estimators

and the accuracy of the asymptotic approximations. In section 3 we apply the estimators

to the spot�forward exchange rate problem and to the investment�saving puzzle. Section 4

concludes the paper. Proofs of propositions are contained in the appendix.

1 System Estimators of Cointegration Vectors

We consider N cointegrating regressions where N is Þxed. The data are balanced panels of

individuals indexed by i = 1, . . . , N tracked over time periods t = 1, . . . , T . Our notational

conventions are as follows: Vectors are underlined and matrices appear in bold face but scalars

have no special notation. W (r) is a vector standard Brownian motion for 0 ≤ r ≤ 1, and

[Tr] denotes the largest integer value of Tr for 0 ≤ r ≤ 1. We will not make the notationalR R R1 1 0dependence on r explicit, so integrals such as W (r)dr are written as W and W (r)dW (r)0 0R 0are written as WdW . Scaled vector Brownian motions are denoted by B = ΛW where Λ is

a scaling matrix. The regularity conditions that we impose are given in,

Assumption 1 (Triangular Representation.) Each equation has the triangular representation,

�0y = x β + u , (1)it it iti

∆x = e , (2)it it

0� � 0 0where x and e are k × 1-dimensional vectors, w = (u , e ) is an N(k + 1)-dimensionalit it t t t � �vector with the orthonomal Wold moving average representation, w = Ψ (L)² , in which ² ist tt� � �0 0 0 0 0 0serially uncorrelated with E(² ) = 0, E(² ² ) = I , u = (u , . . . , u ) , e = (e , . . . , e ) ,kt t t tt 1t1t NTNTP∞ mn mnr|ψ | <∞, and ψ is the m,n−th element of the matrix Ψ .irr=0 ir ir
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�It follows from Assumption 1 that w obeys the functional central limit theorem,tP D[Tr] �1 � � � 0 0� 0√ w → B (r) = Ψ (1)W (r) where B = (B ,B , . . . , B ) is anN(k+1)�dimensionalt u e et=1 1 NT 0P � �∞� � � 0scaled vector Brownian motion with covariance matrix, Ω = Ψ (1)Ψ (1) = E[w w ]j=−∞ 0j
0P� � �∞= Γ + (Γ +Γ ). The long-run covariance matrix and its components can be partitionedj=10 j j

as,  � � �Ω Ω · · · Ωuu ue ue1 N" #  � � �� � Ω Ω · · · Ω Ω Ω e u e e e e1 1 1 1 N� uu ue  Ω = = ,. . .. � � . . . .Ω Ω . . . .eu ee

� � �Ω Ω · · · Ωe u e e e e1N N N N � � �Γ Γ · · · Γuu,j ue ,j ue ,j1 N " # � � �� �  Γ Γ · · · ΓΓ Γ e u,j e e ,j e e ,j � 1 1 1 1 Nuu,j ue,jΓ = =  . . .� �j . . . . .Γ Γ .. . .eu,j ee,j  
� � �Γ Γ · · · Γe u,j e e ,j e e ,j1N N N N

0� � � � � �0 0where Γ = E(u u ), Γ = E(u e ), and Γ = E(e e ).ktt t st−juu,j t−j ue ,j e e ,jkt−j sk k � ��Because Ω is the long-run covariance between e and (u , . . . , u ), i = 1, . . . , N , theite u 1t Nti

endogeneity problem shows up as correlation between the equilibrium error of equation i and

leads and lags of Þrst differences of the regressors of all of the other equations j = 1, . . . , N . In

system estimation methods, parametric adjustments for endogeneity in equation i = 1 will in

general require inclusion of leads and lags not only of ∆x , as is the case in the single-equation1t

environment or in the panel environment under cross-sectional independence, but also leads

and lags of ∆x through ∆x as well.2t Nt

The next subsection discusses estimation strategies for heterogeneous cointegration vectors.

Section 1.2 discusses estimation of a homogeneous cointegration vector.

1.1 Estimation of Heterogeneous Cointegration Vectors

The asymptotic distributions that we derive are obtained by letting T →∞ for Þxed N . For

concreteness and without loss of generality, we set N = 2. Section 2.2 introduces and discusses

the properties of the DSUR estimator. An asymptotically equivalent but computationally more

convenient two-step DSUR estimator is discussed in section 1.1.2. In section 1.1.3, we discuss

the joint distribution of system DOLS.

1.1.1 DSUR

�u is potentially correlated with all leads and lags of ∆x = e , (i, j = 1, 2). In any feasiblejt jtit

parametric estimation strategy only a Þnite number p of leads and lags can be included so in

general, a cutoff at p will induce a separate truncation error. To keep track of the truncation

error, let

0 0 0z = (∆x , . . . ,∆x ),pit it−p it+p
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0 0 0z = (z , z ),pt p1t p2t³ ´0 0 0 0δ = δ , . . . δ , δ . . . , δ , andp1 11,−p 11,p 12,−p 12,p³ ´0 0 0 0δ = δ , . . . δ , δ . . . , δ ,p2 21,−p 21,p 22,−p 22,p

where δ is a k× 1 vector of coefficients. Under the conditions of Assumption 1, the equilib-ij,p

rium errors can be represented as

� 0u = z δ + v + u , (3)p1t 1tp1pt1t

� 0u = z δ + v + u , (4)p2t 2tp2pt2t

where X X0 0v = δ ∆x + δ ∆x , (5)p1t 1t−j 2,t−j11,j 12,j

j>|p| j>|p|X X0 0v = δ ∆x + δ ∆x , (6)p2t 1t−j 2,t−j21,j 22,j

j>|p| j>|p|

are the truncation errors induced for given p arising from the dependence of the equilibrium
0 0errors on (∆x ,∆x ) at distant leads and lags. Substituting (3) and (4) into (1) yields1t 2t

0 00 0the regression y = x β + z δ + v + u . If we let y = (y , y ) , u = (u , u ) ,it pit it 1t 2t 1t 2tpi tptit i t0 0 0 00 0v = (v , v ) , β = (β ,β ) , δ = (δ , δ ) , Z = (I ⊗ z ), X = diag (x , x ) andp1t p2t pt 2 tpt p pt 1t 2tp1 p21 2³ ´00 0W = X ,Z , the equations can be stacked together in a system as,t t pt ³ ´0 0y = β , δ W + v + u . (7)t pt tpt

The DSUR estimator with known Ω is,uu   −1" # T−p T−p� X Xβ −1 0 −1dsur    = W Ω W W Ω y . (8)t tuu t uu t�δp,dsur t=p+1 t=p+1

�Due to the stationarity of the equilibrium errors, the dependence of u on ∆x at veryjtit

distant leads and lags becomes trivial. Under the regularity conditions of Saikkonen (1991) it

can be shown that by allowing the number of leads and lags of changes in the regressors to

increase at a certain rate with T , the truncation errors will vanish asymptotically. We follow

Saikkonen in
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Assumption 2 (Lead and lag dependence.) Let p(T ) be the number of leads and lags of ∆x ,it
(i = 1, 2) included in the regression (7). We assume that

1/3i. p(T )/T → 0 as T →∞, and¯¯ ¯¯¯¯ 0 0 ¯¯√ X δ δ¯¯ ¯¯11,j 12,jii. T → 0,¯¯ ¯¯0 0¯¯ ¯¯δ δ21,j 22,j|j|>p(T )

where || · || is the Euclidian norm.

The second condition in Assumption 2 places an upper bound on the allowable dependence
�of u on ∆x at very distant leads and lags, while the Þrst condition controls the rate at whichjtit

additional leads and lags must be included in order for the truncation induced misspeciÞcation

error to vanish. We are now ready to state our Þrst result.

Proposition 1 (Asymptotic distribution of DSUR). Let T = T − 2p. Under the conditions∗
of Assumptions 1 and 2,³ ´ ³ ´√

� �a. T β − β and T δ − δ are asymptotically independent.∗ ∗ p,dsur pdsur ¡ ¢ PT−p −1 0�b. If B = diag B ,B , V = X Ω X , and R is a q×2k matrix of constantse tdsure e uu tt=p+11 2

such that Rβ = r, then as T →∞,∗ µ ¶Z Z−1
D −1 0 −1�T (β − β)→ B Ω B B Ω dB , (9)∗ e e uuu e uudsur

and h i−1 D0 0 2� � �(Rβ − r) RV R (Rβ − r)→ χ . (10)dsur qdsur dsur

The intuition behind Proposition 1 is that asymptotically, as the effects of the truncation error
0 0 0become trivial, one obtains a newly deÞned vector process w = (u , u , e , e ), with the1t 2tt 1t 2t

moving average representation, " # " #
Ψ (L) 0 v11 1tw = ,t 0 Ψ (L) v22 2t

where Ψ (L) and Ψ (L) are (2 × 2) and (2k × 2k) matrix polynomials in the lag operator11 22 P D[(T−p)r]1√L, respectively, and which obeys the functional central limit theorem, w →tt=p+1T∗0 0 0(B ,B ) with long-run covariance matrix, Ω = diag (Ω ,Ω ) . By the block diagonality ofuu eeu e

Ω, it is seen that B and B are independent.u e
p�In applications, we replaceΩ with a consistent estimator, Ω → Ω . Such an estimatoruu uu uu

might be called a �feasible� DSUR estimator. It is easy to see that the asymptotic distribution of

the feasible DSUR estimator is identical to the DSUR estimator of Proposition 1. Accordingly,
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we will in general not make a distinction between estimators formed with a known Ω or oneuu

that is estimated.

Finally, we note that the Wald statistic deÞned in (10) provides a convenient test of homo-

geneity restrictions on the cointegrating vectors, H : β = β .0 1 2

1.1.2 Two-step DSUR

Some computational economies can be achieved by conducting estimation in two steps. The

Þrst step purges endogeneity by least squares and the second step estimates β by running

SUR on the least squares residuals obtained from the Þrst-step regressions. This procedure is

asymptotically equivalent to the one-step DSUR estimator discussed above. When the number

p of included leads and lags are identical across equations, this OLS-SUR two-step estimator is

numerically equivalent to a two-step procedure in which endogeneity is purged by generalized

least squares (GLS) in the Þrst step and then running SUR on these GLS residuals.
y0To form the two-step estimator, let z �γ be the Þtted least-squares regression of y ontoitpt pi

x0 0z and let (I ⊗ z )�γ be the vector of Þtted least-squares regressions of x onto z . Denotekpt itpt ptpi
y x0 0the regression errors by �y = y − z �γ , and �x = x − (I ⊗ z )�γ . We can now representit it kit itpt ptpi pi0the equation system as �y = �x β + �u , whereit itit i h i

y0 0 x�u = z (δ − �γ ) + (I ⊗ z )�γ β + uit itkpipt ptpi pi i³ ´0 �= z δ − δ + u ,itpi pi,olspt

y 0 x 0� �and δ = �γ −β �γ . Now stacking the equations together in the system gives �y = X β+�u .pi,ols ttpi i pi t

The two-step DSUR estimator is   −1
T−p T−pX X−1 0 −1� � � �   β = X Ω X X Ω �y , (11)t tuu t uu2sdsur t
t=p+1 t=p+1

and its properties are given in

Proposition 2 (Asymptotic equivalence of the two-step estimator.) Under the conditions of

Assumptions 1 and 2, the two-step DSUR estimator (11) is asymptotically equivalent to the

one-step DSUR estimator of proposition 1. Moreover, if the same set of leads and lags zpt
is included in every equation, this OLS-SUR two-step estimator is numerically equivalent to a

two-step estimator where endogeneity is purged by GLS and running SUR on the GLS residuals.

�The asymptotic equivalence obtains due to the consistency of δ and its asymptotic in-pi,ols

dependence of the estimator of β. Since asymptotic equivalence is achieved in regressions
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using least squares residuals from Þrst-step regressions, we will henceforth assume that en-

dogeneity has been controlled for in this fashion and will work in terms of these Þrst-step

regression residuals.

1.1.3 DOLS

DOLS is a single-equation estimator and may ignore dependence across individuals in esti-
�mation. Controlling for endogeneity in equation i can be achieved by projecting u onto zpitit

0 0 0or onto z = (z , z ) as in DSUR. The Þrst option involves only those time series thatpt p1t p2t

explicitly appear in equation i and is a member of what Saikkonen (1991) calls the S class.2

The second option, which employs auxiliary observations, is an example of what he calls the

S class. Park and Ogaki (1991) consider a similar distinction in their study of canonical coin-C

tegrating regressions (CCR). We conform to Park and Ogaki�s terminology and refer to the

procedure that controls for endogeneity by conditioning on z as the �system� DOLS estimator.pt

We call the estimator that conditions on z �ordinary� DOLS.pit

While the joint distribution of DOLS across equations depends on the long-run covariance

matrix, Ω , the estimator itself does not exploit this information. Here, we discuss two-stepuu

estimation of system DOLS and compare it to DSUR. In two-step system DOLS, endogeneity

can be purged by least squares and then and then the cointegration vector estimated by running

OLS on the residuals from the Þrst-step regressions.

Let �y be the error obtained from regressing y on z and let �x be the k × 1 vector ofit it pt it

errors obtained from regressing each element of x on z . Stacking the equations together asit pt
0�the system gives �y = X β+u , where the dimensionality of the matrices are as deÞned above.ttt

3The system DOLS estimator is    −1
T−p T−pX X0� � � �   β = X X X �y , (12)t ttsysdols t
t=p+1 t=p+1

for which we have,

 0 0�x 01p+1

. . . . . . 0 0�x 0 3 1T−pIf we let X = , then in the standard matrix notation, T 0 00 �x 2p+1 . . . .. .
0 00 �x2T−p

0 −1 0 0 −1V = (X X ) X (Ω ⊗ I )X (X X ) .sysdols T uu T T TT T T

8



Proposition 3 (Asymptotic distribution of system DOLS). Under the conditions of Assump-

tions 1 and 2, as T →∞,∗ Ã !¡R ¢ Rµ ¶ µ ¶Z Z −1−1 0B B B dBD e e u0 e1 1 11� ¡R ¢ RT (β − β)→ B B B dB = , (13)∗ e e u −1e 0sysdols B B B dBe e ue2 2 22

and h i−1 D0 0 2� � �(Rβ − r) RV R (Rβ − r)→ χ , (14)sysdols qsysdols sysdolsh i h i h i−1 −1P P PT−p T−p T−p0 0 0�where V = X X X Ω X X X and R is a q × 2kt t uu tsysdols t t tt=p+1 t=p+1 t=p+1

matrix of constants such that Rβ = r.

Saikkonen showed that within the context of the standard multivariate regression frame-

work, ordinary DOLS is efficient within the class of S estimators and that the class of S2 C

estimators are efficient relative to the S class. The reason for this is as follows. In ordinary2
�DOLS, endogeneity is purged by projecting u onto z . Substituting this projection rep-pitit

00 0resentation into (1) gives y = x β + λ z + ζ , where ζ is the projection error which isit it itiit iti √ P D00by construction orthogonal to included leads and lags of ∆x . Since (1/ T ) (ζ , e ) →itit it00(B ,B ) with long-run covariance matrix diag (Ω ,Ω ), it follows that conditional one ,eζi ζ ,ζei i ii i³ ´−1R 0�B , avar(β ) = Ω B B . Since Ω is the long-run variance of the error fromζ ,ζ ζ ,ζe e ei i i ii i idols
�projecting u onto z ⊆ z and Ω is the long-run variance of the error from projectingu ,upit pt i iit� � �u onto z , it must be the case that Ω ≥ Ω . Thus, avar(β ) ≥ avar(β ).u ,uζ ,ζpt i ii iit i,dols i,sysdols

Our representation of the observations (Assumption 1) differs from Saikkonen�s in that it

imposes �zero-restrictions� on the multivariate regression in whereby each equation contains

a different set of regressors. Thus in the context of the model that we study, DSUR, which

exploits the cross-equation correlations, enjoys asymptotic efficiency advantages over single-

equation methods. A comparison of the asymptotic efficiency of system DOLS and DSUR gives

� �Proposition 4 Under the conditions of Assumptions 1 and 2, avar(β ) ≤ avar(β ).
dsur sysdols

1.2 Estimation of Homogeneous Cointegration Vectors

We now turn to estimation of the cointegration vector under homogeneity, β = β = β.
1 2

We Þrst discuss the restricted DSUR estimator. This is the DSUR estimator discussed above

with homogeneity restrictions imposed and has a generalized least squares interpretation. In

section 1.2.2, restricted DSUR is compared to the panel DOLS estimator.
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1.2.1 Restricted DSUR

As in two-step DSUR, endogeneity can Þrst be purged by regressing y and each element ofit

x on z . Let �y and �x denote the resulting regression errors. The problem is to estimateitit pt it
0β, in the system of equations �y = �x β + �u where β = β = β. Stacking these equationsit itit 1 2

together, we have,
0��y = x β + �u (15)ttt

�where x = (x , x ) is a k × 2 matrix.t 1t 2t
0Let Ω = LL be the lower-triangular Choleski decomposition of the long-run error co-uu " # " #

11` 0 ` 011 −1 11 22variance matrix, where L = , L = , ` = 1/` , ` = 1/` , and11 2221 22` ` ` `21 22
0∗ ∗ ∗21 −1 ∗ −1�` = −` /(` ` ). We pre-multiply (15) by L to get, �y = x β + �u where �y = L �y ,21 11 22 t tt t t∗∗ −1 0 −1� �x = x (L ) , and �u = L �u . The restricted DSUR estimator is obtained by running OLSt tt t

on these transformed observations,       −1 −1
T−p T−p T−p T−p2 2X X X X X X0∗ ∗ ∗ ∗ −1 0 −1�        � � �β = �x �x �x �y = x Ω x x Ω �y .t tit it it uu t uurdsur it t
t=p+1 t=p+1 t=p+1 t=p+1i=1 i=1

4The properties of this estimator are given in the following corollary to proposition 1.

Corollary 1 (Asymptotic distribution of restricted DSUR). Let b = (B ,B ), R be ae e e1 2PT−p −1 0� �q × 2k matrix of constants such that Rβ = r, and V = x Ω x . Then astrdsur uu tt=p+1rdsur

T →∞,∗ µ ¶ µ ¶Z Z−1
D −1 0 −1�T (β − β)→ b Ω b b Ω dB , (16)∗ e e uuu e uurdsur

and h i−1 D0 0 2� ��(Rβ − r) RV R (Rβ − r)→ χ . (17)rdsur qrdsur rdsur

1.2.2 Panel DOLS

In panel DOLS, control for cross-equation endogeneity can also be achieved by working with

Þrst-step errors from regressing y and each element of x on z . Using �hats� to denote theit it pt

resulting least-squares residuals, the panel DOLS estimator is,   −1
T−p T−pX X0�    � � �β = x x x �y , (18)t ttpdols t
t=p+1 t=p+1

0 04 0 0 0 0 0� � � �� � � �In matrix notation, let Y = (Y , Y ) where Y = (�y , . . . , �y ) , X = (X ,X ) , X =T i1 2T 1 2 i ip+1 iT−p
0 0 0(�x , . . . , �x ) is the T × k matrix of regressors, and �u = (�u , �u ) , �u = (�u , . . . �u ) . The stacked∗ ip+1 iT−pip+1 iT−p T 1 2 i

0 −1 −1 0 −1� � � � �� �system of observations is Y = X β + �u where β = [X (Ω ⊗ I )X ] [X (Ω ⊗ I )Y ].T T T Tuu uuT TT T Trdsur
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�where x = (�x , �x ) is a k × 2 matrix. The asymptotic sampling properties of panel DOLSt 1t 2t

under cross-sectional dependence are given as a corollary to proposition 3.

Corollary 2 (Asymptotic distribution of panel DOLS). Let b = (B ,B ),e e e1 2h i h i h i−1 −1P P PT−p T−p T−p0 0 0�V = x x x Ω x x x , and R be a q × 2k matrix oft t uu tpdols t t tt=p+1 t=p+1 t=p+1

constants such that Rβ = r. Then as T →∞,∗ µ ¶Z Z−1
D 0�T (β − β)→ b b b dB , (19)∗ e e uepdols

and h i−1 D0 0 2� � �(Rβ − r) RV R (Rβ − r)→ χ . (20)pdols qpdols pdols

� �Finally, it should be obvious that avar(β ) ≤ avar(β ).
rdsur pdols

2 Monte Carlo Experiments

In this section, we study the small sample properties of the two-step estimators discussed

above by way of a series of Monte Carlo experiments. Section 2.1 describes the data generating

process and the estimation procedures that we use. Section 2.2 reports the results. First, we

compare the performance of DSUR, feasible DSUR, system and ordinary DOLS methods in an

environment where the cointegration vector exhibits heterogeneity across equations. Second,

we compare restricted DSUR, feasible restricted DSUR, and panel DOLS in an environment

where the cointegrating vector is identical across equations.

2.1 Experimental Design

The cointegrating regression has a single regressor. The general form of the data generating

process (DGP) is given by,

�y = x β + u , i = 1, 2, (21)it it i it

∆x = e , (22)it it

η = Aη + ² , (23)tt t−1

iid� � 0 0where η = (u , u , e , e ) , ² = (² , ² , ² , ² ) ∼ N(0,Σ) and A is a 4 × 4 matrix of1t 2t 1t 2t 3t 4tt1t 2tt

coefficients. Observations are generated under alternative speciÞcations that differ by the

degree of cross-sectional dependence and by the innovation variances of the equilibrium errors.

We consider the following six cases.

11



�Case I builds in �own equation� endogeneity but no cross-sectional endogeneity. That is, uit
is correlated with leads and lags of e for i = j but not for i 6= j. We allow onlyjt

� �contemporaneous cross-sectional dependence in the equilibrium errors u and u . This1t 2t

is achieved by setting   
0.90 0.0 0.05 0.0 1 0.2 0 0      0.0 0.90 0.0 0.05 0.2 1 0 0   A = , Σ = .1 1   0.05 0.0 0.25 0.0 0 0 1 0   
0.00 0.05 0.0 0.25 0 0 0 1

�Case II introduces �cross-equation� endogeneity by making u correlated with leads and lagsit

of e , (i, j = 1, 2) by settingjt  
0.90 0.0 0.05 −0.05  0.0 0.90 −0.05 0.05 A = , Σ = Σ .2 2 1 0.05 −0.05 0.25 0.0 
−0.05 0.05 0.0 0.25

Case III intensiÞes the degree of contemporaneous cross-equation correlation of the equilib-

rium errors by setting  
1 0.8 0 0  0.8 1 0 0 A = A , Σ = .3 2 3  0 0 1 0 
0 0 0 1

The next three cases introduce differences between the innovation variances for the equi-

librium errors. Cases IV, V, and VI are identical to cases I, II, and III respectively except the
� �innovation variance of u is 10 times larger than the innovation variance of u . The original1t 2t

correlation between the innovations is preserved. SpeciÞcally,

Case IV.  
10 0.632 0 0  0.632 1 0 0 A = A , Σ = .4 1 4  0 0 1 0 
0 0 0 1

Case V. A = A , and Σ = Σ .5 2 5 4

Case VI.  
10 2.53 0 0  2.53 1 0 0 A = A , Σ = .6 2 6  0 0 1 0 
0 0 0 1
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For each experiment, we generate 10,000 random samples of T observations. Under het-

erogeneous cointegration, β = 1.4 and β = 0.6. Under homogeneous cointegration, we set1 2

β = β = β = 1.0. To purge the effects of endogeneity in the system estimators, Þrst-step1 2

regressions are run including p leads and lags of ∆x and ∆x in each equation. For ordinary1t 2t

DOLS, we include p leads and lags only of the �own� ∆x .it
An important problem in applications is how to choose p. Unfortunately, no standard

method has emerged even for time series. Often, the ad hoc rule used by Stock and Wat-

son (1993) that sets p = 1 for T = 50, p = 2 for T = 100, and p = 3 for T = 300 is adopted

in Monte Carlo and empirical studies. While it is desirable to have a data dependent method,

such as an information criterion or general-to-speciÞc rules for choosing p, such rules quickly

become unwieldy as the size of the cross-section grows. To balance concerns for employing a

data dependent method in applications, evaluation of estimator performance, and manageabil-
+ −ity of the method, we apply the following modiÞed BIC rule to choose p: Let p (p ) denoteij ij

+ −the number of leads (lags) of ∆x in equation i. First run DOLS and determine (p , p ) byj ii ii
+ − + −minimizing BIC, then for i 6= j, set (p , p ) = (p , p ).ij ij ii ii

The DSUR estimators are computed using the known long-run covariance matrix Ω .uu

Feasible DSUR is computed with a parametrically estimated Ω . To do this, we modeluu

the residuals from Þrst-step regressions as a restricted vector autoregression in which the

individual residual processes are m-th ordered autoregressions. While an unrestricted vector

autoregression might seem to be a more appropriate choice and is feasible in our two-equation

example DGP, it quickly becomes too heavily parameterized in even moderately sized systems.

Since the restricted VAR is a popular method for achieving model parsimony, we adopt that
5approach here. Thus, let M = max(m ,m ), where m is the order of the autoregression1 2 i

for u , which we determine by the general-to-speciÞc t-test method suggested by Hall (1994).it PM 0For t = 1, . . . , T −M , the restricted VAR is, u = Φ u + ν , where u = (u , u ) ,j 1t 2tt t−j t tj=1
0 0ν = (ν , ν ) , E(ν ν ) = W, and Φ is a (2 × 2) matrix of coefficients with zeros in the1t 2t jt t t

6off-diagonal elements. The autoregressions are then jointly estimated by iterated SUR andP Pm m−1 0 −1� � � �the estimated long-run covariance matrix is, Ω = [I − Φ ] W[I − Φ ] .uu 2 j 2j=1 j=1 j

2.2 Results

Table 1 reports 5, 50, and 95 percentiles and the mean of the Monte Carlo distribution for

the estimators along with the relative (to DOLS) mean-square error. In case I where there

is no cross-sectional endogeneity and a low degree of cross-sectional correlation, there is little

difference among the estimators. None exhibit substantial bias and for T = 100, 300, are similar

in terms of efficiency. The loss of efficiency involved in estimating the long-run covariance

5This estimator of Ω is consistent if M → ∞ as T → ∞ and M = o(T ). This is true even if theuu

zero-restrictions on the off-diagonal elements of Φ are false [e.g., Andrews and Monahan (1992)].j
6The general-to-speciÞc method proceeds as follows: Start with some maximal lag order ` and estimate the

� �autoregression on �u . Let φ be the ii−th element of Φ . If the absolute value of the t-ratio for φ is less thanit i` ` i`
∗some appropriate critical value, c , reset m to `− 1 and reestimate. Repeat the process until the t-ratio of thei

∗estimated coefficient with the longest lag exceeds the critical value c .
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matrix to do feasible DSUR is modest. For example, with T = 100, the relative mean-square

error for feasible DSUR is 1.04. At T = 300, we begin to see evidence of DSUR efficiency gains

with relative mean-square error of 0.99. DSUR performance under case II, where cross-equation

endogeneity is introduced, is slightly improved in terms of mean square error.

We observe substantial efficiency gains to using DSUR in case III, where there is a high

degree of cross-equation correlation. For T = 50, DSUR achieves a 54 percent reduction in

mean-square error over the system DOLS estimator. Similarly, feasible DSUR achieves a 31

percent reduction in mean-square error. These efficiency gains grow when T = 300. All of

the estimators exhibit some upward bias in small samples. The bias is slightly more severe for

DSUR. There is little difference in bias between DSUR and feasible DSUR.

We conclude from Table 1 that substantial efficiency gains can be achieved with DSUR

over DOLS when there is a high degree of cross-equation dependence in the equilibrium errors.

The results for cases IV-VI are nearly identical and are not reported to save space.

We now turn to the small-sample properties of Wald test statistics for the test of homo-

geneity, β = β in the cointegrating regression slope coefficient. Table 2 displays the 90, 95,1 2

and 99 percentiles of the test statistic and the percentile of the Monte Carlo distribution that

lies to the right of the asymptotic distribution�s 5% critical value (indicated by size (5%)) for

system DOLS and DSUR. It can be seen that the DSUR test is uniformly and substantially

more accurately sized than the system DOLS test. Moreover, the performance of the DSUR

test and its relation to the system DOLS test is largely invariant to changes in the strength of

the cross-sectional dependence or the relative size of the equilibrium error innovation variances.

Next, we consider test statistic performance in tests of the null hypothesis H : β = β = 1.0 1 2

Table 3 reports the results for this experiment. Again, it can be seen that the DSUR test has

better small-sample size properties than the system DOLS test.

We now consider estimation under homogeneity of the cointegration vector across equations.

The small-sample performance of the restricted panel estimators, panel DOLS and restricted

DSUR is reported in table 4. There is little difference in estimator performance in cases I and

II while restricted DSUR and feasible restricted DSUR achieve substantial efficiency gains over

panel DOLS in all other cases. The efficiency gain in restricted DSUR is more dramatic when

there are differences in the innovation variance of the equilibrium errors across equations. In

case VI for example, for T = 50, the mean square error of the restricted DSUR distribution

is 73 percent lower than that of the panel DOLS distribution and the mean-square error the

feasible restricted DSUR distribution lies 59 percent below that of panel DOLS. The rather

large gaps in efficiency between restricted DSUR and panel dynamic OLS remain present even

when T = 300.

We conclude that for T = 300, substantial efficiency gains are available for the DSUR

methods, especially when there is moderate to strong cross-sectional dependence. For T =

50, 100, the tests of homogeneity restrictions are somewhat oversized and use of the asymptotic

theory in applications may lead to over-rejections of the null hypothesis. With T = 300, the

DSUR tests are reasonably sized.
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3 Applications

In this section we illustrate the usefulness of DSUR by applying it to two empirical problems

in international economics. Our Þrst application revisits the anomaly reported by Evans and

Lewis (1993) that the expected excess return from forward foreign exchange rate speculation

is unit-root nonstationary. Our second application revisits the Feldstein and Horioka (1980)

problem of estimating the correlation between national saving rates and national investment

rates and the interpretation of this correlation as a measure of international capital mobility.

3.1 Spot and Forward Exchange Rates

Let s be the logarithm of the spot exchange rate between the home country and countryit

i, and let f be the associated 1-period forward exchange rate. It is widely agreed thatit

since the move to generalized ßoating in 1973 that both s ∼ I(1) and f ∼ I(1) and thatit it

they are cointegrated. Let β be the cointegrating coefficient between s and f and leti it+1 it

p = f − E (s ) be the expected excess return from forward foreign exchange speculation.it it t it+1

The spot rate can be decomposed as s = f − p + ² where ² = s − E (s ) isit+1 it it it+1 it+1 it+1 t it+1

a rational expectations error, and the equilibrium error can be decomposed as s − β f =it+1 i it

(1−β )f −p + ² . If β 6= 1, it follows that the expected excess return p is nonstationaryi it it it+1 i it

and is cointegrated with f . Evans and Lewis ask whether p is I(0) or I(1), by estimating theit it

regression
�s = α + β f + u , (24)it+1 i i it it+1

by ordinary DOLS and testing the hypothesis H : β = 1. They use monthly observationso i

from January 1975 through December 1989 on the dollar rates of the pound, deutschemark,

and yen, are able to reject that the slope coefficient is 1 at small signiÞcance levels. The implied

nonstationarity of the excess return is an anomaly.

We revisit the Evans and Lewis problem using an updated data set. Our data are spot

and 30-day forward exchange rates for the pound, deutschemark, and yen relative to the U.S.

dollar from January 1975 to December 1996. We obtain 286 time-series observations sampled

from every 4th Friday of the Bank of Montreal/Harris Bank Foreign Exchange Weekly Review.

Because all of the currency prices are in terms of a common numeraire currency, cross-equation

error correlation is likely to be important. Under this setting, the regression errors are forecast

errors of investors and will be correlated as long as information sets of investors in different

countries contain common components.

The estimation results are reported in table 5. In light of the moderate size distortion

uncovered in the Monte Carlo analysis, we test hypotheses using the 1 percent asymptotic

signiÞcance level. Our BIC rule recommends including p = 3 leads and lags of the endogeneity

control variables. The DSUR estimates with p = 3 are insigniÞcantly different from 1 for

the pound and yen, but is signiÞcantly less than 1 for the deutschemark. We employ two

tests of homogeneity in the cointegration vectors. The Þrst one tests the null hypothesis

H : β = β ,β = β . The second is a test of the null hypothesis H : β = β = β = 1. Theseo 1 3 2 3 o 1 2 3
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2homogeneity restrictions cannot be rejected at the 1 percent level (χ = 7.5, p-value=0.024,2
2χ = 7.6, p-value=0.056). We therefore proceed to impose the homogeneity restrictions in3

estimation and obtain a restricted DSUR estimate that is insigniÞcantly different from 1.

To investigate the sensitivity of the results to variations in the lead-lag speciÞcation used

to control for endogeneity, we perform estimation with 2 leads and lags, and with 3 leads,

and with 2 leads (no contemporaneous nor lagged values). The rationale for omitting the

contemporaneous and lagged values of ∆f is that under rational expectations if the forwardt
�exchange rate is the optimal predictor of the future spot rate, the equilibrium error u isit+1

orthogonal to any date t information. As can be seen, the results are qualitatively similar

across the alternative lead-lag speciÞcations. Here, as in many rational expectations models,

it is more important to include leads than lags.

We conclude that the evidence for nonstationarity of the excess return is less compelling

according to the DSUR slope coefficient estimates under homogeneity restrictions.

3.2 National Saving and Investment Correlations

Let (I/Y ) be the time-series average of the investment to GDP ratio in country i, and (S/Y )i i

be the analogous time-series average of the saving ratio to GDP ratio. Feldstein and Horioka

(1980) run the cross-sectional regression,µ ¶ µ ¶
I S

= α+ β + u , (25)i
Y Yi i

to test the hypothesis that capital is perfectly mobile internationally. They Þnd that β is

signiÞcantly greater than 0, and conclude that capital is internationally immobile.

The logic behind the Feldstein and Horioka regression goes as follows. Suppose that capital

is freely mobile internationally. National investment should depend primarily on country-

speciÞc shocks. If the marginal product of capital in country i is high, it will attract investment.

National saving on the other hand will follow investment opportunities not just at home, but

around the world and will tend to ßow towards projects that offer the highest (risk adjusted)

rate of return. The saving rate in country i then is determined not by country�i speciÞc

events but by investment opportunities around the world. Under perfect capital mobility,

the correlation between national investment and national saving should be low. Following

the publication of Feldstein and Horioka�s cross-sectional study, a number of follow-up cross-

sectional and panel studies have reported that national saving rates are highly correlated with

national investment rates [For surveys of the Feldstein�Horioka literature, see Bayoumi (1997)

and Coakley et al. (1998)].

Theoretical studies, on the other hand, have shown that The Feldstein�Horioka (1980)

logic is not airtight. Obstfeld (1986), Cantor and Mark (1988), Cole and Obstfeld (1991)

Baxter and Crucini (1993) provide counterexamples in which the economic environment is

characterized by perfect capital mobility but decisions by optimizing agents lead to highly

correlated saving and investment rates. Along with theoretical criticism against the Feldstein
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and Horioka hypothesis, more than a dozen empirical studies have criticized their econometrics

by arguing that the saving and investment ratios are non-stationary.

Coakley et al. (1996) suggest an alternative interpretation of the long-run relationship

between saving and investment. By the national income accounting identity, the difference

between national investment and national saving is the current account balance. Coakley et

al. argue that the current account must be stationary when the present value of expected future

debt acquisition is bounded. In other words, whether the current account balance is stationary

depends not on the degree of capital mobility but on whether the long-run solvency constraint

holds. If saving and investment are unit root nonstationary, they are cointegrated with a

cointegrating vector (1,-1). Thus the long-run relationship between saving and investment

studied by time series cointegrating regressions is best interpreted as a test of the long-run

solvency constraint and not of the degree of capital mobility. Furthermore, Coakley and

Kulasi (1997), Hussein (1998), and Jansen (1996) show that the saving and investment ratios

are cointegrated.

We employ DSUR to re-examine the Feldstein�Horioka puzzle using 100 quarterly obser-

vations from the International Financial Statistics CD-ROM on nominal GDP, saving, and

investment from 1970.1 to 1995.4 for Australia, Austria, Canada, Finland, France, Germany,

Italy, Japan, Spain, Switzerland, the U.K., and the U.S. Since our focus is on the long-run

relationship between saving and investment, we follow Coakley et al.�s interpretation that the

long-run solvency constraint implies cointegration. Even though Coakley et al. do not empha-

size this, we note that two versions of their model imply slightly different forms of cointegration.

First, if we assume that saving and investment are unit root nonstationary, then this version of

their model implies that the current account is stationary and saving and investment are coin-

tegrated with a cointegrating vector of (1,-1). Second, if we assume that saving-GDP ratio and

investment-GDP ratio are unit root nonstationary, we must interpret saving and investment

in their model to be normalized by GDP. The second version of their model implies that the

current account over GDP is stationary and that saving and investment normalized by GDP

are cointegrated with a cointegrating vector of (1,-1).

For the Þrst version of the model, we run the regression in levels after normalizing saving

and investment by GDP, µ ¶ µ ¶
I S

= α + β + u . (26)i i it
Y Yit it

Presumably, the reason for normalizing investment and saving by GDP in many applications

is to transform the data into stationary observations, as they would be if the economy is on a

balanced growth path. However, we Þnd very little empirical evidence for this implication of
7the balanced growth in our data set.

7We perform Phillips and Sul�s (2002) panel unit root test which are robust to cross-sectional dependence.
Their suggestion is to apply an orthogonalization procedure to the observations under the assumption that the
cross-sectional dependence is generated by a factor structure, and then to apply the Maddala�Wu (1999) panel
unit-root test to the orthogonalized observations. The series tested and associated p-values from the tests are
as follows: S/Y, (0.972), I/Y, (0.999), ln(S), (1.000), ln(I), (1.000). Since none of the p-values are less than
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For the second version of Coakley et al.�s model, we run the regression should in log levels,

ln(I ) = α + β ln(S ) + u . (27)it i i it it

In both versions, the cross-equation error correlation is likely to be important because

the error for each country is an inÞnite sum of shocks to saving and investment. There is an

additional reason for the correlation to be important in the second version of the model because

normalizing by GDP can create artiÞcial correlation between the ratios even when the levels

are uncorrelated. An income shock automatically affects both (I/Y ) and (S/Y ) independently

of its effect on investment and saving thus generating artiÞcial correlation between the ratios.

It was not feasible for us to simultaneously estimate the regressions for all 12 countries due

to the excessive number of parameters that needed to be estimated to implement DSUR. To

proceed, we break the panel into subsamples and estimate separate systems for European and

non European countries.

Table 6 reports our estimates of the regression. We look Þrst at the results in ratio form.

For the European countries, the BIC rule selects p = 3. We obtain DSUR slope coefficients

estimates that lie below 1 for the UK, Spain and Germany, estimates that are near 1 for France

and Austria, and estimates that signiÞcantly exceed 1 for Finland, Italy, and Switzerland. For

non European countries (p = 3), the point estimates are insigniÞcantly different for 1 for the

U.S., Canada, and Japan. Only the estimate for Australia is signiÞcantly less than 1.

Tests of homogeneity are mixed. In the European system, the asymptotic p-values for the

test of homogeneity and also for the test that all slope coefficients are 1 are both 0.000. For the

non-European system, neither of the tests for homogeneity can be rejected at the asymptotic 1

percent level. These results suggest that for the non-European system, it is reasonable to pool

and to re-estimate under homogeneity. When we do so, we obtain a restricted DSUR estimate

0.78 which is signiÞcantly less than 1.

Looking at the estimates from the log-levels regression, the European data set tells a

mixed story. These estimates are associated with p = 3. The point estimates for Switzerland

and Finland are signiÞcantly less than 1, but the Wald test does not reject the homogeneity

restriction at any reasonable level. As a result, we pool and re-estimate under homogeneity

restrictions on the slope coefficient with restricted DSUR and obtain a point estimate of 0.97,

which is insigniÞcantly different from 1. In the log-levels regression for the non-European

countries, our BIC rule sets p = 2. Here, only the DSUR estimate for the US of 1.10 is

signiÞcantly greater than 1. The homogeneity restrictions are not rejected so we pool and

obtain a restricted DSUR estimate of 1.02 which is insigniÞcant different from 1.

To summarize, the weight of the evidence suggests that the long-run slope coefficients in

the saving�investment regressions are very close to 1 for most countries which is consistent

with the hypothesis that Coakley et al.�s solvency constraint is not violated.

0.05, the null hypothesis of a unit root is not rejected. In differences, we obtain for (S − I)/Y, (0.000), and
ln(S/I)(0.000) and are able to reject the unit root null hypothesis for these cases.
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4 Conclusion

In this paper, we proposed the dynamic seemingly unrelated regression estimator for multiple-

equation cointegrating regressions both in situations when the cointegration vector displays

heterogeneity across equations and when it is homogeneous. This estimator exploits the cross-

equation correlation in the errors, is asymptotically efficient, and is computationally more

convenient to use than the existing nonparametric versions of seemingly unrelated cointegrating

regression estimators. Our Monte Carlo studies suggest that the small sample properties

conform largely according to the predictions of the asymptotic theory. In most of the cases

that we examined, DSUR estimators are more efficient than DOLS estimators which do not

utilize the cross-equation correlation. The efficiency gain is increasing in the correlation of

the equilibrium errors across equations. In the case of homogenous cointegrating vectors,

the efficiency gain is also increasing in the difference between in the error variance across

equations. These results stand in contrast to Park and Ogaki�s (1991) seemingly unrelated

CCR estimators, which also are asymptotically efficient, but in small samples were found in

many cases to be less efficient than equation-by-equation CCR estimators.

We showed that these estimators can be successfully applied in small to moderate systems

where the number of time periods, T , is substantially larger than the number of equations,

N . DSUR will not be computationally feasible in systems of large N because the number of

free parameters that must be estimated in the error correlation quickly becomes unwieldy as

N grows. In the foreign exchange rate application, N is 3 and this size condition is satisÞed.

However, in the saving-investment regression, we found it necessary to split up the sample.

We did so according to geography so that each subsample might reasonably exhibit different

levels of cross-equation error correlation.

Finally, we have stressed the computational convenience of DSUR for correcting endogene-

ity in small nonstationary panels as an advantage over nonparametric methods such as those

suggested in Park and Ogaki (1991) and Moon (1999). The alternative approaches involve an

age-old tradeoff to the researcher. The lack of computational transparency of the nonparamet-

ric methods may be viewed as the price of ßexibility whereas the computational tractability

of the parametric method creates the possibility for misspeciÞcation error, which we did not

explicitly consider in the paper.
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Table 1: Monte Carlo Performance of DOLS and DSUR Estimators under Cointegration Vector
Heterogeneity, Cases I-III.

β = 1.4 β = 0.61 2

Rel. Rel.
T 5% 50% 95% mean MSE 5% 50% 95% mean MSE

Case I.

DOLS 50 0.818 1.405 1.973 1.401 1.000 0.031 0.603 1.192 0.606 1.000
SDOLS 50 0.768 1.404 2.020 1.400 1.152 -0.010 0.604 1.242 0.607 1.196
DSUR 50 0.772 1.405 2.011 1.401 1.127 -0.004 0.603 1.239 0.608 1.164
FDSUR 50 0.756 1.407 2.033 1.402 1.223 -0.026 0.602 1.254 0.608 1.255

DOLS 100 1.103 1.400 1.701 1.401 1.000 0.294 0.599 0.899 0.600 1.000
SDOLS 100 1.096 1.398 1.707 1.401 1.025 0.291 0.599 0.910 0.600 1.042
DSUR 100 1.101 1.400 1.699 1.401 1.004 0.296 0.599 0.907 0.600 1.018
FDSUR 100 1.099 1.400 1.707 1.402 1.037 0.294 0.598 0.913 0.601 1.057

DOLS 300 1.296 1.399 1.504 1.400 1.000 0.497 0.600 0.703 0.600 1.000
SDOLS 300 1.295 1.400 1.503 1.399 1.004 0.497 0.600 0.704 0.600 1.001
DSUR 300 1.297 1.400 1.504 1.400 0.972 0.500 0.600 0.702 0.601 0.975
FDSUR 300 1.296 1.400 1.504 1.400 0.989 0.499 0.600 0.703 0.601 0.986

Case II.

DOLS 50 0.824 1.407 1.955 1.401 1.000 0.005 0.607 1.196 0.606 1.000
SDOLS 50 0.788 1.408 1.998 1.402 1.171 -0.014 0.608 1.241 0.610 1.163
DSUR 50 0.806 1.407 1.984 1.403 1.115 -0.010 0.605 1.234 0.610 1.113
FDSUR 50 0.779 1.409 1.998 1.403 1.196 -0.024 0.607 1.251 0.609 1.215

DOLS 100 1.111 1.400 1.701 1.404 1.000 0.311 0.600 0.891 0.601 1.000
SDOLS 100 1.115 1.400 1.699 1.403 0.981 0.316 0.599 0.890 0.601 0.987
DSUR 100 1.124 1.402 1.686 1.404 0.931 0.323 0.599 0.883 0.602 0.937
FDSUR 100 1.117 1.401 1.697 1.403 0.968 0.317 0.600 0.887 0.602 0.975

DOLS 300 1.304 1.400 1.500 1.401 1.000 0.505 0.601 0.700 0.602 1.000
SDOLS 300 1.306 1.400 1.496 1.400 0.948 0.507 0.601 0.698 0.601 0.946
DSUR 300 1.309 1.400 1.494 1.401 0.881 0.511 0.601 0.695 0.602 0.878
FDSUR 300 1.307 1.400 1.495 1.400 0.908 0.509 0.601 0.696 0.602 0.905

Case III.

DOLS 50 0.796 1.420 2.035 1.418 1.000 -0.015 0.619 1.235 0.620 1.000
SDOLS 50 0.753 1.420 2.067 1.417 1.159 -0.042 0.617 1.293 0.622 1.146
DSUR 50 0.987 1.430 1.883 1.430 0.536 0.185 0.630 1.083 0.631 0.539
FDSUR 50 0.889 1.427 1.969 1.426 0.796 0.080 0.627 1.173 0.628 0.824

DOLS 100 1.085 1.409 1.737 1.411 1.000 0.286 0.610 0.937 0.613 1.000
SDOLS 100 1.085 1.410 1.734 1.411 1.003 0.290 0.610 0.939 0.613 0.998
DSUR 100 1.210 1.419 1.641 1.421 0.451 0.406 0.618 0.846 0.620 0.454
FDSUR 100 1.185 1.418 1.659 1.421 0.564 0.384 0.617 0.866 0.620 0.569

DOLS 300 1.292 1.404 1.522 1.404 1.000 0.493 0.603 0.717 0.604 1.000
SDOLS 300 1.292 1.403 1.521 1.404 0.993 0.493 0.603 0.717 0.603 0.996
DSUR 300 1.337 1.407 1.485 1.408 0.439 0.536 0.607 0.685 0.608 0.455
FDSUR 300 1.333 1.407 1.488 1.408 0.472 0.533 0.607 0.687 0.608 0.491

Notes: SDOLS is system DOLS, FDSUR is feasible DSUR, Rel. MSE is relative (to DOLS) mean

square error.
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� �Table 2: Monte Carlo Performance of Tests of the Homogeneity Restriction H : β = β .0 1 2

SDOLS DSUR

Case T 90% 95% 99% size (5%) 90% 95% 99% size (5%)

50 8.108 15.872 56.751 0.545 13.524 22.221 51.059 0.323
I 100 4.820 8.491 25.572 0.299 5.789 8.793 19.928 0.174

300 3.165 5.562 12.688 0.135 3.587 5.281 10.274 0.089

50 10.451 19.752 66.978 0.557 14.661 23.066 54.308 0.340
II 100 6.721 12.005 33.957 0.310 6.423 10.179 22.492 0.189

300 5.019 8.230 19.430 0.144 4.101 6.112 11.206 0.109

50 10.079 18.049 53.630 0.512 12.592 19.587 47.843 0.305
III 100 5.750 9.702 26.575 0.266 5.621 8.623 18.579 0.159

300 4.507 6.955 14.345 0.115 3.558 5.242 9.768 0.091

50 7.450 15.209 58.422 0.529 13.135 20.853 51.627 0.312
IV 100 4.583 8.880 24.810 0.289 5.704 8.605 18.208 0.169

300 3.098 5.626 14.635 0.132 3.708 5.335 10.065 0.094

50 12.014 23.684 89.429 0.538 14.799 22.897 50.549 0.338
V 100 8.672 16.130 50.511 0.305 7.165 11.200 23.682 0.207

300 7.380 12.264 28.027 0.143 4.888 7.119 14.041 0.141

50 12.258 25.374 96.759 0.515 12.572 19.806 43.528 0.313
VI 100 8.183 15.254 47.253 0.286 5.735 8.529 17.390 0.165

300 6.234 11.472 28.683 0.148 3.717 5.448 10.060 0.095
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Table 3: Monte Carlo Performance of DOLS and DSUR Tests of the Homogeneity Restriction
� �H : β = β = 10 1 2

DOLS DSUR

Case T 90% 95% 99% size (5%) 90% 95% 99% size (5%)

50 58.249 97.720 244.903 0.541 39.327 60.985 136.225 0.175
I 100 19.569 31.885 70.288 0.338 13.819 20.517 45.418 0.125

300 9.421 13.780 27.021 0.186 7.145 9.796 16.616 0.079

50 66.888 112.760 282.609 0.569 39.360 61.234 133.531 0.219
II 100 24.383 38.798 79.687 0.374 14.517 21.949 41.870 0.168

300 11.890 18.047 35.749 0.236 7.293 9.936 17.006 0.136

50 53.340 90.869 224.586 0.504 34.805 55.553 130.188 0.214
III 100 16.649 26.686 60.757 0.296 12.612 18.255 36.911 0.152

300 8.494 12.471 24.680 0.170 6.475 8.759 15.178 0.121

50 98.368 168.956 499.771 0.584 34.962 55.504 122.012 0.159
IV 100 27.614 45.565 119.298 0.395 13.333 19.040 39.158 0.119

300 11.986 18.400 38.804 0.235 7.037 9.626 16.079 0.080

50 129.155 223.862 581.759 0.630 36.696 57.173 121.274 0.224
V 100 45.633 76.659 157.561 0.490 14.069 21.464 41.884 0.195

300 22.422 33.981 70.126 0.366 7.434 10.280 19.574 0.184

50 142.474 265.100 759.475 0.613 33.616 53.286 118.711 0.233
VI 100 48.326 84.267 207.843 0.459 13.286 19.014 38.011 0.190

300 24.039 38.889 90.725 0.355 7.425 10.503 17.840 0.163
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Table 4: Monte Carlo Performance of PDOLS and RDSUR Estimators under Cointegration
Vector Homogeneity.

Rel. Rel.
T 5% 50% 95% mean MSE 5% 50% 95% mean MSE

Case I Case IV

PDOLS 50 0.612 1.006 1.385 1.003 1.000 0.310 0.967 1.585 0.955 1.000
RDSUR 50 0.619 1.007 1.381 1.004 0.974 0.482 0.992 1.480 0.989 0.599
FRDSUR 50 0.584 1.005 1.427 1.004 1.182 0.427 0.986 1.513 0.982 0.733

PDOLS 100 0.807 0.999 1.190 0.999 1.000 0.680 0.974 1.256 0.974 1.000
RDSUR 100 0.810 0.999 1.191 1.000 0.976 0.761 0.991 1.223 0.991 0.640
FRDSUR 100 0.797 0.999 1.206 1.000 1.134 0.740 0.988 1.228 0.986 0.709

PDOLS 300 0.934 1.000 1.067 1.000 1.000 0.901 0.992 1.080 0.991 1.000
RDSUR 300 0.935 0.999 1.067 1.000 0.973 0.919 0.998 1.075 0.998 0.731
FRDSUR 300 0.933 1.000 1.069 1.000 1.044 0.919 0.996 1.073 0.996 0.712

Case II Case V

PDOLS 50 0.643 1.009 1.368 1.007 1.000 0.487 0.981 1.428 0.975 1.000
RDSUR 50 0.654 1.008 1.361 1.007 0.944 0.633 1.009 1.375 1.010 0.623
FRDSUR 50 0.610 1.009 1.402 1.007 1.188 0.578 1.002 1.389 0.998 0.801

PDOLS 100 0.830 1.001 1.179 1.001 1.000 0.785 0.986 1.176 0.984 1.000
RDSUR 100 0.836 1.000 1.172 1.001 0.927 0.837 1.005 1.167 1.004 0.716
FRDSUR 100 0.821 1.001 1.191 1.002 1.130 0.826 0.999 1.160 0.997 0.756

PDOLS 300 0.944 1.001 1.060 1.001 1.000 0.938 0.996 1.050 0.995 1.000
RDSUR 300 0.947 1.001 1.057 1.001 0.902 0.952 1.003 1.055 1.002 0.812
FRDSUR 300 0.944 1.001 1.062 1.001 1.030 0.951 1.000 1.047 0.999 0.700

Case III Case VI

PDOLS 50 0.619 1.022 1.403 1.019 1.000 0.441 0.990 1.503 0.984 1.000
RDSUR 50 0.768 1.026 1.288 1.028 0.460 0.761 1.022 1.290 1.023 0.265
FRDSUR 50 0.676 1.024 1.361 1.024 0.824 0.693 1.019 1.329 1.017 0.414

PDOLS 100 0.813 1.008 1.209 1.010 1.000 0.756 0.991 1.213 0.989 1.000
RDSUR 100 0.895 1.015 1.144 1.017 0.424 0.895 1.012 1.136 1.013 0.292
FRDSUR 100 0.867 1.015 1.170 1.016 0.626 0.884 1.009 1.137 1.010 0.328

PDOLS 300 0.938 1.002 1.074 1.003 1.000 0.928 0.997 1.064 0.996 1.000
RDSUR 300 0.966 1.005 1.051 1.007 0.415 0.970 1.005 1.045 1.006 0.327
FRDSUR 300 0.963 1.005 1.054 1.006 0.464 0.969 1.004 1.043 1.004 0.304

Note: PDOLS is panel DOLS, RDSUR is restricted DSUR and FRDSUR is feasible restricted DSUR.

Rel. MSE is relative (to panel DOLS) mean square error.
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Table 5: DSUR Estimation of Spot and Forward Exchange Rate Cointegrating Regression,
1975.1-1996.12

A. Leads and lags 3 leads and lags 2 leads and lags
� � � �β t(β = 1) β t(β = 1)

Germany 0.992 -2.581 0.992 -2.191
Japan 1.000 0.247 1.000 0.199
UK 1.001 0.351 1.001 0.102

2χ 7.459 5.1352

(p-value) (0.024) (0.077)
2χ 7.571 5.3443

(p-value) (0.056) (0.148)

Restricted 0.997 -0.144 0.999 -0.271

B. Leads only 3 leads 2 leads
� � � �β t(β = 1) β t(β = 1)

Germany 0.992 -1.860 0.992 -1.797
Japan 1.000 0.310 1.001 0.217
UK 1.001 0.271 1.000 0.031

2χ 4.047 3.6632

(p-value) (0.132) (0.160)
2χ 4.064 3.7213

(p-value) (0.254) (0.293)

Restricted 1.000 -0.047 1.000 -0.116

2 2Notes: χ is the test statistic for testing the homogeneity hypothesis β = β = β . χ is the test1 2 32 3

statistic for testing the homogeneity hypothesis β = β = β = 1.1 2 3
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Table 6: Saving-Investment Correlations

Ratios Log-Levels
� � � �β t(β = 1) β t(β = 1)i i i i

A. European System

Austria 1.071 0.486 1.021 1.050
Finland 1.408 4.636 0.859 -2.431
France 1.013 0.169 0.977 -0.885
Germany 0.762 -1.425 0.992 -0.116
Italy 1.211 3.014 0.965 -1.842
Spain 0.668 -2.024 0.981 -0.559
Switzerland 1.330 2.661 0.909 -3.250
UK 0.559 -2.882 0.986 -0.230

2χ 29.10 4.4877

(p-value) (0.000) (0.722)
2χ 37.45 9.8978

(p-value) (0.000) (0.272)

Restricted � � 0.974 -1.857

B. Non-European System

Australia 0.600 -4.255 0.995 -0.139
Canada 0.818 -1.052 0.989 -0.183
Japan 0.974 -0.191 0.971 -1.208
US 0.878 -1.371 1.095 3.393

2χ 3.771 2.4213

(p-value) (0.287) (0.490)
2χ 11.83 3.5894

(p-value) (0.019) (0.464)

Restricted 0.777 -3.597 1.019 1.357

2 2Note: Statistic for test of homogeneity is χ in panel A and χ in panel B. Statistic for test that slope7 3
2 2coefficients are all equal to 1 is χ in panel A and χ in panel B.8 4
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Appendix

Proof of proposition 1. We note that three regularity conditions assumed by Saikkonen (1993)
(i) the spectral density matrix of the vector of equilibrium errors is bounded away from zero,
ii) the long-run covariance matrix exists, and iii) the 4-th order cumulants are absolutely
sumable) are satisÞed under assumption 1. Let T = T − 2p,∗   

T−p ³ ´ ³ ´X p1 −1 0 −1 0   A = diag X Ω X ,E Z Ω Z , G = diag T I , T It pt T ∗ 2 ∗ 2uu t uu pt2T∗ t=p+1

and  
11 0 12 0 11 0 12 0Ω x x Ω x x Ω x z Ω x z1t 1t1t 2t 1t t 1t t

2 2 3/2 3/2T T ∗ ∗ T T∗ ∗   21 0 22 0 21 0 22 0Ω x x Ω x x Ω x z Ω x z 2t 2t1t 2t 2t t 2t tT−p T−p³ ´X X 2 2 3/2 3/2T T∗ ∗−1 −1−1 0 T T�  ∗ ∗  A = G W Ω W G = .11 0 12 0 11 0 12 0t uu tT T  Ω z x Ω z x Ω z z Ω z zt t1t 2t t t t t t=p+1 t=p+1 3/2 3/2 T T∗ ∗ T T∗ ∗ 21 0 22 0 21 0 22 0Ω z x Ω z x Ω z z Ω z zt t1t 2t t t t t
3/2 3/2 T T∗ ∗T T∗ ∗

Then " # T−p� XT (β − β)∗ −1 −1 −1�dsur√ = A G W Ω (u + v )t t ptuuT�T (δ − δ )∗ p,dsur p t=p+1

T−p T−pX X−1 −1−1 −1 −1 −1= A G W Ω u +A G W Ω vt tt ptuu uuT T
t=p+1 t=p+1| {z }

(a)

T−p³ ´ ³ ´X−1−1 −1 −1�+ A −A G W Ω v + ut pt tuuT
t=p+1| {z }
(b)PT−p−1 −1 −1�From theorem 4.1 of Saikkonen (1993), we have G W Ω v = o (1) and A −t pptuut=p+1T

−1A = o (1) so that terms (a) and (b) above are both o (1).p p √−1 � �The block-diagonality ofA tells us that T (β −β) and T (δ −δ ) are asymptotically∗ ∗ p,dsur pdsur
independent. It follows that µ ¶ µ ¶−1X X1 1−1 −1�T (β − β) = X Ω X X Ω u + o (1)∗ t t t ptuu uu2dsur T T∗∗µ ¶ µ ¶Z Z−1

D −1 0 −1 0→ B Ω B B Ω dB (A.1)e euu e uu u

R RD−1 −1 0Conditional on B , B Ω dB → N(0, [ B Ω B ]) [Park and Phillips (1998)]. Let Re e euuu uu e

be a q×2k restriction matrix. Note that B and B are independent Brownian motions. Thene u
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conditional on B ,e Z
D0 −1 0 0 −1 2� �(R(β − β) [R( B Ω B )R ] (R(β − β)→ χ . (A.2)e uu e qdsur dsur

R P DT1−1 0 −1 0Since the chi-square distribution does not depend on B Ω B , and X Ω X →e 2 tuu e uu ttTR −1 0 �B Ω B , a test of the null hypothesis H : Rβ = r, can be conducted with the Walde ouu e dsur
statistic " Ã ! #−1TX0 −1 0� �(Rβ − r) R X Ω X R (Rβ − r) (A.3)t uu tdsur dsur

t=1

2which has a limiting χ distribution. kq

To prove proposition 2, we make use of the following lemma.

Lemma 1 The two-step OLS-SUR estimator is numerically equivalent to the two-step GLS-
SUR estimator.

³ ´ ³ ´00 0 0Proof. Let Y = y , y , y = (y , . . . , y ), X = diag (x ,x ), x = x , . . . , x ,i,p+1 i,T−p 1 2 i i,p+1 i,T−p1 2 i ³ ´ ³ ´ ³ ´0 0 00 0 0 0Z = diag (z , z ) = (I ⊗ z ), z = z , . . . , z , β = β ,β , δ = δ , δ ,p p 2 p p p,p+1 p,T−p p p1 p21 2

U = (u , u ), u = (u , . . . , u ). Write (7) in matrix form,i,p+1 i,T−p1 2 i

Y = Xβ + Zδ + U (A.4)p ¡ ¢−10 0 −1 0 0 −1 −1LetM = I−Z (Z Z) Z , Ω = P P,H = P⊗I, andV = HH = Ω ⊗ I (note: P = Luu

in the text). Then MY is the vector of OLS residuals from regressing y on z and MX isit pt

the corresponding matrix of OLS residuals from regressing x on z . The two-step OLS-SURit pt

estimator is obtained from applying OLS to HMY = HMXβ +HMU. which gives

¡ ¢ ¡ ¢−10 0 0 0�β = XMVMX XMVMY .
A

To obtain the two-step GLS-SUR estimator, premultiply (A.4) by H to obtain Y = X β +∗∗
−10 0Z δ+U , where Y = HY , Z = HZ, U = HU . LetM = I−Z (Z Z ) Z . ThenM Y∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗

is the vector of GLS residuals from regressing y on z , andM X is the corresponding matrixit ∗ ∗pt

of GLS residuals from regressing x on z . The two-step GLS-SUR estimator is obtained byit pt

applying OLS to M Y =M X β +M U , which gives∗ ∗ ∗ ∗∗ ∗¡ ¢ ¡ ¢−10 0�β = X M X X M Y .∗ ∗ ∗ ∗∗ ∗B ³ ´¡ ¢−1 0 0 � �Noting thatVZ = Ω ⊗ z and Z Z = I⊗ z z , it is straightforward to see that β = β .p puu p A B

k

Proof of proposition 2. In addition to the matrix notation developed for lemma 1, let V =p
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³ ´0 0v , v , v = (v , . . . , v ) , and V = HV We have for the two-step GLS-SURpi,p+1 pi,T−pp1 p2 pi ∗p p

estimator of β,    −1   ³ ´ ³ ´1 1   0 0�T β − β = X M X X M U + V   ∗ ∗ ∗ ∗ ∗ ∗p∗ ∗2   T T∗∗ | {z }| {z }
EE 21

For E ,2 ³ ´ ³ ´ ³ ´¡ ¢1 1 −10 0 0 0 0 0X M U + V = XH I−HZ Z VZ Z H H U + V∗ ∗ ∗p p∗T T∗ ∗ ³ ´ ³ ´1 0 −1= X Ω ⊗ I U + V puuT∗| {z }
(a) µ ¶³ ´ ³ ´−11 0 −1 0− X Ω ⊗ z z z z U + Vp p p puu pT∗| {z }

(b)

For term (a), " #¡ ¢PT−p³ ´³ ´ 11 121 1 x Ω (u + v ) + Ω (u + v )1t p1t 2t p2t1t uu uu0 −1 t=p+1 ¡ ¢X Ω ⊗ I U + V = Ppuu T−p 21 22T T x Ω (u + v ) + Ω (u + v )∗ ∗ 1t p1t 2t p2t2t uu uut=p+1" #¡ ¢PT−p 11 121 x Ω u + Ω u1t 2t1t uu uut=p+1 ¡ ¢= + o (1)P pT−p 21 22T x Ω u + Ω u∗ 1t 2t2t uu uut=p+1Z
D −1 0→ B Ω Be uu e

For term (b),µ ¶³ ´ ³ ´−11 0 −1 0X Ω ⊗ z z z z U + Vp p p puu pT∗  ³ ´ ³ ´−1 −1
11 0 0 12 0 0Ω x z z z z (u + v ) + Ω x z z z z (u + v )1 p p p p p p1 p1 2 p2uu 1 p uu 1 p ³ ´ ³ ´=  −1 −1
21 0 0 22 0 0T∗ Ω x z z z z (u + v ) + Ω x z z z z (u + v )p p p p p p1 p1 2 p2uu 2 p uu 2 p ³ ´ ³ ´³ ´ P P P PT−p T−p T−p2 1 1 11j 0 0Ω x z z z z (u + v )jt pjt1t pt ptj=1 uu pt ptt=p+1 t=p+1 t=p+1T T T∗ ∗ ∗ ³ ´ ³ ´³ ´ = P P P PT−p T−p T−p2 1 1 12j 0 0Ω x z z z z (u + v )jt pjt2t pt ptuu pt ptj=1 t=p+1 t=p+1 t=p+1T T T∗ ∗ ∗" #

o (1)p=
o (1)p ³ ´ RD1 0 −1It follows that E = X M U + V → B Ω dB .2 ∗ e∗ ∗p u∗ uuT∗
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Next, we have for E ,1 µ ¶³ ´−11 1 10 0 0 −1 0 0X M X = XVX− X Ω ⊗ z z z z X∗ ∗ p p∗ uu p p2 2 2T T T∗ ∗ ∗| {z } | {z }
(c) (d)

Expanding term (d) gives " #µ ¶³ ´ 11 0 0 −1 12 0 0 −1−11 1 Ω x z (z z ) z x Ω x z (z z ) z xp p p 1 p p p 20 −1 0 0 uu p uu p1 1X Ω ⊗ z z z z X =p puu p p 21 0 0 −1 22 0 0 −12 2 Ω x z (z z ) z x Ω x z (z z ) z xT T p p p 1 p p p 2uu p uu p2 2∗ ∗
= o (1)pµ ¶ µ ¶³ ´P P PT−p T−p T−p1 1 1ij 0 0 0since the ij-th element of the matrix is Ω x z z z z x3/2 3/2it pt ptpt pt jtt=p+1 t=p+1 t=p+1T∗T T∗ ∗

= o (1).p

Expanding term (c) gives" #P P ZT−p T−p11 0 12 01 1 Ω x x Ω x x D1t 1t0 uu 1t uu 2t −1t=p+1 t=p+1X VX = → B Ω BP P e eT−p T−p uu21 0 22 02 2T T Ω x x Ω x x∗ ∗ 2t 2tuu 1t uu 2tt=p+1 t=p+1RD1 0 −1Thus, it is established that E = X M X → B Ω B . By lemma 1, the equivalence of1 ∗ ∗ e e2 ∗ uuT∗
the OLS-SUR two-step estimator and DSUR obtains. k

³ ´ ³ ´ ³ ´−1P PT−p T−p1 10� � � �Proof of proposition 3. T β − β = X X X u . From∗ t t2 ttt=p+1 t=p+1TTsysdols ∗∗ ¡ ¢R R RP PD DT−p T−p1 0 0 10 0� � �proposition 1 we have X X → B B = diag B B , B B , and X u →t e t2 e e tt e e et=p+1 t=p+11 21 2 TT ∗∗ ³ ´R ¡R R ¢00 0 0 �B dB = B dB , B dB . Conditional on B , T β − β ∼ N(0,V )e e sysdolsu uu e e1 21 2 sysdolsR R R−1 −10 0 0where V = ( B B ) ( B Ω B ) ( B B ) . The asymptotic chi-square distribu-e e uu esysdols e e e

tion of the Wald statistic follows immediately from the mixed-normality of the estimator.

To prove proposition 4, we make use of the following two lemmas.

Lemma 2 µ ¶Z −1
−1 0�avar(β ) = E B Ω Be uu edsur µ ¶ µ ¶µ ¶Z Z Z−1 −1
0 0 0�avar(β ) = E B B B Ω B B B .e e uu ee e esysdols R−1 −1 0�Proof. Conditional on B , avar(β ) = V , where V = B Ω B . It follows thate 1 e uu e1dsur· ¸ µ ¶Z Z

−1 −1 −1 −1 −1 0 −1 −1Var V B Ω dB |B = V B Ω Ω Ω B V = Ve e e uuuuu uu uu e1 1 1 1· ¸Z
−1 −1E V B Ω dB |B = 0e euuu
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Using the decomposition of the variance for any two random variables Y and X ,

Var(Y ) = E [Var(Y |X)] + Var [E(Y |X)] , (A.5)³ ³ ´´R ¡R ¢−1−1 −1 −1 0�it follows that unconditionally, avar(β ) = E Var V B Ω dB = E B Ω B .e euuu uu e1dsur³ ´R R R−1 −10 0 0�Similarly, we have avar(β ) = E ( B B ) ( B Ω B ) ( B B ) . ke e uu ee e esysdols

D D
Lemma 3 Consider the random matrices A and B . If A ≥ B , A → A and B → B,T T T T T T

then A ≥ B, almost surely.

¡ ¢0 0Proof. Given λ (A − B )λ ≥ 0. Assume the converse: P λ (A−B)λ < 0 > 0. ThenT T ¡ ¢0there exists an ² > 0 such that P λ (A−B)λ < −² > 0. There are a countable number
of continuity points within the interval [−², 0]. Let −δ be one such continuity point where,¡ ¢ ¡ ¢0 0−² < −δ < 0. Then lim P λ (A −B )λ < −δ = P λ (A−B)λ < −δ > 0, which is aT T T

contradiction. k

Proof of proposition 4. Let

x = diag (x , x ) : (2k × 2), X = diag (x , . . . ,x ) : (2T k × 2T )t T p+1 T−p ∗ ∗1t 2t Ã !Ã ! Ã !−10 −1 0 0 0X Ω X X X X ΩX X XT T T T∗ ∗ ∗ ∗T T T T∗ ∗ ∗ ∗V = V =1T 2T∗ ∗2 2 2 2T T T T∗ ∗ ∗ ∗
Then Ã !Ã ! Ã !−10 −1 0 0 0X Ω X X X X ΩX X XT T T T∗ ∗ ∗ ∗T T T T∗ ∗ ∗ ∗V −V = −1T 2T∗ ∗ 2 2 2 2T T T T∗ ∗ ∗ ∗Ã !" Ã !Ã !Ã !#Ã !0 −1/2 0 1/2 1/2 0 1/21/2 −1/2X Ω X Ω Ω X X ΩΩ X Ω XTT T∗T T T∗ ∗∗ ∗ ∗= I−

2T T T T T∗ ∗ ∗ ∗∗h i¡ ¢−10 0 0= D I−M M M M DT T TT ∗ T ∗ T ∗∗ ∗ ∗

−1/2 1/2where D = (1/T )Ω X : (2T × 2T ) and M = (1/T )Ω X . This is a system ofT ∗ T ∗ ∗ T ∗ T∗ ∗ ∗ ∗
2T nonnegative quadratic forms in a symmetric idempotent matrix. For given X and T ,∗ T ∗∗−1 −1we have V ≥ V which implies that V ≤ V .1T 2T∗ ∗ 1T 2T∗ ∗

−1 −1 � �By lemma 3, we have V ≤ V , and lemma 2 gives avar(β ) ≤ avar(β ). k1 2 dsur sysdols
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