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Abstract

Oscillations in cytoplasmic calcium concentration are a crucial control mechanism in

almost every cell type. Two important classes of oscillation are of particular interest:

solitary and periodic waves. Both types of waves are commonly observed in physical ex-

periments and found in mathematical models of calcium dynamics and other excitable

systems. In this thesis, we try to understand these two classes of wave solutions.

We first investigate wave solutions of the canonical excitable model, the FitzHugh-

Nagumo (FHN) equations. We analyze the FHN equations using geometric singular

perturbation theory and numerical integration, and find some new codimension-two

organizing centres of the overall dynamics. Many analytical results about the FHN

model in its classical form have already been established. We devise a transformation

to change the form of the FHN equations we study into the classical form to make use

of the results. This enables us to show how basic features of the bifurcation structure

of the FHN equations arise from the singular limit.

We then study waves of a representative calcium model. We analyze the dynamics of

the calcium model in the singular limit, and show how homoclinic and Hopf bifurcations

of the full system arise as perturbations of singular homoclinic and Hopf bifurcations.

We compare the wave solutions in the FHN model and the calcium model, and show

that the dynamics of the two models differ in some respects (most importantly, in the

way in which diffusion enters the equations). We conclude that the FHN model should

not uniformly be used as a prototypical model for calcium dynamics.

Motivated by phenomena seen in the FHN and calcium models, we then investigate

reduction techniques for excitable systems, including the quasi-steady state approxi-

mation and geometric singular perturbation theory, and show that criticality of Hopf

bifurcations may be changed when applying these reduction methods to slow-fast bio-

physical systems. This suggests that great care should be taken when using reduction

techniques such as these, to ensure that spurious conclusions about the dynamics of a

model are not drawn from the dynamics of a reduced version of the model.

Finally, we describe the class of numerical algorithms used to compute features of

the detailed bifurcation sets for the FHN and calcium models, and show how these were

used to locate a non-structurally stable heteroclinic connection between periodic orbits

in a calcium model; this is the first time such a global bifurcation has been computed.
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Chapter 1

Introduction

The modulation of the concentration of free intracellular calcium in the cytoplasm

of a cell is a crucial control mechanism in many physiological processes, including

smooth muscle contraction (Stephens, 2001; Wang et al., 2008, 2010), fluid secretion

(Evans et al., 2000; Gin et al., 2007, 2009; Palk et al., 2010), cardiac electrophysiol-

ogy (Franzini-Armstrong et al., 1999; Higgins et al., 2007) and neuron communication

(Spergel et al., 1999; Constantin and Charles, 1999; Lee et al., 2010). Since the vari-

ation of calcium concentration plays such an important role in cell physiology, many

experiments have been conducted to measure how intracellular calcium varies in dif-

ferent cell types (Bai and Sanderson, 2006; Perez and Sanderson, 2005b; Sneyd et al.,

2004, 2006). In many of these experiments, cytoplasmic calcium concentration is stim-

ulated to oscillate by the application of external agents like agonists and hormones.

Fig. 1.1 displays a few typical examples of cytoplasmic calcium oscillation for a variety

of cell types. The calcium oscillation acts as a messenger to transmit signals in the

cell, with the signal being thought to be encoded in the frequency of the oscillation

in many cases (Berridge and Galione, 1998; Perez and Sanderson, 2005a). Such cells

interpret these frequency-encoded signals and then change their functioning according

to the changes of the frequency. Hence, it is very helpful to understand in detail how

and why these intracellular calcium oscillations occur.

Even though the experimental technology has advanced dramatically, it is still quite

difficult and expensive to conduct a large number of experiments to measure the cyto-

plasmic calcium concentration inside a cell, and direct measurement of some chemicals

in the cytoplasm for some cell types is still impossible. These experimental difficulties

have motivated the development of other methods for determining the mechanisms

underlying the intracellular calcium oscillations. In particular, mathematical model-

ing and model analysis have proven to be very helpful in understanding the dynamics

inside the cell environment and in giving insight into the underlying mechanisms of in-

tracellular calcium oscillations (Atri et al., 1993; Sneyd, 2005; Pate, 2005; Politi et al.,
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Figure 1.1: Examples of some typical oscillatory patterns of intracellular calcium in the
cytoplasm for various cell types. a) Hepatocyte stimulated with three different concentrations
of vasopressin (VP). b) Rat parotid gland stimulated with carbachol (CCh). c) Gonadotropes
stimulated with gonadotrophin-releasing hormone (GnRH). d) Hamster egg after fertilization.
Adapted from Berridge and Galione (1998).

2010).

From the perspective of constructing mathematical models of calcium dynamics,

despite the fact that the mechanisms underlying calcium oscillations in one cell type

may differ from the mechanisms in another cell type, different cell types may still have

a similar fundamental structure and a lot of common components (Berne et al., 2004;

Keener and Sneyd, 2008). These common characteristics among different cell types

indicate that mathematical models describing the calcium dynamics of various cell

types could share some similar structure. For example, one common feature among

many cell types is that different cellular processes occur on different time scales (Perez

and Sanderson, 2005b; Berridge and Galione, 1998), and we may need to use models
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with variables evolving on different time scales to describe the dynamics of such cell

types accurately.

Two types of waves, solitary waves and periodic waves, are commonly observed in

physical experiments as well as in mathematical models of calcium dynamics and other

biophysical systems (Perez and Sanderson, 2005b; Wang et al., 2010; Keener and Sneyd,

2008). In this thesis we try to give insight into the dynamics of these two types of wave

solutions in mathematical models. We are mainly interested in understanding waves

in intracellular calcium dynamics. Our approach is to look at the wave solutions of

canonical biophysical models and see how these well-understood solutions are relevant

to the wave solutions of calcium dynamics. The focus is on conducting numerical and

analytical studies for a number of excitable systems, including the Fitzhugh-Nagumo

(FHN) equations and several representative models of intracellular calcium dynamics.

We investigate the similarities and differences of wave solutions among these excitable

systems. Note that the word “excitable” in excitable system has a different meaning

to that used in cell electrophysiology as discussed below, i.e., an “excitable system” is

not necessarily related to an “excitable cell”.

1.1 Basic cell physiology

In this section we introduce some basic physiological structures common to most cell

types, and describe the dynamics of these common components with mathematical

equations. Other relevant mathematical modeling assumptions are also discussed.

1.1.1 Fluxes

A cell can be considered to consist of two main components, namely the cell cytoplasm

and an internal compartment such as the endoplasmic reticulum (ER). For different cell

types, the internal compartment can be of different types. For example, the main inter-

nal compartment in smooth muscle cells is the sarcoplasmic reticulum (SR) (Stephens,

2001). However, the calcium uptake and release mechanisms of these different types of

internal compartments are more or less the same (Lodish et al., 2003; Toyoshima et al.,

2000). Therefore, in this thesis we assume that the internal compartment inside the

cell is the ER. The ER is separated from the rest of the cell by the ER membrane. The

intracellular space is surrounded by a plasma membrane. Both of these membranes are

impermeable to calcium.

At steady state, the concentration of calcium in the cell cytoplasm is quite low

while in the extracellular space and in the ER the concentration of calcium is much

higher. These concentration differences are maintained partly by calcium ATPase

pumps, which use the energy stored in adenosine triphosphate (ATP) to pump calcium
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Figure 1.2: Schematic diagram showing the major fluxes involved in the variation of intra-
cellular calcium.

in the cell cytoplasm against the steep gradient into the ER or out of the cell.

Calcium goes into the cell cytoplasm in two main ways: influx from the extracellular

medium through calcium channels on the plasma membrane and release from the ER

through calcium channels on the ER membrane.

The calcium channels on the plasma membrane can be of several different types. For

instance, voltage-dependent channels open in response to depolarization of the plasma

membrane potential, and receptor-operated channels open in response to the binding of

external chemical agents to the plasma membrane. Voltage-dependent calcium channels

are of great importance for certain cell types, e.g., cardiac cells and neurons (Sneyd

et al., 2004; Lee et al., 2010). These kinds of cells are usually referred to as electrically

excitable cells, while other cell types are referred to as non-excitable cells since they are

not sensitive to the variation of potential of the plasma membrane. For the intracellular

calcium models considered in this thesis, we focus on the calcium dynamics of non-

excitable cells, and omit considerations of the more complicated voltage dependent

plasma membrane calcium channels, concentrating instead on the complexity of calcium

exchange between the cell cytoplasm and the internal compartments. See Keener and

Sneyd (2008), Falcke (2004), Lee et al. (2010) for more detailed information about the

properties of voltage-dependent calcium channels on the plasma membrane.

There are calcium channels dispersed across the ER membrane as well as the plasma

membrane, and calcium can flow down the gradient from the internal compartment to

the cell cytoplasm through the channels when they are open. The channels on the ER

membrane are of two main types, both receptor-operated, namely the inositol (1, 4, 5)-

trisphosphate (IP3) receptor and the ryanodine receptor.
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IP3 receptors are mostly found in non-muscle cells, e.g., pancreatic acinar cells

(LeBeau et al., 1999; Giovannucci et al., 2000) and parotid acinar cells (Gin et al.,

2007) and they are sensitive to the chemical IP3. The binding of an extracellular ag-

onist such as a hormone to a receptor in the plasma membrane can lead to a chain

reaction which produces the chemical IP3, which then diffuses through the cell cyto-

plasm and binds to the IP3 receptors on the ER membrane. The IP3 receptor opens

in response to the binding of IP3 and releases calcium from the internal compartment

to the cell cytoplasm. The open probabilities of IP3 receptors are also modulated by

the cytoplasmic calcium concentration. At relatively low concentrations, intracellular

calcium increases the open probabilities of the the IP3 receptors to allow more calcium

coming from the ER; this process is usually referred to as calcium-induced calcium

release, or CICR. At relatively high concentrations, intracellular calcium decreases the

open probabilities of the IP3 receptors to prevent calcium coming from the ER. The

calcium ATPase pumps then pump the calcium out of the cell cytoplasm to lower the

intracellular calcium concentration. When the intracellular calcium concentration is

low enough, then the IP3 receptors are stimulated to open again and calcium is again

released from the internal compartment to increase the intracellular calcium concentra-

tion. This mechanism allows the intracellular calcium concentration to oscillate inside

the cell cytoplasm.

The other type of receptor on the ER membrane, i.e., the ryanodine receptor, is

mostly found in muscle cells, e.g., smooth muscle cells in the lung (Bai et al., 2009;

Stephens, 2001; Wang et al., 2008). Ryanodine receptors have a similar calcium-induced

calcium release mechanism as the IP3 receptors, with intracellular calcium both acti-

vating and inhibiting the calcium release through the ryanodine receptors from the

internal compartment at different rates. Since the IP3 receptor and ryanodine recep-

tors share a similar calcium releasing mechanism, we will not distinguish between these

two types of receptors in this thesis.

The major fluxes involved in the variation of intracellular calcium are shown in

the schematic diagram shown in Fig. 1.2. The fluxes Jserca and Jpm represent the

calcium pumped out of the cell cytoplasm by the ATPase pumps into the internal

compartment and the extracellular space, respectively. The fluxes Jrelease and Jinflux

represent the calcium flowing down the concentration gradient into the cell cytoplasm

through open channels on the ER and plasma membranes, respectively.

The calcium models studied in this thesis focus on the four major fluxes going into

and out of the cell cytoplasm. There are other fluxes which are important for the control

of intracellular calcium for some cell types. For example, calcium exchange between

the cell cytoplasm and mitochondria is thought to be another important mechanism for

controlling intracellular calcium for neurons (Colegrove et al., 2000; Grubelnik et al.,

2001); and the use of sodium-calcium (Na+ −Ca2+) exchangers to move calcium from
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the cell cytoplasm to the extracellular medium plays a significant role in the modulation

of cytoplasmic calcium in cardiac cells (Bers, 2002; Winslow et al., 2005). More detailed

descriptions of various fluxes related to cytoplasmic calcium can be included for more

realistic models. See Keener and Sneyd (2008) for an extensive description of a variety

of intracellular calcium fluxes.

1.1.2 ODEs model assumptions and model structure

In some cell types under some circumstances, intracellular oscillations occur practically

uniformly across the cell. In such cases, measurement of the concentration of calcium

at a point of the cytoplasm gives more or less the same time series, regardless of

which point is used. For these cell types, we can assume that the variation of calcium

concentration is homogeneous throughout the cell cytoplasm. Specifically, we denote

by c the concentration of free intracellular calcium and note that c = c(t) has no spatial

dependence, since intracellular variation occurs uniformly. Similarly, we assume that

there is homogeneous distribution of calcium inside the ER, and let ce = ce(t) denote

the concentration of calcium inside the ER.

The assumption of homogeneous variation throughout the cell is quite common in

modeling the dynamics of a range of cell types; models that use this assumption are

usually referred to as well-mixed models or point cell models (Falcke, 2004; Keener and

Sneyd, 2008). Since the intracellular calcium variation in such mathematical models

does not have any spatial dependence, we can use a system of ordinary differential equa-

tions (ODEs) to describe the change of calcium concentration inside the cell cytoplasm

and the ER.

Ordinary differential equations for the variables c and ce are derived from the con-

servation of total calcium inside the whole cell. Usually it is assumed that the volumes

of the cell cytoplasm and the internal compartment are constant; then the amount

of calcium is directly proportional to the calcium concentration. Therefore, the con-

servation of total calcium of the entire cell can be translated into the conservation of

total calcium concentration of the cell, which means the rate of change of total calcium

concentration inside the cell is equal to the net flux of calcium across the cell plasma

membrane.

In order to give an accurate description of the calcium dynamics inside the cell, we

need to take into account the fact that the cytoplasmic volume is different from the ER

volume. In particular, the volume of the ER is less than that of the cytoplasm which

means the calcium exchange between the cytoplasm and the ER leads to a greater

concentration change in the ER than it does in the cytoplasm. A parameter γ is used

to denote the ratio of the cytoplasmic volume to the volume of the ER. Furthermore,

for non-excitable cell types, the calcium exchange across the plasma membrane occurs
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much slower than the calcium exchange across the ER membrane. Another parameter

ε is used to denote the separation of time scales of these two exchange processes.

Based on all the assumptions given above, we can write down a pair of ordinary

differential equations to model the change of calcium concentration of the cell cytoplasm

and the ER:

dc

dt
= Jrelease − Jserca + ε(Jinflux − Jpm),

dce
dt

= γ(Jserca − Jrelease). (1.1)

We note that the assumption that ε is small works for non-excitable cells but not

for excitable cells. In electrically excitable cells like cardiac cells, the calcium exchange

through the channels on the plasma membrane plays a more important role than the

calcium exchange inside the cell (Franzini-Armstrong et al., 1999).

An important feature of the calcium dynamics of non-excitable cells, namely cal-

cium entering and leaving the cell across the cell membrane relatively slowly, motivates

us to treat the total amount of calcium in the cell as a convenient slow variable. This

is a common practice for analyzing the calcium dynamics of non-excitable cell types

(Sneyd et al., 2004). Part of the reason is that the separation of time scales is known

to introduce complex dynamics, including canards solutions (Benoit et al., 1986; Sz-

molyan and Wechselberger, 2001; Harvey et al., 2010, 2011), and explicit identification

of the slow variable(s) makes it much easier to analyze the complicated dynamics. We

therefore follow a standard procedure to introduce a new variable ct = ce
γ
+ c and

rewrite equations (1.1) with ct replacing ce:

dc

dt
= Jrelease − Jserca + ε(Jinflux − Jpm),

dct
dt

= ε(Jinflux − Jpm), (1.2)

where the new variable ct represents the total concentration of calcium across the entire

cell.

1.1.3 PDEs model assumptions and model structure

Equations (1.1) and (1.2) are formulated under the assumption that the cell is well-

mixed, which means that variation of calcium concentration occurs uniformly through-

out the cell. In some cell types, however, intracellular calcium oscillations take the

form of a wave moving across the cell; these fluctuations are referred to as intracellular

waves. Inclusion of calcium diffusion terms is necessary to model and analyze such

spatially distributed calcium fluctuations.

A cell is a three-dimensional object physically. A more precise representation of a
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physical cell would be obtained by treating the cell as a three-dimensional structure

comprised of two interconnected domains, namely the cell cytoplasm and the ER.

Because of the intricate geometry of the ER inside the inhomogeneous cytoplasmic

space, these types of precise models are usually far too complex to make progress and

give useful information.

Figure 1.3: The experimental results of line scans from the longitudinal axes of single mouse
airway smooth muscle cells with stimulation with various different chemicals. One can observe
that the variation of calcium concentration does not occur uniformly along the longitudinal
axis of the cell, and the variation of calcium concentration displays little curvature. The
figure is adapted from Perez and Sanderson (2005a).

In some cell types, intracellular calcium waves measured in experiments exhibit very

little curvature, and thus can effectively be regarded as one-dimensional spatial waves.

One example of these experimentally-observed intracellular calcium waves is shown in

Fig. 1.3. Observations of these almost one-dimensional spatial waves in experiments

motivate us to use homogenization techniques (Goel et al., 2006; Keener and Sneyd,

2008) to derive a simplified model in which a cell is considered to be an essentially
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one-dimensional object. Specifically, we assume that the geometry of the cell is a long

thin cylinder with boundary fluxes (Jinflux and Jpm) on the cylindrical wall. It is also

assumed that the intracellular space is isotropic and homogeneous, and that c and ce

coexist at every point in the intracellular space. A third assumption is that diffusion

of calcium is rapid over short distances with a constant diffusion coefficient D.

Since the cross-section transverse to the longitudinal axis of the cell is small and the

diffusion of calcium is fast, we expect that the calcium concentration should be nearly

the same at each point on a cross-section, varying only slightly from its average value.

Local variations are smoothed out quickly and it is sufficient to know the average

calcium concentration on each cross-section. Therefore, the equations of mean field

(i.e., average calcium concentration) can be derived to describe the evolution of the

average calcium concentration value along the longitudinal axis of the cell.

The calcium concentration is also affected by the fluxes across the cylindrical wall.

As shown in Goel et al. (2006) and Keener and Sneyd (2008), homogenization tech-

niques can be used to take account of the boundary conditions while reducing the

cylinder to a one-dimensional domain (a line segment) with no flux boundary condi-

tions at the ends. We then end up with the following equations to model the variation

mechanisms of intracellular calcium concentration:

∂c

∂t
= D

∂2c

∂x2
+ Jrelease − Jserca + ε(Jinflux − Jpm),

∂ct
∂t

= ε(Jinflux − Jpm) =
∂c

∂t
+

1

γ

∂ce
∂t

−D
∂2c

∂x2
, (1.3)

where x represents the one-dimensional spatial variable along the longitudinal axis

of the cell and ct represents the total calcium which changes slowly with respect to

time. These two equations are typically supplemented with further ODEs modelling

other variation mechanisms inside a cell, e.g., IP3 receptor dynamics; see Keener and

Sneyd (2008) and Champneys et al. (2007) for more details. Note that the relation
∂ct
∂t

= ∂c
∂t

+ 1
γ
∂ce
∂t

−D ∂2c
∂x2 indicates that the diffusion term D ∂2c

∂x2 affects the evolution of

the slow variable ct as well as the fast variable c. In summary, the dynamics of calcium

variation with spatial diffusion inside a cell can be modelled by a reaction-diffusion

system of partial differential equations.

Although it seems that assumptions imposed to simplify the complex calcium dy-

namics inside a cell are rather strong, the wave solutions of the resulting models can

match quite well with experimental data. Fig. 1.4 shows a comparison between a nu-

merically computed calcium wave and a calcium wave observed experimentally. The

similarity between the panels demonstrates that the simplified model is useful.
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Figure 1.4: Experimental results (panel (a)) and the numerical simulation results (panel
(b)), adapted from Wang et al. (2010). The comparison between the results shows that the
simplified model is effective at producing a calcium wave solution similar to the experimental
data.

1.1.4 Different types of calcium waves

As mentioned before, solitary waves and periodic waves of calcium concentration are

commonly observed in experiments. The mechanisms underlying these two classes of

calcium waves are discussed further in this section.

It is widely believed that when the underlying reaction kinetics of calcium is station-

ary, intracellular calcium waves are driven by the diffusion of calcium between calcium

release sites (Rottingen and Iversen, 2000; Rooney and Thomas, 1993). According to

this hypothesis, the calcium released from one group of release sites diffuses to nearby

release sites and stimulates further calcium release from them. Repetition of such a



1.2 Thesis outline 11

CICR process leads to aggregation of calcium at this neighborhood of the cell. The

aggregation of calcium diffuses through the cell giving rise to an isolated wave front of

high calcium concentration. The propagation of the front is mostly maintained by the

active release of calcium from the ER via the CICR mechanism. This kind of wave is

usually referred to as a solitary wave.

However, when the underlying calcium reaction kinetics are oscillatory, i.e., there is

a stable limit cycle of calcium release and recovery in the absence of diffusion, a different

mechanism is thought to underlie calcium wave propagation (Rottingen and Iversen,

2000; Rooney and Thomas, 1993). Specifically, all the points of the cell are oscillating

in the same periodic manner and the difference among the points is that they are

oscillating with a different phase. Each point can be regarded as a local oscillator, and

calcium diffusion serves to synchronize these oscillators along the cell. Intracellular

calcium waves propagating by this kinematic mechanism are usually referred to as

periodic waves.

1.2 Thesis outline

In this thesis we try to give insight into solitary and periodic wave solutions in models

of intracellular calcium dynamics, specifically in non-excitable cells. To this end, we

perform detailed numerical experiments on various calcium models and the FHN sys-

tem, and examine singular limits of the models to investigate the origin of the common

features of these models (specifically, the so-called CU bifurcation structure first dis-

covered in Champneys et al. (2007)). This work on specific models then inspires more

general theoretical work on the analysis of reduction methods for biophysical models

and some detailed numerical work on implementing a new algorithm to find global

bifurcations involving saddle periodic orbits.

In chapter 2, we examine the CU structure of wave solutions in the FHN equations,

and present some new numerical and analytical results about wave solutions to this

canonical excitable system. We discuss how the solitary wave solution and the periodic

wave solution can be understood by exploiting the slow-fast nature of the FHN system.

In chapter 3, we study a simplified model that captures the essential features of

a wide range of realistic calcium dynamical models. Similar to the analysis given in

chapter 2, we perform a bifurcation analysis of this representative calcium model.

In chapter 4, we discuss the similarities and differences between the wave solutions

of the FHN model and the representative calcium model discussed in chapter 3. Parts of

the work presented in chapters 3 and 4 have been done in collaboration with J. C. Tsai,

V. Kirk and J. Sneyd and a manuscript has been submitted for publication (Tsai et al.,

2012).
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In chapter 5, we investigate techniques commonly used to reduce the dimension

of mathematical models of biophysical systems and show that some aspects of the

dynamics may be changed when these reductions techniques are applied. Parts of the

work presented in this chapter have been done in collaboration with V. Kirk, J. Sneyd

and M. Wechselberger, and have been published in Zhang et al. (2011).

In chapter 6, we outline a numerical scheme which was used to obtain detailed

numerical information about one of our calcium models. The numerical scheme was

developed by Krauskopf and Riess (2008), but the first ever implementation of the

method to find a specific global bifurcation (i.e., a so-called codimension-one PtoP

heteroclinic cycle) was done for a calcium model as part of this thesis. The work

presented in this chapter has been done in collaboration with B. Krauskopf and V. Kirk,

and a manuscript has been accepted for publication (Zhang et al., 2012).

In chapter 7, we draw some conclusions and discuss some possibilities for future

work.

For convenience, equations and parameters of complicated systems are presented in

Appendix A, and a list of glossary is also included at the end of the thesis.



Chapter 2

Wave solutions in the FHN model

In this chapter, wave solutions of a canonical excitable system, the FitzHugh-Nagumo

(FHN) equations, are studied. The FHN equations are a system of reaction-diffusion

equations used to model the variation of membrane potential of a cell. The chapter

is structured as follows. In sections 2.1 and 2.2, we briefly discuss the history and

the formulation of the FHN equations. Some relevant known numerical results are

introduced in section 2.3, while some new numerical results are displayed in section

2.4. The numerical results motivate us to analyze the FHN equations in the singular

limit. Both existing results and new results from the analysis of the singular limit are

discussed in sections 2.5 and 2.6. We compare the numerical results with analytical

results for the FHN equations in section 2.7.

2.1 History of FHN equations

The FHN model is a simplification of a more realistic biophysical model, the Hodgkin-

Huxley (HH) equations. Here we give a brief summary of the physiological background

of the HH equations; see Hodgkin and Huxley (1952a,b,c,d) and Keener and Sneyd

(2008) for more detailed information about derivation of the HH equations.

For some cell types, like cardiac cells and most neuron cells, if sufficiently strong

stimulating currents are applied to the cell for a short period of time, the membrane

potential of the cell goes through a large excursion before slowly recovering back to

its steady state value over a relatively long period of time. One of the advantages

of this electrical wave signaling process with a pulsing membrane potential is that

the cell responds to a stimulus either with a significantly large increase of membrane

potential or not at all. Therefore, a stimulus of sufficiently large amplitude is reliably

distinguished from background noise.

The generation and propagation of electrical waves have been extensively studied

by physiologists, with one of the landmark studies being the work of Alan Hodgkin
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and Andrew Huxley (Hodgkin and Huxley, 1952a,b,c,d), who developed the first quan-

titative model (HH equations) of electrical waves moving along a squid giant axon.

Although the HH equations were originally used to explain the ionic mechanisms un-

derlying the initiation and propagation of action potentials in the giant axon of a squid

nerve cell, the ideas have been extended and applied to the dynamics of a wide range

of other cell types.

The squid nerve cell has two important levels of membrane potential: the resting

potential, which is the value the membrane potential maintains as long as nothing

perturbs the cell, and a higher value called the threshold potential. For a typical squid

neuron, the resting potential is around -70 millivolts and the threshold potential is

around -55 millivolts. Synaptic inputs to a neuron cause the membrane to depolarize

or hyperpolarize, i.e., they cause the membrane potential of the neuron to rise or fall.

Action potentials are triggered when a sufficient amount of depolarization accumulates

to bring the membrane potential above the threshold value. When an action potential

is triggered, the membrane potential abruptly shoots upward to an elevated level,

often reaching as high as 100 millivolts. The membrane potential stays at a plateau

of the elevated level for a while then shoots downward rapidly, often ending below

the resting potential level. The membrane potential remains for a long period of time

below the resting level until returning to the resting potential; this process is usually

referred to as after-hyperpolarization. Therefore, the profile of the action potential

can be divided into four parts: (A) a stimulus causes the membrane potential to rise

above the threshold potential to induce a fast increase of the voltage; (B) the potential

decreases slowly on a plateau of high voltage; (C) the membrane potential shoots back

below the resting level; (D) slow recovery of the membrane potential to the resting

potential. A typical time series of an action potential is depicted in Fig. 2.1.
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Figure 2.1: A typical time series of an action potential in the HH equations.

The HH equations model the underlying kinetic mechanism of the action poten-
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tial based on the physiology of the squid nerve axon, and include many nonlinear

terms to describe various ionic currents in detail. FitzHugh and Nagumo (Fitzhugh,

1961; Nagumo et al., 1962) independently showed how the essential ingredients of the

generation of action potentials could be extracted into a simpler model on which math-

ematical analysis techniques could be applied more easily. This simplified FHN model

turned out to be of great theoretical interest; it contributed enormously to the study

and understanding of excitable systems.

2.2 Formulations of the FHN equations

The FHN equations is a dynamical system modelling the generation of the action

potential. The two dependent variables evolve on different time scales to capture the

excitable feature of the HH equations. The fast variable, u, represents the membrane

potential in the HH equations and has a cubic nonlinear term. The other variable, w,

is usually referred to as the recovery variable, and provides a slower negative feedback

to the membrane potential. The conduction process of the variation of membrane

potential along the neuron is modelled by a spatial diffusion term.

The FHN equations can be written in the following form

∂u

∂t
= Dc

∂2u

∂x2
+ f(u)− w + p,

∂w

∂t
= ε(u− γw), (2.1)

where x is a one-dimensional spatial variable, t represents time, and the diffusion

coefficient is denoted by Dc. The nonlinear reaction function f is typically specified as

a cubic polynomial relation as follows:

f(u) = u(u− 1)(a− u),

where α ∈ (0, 1). There are other choices for the function f , such as a piecewise linear

relation, which is considered in the McKean model (Mckean, 1970; Keener and Sneyd,

2008) with the form:

f(u) =


−u for u < α

2
,

u− a for α
2
< u < α+1

2
,

1− u for u > α+1
2
.

Different forms of the function f are usually chosen to have a similar shape to the

cubic polynomial given above; this choice ensures that excitability will be present in

the model. The parameter ε represents the separation of time scales between the fast

change of the membrane potential compared with the slow variation of the recovery
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variable, and γ is also a scale parameter.

The level of external applied current is represented by p. In the original formulation

of the FHN system (Fitzhugh, 1961; Nagumo et al., 1962), the parameter p mimicking

the current applied to the nerve axon in the HH equations was included in the equa-

tions. However, it is common to study the FHN system under the assumption that the

applied current is zero, and many analytical results have been established in this case

(Jones, 1984; Jones et al., 1991; Krupa et al., 1997). In section 2.5.2, we show that

there is a coordinate and parameter transformation that converts equations (2.1) into

an equivalent form with no applied current, which means that results already estab-

lished for the FHN equations with no applied current can be reformulated for the FHN

equations (2.1) with the applied current term. More details about the derivation of

the FHN model can be found in Fitzhugh (1961) and Nagumo et al. (1962). Equations

(2.1) were studied in Champneys et al. (2007) with parameter values given as follows:

Dc = 5.0, α = 0.1, γ = 1.0, ε = 0.01, (2.2)

and we use the same parameter values to begin our analysis of the model equations

(2.1).

Stable solitary and periodic wave solutions can be observed in numerical solutions

to the FHN equations (2.1). Panel (a) of Fig. 2.2 shows a solitary wave solution found

for p = 0.05. To obtain this picture, equations (2.1) were integrated on a spatial

domain of 1000 units of length with no flux boundary conditions at both ends of the

domain. The numerical integration was implemented with a Crank-Nicolson scheme

(Crank and Nicolson, 1947). Different grid sizes were used (ranging from 2000 to 5000

grid points on the domain) but the integration results were very similar for different

choices of the grid. The initial condition of u was specified as follows: the rightmost

20 unit length of the spatial domain was set at u∗ + 1, with u = u∗ elsewhere, where

u∗ is the equilibrium value of u of equations (2.1), obtained by setting all derivatives

in equations (2.1) to zero and solving for u and w. The variable w was set to its

equilibrium value w∗ initially across the entire domain. The wave shown in panel (a)

of Fig. 2.2 travels to the left in the domain with a wave speed approximately 1.32 units

of length per time unit.

By contrast when p = 0.2, numerical integration yields a periodic wave solution.

The profile of this periodic wave solution is depicted in panel (b) of Fig. 2.2. As time

evolves, this solution travels to the left at a wave speed of approximately 1.28 units of

length per time unit.

These two types of wave solutions are of particular interest because experiments

in excitable media suggest these patterns are commonly observed (Keener and Sneyd,

2008) and can be obtained by varying the external current applied to the media, just as
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Figure 2.2: (a) A stable solitary wave solution to equations (2.1) at p = 0.05 obtained by
direct numerical integration. The solution is plotted in blue and red at times T=100 and
T=300, respectively. (b) A periodic wave solution to equations (2.1) at p = 0.2 obtained
by direct numerical integration. The solution is plotted in blue and red at times T=700
and T=900, respectively. The solitary and periodic travelling wave solutions correspond to
homoclinic and periodic solutions, respectively, in the travelling wave coordinates.

observed from numerical integration of the FHN model. Although numerical integra-

tions can give some understanding of the behaviour of solutions to the FHN equations

(2.1), a more thorough understanding of wave solutions requires a detailed study of

the bifurcations occurring in this system.

Since we are mainly interested in wave solutions of the system, it is convenient to

analyze the system in travelling wave coordinates. Specifically, we change to travelling

wave coordinates by introducing a new independent variable ξ = x + st, where s

represents the wave speed. Then all the partial derivatives become ordinary derivatives

with respect to the new variable ξ:

∂u

∂t
= s

du

dξ
,

∂2u

∂x2
=

d2u

dξ2
,

∂w

∂t
= s

dw

dξ
,

and equations (2.1) become:

s
du

dξ
= Dc

d2u

dξ2
+ f(u)− w + p,

s
dw

dξ
= ε(u− γw).

This can be rewritten as a system of three ordinary differential equations by introducing

a new variable v:

du

dξ
= v,

dv

dξ
=

1

Dc

(sv − u(u− 1)(α− u) + w − p), (2.3)

dw

dξ
=

ε

s
(u− γw).
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It is straightforward to see that solitary and periodic travelling wave solutions of

the PDEs system (2.1) correspond to homoclinic and periodic solutions, respectively, in

the ODEs system (2.3). However, one thing to keep in mind is that such an approach

does not give any information about the stability of the wave solutions of the original

reaction-diffusion partial differential equations. The stability of the wave solutions can

be determined by analyzing the partial differential equations (Evans and Feroe, 1977;

Jones, 1984; Romeo and Jones, 2003); we will not discuss the stability of the wave

solutions in detail in this thesis.

2.3 Preliminary analysis of the FHN model in trav-

elling wave coordinates

A partial bifurcation analysis of equations (2.3) with parameter values specified in (2.2)

is given in Champneys et al. (2007). This section summarizes some relevant results

from Champneys et al. (2007).

We would like to find the locations of homoclinic and periodic solutions in the FHN

system, i.e., we try to find the homoclinic and Hopf bifurcation curves in the (p, s)

parameter plane. This can be done by using the numerical bifurcation detection and

continuation software AUTO (Doedel et al., 2007).

We can trace out the Hopf and homoclinic bifurcation curves in a standard way,

as outlined in the following steps. First we specify an equilibrium point of the system

either analytically or numerically for certain parameter values, then follow the equilib-

rium as one system parameter is varied, until a Hopf bifurcation is detected. AUTO

can both continue this Hopf bifurcation by varying two system parameters to trace

out the Hopf bifurcation curve in the parameter plane and continue a periodic solu-

tion from the Hopf bifurcation in one parameter. The period of the periodic solution

grows exponentially as the periodic solution approaches a homoclinic bifurcation. Af-

ter detecting such a homoclinic bifurcation, we can make use of the HomCont routine

implemented in AUTO to continue the homoclinic solution in two parameters to trace

out the homoclinic bifurcation curve on the parameter plane.

Applying the procedure to the FHN equations (2.3), we can reproduce the partial

bifurcation set for equations (2.3) first published in Champneys et al. (2007); see panel

(a) of Fig. 2.3. The bifurcation set includes a U-shaped curve of Hopf bifurcations and

a C-shaped curve of homoclinic bifurcations in the (p, s) parameter plane.

Some useful information about equations (2.1) can be obtained from the bifurcation

set. For instance, homoclinic solutions exist in the interval of the applied current

p ∈ (−0.0034, 0.0703) and the onset of periodic solutions (i.e., Hopf bifurcations) occurs

in the interval p ∈ (0.0703, 0.5423). In terms of the original partial differential equations
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Figure 2.3: (a) Partial bifurcation set for equations (2.3) for the parameter values given
in (2.2), showing the U-shaped curve of Hopf bifurcations in red and C-shaped curve of
homoclinic bifurcations in blue. The dots mark the positions corresponding to the time
series shown in panels (b) and (c). (b) Time series for a homoclinic orbit near the top of
the C-shaped curve at (p, s) = (0.057, 1.37). (c) Time series for a nearby periodic orbit at
(p, s) = (0.069, 1.37). This figure is reproduced from Champneys et al. (2007).

(2.1), the numerical results show that solitary wave solutions exist in the interval

p ∈ (−0.0034, 0.0703).

The numerical results shown in Fig. 2.3 give rise to several questions. For example,

we would like to know why the homoclinic bifurcation and Hopf bifurcation curves

are C-shaped and U-shaped in the parameter plane, respectively, and how the C-

shaped homoclinic curve terminates near its end points. In order to give insight into

such questions, we need more detailed information about the bifurcation structure of

equations (2.3).

2.4 Detailed numerical bifurcation analysis of the

FHN system

In this section, we look at the bifurcation set for equations (2.3) in more detail. In

particular, we find some new codimension-two bifurcation points that are organizing

centres of the bifurcation set in the (p, s) parameter plane, with complicated bifurcation

structure occurring near these organizing centres.

A detailed bifurcation set for equations (2.3) was obtained with AUTO and is shown

in Fig. 2.4. The different features of this figure are described below.

According to the numerical computation, the Hopf bifurcation changes its criticality
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Figure 2.4: Partial bifurcation set for the FHN equations (2.3) for ε = 0.01. The C-shaped
curve in blue is the locus of homoclinic bifurcations. The right-most red curve is part of the
U-shaped Hopf bifurcation curve. On this curve, the large red dot marks a degenerate Hopf
bifurcation. The green curve emanating from the degenerate Hopf bifurcation point denotes
a branch of saddle-node bifurcations of periodic orbits and it connects to another degenerate
Hopf point not shown in this figure. The black curve denotes a locus of tangency of the
heteroclinic connection from a periodic orbit to the equilibrium. The magenta curve very
close to the blue homoclinic curve is the locus of codimension-one heteroclinic connections
from the equilibrium to the periodic orbit. The curve terminates on the U-shaped Hopf
curve, since the heteroclinic connection from the equilibrium to the periodic orbit is generic
(of codimension zero) inside the U-shaped Hopf curve. The two large blue dots mark the
intersection points between the black curve and the magenta curve; these points are called
EP1t points in Champneys et al. (2007).

as the parameter p varies, and thus we expect to find some codimension-two degener-

ate Hopf bifurcation (Bautin) points (Bautin, 1975, 1977) along the Hopf bifurcation

curve. These codimension-two points can be located in the (p, s) plane numerically

by using bifurcation analysis software packages, e.g., AUTO and MatCont (Govaerts

and Kuznetsov, 2008) implemented in Matlab. There is a branch of saddle-node bi-

furcations of periodic solutions originating from each such degenerate Hopf bifurcation

point. A degenerate Hopf bifurcation point and a branch of saddle-node bifurcations

of periodic solution are marked as a red dot and a green curve, respectively, in Fig. 2.4.

For a subcritical Hopf bifurcation point occurring in equations (2.3) for p < 0.1721,

there exists a small region to the left of the Hopf bifurcation curve such that within the

small region the equilibrium is surrounded by an unstable periodic orbit created in the

Hopf bifurcation. Therefore, within this region the stable manifold of the equilibrium is

a topological disk bounded by the periodic orbit. See Guckenheimer and Kuehn (2009)
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for more details of the proof of the existence of such small region. Since the boundary of

the stable manifold is the small amplitude periodic orbit, a large amplitude homoclinic

orbit cannot exist in such a region. Furthermore, the periodic orbits created in these

subcritical Hopf bifurcations occur on the left hand side of the Hopf curve which is

the same side as the C-shaped curve of homoclinic orbits. Based on the argument

above, one can conclude that the homoclinic bifurcation curve cannot reach the Hopf

bifurcation curve if the Hopf bifurcation is subcritical. This is in contrast to the case

where Hopf bifurcation is supercritical, when a homoclinic curve may reach the Hopf

bifurcation, as is observed in the bifurcation sets in various models of calcium dynamics

(Champneys et al., 2007).

For the parameter values given in (2.2), the homoclinic bifurcation curve occurs

within a range of wave speed values (0.83 < s < 1.37), and within the same range

of wave speed values the Hopf bifurcation is always subcritical. According to the

analysis above, the homoclinic curve cannot reach the Hopf bifurcation curve in this

case. As discussed in Champneys et al. (2007), before reaching the Hopf bifurcation

the homoclinic curve instead turns around at one end of the C-shaped curve, doubles

back on itself in the (p, s) parameter plane and connects to the other end of the C-

shaped curve to form a closed loop. The two branches of the homoclinic bifurcation

curve lie almost on top of each other in the (p, s) plane so we plot the numerically

computed L2-norm of the homoclinic orbits in panel (a) of Fig. 2.5 to distinguish these

two branches of homoclinic orbits. The branch with large (resp. small) L2-norm value

is denoted as the upper (resp. lower) branch of homoclinic orbits. This closed loop is

referred to as a “homoclinic banana” in Champneys et al. (2007). Panels (b) and (c) of

Fig. 2.5 show the homoclinic orbits of the upper and lower branches near the parameter

values (p, s) = (0.04575, 1.30). Homoclinic orbits with one and two spikes, like those

in panels (b) and (c), are usually referred to as a single and double pulse solutions,

respectively. The existence and stability of multiple pulse homoclinic solutions near

the single pulse homoclinic solutions in the FHN system has been studied by a number

of people (Evans et al., 1982; Deng, 1991; Bell and Deng, 2002; Guckenheimer and

Kuehn, 2009).

Champneys and collaborators (Champneys et al., 2007) analyzed the dynamics near

turning points of the homoclinic bifurcation curve and conjectured that there exists a

codimension-two bifurcation point which they named an ‘EP1t’ point, but did not lo-

cate any EP1t points directly. The dynamics in the neighbourhood of such EP1t points

was further analyzed in Champneys et al. (2009), where it was shown that there will be

an infinite number of turning points of homoclinic curves near such EP1t points. An

EP1t point is actually an intersection point between two codimension-one bifurcation

curves on the parameter plane. The codimension-one bifurcations involve heteroclinic

connections between an equilibrium and a periodic orbit as described below. We were
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Figure 2.5: Another projection of the homoclinic curve (with L2-norm plotted against p) in
Fig. 2.4 for equations (2.3) with parameters (2.2), to distinguish the two branches of the closed
loop. The time series of single pulse and double pulse solutions near (p, s)=(0.04575,1.30) in
Fig. 2.4 are depicted in panel (b) and (c).

able to locate the EP1t points numerically in the FHN equations (2.3) and they turn

out to be very close to the turning points of the homoclinic bifurcation curve (see

Fig. 2.4). Thus, we find numerical evidence to support the conjecture in Champneys

et al. (2007) that the homoclinic loci in equations (2.3) turn around near EP1t points.

More precisely, equations (2.3) have a unique equilibrium point and the periodic or-

bit of interest is created on the Hopf bifurcation curve. To the left of the U-shaped Hopf

curve, the equilibrium has a one-dimensional unstable manifold and a two-dimensional

stable manifold, while the periodic orbit has a two-dimensional unstable manifold and

a two-dimensional stable manifold. An EP1t point is a point of intersection between a

codimension-one curve of heteroclinic connections from the equilibrium to the periodic

orbit (denoted as EtoP) and a codimension-one curve of tangency of the heteroclinic

connection from the periodic orbit to the equilibrium (denoted as PtoE tangency).

We locate these two codimension-one global bifurcation curves with Lin’s method

for finding and continuing heteroclinic connections involving periodic orbits. The nu-

merical algorithm was introduced in Krauskopf and Riess (2008) and its implementation

for finding and continuing global bifurcations will be discussed further in chapter 6.

The EtoP and PtoE tangency curves are plotted in magenta and black, respectively,

on the (p, s) parameter space in Fig. 2.4. The codimension-one EtoP curve terminates

at the Hopf bifurcation, since within the region of the (p, s) parameter plane bounded

by the U-shaped curve of the Hopf bifurcations, the EtoP heteroclinic connection is

generic (of codimension zero). The codimension-one PtoE tangency curve stops at a

saddle-node bifurcation of periodic orbits, at which the periodic orbit disappears. This
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saddle-node bifurcation curve originates from the degenerate Hopf bifurcation point on

the Hopf curve.

In summary, we have computed new features of the bifurcation set of equations

(2.3) which enabled us to locate several codimension-two bifurcation points which act

as organizing centres for the bifurcation set. In particular, codimension-one EtoP and

PtoE tangency curves were located and found to intersect at codimension-two EP1t

points, confirming an earlier conjecture of Champneys et al. (2007).

2.5 Homoclinic bifurcations in the singular limit

In the previous section, we showed that the bifurcation structure in the FHN model is

rather complex. Since the FHN equations have variables evolving on widely separated

time scales, we would like to exploit the separation of the time scales in the system

to simplify the analysis of the model. The separation of the time scales of different

variables is indicated by a small parameter ε. When ε ̸= 0, the system is referred to as

the full system, and when ε = 0 the system is usually referred to as the singular limit.

The dynamics of the singular limit of the system gives us useful information about the

dynamics of the full system.

2.5.1 Brief summary of geometric singular perturbation the-

ory

For systems of ordinary differential equations with multiple time scales, properties of

solutions can sometimes be studied using standard mathematical techniques known

as geometric singular perturbation theory (GSPT). In this subsection we give a brief

summary of GSPT, including some basic ideas, relevant definitions and useful results.

The techniques and results will be applied to the FitzHugh-Nagumo equations (2.3) in

section 2.5.2.

A typical system of ordinary differential equations with multiple time scales has the

standard form:

dx

dt
= f(x, y, ε),

dy

dt
= εg(x, y, ε), (2.4)

where x ∈ Rm, y ∈ Rn, and 0 < ε ≪ 1. The variables x and y are usually referred to

as the fast and slow variables, respectively.

The variable t is referred to as the fast time. Define τ = εt as the slow time. By

switching the independent variable in (2.4) from the fast time t to the slow time τ one
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obtains the equivalent system

ε
dx

dτ
= f(x, y, ε),

dy

dτ
= g(x, y, ε). (2.5)

Then one can study the dynamics of equations (2.4) by analysing the dynamics of the

layer problem

dx

dt
= f(x, y, 0),

dy

dt
= 0, (2.6)

and the dynamics of the reduced system

0 = f(x, y, 0),

dy

dτ
= g(x, y, 0), (2.7)

which are the limiting cases for ε = 0 on the fast and slow time scales, respectively.

The phase space of the reduced problem (2.7) is the set denoted by S = {(x, y) ∈
Rm+n : f(x, y, 0) = 0}, which is referred to as the critical manifold of the system. The

critical manifold corresponds to a set of equilibria for the layer problem (2.6).

By Fenichel theory (Fenichel, 1979) normally hyperbolic pieces of the critical mani-

fold (i.e., these pieces of the critical manifold such that all eigenvalues of Jacobian ma-

trix of the layer problem evaluated along S have real parts not equal to zero) perturb to

nearby invariant manifolds Sε of the full system (2.4). The flow near the invariant man-

ifolds Sε can be approximated by the flow near the corresponding normally hyperbolic

pieces of the critical manifold S. It follows that, by carefully combining information

about the dynamics of the reduced system and the layer problem, it is often possible

to get helpful information about the dynamics of the full system; see Fenichel (1979)

for more detailed information about GSPT. The main point needed for the work that

follows is the observation that some orbits and structures in the full system can be

seen to arise as perturbations of similar orbits and structures in the singular limit. In

the following sections, we use this observation to investigate the dynamics of the FHN

equations (2.3) further.

2.5.2 Homoclinic bifurcations in the singular limit

A homoclinic bifurcation of an equilibrium is a global bifurcation, and as such is usually

difficult to locate in the parameter plane analytically. However, since the FHN model

has multiple time scales, it is possible to consider the profile of the homoclinic orbit
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in the singular limit, and use the information to help us to find the locus of the

homoclinic bifurcation in the singular limit. Then we can apply standard geometric

singular perturbation techniques to show that homoclinic bifurcations exist in the full

system, at a distanceO(ε) away from the locus of homoclinic bifurcations in the singular

limit.

Homoclinic solutions of the FHN classical form without the applied current term

have been extensively studied and clearly understood (Bell and Deng, 2002; Deng, 1991;

Jones et al., 1991; Krupa et al., 1997; Yanagida, 1985). The form of FHN equations

(2.3) we study contains an applied current term, and the homoclinic solutions for

this form are not as well understood as for the classical form. In order to make easy

comparison with the results obtained in the classical form, it is convenient to transform

equations (2.3) into the classical form.

We have derived a linear transformation of the variables and a nonlinear transfor-

mation of the parameters of equations (2.3) to change equations (2.3) to the classical

FHN form. Specifically, we introduce new variables and parameters as follows:

x =
u− u0

u2 − u0

, y =

√
Dcv

(u2 − u0)2
,

z =
w − w0

(u2 − u0)3
, α1 =

u1 − u0

u2 − u0

, (2.8)

s1 =
s√

Dc(u2 − u0)
, ε1 =

ε

(u2 − u0)4
,

γ1 = (u2 − u0)
2γ, τ =

(u2 − u0)ξ√
Dc

,

where (u0(p), 0, w0(p)) is the unique equilibrium point of equations (2.3) which is deter-

mined by the parameter p and u0, u1, u2 are the three real roots of the cubic polynomial

g(u) = u(u− 1)(u− α)− u0(u0 − 1)(u0 − α).

Substituting the new variables and parameters defined in (2.8) into equations (2.3), we

obtain the following classical form of the FHN equations:

dx

dξ
= y,

dy

dξ
= s1y − x(x− 1)(α1 − x) + z, (2.9)

dz

dξ
=

ε1
s1
(x− γ1z).

The bifurcation parameters for (2.9) are α1 and s1. The layer and reduced problems
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for equations (2.9) are:

dx

dξ
= y,

dy

dξ
= s1y − x(x− 1)(α1 − x) + z, (2.10)

dz

dξ
= 0,

and

0 = y,

0 = s1y − x(x− 1)(α1 − x) + z, (2.11)

dz

dξ
=

1

s1
(x− γ1z).

The critical manifold of equations (2.9) is the set

S = {(x, y, z) ∈ R3 : y = 0, z = x(x− 1)(α1 − x)}.

The critical manifold S is a one-dimensional cubic curve with one local minimum point

and one local maximum point, and is divided into three parts by the local minimum

and maximum : the left section Sl, the middle section Sm and the right section Sr.

→
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Figure 2.6: (a) Phase portraits of typical singular homoclinic orbits Γf0 (black solid curve)
and Γs0 (blue dashed curve) for 0 < α < 1

2 . (b) Phase portrait of a heteroclinic cycle Γ0,
which is the coalescence of singular homoclinic orbits Γf0 and Γs0 at α = 1

2 . This figure is
adapted from Krupa et al. (1997).

Homoclinic solutions of equations (2.9) have been studied in Krupa et al. (1997).

Here we review some relevant results. Equations (2.9) have a single equilibrium p0 =

(0, 0, 0), and two types of singular homoclinic orbits associated with the equilibrium,
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denoted as Γf0 and Γs0, exist when ε1 = 0. The orbit Γf0 exists on a curve in the

(α1, s1) plane, and is constructed in the following way. When ε1 = 0, for a fixed value

of α1 ∈ [0, 1
2
] there exists a unique positive value of s1 such that there is a heteroclinic

connection (wave front) from p0 to p1 = (1, 0, 0) in the plane {z = 0}. Typically in

the plane {z = 0} no heteroclinic connection from p1 to p0 exists, but one can find

another plane {z = z∗} such that there is a connection (wave back) from a point in

Sr to a point in Sl in the plane. Hence there exists a singular orbit Γf0 consisting of

the connection from p0 to p1 in {z = 0}, the piece of Sr from p1 to Sr ∩ {z = z∗}, the
connection from Sr to Sl in {z = z∗} and the piece of Sl from Sl ∩ {z = z∗} to p0.

Panel (a) of Fig. 2.6 depicts a typical phase portrait for the singular orbit Γf0.

From the construction of the orbit Γf0, one observes that finding the curve of

homoclinic orbits Γf0 is equivalent to finding the curve of heteroclinic connections

from p0 to p1 in the plane {z = 0}, where the layer problem (2.10) simplifies to the

following equations

dx

dξ
= y,

dy

dξ
= s1y − x(x− 1)(α1 − x). (2.12)

Exact formulae for heteroclinic connections from one equilibrium to another of equa-

tions (2.12) are obtained in Li and Guo (2006) using the first integral method intro-

duced in Feng (2002). In particular, the heteroclinic solution of equations (2.12) from

(0,0) to (1,0) exists on a line segment s1 =
1−2α1√

2
for α1 ∈ [0, 1

2
].

The other type of singular orbit Γs0 occurs when s1 = 0, in which case the layer

problem simplifies to a Hamiltonian system with the form

dx

dξ
= y,

dy

dξ
= −x(x− 1)(α1 − x). (2.13)

System (2.13) admits a planar homoclinic orbit Γs0 to the equilibrium point (0, 0) in

the (x, y) phase plane for α1 ∈ (0, 1
2
). Typical phase portraits of these two types of

singular orbits Γf0 and Γs0 are shown in panel (a) of Fig. 2.6.

From the relation between the wave speed for Γf0 and parameter α1 (s1 =
1−2α1√

2
),

we can infer that as α1 increases towards 0.5, the value of s1 where Γf0 occurs decreases

towards zero. At a critical point when α1 = 0.5, the wave speed s1 is zero, i.e., the two

singular orbits Γf0 and Γs0 coalesce. Two line segments of singular homoclinic orbits

join together at the point (α1, s1) = (0.5, 0) and there exists a heteroclinic cycle Γ0

connecting p0 to p1 at this point. The heteroclinic cycle Γ0 is depicted in panel (b) of

Fig. 2.6. The two branches of singular homoclinic orbits are depicted in Fig. 2.7.
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Homoclinic orbits of equations (2.9) can be obtained by perturbing singular homo-

clinic orbits Γf0 and Γs0 for 0 < ε1 ≪ 1. Homoclinic orbits found by perturbing Γf0

are referred to as fast waves and others found by perturbing Γs0 are referred to as slow

waves. It is conjectured in Yanagida (1985) that the bifurcation curve corresponding

to fast waves and the bifurcation curve corresponding to slow waves are connected in

the full system. It is shown in Krupa et al. (1997) that these two bifurcation curves

are indeed connected near the singular limit.
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Figure 2.7: The position of the homoclinic bifurcations in the (p, s) plane in the singular
limit ε = 0 for equations (2.3), showing two curves of singular homoclinic orbits joining
together to form a C-shaped curve.

We can now find the location of bifurcation curves in the (p, s) parameter plane of

equations (2.3) by mapping the points on the parameter plane (α1, s1) to the points

on the parameter plane (p, s) through the relation given in (2.8). The mapping is a

bijection but not linear so the locus of the singular homoclinic orbit Γf0 in the (p, s)

parameter plane is not a line segment; see Fig. 2.8. In Guckenheimer and Kuehn

(2009), the authors conjectured that the homoclinic bifurcation curve converges to a

line segment in the (p, s) parameter plane at the singular limit but our approach shows

a different result.

In summary, we have applied GSPT to analyze our model equations (2.3). With

the help of a transformation from equations (2.3) into the classical FHN form (2.9),

homoclinic solutions are shown to exist on a C-shaped locus in the (p, s) plane in the

singular limit, as shown in Fig. 2.7. Then, according to Krupa et al. (1997), when ε

is sufficiently small, the upper (resp. lower) branch of the C-shaped curve perturbs to

a branch of homoclinic orbits Γε
f (resp. Γε

s) in the full system. The two branches of

curves of homoclinic solutions connect to form a C-shaped curve of homoclinic orbits

for small nonzero values of ε.
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Figure 2.8: (a) Locus of the singular homoclinic orbits Γf0 in the (p, s) plane for equations
(2.3). (b) Gradient of the bifurcation curve in panel (a), indicating that the bifurcation curve
in panel (a) is not a straight line segment.

2.6 Hopf bifurcations in the singular limit

We can find the position of the Hopf bifurcation analytically for the full FHN model.

The equilibrium point of equations (2.3) is solely determined by the parameter p and

not dependent on the parameter s. The Jacobian matrix evaluated at this equilibrium

(u0(p), v0(p), w0(p)) is:  0 1 0

−f ′(p)
Dc

s
Dc

1
Dc

ε
s

0 −γε
s

 .

The Hopf bifurcation of this equilibrium occurs when two eigenvalues of the Jacobian

matrix are pure imaginary numbers, in which case the only real eigenvalue is equal to

the trace of the Jacobian matrix, s
Dc

− γε
s
. Furthermore, the characteristic polynomial

of the Jacobian matrix is a cubic function:

P (λ) = λ3 +
(εγ
s

− s

Dc

)
λ2 +

(f ′(p)

Dc

− εγ

Dc

)
λ+

εγf ′(p)

sDc

− ε

sDc

.

Since the real eigenvalue s
Dc

− γε
s

is a root of the characteristic polynomial, i.e.,

P ( s
Dc

− γε
s
) = 0, we can use a symbolic computation package such as Matlab to rearrange

the equation to find the values of s for which the Hopf bifurcations occurs:

s
√
f ′(p)− γε =

√
εDc(1− γ2ε). (2.14)

In the singular limit when ε = 0, if f ′(p) = 0 then equation (2.14) is satisfied at any

value of wave speed s greater than or equal to zero; this case gives rise to two vertical

bifurcation branches at p ≈ 0.05 and p ≈ 0.55. If f ′(p) > 0 then equation (2.14)

is satisfied at s = 0; this case gives rise to a horizontal bifurcation branch at s = 0
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between the two vertical branches. The three branches form a U-shaped curve in the

(p, s) plane, as shown in Fig. 2.9. A similar result was obtained in Guckenheimer and

Kuehn (2009) with a different approach.
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Figure 2.9: The position of Hopf bifurcations of equations (2.3) with parameters (2.2) in the
(p, s) parameter plane in the singular limit ε = 0.

We now examine the criticality of the Hopf bifurcations, which can be determined

by the sign of the so-called first Lyapunov coefficient (Kuznetsov, 1998). More infor-

mation about the formal definition and computation of the first Lyapunov coefficients

is contained in section 5.3.1.

As mentioned before, if the function f ′(p) > 0 then the Hopf bifurcation occurs at

s = 0, and the Jacobian matrix evaluated at the equilibrium is: 0 1 0
−f ′(p)
Dc

0 1
Dc

0 0 0

 .

The eigenvalues of the equilibrium are a pair of pure imaginary eigenvalues and one zero

eigenvalue. Note that the system is (linearly) degenerate because the Jacobian matrix

has a zero eigenvalue. Now the bifurcation package MatCont (Govaerts and Kuznetsov,

2008) can be used to calculate the value of the first Lyapunov coefficient associated

with the Hopf bifurcation numerically. As it turns out, the numerical results indicate

that the Hopf bifurcations at s = 0 have first Lyapunov coefficients equal to zero which

means that the Hopf bifurcations are degenerate in the singular limit. In this case the

singular limit gives no information about the criticality of the Hopf bifurcation in the

full system.

If the function f ′(p) = 0 then as ε → 0 the Hopf bifurcation can occur at any s ≥ 0
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and the Jacobian matrix evaluated at the equilibrium is: 0 1 0

0 s
Dc

1
Dc

0 0 0

 .

The eigenvalues of the equilibrium are a pair of zero eigenvalues and one real eigenvalue
s
Dc

; this double zero bifurcation was analyzed extensively in Baer and Erneux (1986,

1992). With the method introduced in Baer and Erneux (1986, 1992), Braaksma

(Braaksma, 1998) showed that the double zero bifurcation perturbs to a subcritical

Hopf bifurcation in the FHN full system for ε > 0. Therefore, in this case the dynamics

of Hopf bifurcation in the full system can be understood as a perturbation of the

dynamics of the Hopf bifurcation in the singular limit.

2.7 Comparison between the full system and the

singular limit
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Figure 2.10: The position of the homoclinic bifurcations and Hopf bifurcations in the (p, s)
plane in the singular limit ε = 0 for equations (2.3).

From the analysis in the singular limit discussed in sections 2.5 and 2.6, one can

conclude that the bifurcation set at ε = 0 is quite simple, with a C-shaped homoclinic

curve and a U-shaped Hopf bifurcation curve. The two bifurcation curves connect

with each other in the (p, s) parameter plane as shown in Fig. 2.10. The bifurcation

set indicates that solitary wave solutions exist for p in the interval (−0.2459, 0.0511)

in the singular limit.

In Champneys et al. (2007), it is noted that equations (2.3) have a symmetry. In

particular, for the choice of parameters in (2.2), the bifurcation set in the (p, s) plane
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Figure 2.11: The symmetric position of the homoclinic bifurcations and Hopf bifurcations
under reflection through the line p ≈ 0.305 in the (p, s) plane in the singular limit ε = 0 for
equations (2.3).

is symmetric under reflection through the line p ≈ 0.305. This means that there are in

fact two C-shaped homoclinic curves attached to the U-shaped Hopf bifurcation curve

in the singular limit; the one to the left exists in the interval (−0.2459, 0.0511), while

the one to the right exists in the interval (0.5583, 0.8553), as shown in Fig. 2.11.
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Figure 2.12: Homoclinic bifurcation curves in the (p, s) parameter plane for different values
of ε in the FHN equations (2.3). The C-shaped curve in magenta stands for the homoclinic
curve in the singular limit. The blue, red and black C-shaped curves represent the homoclinic
curves at ε = 0.0025, ε = 0.005 and ε = 0.01, respectively.

With the help of Fenichel’s theory (Fenichel, 1979), Krupa and collaborators (Krupa

et al., 1997) showed that the C-shaped curve of homoclinic bifurcations persists if ε is

sufficiently small. Fig. 2.12 shows several curves of homoclinic orbits in the full system

for various small ε. It can be seen in Fig. 2.12 that the locus of homoclinic bifurcations

in the full system curves moves towards the locus in the singular limit as ε → 0, as

predicted by the theory.
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Figure 2.13: Relative positions of homoclinic and Hopf bifurcation curves in the (p, s) pa-
rameter plane for different values of ε in the FHN system (2.3). The curves in blue stand
for the homoclinic and Hopf bifurcation curves in the singular limit, and the red and black
curves represent the homoclinic and Hopf bifurcation curves for ε = 0.01 and ε = 0.001,
respectively.

In section 2.6, it was shown that the U-shaped Hopf bifurcation curve persists for

small values of ε at the location in the (p, s) plane specified by the relation (2.14).

However, the relative position between the Hopf bifurcation curve and the homoclinic

bifurcation curve shifts as ε moves away from zero. Numerical results about the po-

sitions of the homoclinic curve and Hopf curve for the cases of ε = 0, ε = 0.001 and

ε = 0.01 are shown in Fig. 2.13. Fig. 2.13 shows that the Hopf and homoclinic bifur-

cation curve have a gap between them when ε ̸= 0. The reason why there must exist

such a gap was discussed in section 2.4, and it arises from the geometry of the stable

manifold of the equilibrium near the subcritical Hopf bifurcations. It is claimed in

Guckenheimer and Kuehn (2009) that the homoclinic curve terminates at a tangency

bifurcation between stable and unstable manifolds of the slow manifold which is a small

perturbation from the critical manifold.

Another way of understanding how the homoclinic bifurcation curve stops before

reaching the Hopf bifurcation curve follows from our numerical bifurcation analysis

of equation (2.3). Specifically, codimension-two EP1t points for equations (2.3) with

ε = 0.01 were found numerically using Lin’s method implemented in AUTO. The C-

shaped homoclinic bifurcation curve turns around in the neighbourhood of such EP1t

points before reaching the Hopf bifurcation curve. In other words, the EP1t points

indicate the end points of the C-shaped homoclinic curve.

To sum up, the bifurcation set for the FHN equations (2.3) in the full system has

a basic CU structure perturbed from the simple CU structure in the singular limit.

However, there are complex bifurcations occurring between the C-shaped homoclinic

curve and the U-shaped Hopf curve in the full system, and these details need to be
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taken into account when we try to understand interactions between the wave solutions

of the FHN model (2.1).

We have not yet understood how all the complex bifurcations in the full system

unfold from the singular limit in the FHN system. We conjecture that features such

as the codimension-two EP1t points can be seen to arise from a perturbation of the

simple CU bifurcation structure that occurs in the singular limit; a detailed theoretical

analysis to support this conjecture is left to future work.



Chapter 3

Waves of a prototypical calcium

model

In this chapter, we consider the wave solutions of a prototypical calcium model. The

motivation for us to focus on this model is that we are interested in analyzing and

understanding wave solutions commonly observed in a wide range of models of intra-

cellular calcium dynamics; a prototypical calcium model of relatively simple equations

omitting the minor details of various fluxes is beneficial to our study. Findings about

the wave solutions of the prototypical calcium model can then be extended to gain new

understanding for more realistic quantitative intracellular calcium models.

The numerical results in Champneys et al. (2007) suggest that the basic bifurca-

tion structure of calcium models is largely independent of model assumptions about

the IP3 receptor dynamics, at least for a range of models. Specifically, Champneys and

collaborators (Champneys et al., 2007) showed that different variants of a pancreatic

acinar cell model (Sneyd and Dufour, 2002; Sneyd et al., 2003) with different num-

bers of receptor variables displayed a similar basic bifurcation structure. Therefore,

we consider a two-component calcium model with diffusion that describes the calcium

exchange within the cell and across the cell membrane. One important assumption of

this prototypical model is that the IP3 receptor dynamics reaches steady state instan-

taneously.

The focus of this chapter is to understand the solitary wave solutions and periodic

wave solutions in the prototypical calcium model. Similarly to the FHN model we

considered in chapter 2, the prototypical model has a basic CU bifurcation structure

in a suitably chosen parameter plane. In order to obtain a better understanding of this

CU structure, we follow a similar approach to chapter 2 and consider the singular limit

of the model, and then compare the dynamics in the singular limit with the dynamics

of the full model.

Parts of the work presented in this chapter have been done in collaboration with
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J. C. Tsai, V. Kirk and J. Sneyd, and have been written up in the manuscript (Tsai

et al., 2012), which has been submitted to a journal. The work presented in this

chapter is mostly of a numerical nature; the numerical results have, however, induced

conjectures about theoretical results, some of which have now been proven and will

appear in Tsai et al. (2012).

3.1 Model equations

As discussed in chapter 1, a cell can sometimes be assumed to be a one-dimensional line

segment (a ‘long thin cylinder’) so conduction of the variation of calcium concentration

along the cell occurs in one spatial dimension. A model describing the intracellular

calcium dynamics in such a cell may have the general form:

∂c

∂t
= D

∂2c

∂x2
+ F (c, ce),

∂ce
∂t

= G(c, ce), (3.1)

where the functions F and G are given by:

F (c, ce) = Jrelease − Jserca + ε(Jinflux − Jpm),

G(c, ce) = γ(Jserca − Jrelease).

The variable c represents the cytoplasmic calcium concentration, and the variable ce

represents the calcium concentration in the ER.

In our simplified model, specific expressions for the fluxes Jrelease, Jserca, Jinflux and

Jpm are derived from a model of calcium oscillations in the Xenopous laevis oocyte

(Atri et al., 1993) as explained below. We use the following form of equations:

∂c

∂t
= D

∂2c

∂x2
+ f(c)(ce − c)− ksc+ ε(J − c),

∂ce
∂t

= −γ
(
f(c)(ce − c)− ksc

)
, (3.2)

where

f(c) = α + kf
c2

c2 + φ2
1

· φ2

c + φ2

. (3.3)

Typical parameter values are given in Table. 3.1.

In this model, oscillations in the concentration of free cytoplasmic calcium arise

via sequential release and uptake of calcium to and from the ER. Release of calcium

from the ER is through IP3 receptors and uptake of calcium into the ER is via calcium
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D α ks kf φ1 φ2 γ ε
25.0 µm2s−1 0.05 s−1 20.0 s−1 20.0 s−1 2.0 µM 1.0 µM 5.0 0.1

Table 3.1: Values of parameters for equations (3.2).

SERCA pumps. Calcium can also enter from the outside of the cell, and is pumped

out across the plasma membrane of the cell by other ATPase pumps.

In the original model of Atri et al. (Atri et al., 1993), the SERCA and plasma mem-

brane pumps were modelled as saturating Hill functions of the calcium concentration

in the cytoplasm. In addition, release of calcium through the IP3 receptors was mod-

elled by assuming fast activation of the IP3 receptors by calcium followed by slower

inactivation.

However, in order to construct the prototypical model used here much of the com-

plexity of the original model by Atri et al. has been discarded, while keeping the

essential qualitative features of the model. Thus, firstly, calcium release through the

IP3 receptors is modelled by a combination of Hill functions. The steady state flux

through the IP3 receptors is thus a biphasic function of the intracellular calcium con-

centration, as in the original model, but the functional form is chosen to be as simple as

possible. Secondly, the calcium pumps are modelled as linear functions of the calcium

concentration.

This simplified version of the Atri model captures the qualitative features that are

important to our discussion, but has a much simpler functional form than the full

model, making it easier to analyze. In this way, it bears the same relationship to a

more complex calcium oscillation model as does the FitzHugh-Nagumo model to the

Hodgkin-Huxley model.

The main bifurcation parameter is the term J which represents the influx going

into the cell cytoplasm from extracellular space. One reason for choosing J as the

bifurcation parameter is due to experimental considerations; it can be quite difficult

to manipulate the environment inside a cell in physical experiments, which means that

fluxes of intracellular calcium exchange are difficult to modulate. However, we have

some control on the outside environment of a cell; the calcium influx entering the cell

can sometimes be modulated experimentally, although with some technical difficulty.

Mathematically speaking, we can vary the amplitude of the term J , and thus can

conduct bifurcation analysis of equations (3.6) to obtain information and predictions

about how the variation of the influx current amplitude affects the intracellular calcium

dynamics. These predictions might then be tested experimentally by varying the input

amplitude of J .
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3.2 The analysis of equilibrium solutions

We first find the equilibrium solutions of equations (3.2) in the case there is no diffusion,

i.e., find the equilibria of

dc

dt
= f(c)(ce − c)− ksc+ ε(J − c),

dce
dt

= −γ
(
f(c)(ce − c)− ksc

)
. (3.4)

One can verify that system (3.4) has a unique equilibrium solution given by

(c, ce) =

J,

(
ks + α + kf

J2

J2+φ2
1

φ2

J+φ2

)
J(

α+ kf
J2

J2+φ2
1

φ2

J+φ2

)
 .

The solution is the intersection point of a straight line c = J and the curve defined by

f(c)(ce − c)− ksc = 0 in the (c, ce) plane.

3.2.1 The profile of the function f

An assumption made in the original model construction of intracellular calcium dy-

namics (Atri et al., 1993) is that the function f is single-humped. Here we check that

the functional form chosen for f in the model has this qualitative feature.

Using f as in equation (3.3), we find the first derivative of f is:

df

dc
=

kfφ2c

(c2 + φ2
1)

2(c+ φ2)2
(−c3 + cφ2

1 + 2φ2
1φ2) :=

kfφ2c

(c2 + φ2
1)

2(c+ φ2)2
f1(c).

The discriminant of the cubic function f1 is −4φ6
1 < 0. Thus the relation f1(c) = 0 has

a unique real root, which, together with the fact that f1(0) > 0 and f1(∞) < 0, shows

that the real root is positive. Hence, one can deduce the relation f ′(c) = 0 also has

a unique positive real root by noticing that
kfφ2c

(c2+φ2
1)

2(c+φ2)2
is always greater than zero.

Moreover, we note that as c → 0 or c → ∞, the limit of the function f(c) is α, and that

f ′(0) = 0 and f ′′(0) > 0. In view of the above discussion, we can conclude that f(c) is

single-humped. Fig. 3.1 shows a plot of f(c) for the specific choice of parameters given

in Table. 3.1.

3.2.2 The nullcline of the variable c

For the next step we investigate the c-nullcline of system (3.2) in the absence of diffu-

sion. The c-nullcline is defined by the following equation:

f(c)(ce − c)− ksc+ ε(J − c) = 0.
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Figure 3.1: The shape of the function of f in (3.3) with parameters as given in Table. 3.1.

Rearranging the equation above to obtain ce in terms of c yields:

ce =
f(c)c+ ksc− ε(J − c)

f(c)
. (3.5)

A plot of the relation (3.5) is given in Fig. 3.2 with the parameter values specified in

Table. 3.1. As can be seen, the c-nullcline is an N -shaped curve on the (c, ce) phase

plane for these parameter values; it can be shown that this is the case for a range of

different choices of parameter values and ε = 0 (Tsai et al., 2012).
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Figure 3.2: The c-nullcline of system (3.2) with D = 0 and with other parameters as specified
in Table. 3.1.
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3.3 Wave solutions

In the last section we established that the nullcline of the variable c of equations (3.2)

is N -shaped. It turns out that just as the cubic u-nullcline was an important ingredient

for showing the existence of the solitary wave solution of the FHN equations, so too is

the N -shaped c-nullcline in the prototypical calcium model important for the existence

of solitary wave solutions of equations (3.2).

3.3.1 The calcium model in travelling wave coordinates

For studying the wave solutions of the calcium model, it is convenient to convert

equations (3.2) into travelling wave coordinates. We do this in the usual way by

introducing a new independent variable ξ = x+ st, where s represents the wave speed.

This yields the system of ordinary differential equations as follows:

s
dc

dξ
= D

d2c

dξ2
+ f(c)(ce − c)− ksc+ ε(J − c),

s
dce
dξ

= −γ(f(c)(ce − c)− ksc).

Introducing another variable v = dc
dξ
, the above system becomes a system of three

first-order ordinary differential equations:

dc

dξ
= v,

dv

dξ
=

1

D

(
sv − f(c)(ce − c) + ksc− ε(J − c)

)
, (3.6)

dce
dξ

= −γ

s
(f(c)(ce − c)− ksc).

The solitary and periodic wave solutions of equations (3.2) corresponds to homo-

clinic and periodic solutions of equations (3.6), respectively.

3.3.2 Numerical bifurcation analysis

We used AUTO to locate the positions in the (J, s) plane of homoclinic bifurcations and

Hopf bifurcations of equations (3.6). Fig. 3.3 depicts the basic bifurcation structure

of equations (3.6) consisting of a C-shaped curve of homoclinic bifurcations and a U-

shaped curve of Hopf bifurcations. This calcium model is representative of a wide range

of models of calcium dynamics for different cell types. The CU structure found in the

prototypical calcium model is consistent with the conjecture in Champneys et al. (2007)

that many intracellular calcium models share a similar basic bifurcation structure.

The homoclinic curve terminates at the Hopf bifurcation at the upper end of the
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Figure 3.3: Partial bifurcation set for equations (3.6) with parameters as in Table 3.1,
showing a U-shaped curve of Hopf bifurcations in red and a C-shaped curve of homoclinic
bifurcations of the equilibrium in blue.

homoclinic curve, apparently at a Shil’nikov-Hopf bifurcation (Deng and Sakamoto,

1995; Hirschberg and Knobloch, 1993), as also observed in several other calcium models

in Champneys et al. (2007).

As mentioned in section 2.4, for systems defined on R3, a homoclinic curve must turn

around before reaching a Hopf bifurcation curve in the case that the Hopf bifurcation is

subcritical. A zoom near the lower end of the homoclinic curve is shown in Fig. 3.4. At

the lower end of the homoclinic curve, the homoclinic branch has a sharp turning point

and traces back on itself, as expected from the observation that the Hopf bifurcations

are subcritical near the lower end of the homoclinic curve.

0.12 0.13 0.14

7

8

9

s

J

Figure 3.4: An enlargement near the lower end of the C-shaped homoclinic curve of Fig. 3.3.
Although it cannot be seen on the scale of this figure, the blue homoclinic curve folds back
on itself several times near the red Hopf bifurcation curve; see Fig. 3.5.
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In fact, near the lower turning point, there are several different branches of the

homoclinic curve lying almost on top of each other in the (J, s) plane. This is similar

to the case for the pancreatic acinar cell model studied in Champneys et al. (2007)

where the homoclinic branch has a series of turning points and does not form a closed

loop in the parameter plane. In Fig. 3.5 we plot vmax, the maximum value of v on the

homoclinic orbit, against the bifurcation parameter, J , to distinguish these branches

of homoclinic orbits.

0.12 0.13 0.14

0.18

0.2

0.22

vmax

J

A

B

Figure 3.5: The homoclinic branch from Fig 3.4, with the maximum value of v on the
homoclinic orbit, vmax, plotted as a function of J . The two blue large dots labelled A and B
mark homoclinic orbits for which phase portraits are shown in Fig. 3.6.

The homoclinic branch has a sequence of turning points in the (J, s)-plane. As the

homoclinic curve wiggles back and forth in the parameter plane, the homoclinic orbit

gains extra loops. A homoclinic orbit at (J, s) ≈ (0.13, 8.38) (before the bifurcation

curve goes through any turning points) is plotted in panel (a) of Fig. 3.6; another

homoclinic orbit at almost the same parameter value is plotted in panel (b) of Fig. 3.6.

As can be observed from panel (b) of Fig. 3.6, the homoclinic orbit resembles a hetero-

clinic cycle between the equilibrium point and a periodic orbit after these turns of the

homoclinic bifurcation curve. The snaking of the homoclinic bifurcation curve is rem-

iniscent of the behaviour near codimension-two EP1t bifurcation points, as described

in Champneys et al. (2009).

In order to determine whether the homoclinic snaking observed is associated with

EP1t points, we would need to find the EP1t points numerically in these calcium

models. There are some recently developed numerical algorithms available to compute

these types of global objects in a dynamical system. In chapter 6, we implement an

algorithm based on Lin’s method to compute global objects including EP1t points in

a related calcium model, but have not directly checked the existence of EP1t points in

equations (3.6).
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Figure 3.6: (a) The phase portrait of the homoclinic orbit at J = 0.13 before going through
any turning points of the homoclinic bifurcation curve. The position of the homoclinic orbit
is marked as point A in Fig. 3.5. (b) The homoclinic orbit at J = 0.13 after several turns of
the homoclinic bifurcation curve. The position of the homoclinic orbit is marked as point B
in Fig. 3.5.

3.3.3 Singular bifurcation analysis

As mentioned in chapter 1, calcium models, including the prototypical model studied

here, typically contain terms modelling different processes evolving on different time

scales. Therefore, there is the potential for analysis of the singular limit of the calcium

model to provide insight into the overall bifurcation structure in the full system. Note

that geometric singular perturbation theory has been used to study related calcium

models in a different context in Harvey et al. (2010, 2011).

The first step for the singular bifurcation analysis is to find an appropriate singular

limit of equations (3.6). For this, we need to nondimensionalise the equations by

rescaling the variables, parameters and functions. We choose

x̄ =
x

L
, t̄ =

t

T
, c̄ =

c

φ2

, c̄e =
ce
φ2

, D̄ =
DT

L2
, φ̄1 =

φ1

φ2

,

ᾱ = Tα, k̄f = Tkf , k̄s = Tks,

where the characteristic length scale L = 1 µm and the characteristic time scale T = 1 s

are used. Then the typical dimensionless parameter values corresponding to Table 3.1

are given in the following table:

D̄ ᾱ k̄s k̄f φ̄1 γ ε
25.0 0.05 20 20 2.0 5.0 0.1

Table 3.2: Values of dimensionless parameters corresponding to the parameter values
in Table. 3.1.
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Substituting these rescaled variables, parameters, and functions into system (3.2)

and dropping the bar, we find that the resulting system is identical to system (3.2)

except that φ2 now becomes 1. Hence in the following, we always assume that φ2 = 1.

In addition, we introduce a new variable ct =
sce
γ
−Dv + sc to replace the variable

ce. Then the system of ODEs (3.6) becomes a slow-fast system in standard form:

dc

dξ
= v, (3.7)

dv

dξ
=

1

D

(
sv −

(
α + kf

c2

c2 + φ2
1

· 1

c + 1

)(γ
s
(ct − sc+Dv)− c

)
+ ksc− ε(J − c)

)
,

dct
dξ

= ε(J − c),

where c and v are the fast variables and ct is the slow variable, with ε indicating the

separation of time scales between the fast and slow variables. The variable ct can be

regarded as the total number of moles of calcium in the cell, divided by the cytoplasmic

volume.

One can verify that system (3.7) has a unique equilibrium solution EJ given by

EJ = (J, 0, cJt ) :=

J, 0,
s
(
ks + α + kf

J2

J2+φ2
1

φ2

J+φ2

)
J

γ
(
α + kf

J2

J2+φ2
1

φ2

J+φ2

) + sJ

 .

Hence, a solitary wave of system (3.2) corresponds to a orbit of system (3.7) homoclinic

to EJ . A periodic wave solution of system (3.2) corresponds to a periodic orbit of

system (3.7).

3.3.4 Homoclinic bifurcations in the singular limit

Section 2.5.2 discussed typical phase portraits of homoclinic orbits of the FHN model in

the singular limit. We can obtain typical phase portraits of homoclinic and heteroclinic

orbits of the prototypical calcium model in the singular limit in a similar way. In this

section, we show how to construct these orbits numerically. A parallel theoretical

construction can also be done; Tsai et al. (2012) will contain more details.

Note that in the singular limit, equilibrium solutions of equations (3.7) are not

unique, but for a given J value and ε > 0 there is only one equilibrium, which we

denote as EJ . In particular, for a given J , equations (3.7) have an equilibrium, EJ ,

and two types of singular homoclinic orbits associated with the equilibrium, denoted

as Γf0 and Γs0, exist when ε = 0. A schematic phase portrait showing Γf0 and Γs0 is

given in panel (a) of Fig. 3.7.

Given J , the orbit Γf0 typically consists of four pieces: a fast jump in the plane

{ct = cJt } from c = J to a point denoted as c+ on the right branch of the c-nullcline; a
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segment of the right branch of the c-nullcline; a second jump from the local minimum

of the c-nullcline to a point on the left branch of the c-nullcline; and a segment of the

left branch of the c-nullcline back to the equilibrium point EJ . The phase portrait of

this type of homoclinic orbit of the prototypical calcium model is similar to that of a

minimal cardiac cell model discussed in Beck et al. (2008).

From the construction of the orbit Γf0, one observes that finding the curve of

homoclinic orbits Γf0 is equivalent to finding parameter values for which there is a

curve of heteroclinic connections from c = J to c = c+ in the plane {ct = cJt }, as
the second jump occurs automatically near the local minimum point of the c-nullcline

and gives no extra constraints on parameter values. We can find the locations of

the singular homoclinic solutions Γf0 numerically by solving the following differential

algebraic equations:

dc

dξ
= v,

dv

dξ
=

1

D

(
sv −

(
α + kf

c2

c2 + φ2
1

· φ2

c + φ2

)(γ
s
(ct − sc+Dv)− c

)
+ ksc

)
, (3.8)

ct = cJt ,

subject to the following boundary conditions:

(c, v) → (J, 0) as ξ → −∞, and (c, v) → (c+, 0) as ξ → ∞. (3.9)

→→→
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Figure 3.7: (a) Schematic phase portraits of singular homoclinic orbits Γf0 and Γs0 for (3.8)
in the singular limit of the calcium model. The two blue dots mark the points c = J and
c = c+. (b) Schematic phase portrait of a heteroclinic cycle Γ0, which is the coalescence of
singular homoclinic orbits Γf0 and Γs0 at J ≈ 0.045.

The other type of singular orbit Γs0 can be found as a planar homoclinic orbit to
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the equilibrium point (J, 0) in the phase plane {ct = cJt }. A typical phase portrait

for Γs0 is also shown in panel (a) of Fig. 3.7. Specifically, we can find the location of

the singular homoclinic solution Γs0 numerically by solving the differential algebraic

equations (3.8) subject to the following boundary conditions:

(c, v) → (J, 0) as ξ → ±∞. (3.10)

0.05 0.07 0.09 0.11 0.13
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Figure 3.8: Homoclinic bifurcation curve in the (J, s) parameter plane for (3.8) in the singular
limit of the prototypical calcium model with parameter values given in Table. 3.2. The blue
solid curve shows the branch of singular homoclinic orbits Γf0 and the red dashed curve
shows the branch of singular homoclinic orbits Γs0.

We obtain the locus of the singular homoclinic bifurcations for the above boundary

value problems with the help of Lin’s algorithm (Krauskopf and Riess, 2008) imple-

mented with the software package AUTO. We find that, at least for the parameter

values used to draw Fig. 3.8, the homoclinic bifurcation curve is still C-shaped in the

parameter plane, as shown in Fig. 3.8. At the leftmost point of the C-shaped curve,

the two different types of homoclinic orbit, Γf0 and Γs0, coalesce to a singular orbit

Γ0. The phase portrait of the orbit Γ0 is shown in panel (b) of Fig. 3.7. Fig. 3.8 gives

numerical evidence for the existence of singular homoclinic orbits for equations (3.7).

A proof of the existence of singular homoclinic orbits for a range of parameter values

will be given in Tsai et al. (2012).

3.3.5 Hopf bifurcations in the singular limit

As discussed in the previous section, the singular limit of the calcium model (3.7) can

be represented by the differential algebraic equations (3.8), and we can find the position

of the Hopf bifurcation numerically for equations (3.8) by using the basic bifurcation

continuation routine in AUTO. The Hopf bifurcation of the calcium equations (3.8)
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is shown in Fig. 3.9. The existence of the U-shaped curve of Hopf bifurcations in the

(J, s) parameter plane is proven analytically in the singular limit in Tsai et al. (2012).

We can also try to examine the criticality of the Hopf bifurcation in the singular limit
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Figure 3.9: Hopf bifurcation curve in the (J, s) parameter plane of equations (3.8) in the
singular limit for the prototypical calcium model with parameter values given in Table. 3.2.
The Hopf bifurcations are subcritical on the U-shaped curve.

numerically by computing the associated first Lyapunov coefficient (Kuznetsov, 1998).

The bifurcation package MatCont (Govaerts and Kuznetsov, 2008) can be used to

compute the first Lyapunov coefficient. More information about the calculation of the

first Lyapunov coefficient is included in section 5.3.1. As it turns out, the numerical

results indicate that the first Lyapunov coefficients are greater than zero so that the

Hopf bifurcations are generally subcritical in the singular limit. This is different from

the case of FHN model in which the Hopf bifurcations are degenerate generically in the

singular limit. We will discuss differences between the Hopf bifurcations for the FHN

model and the calcium model in more detail in chapter 4.

3.3.6 Comparison between waves of the full system and the

singular limit

As shown in the previous section, singular homoclinic orbits for equations (3.8) in the

singular limit of the calcium model are found numerically to lie on a C-shaped curve

of the parameter plane. We can also numerically compute the homoclinic locus at

ε = 0.01 and ε = 0.1 for the non-singular calcium equations (3.7) with the HomCont

routine in AUTO; these bifurcation curves are plotted in Fig. 3.10. One can observe

from the figure that, as the small parameter ε tends towards zero, the homoclinic

bifurcation curve of the full system tends towards the singular homoclinic curve in the

(J, s) parameter plane.
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Figure 3.10: Homoclinic bifurcation curves in the (J, s) parameter plane for various different
values of ε in the prototypical calcium model with parameter values given in Table. 3.2. The
blue and red C-shaped curves represent the homoclinic bifurcations at ε = 0.1 and ε = 0.01,
respectively; the black curve represents the homoclinic curve in the singular limit.
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Figure 3.11: Hopf bifurcation curves in the (J, s) parameter plane for various different values
of ε in the prototypical calcium model with parameter values given in Table. 3.2. Specifically,
the blue and red curves represent the Hopf bifurcation curve for ε = 0.1 and ε = 0.01,
respectively; the black curve represents the Hopf curve in the singular limit.

We can find the locus of the Hopf bifurcation with the basic bifurcation continuation

routine in AUTO in the (J, s) parameter plane for the full system (3.7) as well as the

singular limit system (3.8). The numerical results of the Hopf bifurcation curves are

shown in Fig. 3.11. Note that as the small parameter ε moves towards zero, the Hopf

bifurcation curve of the full system tends towards the curves of Hopf bifurcation in the

singular limit. The criticality of the Hopf bifurcation can be determined numerically

by Matcont (Govaerts and Kuznetsov, 2008). Interestingly, the numerical results show

that for fixed wave speed s, the criticality of the Hopf bifurcation in the singular limit
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may not be the same as that of the Hopf bifurcation in the full system for any ε > 0.

For example, for fixed s = 15, the Hopf bifurcation in the full system is supercritical

while the Hopf bifurcation in the singular limit is subcritical, as shown in Fig. 3.12.

We will discuss the reason for this difference in more detail in chapter 5.
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Figure 3.12: Partial bifurcation diagram for equations (3.7) with various values of ε, s = 15
and other parameter values as in Table. 3.2. The pink thin solid curve shows the position of
the unique equilibrium of the model. This equilibrium has two Hopf bifurcations (labelled
HB). The remaining curves show the maximum c-values attained by the periodic orbits cre-
ated in the Hopf bifurcations, for three choices of ε, i.e., ε = 10−1, ε = 10−3 and ε = 0 (fast
subsystem) on the blue thin dashed, red thick dashed and black thick solid curves, respec-
tively. Panel (b) shows an enlargement near the left Hopf bifurcations in panel (a). Note that
the left-most Hopf bifurcation in panel (a) is subcritical (when ε = 0) but the bifurcation is
supercritical for all ε > 0.

The relative positions of the homoclinic and Hopf bifurcation curves in the full

system and the singular limit are shown in Fig. 3.13. Note that, in the singular limit, the

homoclinic curve appears to terminate on the Hopf bifurcation curve at both ends, but,

as discussed in section 3.3.2, for sufficiently small ε > 0, the upper end of the homoclinic

curve may stop at a supercritical Hopf bifurcation point on the Hopf curve, while the

lower end of the homoclinic curve must turn around before reaching a subcritical Hopf

bifurcation point, possibly due to the presence of the EP1t point.

In summary, we study the prototypical calcium model to give insight into the dy-

namics of a range of calcium models. We have done numerical simulations on a variety

of calcium models and, as found by Champneys et al. (2007), obtained similar features

in their bifurcation sets. In light of the numerics, we choose a representative calcium

equations (3.7) to analyze because its form is simple enough to find the equilibrium

solutions and some features of the equations analytically.

In the prototypical calcium model, with comparison of the bifurcation sets between

its singular limit and the full system, we can observe that the homoclinic bifurcation

and Hopf bifurcation curves of the full system appear to arise as perturbations of

singular homoclinic bifurcation and Hopf bifurcation curves. Thus, examination of the
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Figure 3.13: (a) Relative positions of homoclinic and Hopf bifurcation curves in the (J, s)
parameter plane for different values of ε in the prototypical calcium model (3.7) with pa-
rameter values given in Table. 3.2. The curves in blue stand for the homoclinic and Hopf
bifurcation curves in the singular limit and the red curves represent the homoclinic and Hopf
bifurcation curves for the full system with ε = 0.1. (b) A zoom near the upper end of the
C-shaped homoclinic curves in panel (a). (c) A zoom near the lower end of the C-shaped
homoclinic curves in panel (a).

singular limit of the prototypical calcium model provides useful information about the

bifurcation structure in the full system. A more rigorous theoretical examination of

the correspondence between the singular limit and the full system is beyond the scope

of this thesis, but some partial results have been proved by J. C. Tsai and has been

submitted for publication (Tsai et al., 2012). Similarity of dynamics between calcium

models and their singular limits has also been investigated by Harvey et al. (2010,

2011). Just as for the FHN system, the singular limit gives information about basic

features of the full bifurcation set. More complex dynamics (e.g., homoclinic snaking)

appear in the full system; it is not yet known in detail how these features unfold from

the singular limit as ε is increased from zero.



Chapter 4

Comparison between waves of the

FHN model and the prototypical

calcium model

In chapters 2 and 3, we discussed wave solutions in two important biophysical models,

namely the FHN model and a prototypical model of intracellular calcium dynamics.

The FHN model is a canonical excitable system widely regarded as a prototypical

voltage model (Rocsoreanu et al., 2000; Keener and Sneyd, 2008), and it was argued

in chapter 3 that the calcium model is a good representative of models of intracellular

calcium dynamics in non-excitable cells.

In this chapter, we compare wave solutions of these two representative models. The

aim is to see whether the dynamics of the FHN model is similar enough to that of the

calcium model for the FHN model to be used as a qualitative prototype for calcium

models.

To this end, we consider different forms of the two systems used in the different

sections as follows. In section 4.1, we compare the two systems in the absence of

diffusion. The FHN model becomes

du

dt
= u(u− 1)(α− u)− w + p, (4.1)

dw

dt
= ε(u− γw),

and the calcium model becomes

dc

dt
=

(
α + kf

c2

c2 + φ2
1

· φ2

c + φ2

)
(γ(ct − c)− c)− ksc+ ε(J − c), (4.2)

dct
dt

= ε(J − c).

In section 4.2, we make comparison of the two systems with diffusion. To facilitate
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the study of the wave solutions, similar to the discussion in previous chapters, we trans-

form the FHN and the prototypical calcium systems into travelling wave coordinates

and get systems in the following forms. The FHN system is

du

dξ
= v,

dv

dξ
=

1

Dc

(sv − u(u− 1)(α− u) + w − p), (4.3)

dw

dξ
=

ε

s
(u− γw),

and the calcium system is

dc

dξ
= v,

dv

dξ
=

1

D

(
sv −

(
α + kf

c2

c2 + φ2
1

· φ2

c + φ2

)(γ
s
(ct − sc+Dv)− c

)
+ ksc− ε(J − c)

)
,

dct
dξ

= ε(J − c), (4.4)

In section 4.3, we compare the singular limits of the two models via examination of

their fast subsystems. The fast subsystem of the FHN model is

du

dξ
= v, (4.5)

dv

dξ
=

1

Dc

(sv − u(u− 1)(a− u) + w − p),

and the fast subsystem of the calcium model is

dc

dξ
= v, (4.6)

dv

dξ
=

1

D

(
sv −

(
α+ kf

c2

c2 + φ2
1

· φ2

c + φ2

)(γ
s
(ct − sc+Dv)− c

)
+ ksc

)
.

In section 4.4, we summarise our results from comparison of the models, and draw

the conclusion that there are similarities between the dynamics of these two models,

but also significant differences.

4.1 Comparison in the absence of diffusion

We begin our comparison with the space-clamped version of these two models, i.e.,

where there are no diffusion terms in the models. From the physiology of the cell, we

understand that variation in total calcium is slow compared to the rapid variation of

cytoplasmic calcium concentration. This important feature of the calcium dynamics

allows us to treat the total calcium ct as a convenient slow variable. Therefore, the
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dynamics of intracellular calcium can be described by the slow-fast system (4.2). In

the FHN model, the variation of the membrane potential occurs much faster than the

negative feedback of the gating conductance. The separation of the time scales in the

models is indicated by the small parameter ε in (4.1) and (4.2).

We point out the similarities between the FHN equations (4.1) and the prototyp-

ical calcium equations (4.2) in the case of no diffusion. Both of the models are two

dimensional and they have a clear separation of time scales between fast and slow

variables. Moreover, both of the models have cubic-shaped nullclines (u-nullcline for

the FHN model, c-nullcline for the calcium model) which allow the models to exhibit

excitability, and the nullclines of the slow variables in both systems are straight lines.

Therefore, these two equations superficially display quite strong similarities.

We show comparisons of typical time series and phase portraits of the two models in

Fig. 4.1 and Fig. 4.2, respectively. Bifurcation diagrams for the equations are depicted

in Fig. 4.3. Note that all these figures display similar features; and we can argue that

two equations without diffusion have qualitatively similar dynamics.
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Figure 4.1: (a) Time series of the FHN equations (4.1) without diffusion at p = 0.1, Dc = 0
and other parameters as in (2.2). (b) Time series of the calcium equations (4.2) without
diffusion at J = 0.15, D = 0, and other parameters as in Table. 3.1.

4.2 Diffusion appears in the models differently

In this section, we show that inclusion of diffusion affects the two models in different

ways.

For the FHN model, the slow variable w represents the gating variable of a ionic

current. From the modelling assumptions, we know that the gating variable is uniformly

distributed along the spatial direction, which means that the derivative of the gating

variable with respect to the spatial variable x is equal to zero (∂
2w

∂x2 = 0). In other

words, the diffusion only affects the fast variable but not the slow variable. Thus,
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Figure 4.2: (a) Phase portrait corresponding to the time series in panel (a) of Fig. 4.1. (b)
Phase portrait corresponding to the time series in panel (b) of Fig. 4.1.
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Figure 4.3: (a) Partial bifurcation diagram of the FHN equations (4.1) with parameters
Dc=0 and other parameters given in (2.2). The magenta dashed curve shows the position of
the unique equilibrium of the model. This equilibrium has two Hopf bifurcations (labelled
HB). The blue curve show the maximum u-value attained by the periodic orbits created in
the Hopf bifurcations. Both of the Hopf bifurcations are subcritical. (b) Partial bifurcation
diagram of the calcium equations (4.2) with parameters D=0 and other parameters given in
Table. 3.1. The magenta dashed curve shows the position of the unique equilibrium of the
model. This equilibrium has two Hopf bifurcations (labelled HB). The blue curve show the
maximum c-value attained by the periodic orbits created in the Hopf bifurcations. The Hopf
bifurcation on the left is supercritical and the Hopf bifurcation on the right is subcritical.

we can write down the FHN system with diffusion in travelling wave coordinates as

equations (4.3).

However, as noted in chapter 1, for the prototypical calcium model the diffusion

affects the slow variable ct. In particular, the slow variable ct represents the total

calcium of the cell, which consists of two parts: the cytoplasmic calcium c and the

calcium in the internal compartment ER ce. We assume that calcium diffusion occurs

in the cytoplasm, which implies that the diffusion affects both the fast variable c and

the slow variable ct and these two variables are intricately linked. We have further
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assumed throughout the thesis that the calcium in ER does not diffuse spatially, in

which case we can write down equations (4.4) to describe the dynamics of intracellular

calcium with the spatial variation in travelling wave coordinates.

Note that diffusion enters the FHN model and the calcium model differently. The

diffusion term only affects the evolution of the fast variable in the FHN model, while

the diffusion term affects the evolution of both the fast and the slow variable in the

calcium model. As a result, in the travelling wave coordinates, equations (4.3) of

FHN model has no nonlinear coupling term between the fast variables u and v, while

equations (4.4) of the calcium model has a nonlinear coupling term between the fast

variables(
α + kf

c2

c2 + φ2
1

· φ2

c + φ2

)(γ
s
(ct − sc+Dv)− c

)
. (4.7)

Different behaviours between these two models might be expected in the singular limits,

and hence in the full systems. In the next section, we investigate the dynamics near

the singular limit to look for the similarities and differences between the fast subsystem

of the FHN model (4.5) and the fast subsystem of the calcium model (4.6).

4.3 Comparison between systems in their singular

limits

As discussed in section 2.5.1, we can understand the dynamics of the full system by

way of the dynamics in the singular limit. The fast subsystem in the singular limit can

be obtained by setting the small parameter ε to zero, and fixing the slow variable to

its equilibrium value. This yields equations (4.5) and (4.6) for the fast subsystems of

the FHN model and the calcium model, respectively.

4.3.1 Comparison of Hopf bifurcations

In chapter 2, we displayed some numerical and analytical results to show that at the

Hopf bifurcations of the FHN system, the imaginary parts of the eigenvalues become

unbounded as ε → 0+, and the first Lyapunov coefficients will also become zero. On

the other hand, numerical evidence shows that the imaginary parts of the eigenvalues at

the Hopf bifurcations of the prototypical calcium model (4.6) are bounded as ε → 0+,

and the associated first Lyapunov coefficients are also bounded away from zero as ε

tends to zero. The FHN fast subsystem (4.5) has singular Hopf bifurcations on the

vertical branches of the Hopf bifurcation curve (Baer and Erneux, 1986, 1992) and

degenerate Hopf bifurcations on the horizontal branch of the Hopf bifurcation curve

(the first Lyapunov coefficient is zero) in the singular limit, while the Hopf bifurcation
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of the calcium fast subsystem model (4.6) is subcritical. However, the difference in

nature of the Hopf bifurcations in the two singular limits may not be reflected in

a significant difference in the non-singular models other than the steepness of the

branches of periodic orbits in the bifurcation diagrams.

We compare the form of equations (4.5) and (4.6) to look for the reason for the

different types of Hopf bifurcations. The difference seems to arise from the way diffusion

couples the fast and slow variables in the two models, as we will now show. In particular,

a general two-dimensional planar smooth system at a Hopf bifurcation can be written

in the following form (some changes of coordinates may be needed):(
ẋ

ẏ

)
=

(
0 ω

ω 0

)(
x

y

)
+

(
f(x, y)

g(x, y)

)
. (4.8)

The first Lyapunov coefficient of Hopf bifurcation can be calculated with the following

formula (Guckenheimer and Holmes, 1983):

16l1 = Re [(fxxx + fxyy + gxxy + gyyy)+
1
ω

(
fxy(fxx + fyy)− gxy(gxx + gyy)− fxxgxx + fyygyy

)]
.

(4.9)

If l1 > 0 then the Hopf bifurcation is subcritical; if l1 < 0 then the Hopf bifurcation is

supercritical.

Applying formula (4.9) to the fast subsystem of FHN system (4.5) in the singular

limit, it follows that the value for the Lyapunov coefficient l1 is always equal to zero.

On the other hand, applying formula (4.9) to the fast subsystem of the calcium system

(4.6) in the singular limit, it follows that the value for l1 is generally not equal to

zero. We note that the presence of the coupling term between variables c and v, as

shown in (4.7), in the singular limit of the prototypical calcium model (4.6) leads to

the Hopf bifurcation being generally non-degenerate. This is a significant difference

compared to the dynamics of the singular limit of the FHN equations (4.5). Referring

back to the original PDEs calcium model, we note that the presence of the coupling

term in the model is due to the fact that the diffusion affects both fast and slow

variables. In particular, the diffusion appears in both fast and slow variables so that

there is a coupling term between c and v in the calcium equations (4.6) when the

system is transformed into the travelling wave coordinates, and this in turn results in

the Hopf bifurcation being non-degenerate. This is different from the degenerate Hopf

bifurcation observed in the fast subsystem of the FHN model (4.5).

Note that there are other significant differences between equations (4.5) and (4.6).

Firstly, the nonlinear function in FHN system f(u) = u(u − 1)(α − u) is particularly

simple, while the nonlinear functions in the prototypical calcium system are rather

complex. Secondly, the FHN system has a symmetry: the equations are equivariant
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under the transformation

u → 2

3
(1 + α)− u, v → −v, w → 2

3γ
(1 + α)− w, (4.10)

I → 2

3
(1 + α)

[1
γ
− (2− α)(1− 2α)

9

]
− I.

We could use a more general functional form of f(u) instead of the simple cubic func-

tion, in which case the symmetry of FHN system may be lost. However, even with

such changes, inspection of (4.9) shows that the first Lyapunov coefficient l1 will still

be zero in the FHN fast subsystem (4.5). This demonstrates that neither the simple

functional form of f nor the symmetry of the FHN model is an important factor in the

difference in the Hopf bifurcations in systems (4.5) and (4.6).

4.3.2 Comparison of homoclinic orbits

The phase portraits of the homoclinic orbits of the FHN model and the prototypical

calcium model in the singular limit are discussed in sections 2.5.2 and 3.3.5, respectively.

We recall that both models have singular homoclinic orbits that consist of four pieces,

namely two fast jumps between different branches of the critical manifold and two

segments of the critical manifold; the following discussion is about these homoclinic

orbits, not the other type of homoclinic orbits which have no branches on the critical

manifold.

The symmetry of the FHN model, specified in (4.10), results in a qualitatively

different phase portrait of the homoclinic orbit from that of the prototypical calcium

model in the singular limit. In particular, an important difference is the nature of the

second jump. For the prototypical calcium model, the second jump of the homoclinic

orbit occurs at the local minimum of the critical manifold where normal hyperbolicity

is lost. The phase portrait of the homoclinic orbit is similar to that of a minimal

cardiac cell model analyzed in Beck et al. (2008). On the other hand, the FHN model

has a symmetry, which implies that the position of the second jump point is symmetric

to the first jump point. Thus, the second jump does not occur at the local minimum

of the critical manifold. This difference of the phase portraits of homoclinic orbits

between FHN model and that of the minimal cardiac cell model is also observed and

reported in Beck et al. (2008).

Different mechanisms in the two fast subsystems (4.5) and (4.6) in the singular

limit give rise to the qualitatively different phase portraits for these singular homo-

clinic orbits. However, these two types of singular homoclinic bifurcations are both

of codimension-one, and both singular homoclinic orbits perturb to similar homoclinic

orbits in the full system. Specifically, as ε is increased from zero, the homoclinic orbits

in the full system move O(ε) away from the singular homoclinic orbits. Therefore, the
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difference of the phase portraits of the homoclinic orbits between the FHN model and

the calcium model in the singular limit do not appear to produce significant differences

in the homoclinic orbits in the full systems.

Furthermore, the symmetry of the FHN model also indicates that there are two

symmetric C-shaped homoclinic curves in the parameter plane, as shown in Fig. 2.11.

On the other hand, the numerical results in Tsai et al. (2012) indicate that the calcium

model seems to also have C-shaped homoclinic curves one on each side of the U-

shaped Hopf curve, but these two C-shaped curves are not symmetric to each other.

This difference again is probably not significant for dynamics to the left of the Hopf

bifurcation curve in the full system.

4.4 Summary

Although there are many models of intracellular calcium dynamics for different types

of cells, they seem to share similar features. In particular, the U-shaped curve of

Hopf bifurcations and the C-shaped curve of homoclinic orbits are structures that are

preserved across a wide variety of calcium wave models (Champneys et al., 2007).

Thus it is reasonable to suppose that the simplified prototypical model, which also has

these characteristics, has captured important basic features of these models. Superficial

similarities between the FHN system and the prototypical calcium model then give rise

to the question of whether the canonical FHN system itself captures the basic features

of the calcium models.

One prominent similarity between systems (4.3) and (4.4) is that they have a similar

CU bifurcation structure. As discussed in chapters 2 and 3, the CU structure of these

systems is mainly due to the cubic-shaped critical manifold in the phase space. The

prototypical calcium model and the FHN model both have this important ingredient

in the singular limit so they have similar CU structure in the full system for sufficiently

small ε.

From the analysis in section 4.1 we see that without diffusion the FHN model (4.1)

and the prototypical calcium model (4.2) have solutions with similar qualitative be-

haviour. However, the spatial diffusion terms affect the two types of model differently,

and one consequence is that there exists a coupling term between c and v in the pro-

totypical calcium model while no such coupling term exists in the FHN model. In

section 4.2 we showed that the presence of the coupling term will make a difference

to the overall dynamics of the system. Specifically, the Hopf bifurcation of the FHN

fast subsystem (4.5) is generally degenerate while the Hopf bifurcation of the calcium

fast subsystem (4.6) is generally not degenerate. Therefore, with the spatial diffusion

term the FHN model and the prototypical calcium model have qualitatively different
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dynamics in the singular limit, which may be the source of differences in the full system.

Moreover, the FHN model has a symmetry which implies that the position and the

phase portrait of the homoclinic orbits is quite different from those of the prototypical

calcium model in the singular limit. However, these differences due to the symmetry

of the FHN system do not have a big impact on the dynamics of these two models in

the full systems.
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Chapter 5

Changes in the criticality of Hopf

bifurcations due to model reduction

techniques

It is often the case that higher-dimensional models are more difficult to analyze than

lower-dimensional models. Therefore, one would frequently like to reduce the dimension

of a model to simplify the analysis. Various model reduction methods have been

introduced for simplifying excitable systems, including commonly used techniques such

as making a quasi-steady state approximation and using GSPT.

However, some difficulties may arise when model reduction techniques are used.

For example, in chapter 3 it was noticed that for the calcium model studied there, the

Hopf bifurcation has different criticality in the singular limit and in the full system

for any small ε > 0. Investigation of this difference lead to the work described in this

chapter, which is an analysis of changes in the criticality of Hopf bifurcations due to

model reduction techniques.

The chapter is structured as follows. In section 5.1, we first review some basic infor-

mation about two commonly used model reduction techniques for biophysical models

with multiple time scales, namely the quasi-steady state approximation and GSPT.

In section 5.2, we investigate the quasi-steady state approximation in detail and de-

termine conditions under which use of this technique can be rigorously justified by

centre manifold theory. In section 5.3, we focus on Hopf bifurcations in slow-fast bio-

physical systems. In particular, we show that the criticality of a Hopf bifurcation in

a model may be changed when the reduction techniques are applied. The findings are

summarized in section 5.4.

The work presented in this chapter has been published in Zhang et al. (2011) in

collaboration with V. Kirk, J. Sneyd and M. Wechselberger.
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5.1 Model reduction methods and criticality of Hopf

bifurcations

Many models of physiological processes have the feature that one or more variables

evolve much faster than the other variables. Such biophysical processes involving vari-

ables of different time scales include neural activities such as bursting and spiking

of membrane potentials (Hodgkin and Huxley, 1952a,b,c,d), and intracellular calcium

signalling (Keener and Sneyd, 2008).

The model reduction technique of setting some fast variables to their quasi-steady

states, known as quasi-steady state approximation, is used in many conductance based

physiological models with multiple time scales. One well-known example of use of

a quasi-steady state approximation occurs in Rinzel (1978, 1985), in which the HH

equations (Hodgkin and Huxley, 1952a,b,c,d) are reduced to a simplified model which

captures the qualitative behaviour of the neural dynamics observed in the full model.

One of Rinzel’s reduction steps is to set the fast gate variable m instantaneously to its

quasi-steady state value m = m∞(V ). However, the approach is not always mathemat-

ically justified. In section 5.2 we give conditions under which such a model reduction

technique in a slow-fast system can be justified mathematically. As an example, we

will show in section 5.2.1 that this reduction step is mathematically justified in the HH

model, and point out some potential problems of this technique.

In many physiological models we are interested in the onset of oscillations, i.e., in

the existence and criticality of Hopf bifurcations. The position of Hopf bifurcations in a

model can be determined from a computation of the eigenvalues of the Jacobian matrix

of equilibrium solutions in the system, but it is more complicated to determine the

criticality of a Hopf bifurcation. For a general system, criticality of a Hopf bifurcation

is determined by the sign of the first Lyapunov coefficient (Kuznetsov, 1998). More

information about the computation of the first Lyapunov coefficient of a general system

is contained in section 5.3.1

The criticality of the Hopf bifurcation plays an important role in the overall dynam-

ics, so it is desirable that the model reduction should be performed in such a way that

a Hopf bifurcation in the full model corresponds to a Hopf bifurcation in the reduced

model and that the criticality of the Hopf bifurcations in the full and reduced models

match. However, we will show that model reductions may sometimes cause problems,

in that the reduced model may have a Hopf bifurcation of a different criticality to that

in the full system.

For a physiological model represented as a singularly perturbed system there is

another potential trap related to the criticality of a Hopf bifurcation if we wish to apply

GSPT in such slow-fast systems. Suppose the full system possesses a Hopf bifurcation
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that persists in the singular limit as a Hopf bifurcation of the fast subsystem. We may

want to know if one can relate the criticality of the Hopf bifurcation obtained in the

fast subsystem to the criticality of the Hopf bifurcation in the full problem. Care needs

to be taken because, very close to the Hopf bifurcation, the time scale associated with

the bifurcating directions (i.e., corresponding to real part of the complex conjugate

pair of eigenvalues) will be comparable with the time scale(s) associated with the slow

variable(s), which can give rise to problems if we wish to apply GSPT in this case.

We study the criticality of Hopf bifurcations in typical physiological models with

multiple time scales, and show that the singular limit of the first Lyapunov coefficient

of a Hopf bifurcation is not always equal to the first Lyapunov coefficient of the Hopf

bifurcation in the corresponding fast subsystem, as is observed in the calcium model

discussed in chapter 3. Specifically, we show that in some cases in which a Hopf bifur-

cation involves the fast variables, all the information needed to determine the criticality

of the Hopf bifurcation is contained in the fast subsystem but in other cases there is

crucial information in the slow dynamics as well. In such cases, a small perturbation

of the slow dynamics can change the criticality of the Hopf bifurcation, a seemingly

counterintuitive result. Consequently, one cannot deduce, in general, the criticality of

a Hopf bifurcation from the lower-dimensional fast subsystem in a slow-fast system.

5.2 A physiological model reduction technique for

slow-fast systems

In this section we consider the quasi-steady state reduction technique widely used in

physiological models that are described by slow-fast systems, and find conditions under

which use of this technique is justified mathematically. Many physiological models,

including many neural and calcium models, contain gating variables m = (m1, . . . ,mj)

which are thought to evolve faster than other processes in the model. In these cases,

often the first step is to set the fast gating variables to their quasi-steady states, and

thereby reduce the dimension of the model by the number of gating variables treated

in this way. In the following, we show that this procedure can sometimes be justified

by centre and invariant manifold theory.

Specifically, we are concerned with physiological models that are described in di-

mensionless form by slow-fast systems as follows:

dv

dt
= f(v,m, n, µ, ε),

dm

dt
= h(v,m, n, µ, ε), (5.1)

dn

dt
= εg(v,m, n, µ, ε),
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where (v,m) ∈ R × Rj = Rk are the fast variables, n ∈ Rl are the slow variables, f ,

g and h are O(1) vector-valued functions, µ ∈ Rm are system parameters, t represents

the fast time and ε ≪ 1 is the small perturbation parameter indicating the time scale

separation. In neural models, v typically represents voltage, while in calcium models,

v might represent the cytoplasmic calcium concentration. In biophysical (conductance

based) models, m represents the fast gating variables and n represents the slow gating

variables. In calcium models, the total calcium concentration might also be included

in the slow variables n.

By taking the singular limit ε → 0 in (5.1), we obtain the fast subsystem, which

possesses, in general, an l-dimensional manifold of equilibria called the critical manifold,

S0 := {(v,m, n) : f(v,m, n, µ, 0) = h(v,m, n, µ, 0) = 0} .

We are interested in different cases, depending on whether or not the critical manifold

is normally hyperbolic, and, if it is not normally hyperbolic, the way in which normal

hyperbolicity is lost.

Assumption 1 The critical manifold S0 is normally hyperbolic, i.e., all eigenvalues

of the (k × k) Jacobian matrix of the fast subsytem evaluated along S0,

J =

(
∂
∂v
f Dmf

∂
∂v
h Dmh

)∣∣∣∣∣
S0

,

have real parts not equal to zero.

If system (5.1) satisfies Assumption 1, then Fenichel theory (Fenichel, 1979) applies

in this case. Specifically, according to the implicit function theorem, there exists an

l-dimensional invariant manifold Sε given as a graph (v,m) = (V̂ (n, µ, ε), M̂(n, µ, ε)).

This invariant manifold Sε is a smooth O(ε) perturbation of the critical manifold S0.

If we further assume that all eigenvalues of the Jacobian matrix of the fast subsystem

along S0 have real parts less than zero, then the theory says that a model reduction

onto the slow manifold Sε will recover the dynamics of the model after some initial

transient time. In a biophysical model that would imply that the reduction of the fast

gating variables m and, e.g., voltage or cytoplasmic calcium concentration v to their

quasi-steady state correctly describes the flow on S0.

Unfortunately, most physiological models have a critical manifold that is not nor-

mally hyperbolic and the reduction technique is not (globally) justified. In the follow-

ing, we focus on the two main cases that cause loss of normal hyperbolicity of S0: a

fold or a Hopf bifurcation in the fast subsystem.
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Assumption 2 The Jacobian of the fast subsystem evaluated along S0, i.e., the (k×k)-

matrix

J =

(
∂
∂v
f Dmf

∂
∂v
h Dmh

)∣∣∣∣∣
S0

,

has a zero eigenvalue along F := {(v,m, n) ∈ S0 : det(J) = 0, rank (J) = j = k − 1}
which is an (l − 1)-dimensional subset of S0. We further assume that the other j

eigenvalues all have real parts less than zero along S0.

Generically, the manifold S0 is folded near F if the following non-degeneracy conditions

are fulfilled (evaluated along F ):

wl · [(D2
(v,m)(v,m)(f, h))(wr, wr)] ̸= 0 , wl · [Dn(f, h)] ̸= 0 (5.2)

where wl and wr denote the left and right null vectors of the Jacobian matrix J .

Without loss of generality, we assume that the (j× j) sub-matrix Dmh of the Jacobian

J has full rank j. This implies that the right null vector wr of J has a nonzero v-

component, i.e., the nullspace is not in v = 0.

Next we make use of the fact that the determinant of the Jacobian J can be calcu-

lated by

det(J) = det(Dmh) · det
(

∂

∂v
f −Dmf(Dmh)

−1 ∂

∂v
h

)
which follows from the block structure of J and the Leibniz formula for determinants.

By Assumption 2, det(J) = 0 along F . Since Dmh has full rank, det(Dmh) ̸= 0 along

F . Hence, the second determinant

det

(
∂

∂v
f −Dmf(Dmh)

−1 ∂

∂v
h

)
= 0

along F which implies that ∂
∂v
f −Dmf(Dmh)

−1 ∂
∂v
h = 0 along F , because it is a scalar.

This reflects the zero eigenvalue of J . Since det(Dmh) ̸= 0, it also follows from the

implicit function theorem that h(v,m, n, µ, ε) = 0 can be solved as m = M(v, n, µ, ε).

Note that in neural systems like the HH model, this functional relation is automatically

given by the quasi-steady functions mi = Mi(v, n, µ, ε) = mi,∞(v), i = 1, . . . , j, for the

fast gating variables. In the following we generalise a result that was presented in

Rubin and Wechselberger (2007).

Proposition 1 Given system (5.1) under Assumption 2, then there exists an (l + 1)-

dimensional centre-manifold W c in a neighbourhood of the fold F given as a graph
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m = M̂(v, n, µ, ε). System (5.1) reduced to W c has the form

dv

dt
= f(v, M̂(v, n, µ, ε), n, µ, ε), (5.3)

dn

dt
= εg(v, M̂(v, n, µ, ε), n, µ, ε).

Proof. Since the right null vector wr has a nonzero v-component it follows that the

one-dimensional centre manifold of the fast subsystem of (5.1) can be locally given as

a graph over the v-space. Thus the corresponding (l + 1)-dimensional centre manifold

of the full system (5.1) is also locally given as a graph m = M̂(v, n, µ, ε). Introducing

the nonlinear coordinate transformation m̂ = m− M̂(v, n, µ, ε) to system (5.1) gives

dv

dt
= f(v,m(v, m̂, n, µ, ε), n, µ, ε),

dm̂

dt
= h(v,m(v, m̂, n, µ, ε), n, µ, ε)

− ∂

∂v
M̂(v, n, µ, ε)f(v,m(v, m̂, n, µ, ε), n, µ, ε) (5.4)

−εDnM̂(v, n, µ, ε)g(v,m(v, m̂, n, µ, ε), n, µ, ε),

dn

dt
= εg(v,m(v, m̂, n, µ, ε), n, µ, ε),

where the (l + 1)-dimensional centre manifold is now aligned with m̂ = 0. Hence, the

flow on the (l + 1)-dimensional centre manifold is given by system (5.3). This proves

the assertion.

Note that, in general, M(v, n, µ, ε) ̸= M̂(v, n, µ, ε), i.e., solving h(v,m, n, µ, ε) = 0

for m = M(v, n, µ, ε) does not yield the centre manifold for any ε, including in the

singular limit when ε = 0. Thus, the dynamics of the reduced system obtained using

the quasi-steady state reduction is, in general, different to the dynamics of the full

system reduced to the centre manifold. The difference between M and M̂ is due to

two terms: an ε-dependent term that tends to zero in the singular limit and a term

that is due to the function f . This last term will vanish on the critical manifold (where

f = 0) and so on the critical manifold, M → M̂ as ε → 0.

In summary, we have shown that making a quasi-steady state approximation can

be mathematically justified if the critical manifold is normally hyperbolic or if it loses

normal hyperbolicity in a simple fold and we are concerned with dynamics near the

fold (Proposition 1). In these cases, quantitative changes may be introduced by the

approximation but the qualitative features of the dynamics will be preserved.

5.2.1 The Hodgkin-Huxley model

As an example of the quasi-steady state reduction, we look at the Hodgkin-Huxley

(HH) model again. This model is a four-dimensional system that in dimensionless
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form is given by

ε
dv

dt
= Ī −m3h(v − ĒNa)− ḡkn

4(v − Ēk)− ḡl(v − ĒL) ≡ S(v,m, n, h),

ε
dm

dt
=

1

τmtm(v)
(m∞(v)−m) ≡ M(v,m), (5.5)

dh

dt
=

1

τhth(v)
(h∞(v)− h) ≡ H(v, h),

dn

dt
=

1

τntn(v)
(n∞(v)− n) ≡ N(v, n),

where the fast variables are v and m (dimensionless membrane potential and activation

gate of the sodium channel) and the slow variables are h and n (inactivation gate of

the sodium channel and activation gate of the potassium channel). The quantity Ī is

the bifurcation parameter (and is proportional to the applied external current I), and

expressions for the functions m∞(v), n∞(v), h∞(v), etc. and the values of constants

used in (5.5) are given in Appendix A.

It was shown in Rubin and Wechselberger (2007) that the two-dimensional critical

manifold, S(v,m∞(v), n, h) = 0, is cubic shaped (in the physiologically relevant domain

of the phase space) with two fold-curves F±, attracting outer branches and a middle

branch of saddle type. Furthermore, the vector field has a three-dimensional centre

manifold m = M̂(v, n, h, ε) along each fold curve F±, which is attracting. Hence,

Proposition 1 can be applied in this example and the vector field reduced to the centre-

manifold near each fold F± is given by:

ε
dv

dt
= Ī − (M̂(v, n, h, ε))3h(v − ĒNa)− ḡkn

4(v − Ēk)− ḡl(v − ĒL),

dh

dt
=

1

τhth(v)
(h∞(v)− h), (5.6)

dn

dt
=

1

τntn(v)
(n∞(v)− n).

One of the classical reduction steps in the literature is to use the quasi-steady state

approximation m = m∞(v) rather than perform the full centre manifold reduction

m = M̂(v, n, h, ε). We have to expect quantitative changes in the reduced model

(i.e., in equations (5.6) with M̂(v, n, h, ε) replaced by m∞(v)) compared to the full HH

model (5.5), and such changes are in fact observed. For example, equations (5.5) have

a subcritical Hopf bifurcation for I = 9.8 µA/cm2 (i.e., Ī = 0.00082) while equations

(5.6) with M̂ = m∞ have a subcritical Hopf bifurcation for I = 7.8 µA/cm2 (i.e.,

Ī = 0.00065). We note that the Hopf bifurcation of equations (5.5) is in the vicinity of

the fold curve for sufficiently small ε, because in the singular limit the Hopf bifurcation

is a singular Hopf bifurcation (Rubin and Wechselberger, 2007, 2008). Thus the Hopf

bifurcation in equations (5.5) is in the neighbourhood of the fold where Proposition 1



68 Chapter 5 Model reduction and criticality of Hopf bifurcations

applies. Further discussion of this type of Hopf bifurcation is contained in Section 5.3.4.

5.3 Hopf bifurcation in slow-fast systems

In the previous section, it was shown that the quasi-steady state reduction technique

is mathematically justified in a slow-fast system if the critical manifold is normally

hyperbolic or if we are interested in the dynamics near a fold of the critical manifold.

In this section we show that the quasi-steady state reduction technique, when applied

to slow-fast systems with a Hopf bifurcation, may lead to changes in the criticality of

the Hopf bifurcation. From a dynamical systems point of view, it is well established

that misleading results may be obtained if a proper centre manifold reduction is not

performed prior to the calculation of criticality of a Hopf bifurcation (Guckenheimer

and Holmes, 1983; Kuznetsov, 1998). However, in the context of biophysical systems,

model variables often have a physiological meaning. Therefore, it is tempting to try to

avoid making coordinate transformations that transform the variables into physically

ambiguous combinations. (Transformations required for centre manifold reductions are

frequently of this type.) Unfortunately, without the proper centre manifold reduction

the criticality of a Hopf bifurcation in a model may not match the criticality of the

corresponding Hopf bifurcation in the model obtained after applying the reduction

technique and this has resulted in some erroneous conclusions in the literature about

the criticality of Hopf bifurcations in some biophysical models, as we will show in this

section.

We then go on to show that there can be problems with the use of geometric singular

perturbation theory in analyzing slow-fast models with Hopf bifurcations. In particular

we show that the criticality of a Hopf bifurcation in a full system may not match the

criticality of the corresponding Hopf bifurcation in the associated fast subsystem. This

last result is independent of whether a quasi-steady state assumption or other reduction

technique has been used prior to applying geometric singular perturbation theory. We

illustrate our results with numerical examples throughout the section.

5.3.1 Computing the criticality of a Hopf bifurcation

We first give a brief review of the general procedure for computing the criticality of

a Hopf bifurcation. The criticality of a Hopf bifurcation is determined by the sign of

the first Lyapunov coefficient of a system near a Hopf bifurcation (Kuznetsov, 1998;

Guckenheimer and Holmes, 1983). Specifically, consider a general system

dx

dt
= f(x;µ) ,
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with x ∈ Rn, µ ∈ R and with a Hopf bifurcation at x = 0, µ = µ̂. Write the Taylor

expansion of f(x; µ̂) at x = 0 as

f(x; µ̂) = Ax+
1

2
B(x, x) +

1

6
C(x, x, x) +O(∥x∥4),

where A is the Jacobian matrix evaluated at the bifurcation, and B(x, y) and C(x, y, z)

are multilinear functions with components

Bj(x, y) =
n∑

k,l=1

∂2fj(ξ; µ̂)

∂ξk∂ξl

∣∣∣∣
ξ=0

xkyl, (5.7)

Cj(x, y, z) =
n∑

k,l,m=1

∂3fj(ξ; µ̂)

∂ξk∂ξl∂ξm

∣∣∣∣
ξ=0

xkylzm, (5.8)

where j = 1, 2, . . . , n. Let q ∈ Cn be a complex eigenvector of A corresponding to the

eigenvalue iω, i.e., Aq = iωq. Let p be the associated adjoint eigenvector, i.e., p ∈ Cn

and ATp = −iωp, ⟨p, q⟩ = 1. Here ⟨p, q⟩ = p̄T q is the usual inner product in Cn. Then

the first Lyapunov coefficient for the system is defined as

l1 = 1
2ω
Re [⟨p, C(q, q, q̄)⟩ − 2⟨p,B(q, A−1B(q, q̄))⟩

+⟨p,B(q̄, (2iωIn − A)−1B(q, q))⟩] ,
(5.9)

where In is the n×n identity matrix. If l1 < 0 the Hopf bifurcation is supercritical and

produces periodic solutions that are stable on the three-dimensional extended centre

manifold corresponding to the Hopf bifurcation. If l1 > 0, the Hopf bifurcation is

subcritical and the associated periodic orbits are unstable within the three-dimensional

extended centre manifold.

5.3.2 Hopf bifurcation and model reduction

Here we are concerned with physiological models that are of the same form as (5.1)

except that v is now in R2 instead of in R. In particular, we are interested in models

that are described in dimensionless form by singularly perturbed systems with the form

dv

dt
= f(v,m, n, µ, ε),

dm

dt
= h(v,m, n, µ, ε), (5.10)

dn

dt
= εg(v,m, n, µ, ε),

where (v,m) ∈ R2 × Rj = Rk are the fast variables, n ∈ Rl are the slow variables, f ,

g and h are O(1) vector-valued functions, µ ∈ Rm are system parameters and ε ≪ 1 is
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the singular perturbation parameter reflecting the time scale separation. Without loss

of generality, we fix m − 1 parameters, and consider Hopf bifurcations that occur as

the other parameter, which we denote by ν, is varied.

Assumption 3 System (5.10) possesses a non-degenerate Hopf bifurcation at ν = ν̂ε.

Specifically, for sufficiently small ε:

(a) there exists a family of equilibria (v(ν, ε),m(ν, ε), n(ν, ε)), for ν in a neighbour-

hood of ν̂ε, such that the Jacobian matrix has a pair of eigenvalues, λ1(ν) and

λ2(ν), with λ1(ν̂ε) = λ̄2(ν̂ε) = iω where ω = O(1), while the other (k − 2) eigen-

values associated with the fast components of the vector field all have real parts

of order O(1), which we assume to be negative;

(b) d
dν
Re (λ1)|ν=ν̂ε = O(1) ̸= 0;

(c) l1(ε) = O(1) ̸= 0, where l1 is the first Lyapunov coefficient associated with the

Hopf bifurcation;

(d) the bifurcation parameter ν persists in the singular limit ε → 0, i.e., ν appears

explicitly in the fast subsystem.

The condition ω = O(1) ensures that the Hopf bifurcation is in the fast variables.

Thus there is a Hopf bifurcation for ν = ν̂0 in the singular limit system of (5.10), the

fast subsystem. We assume, without loss of generality, that the complex eigenvector

q ∈ Ck of the eigenvalue iω in the fast subsystem of (5.10) has nonzero entries in

the first two fast components of the vector field, v ∈ R2, i.e., we associate the Hopf

bifurcation with the direction of v.

A natural first step in determining the criticality of the Hopf bifurcation in the

full system (5.10) might be to reduce the dimension of the model by setting the fast

gating variables m ∈ Rj to their quasi-steady state as described in section 5.2. Since

Dmh is invertible we can invoke the implicit function theorem and solve h = 0 for

m = M(v, n, µ, ε). Again, we can introduce a coordinate change m̂ = m−M(v, n, µ, ε).

However, this process does not always correspond to a proper centre manifold reduction

as in the case of a folded critical manifold. In general, one also has to introduce new

coordinates v̂ ∈ R2 to align the centre manifold with m̂ = 0. Hence, a reduction of

the fast gating variables m alone typically changes the first Lyapunov coefficient which

might change the criticality of the Hopf bifurcation, so that the Hopf bifurcation in the

full system is subcritical while the Hopf bifurcation in the lower-dimensional system is

supercritical (or vice versa). This effect is independent of whether the Hopf bifurcation

involves fast or slow variables.
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The Chay-Keizer model

An example in which we get such a change of criticality of Hopf bifurcation is the Chay-

Keizer model of a pancreatic β-cell (Chay and Keizer, 1983). This minimal biophysical

model was originally developed as a system of five ordinary differential equations to

describe the bursting behaviour of a β-cell :

Cm
dV

dt
= −ICa(V )− (ḡKn

4 +
ḡK,Cac

Kd + c
)(V − VK)− ḡL(V − VL) + Iapp,

dn

dt
= an(V + V ∗)(1− n)− bn(V + V ∗)n,

dm

dt
= am(V + V ′)(1−m)− bm(V + V ′)m, (5.11)

dh

dt
= ah(V + V ′)(1− h)− bh(V + V ′)h,

dc

dt
= f(−k1ICa(V )− kcc),

where V represents the membrane potential of a β cell, n the activation gate of a potas-

sium channel, m and h the activation and inactivation gates of a calcium channel, and c

the cytoplasmic concentration of free calcium. The quantity ICa(V ) = ḡCam
3h(V −VCa)

is the calcium current and Iapp is an applied external current and is also the bifurcation

parameter. The other parameter values and the functions an, bn, etc. are specified in

Appendix A. A straightforward numerical bifurcation analysis of system (5.11) using

AUTO shows that there are two Hopf bifurcations, with a subcritical Hopf bifurcation

at Iapp ≈ 0.4419, as shown in Fig. 5.1.

On the other hand, in Rinzel and Lee (1986), the authors simplify the five-dimensional

Chay-Keizer model by setting the gating variables m and h equal to their quasi-steady

state values, i.e., they choose

m =
am(V + V ′)

am(V + V ′) + bm(V + V ′)
:= m∞(V ),

h =
ah(V + V ′)

ah(V + V ′) + bh(V + V ′)
:= h∞(V ).

The reduction is based on the observation that these gates m and h have fast kinet-

ics. Numerical bifurcation analysis of the corresponding three-dimensional system that

results from this process reveals that this reduced model has a supercritical Hopf bi-

furcation at a nearby parameter value at Iapp ≈ 0.4429. Thus, the reduction of the

dimension of this system by equating these gating variables to their equilibrium values

changes the criticality of the Hopf bifurcation; if an aim of analysis is to determine the

criticality of Hopf bifurcations, then this type of reduction should not be attempted.



72 Chapter 5 Model reduction and criticality of Hopf bifurcations

10
0

10
1−50

−40

−30

−20

−10

0

10

0.44 0.441 0.442 0.443 0.444
−50

−40

−30

−20

−10

0

10

vo
lt
ag

e
(m

V
)

vo
lt
ag

e
(m

V
)

(a)

applied current (mA)applied current (mA)

(b)

Figure 5.1: Bifurcation diagrams for two versions of the Chay-Keizer model: the full five-
dimensional model, equations (5.11) and the reduced three-dimensional model obtained by
setting m and h equal to their quasi-steady state values. The position of the equilibrium
solutions is the same in both models and is indicated by the pink dot-dash curve. The black
dashed curve shows the maximum voltage attained on a branch of periodic solutions in the full
model, while the red solid curve shows the maximum voltage attained on the corresponding
branch of periodic orbits in the reduced model. Panel (b) shows an enlargement of part of
Panel (a), near the left pair of Hopf bifurcations.

We note that the widely used three-dimensional model captures the most important

dynamical feature of pancreatic β-cells, namely their bursting behaviour.

Fig. 5.1 also shows that both versions of the model have a second Hopf bifurcation

at much higher applied current. In both cases this is a supercritical bifurcation but

the value of the parameter at the bifurcation differs significantly between the models.

Thus, the model reduction used also has the effect of making a significant change to the

amplitude of the oscillations and the range of values of the applied current for which

the oscillations occur.

5.3.3 Hopf bifurcation in the full slow-fast system versus the

fast subsystem

A second potential trap in determining the criticality of a Hopf bifurcation in system

(5.10) comes when we try to apply geometric singular perturbation theory. From

Assumption 3 it follows that a Hopf bifurcation in the full system will persist in the

singular limit as a Hopf bifurcation in the fast subsystem. It might be tempting to

proceed by determining the criticality of the Hopf bifurcation in the fast subsystem and

then asserting that the Hopf bifurcation in the slow-fast system will be of the same type.

However, the existence of a Hopf bifurcation satisfying Assumption 3 automatically

implies that the critical manifold of the full system is not normally hyperbolic near

the bifurcation, and, hence, that Fenichel theory (Fenichel, 1979) is not applicable. In

this case, there is no guarantee that complete information about bifurcations in the
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full system can be obtained from analysis of the fast subsystem alone.

Let us revisit the Chay-Keizer model (5.11). If we assume that c is a slow variable

and (v,m, h, n) are fast variables, as is usually done in the literature, then the fast

subsystem is four-dimensional. Numerical bifurcation analysis of the fast subsystem

shows that it has a supercritical Hopf bifurcation at Iapp ≈ 0.4427. Again, the criticality

of the Hopf bifurcation has changed: the criticality of the Hopf bifurcation in the fast

subsystem is not the same as the criticality of the corresponding Hopf bifurcation in

the full system. At first glance, this result seems counterintuitive since one does not

expect that the small (O(ε)) terms of the slow c equation in (5.11) play an important

role in the calculation of the first Lyapunov coefficient.

In the following, we show how these small O(ε) terms can be significant in deter-

mining the criticality of a Hopf bifurcation in a slow-fast system. In particular, we

show that calculating the first Lyapunov coefficient l1(ε) of a Hopf bifurcation in the

full system and then taking the limit ε → 0 does not give the Lyapunov coefficient l̂1

of the Hopf bifurcation in the corresponding fast subsystem, i.e., in general,

lim
ε→0

l1(ε) ̸= l̂1 . (5.12)

First Lyapunov coefficient for a three-dimensional problem

Consider the singular perturbed system of equations

dx

dt
= f1(x, y, z;µ, ε),

dy

dt
= f2(x, y, z;µ, ε), (5.13)

dz

dt
= εg(x, y, z;µ, ε),

where x, y, z ∈ R, µ ∈ R is the bifurcation parameter, ε is a small parameter, and f1,

f2 and g are O(1) smooth functions. Then x and y are fast variables and z is a slow

variable. Suppose that Assumption 3 is fulfilled for system (5.13) – thus system (5.13)

and the corresponding fast subsystem both have Hopf bifurcations. Furthermore, we

assume that (0, 0, 0; µ̂0, 0) is the Hopf point of the fast subsystem. Note that the po-

sition of the Hopf point in phase and parameter space can vary with ε, by O(ε), and

so the Hopf bifurcation value µ = µ̂ε of the full system is, in general, different to the

bifurcation value µ = µ̂0 of the fast subsystem. More importantly, we show that the

O(ε) terms in the slow equation can produce an O(1) change in the first Lyapunov co-

efficient which in turn may lead to a change of the criticality of the Hopf bifurcation in

the full system compared with the criticality of the associated Hopf bifurcation in the

fast subsystem. This means that analysis of the fast subsystem alone is not sufficient

to determine the dynamics associated with the Hopf bifurcation.
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Since the Hopf point of the fast subsystem is (0, 0, 0; µ̂0, 0), it is straightforward to

use the formulae in section 5.3.1 to compute the first Lyapunov coefficient (5.9) for the

Hopf bifurcation in the fast subsystem for (5.13), i.e., for the system

dx

dt
= f1(x, y, z;µ, 0), (5.14)

dy

dt
= f2(x, y, z;µ, 0).

It is convenient for what follows to introduce some notation. The Jacobian matrix, Aa,

at the Hopf point, and its inverse A−1
a are

Aa =

(
a11 a12

a21 a22

)
, A−1

a =
1

ω2
a

(
a22 −a12

−a21 a11

)
,

with a11+a22 = 0 and a11a22−a21a12 ≡ ω2
a > 0. Let qa = (q1, q2) be a (right) eigenvector

of Aa corresponding to the eigenvalue iωa and let pa = (p1, p2) be the corresponding

adjoint (or left) eigenvector. Then, defining Ba and Ca as in section 5.3.1 (with the

subscript merely denoting that they are the B and C multi-linear forms corresponding

to the same system as Aa), the first Lyapunov coefficient (5.9) is

l̂1a =
1

2ωa

Re
[
⟨pa, Ca(qa, qa, q̄a)⟩ − 2⟨pa, Ba(qa, A

−1
a Ba(qa, q̄a))⟩

+ ⟨pa, Ba(q̄a, (2iωaI2 − Aa)
−1Ba(qa, qa))⟩

]
.

We now return to the full system (5.13). The Jacobian matrix at the Hopf point

will have the form

Ac =

 a11 +O(ε) a12 +O(ε) a13

a21 +O(ε) a22 +O(ε) a23

εa31 εa32 εa33

 ,

where the matrix has a purely imaginary eigenvalue iωc with ω2
c = ω2

a + O(ε). The

inverse matrix A−1
c is given by

A−1
c =

O(1)

ω2
c

 a22 +O(1) −a12 +O(1) O(ε−1)

−a21 +O(1) a11 +O(1) O(ε−1)

(a31 + k1a32)O(1) (a32 + k2a31)O(1) O(ε−1)

 ,

where k1 and k2 are O(1) coefficients. We note that the position of the Hopf bifurcation
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point can vary with ε and thus the entries in the corresponding (2×2)-submatrix of

the Jacobian Ac may differ (by at most O(ε)) from their values in the Jacobian Aa of

the fast subsystem.

A (right) eigenvector of Ac corresponding to the eigenvalue iωc is given by qc =

(q1 + O(ε), q2 + O(ε), O(ε)) with adjoint (or left) eigenvector pc = (p1 + O(ε), p2 +

O(ε), p3 + O(ε)). Note that p3 = O(1), since it satisfies a13p1 + a23p2 + iωcp3 = 0 to

leading order.

Our aim is to calculate the difference of the first Lyapunov coefficients for the full

and fast subsystems, i.e., l1c(ε)− l̂1a. We have Cc(qc, qc, q̄c) = (O(1), O(1), O(ε)) which

gives

⟨pa, Ca(qa, qa, q̄a)⟩ − ⟨pc, Cc(qc, qc, q̄c)⟩ = O(ε) . (5.15)

We also have Bc(qc, q̄c) = (O(1), O(1), O(ε)) and A−1
c Bc(qc, q̄c) = (O(1), O(1), O(1))

from which follows that

⟨pa, Ba(qa, A
−1
a Ba(qa, q̄a))⟩ − ⟨pc, Bc(qc, A

−1
c Bc(qc, q̄c))⟩ = O(1) . (5.16)

Similarly, we obtain that

⟨pa, Ba(q̄a, (2iωaI2 − Aa)
−1Ba(qa, qa))⟩

−⟨pc, Bc(q̄c, (2iωcI3 − Ac)
−1Bc(qc, qc))⟩ = O(1).

(5.17)

Combining all these results, we find that

l1c(ε)− l̂1a = O(1) . (5.18)

Thus, l1c may not tend to l̂1a as ε → 0. In other words, an O(ε) perturbation to

equations (5.13) can yield an O(1) difference in the first Lyapunov coefficient, which

may induce a sign change.

It is worth having a closer look to see what causes thisO(1) difference in (5.18). Note

that (5.15) only contributes an O(ε) perturbation to the Lyapunov coefficient. Thus

third order terms in (x, y, z) of the function g have no influence on the result. On the

other hand, linear and second order terms in (x, y, z) of the function g are responsible

for the O(1) difference in (5.16) and (5.17). To be more precise, the quantities ∂g
∂x

= a31,
∂g
∂y

= a32,
∂2g
∂x2 ,

∂2g
∂x∂y

and ∂2g
∂y2

evaluated at the Hopf bifurcation are responsible for this

discrepancy. So, if these five terms do not exist, or vanish at the Hopf bifurcation, then

the terms (5.16) and (5.17) are of O(ε) and the Lyapunov coefficient l1c(ε) is an O(ε)

perturbation of l̂1a.

These results have significant consequences for computation of the criticality of the
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α ks kf kp φ1 φ2 τ γ
0.05 s−1 20.0 s−1 20.0 s−1 20.0 s−1 2.0 µM 1.0 µM 2.0 s−1 5.0

Table 5.1: Parameters of the simplified Atri model, equations (5.19).

Hopf bifurcation for (5.13). Specifically, the O(1) difference found above may result

in a sign change of the first Lyapunov coefficient, so that the Hopf bifurcation in the

fast subsystem may be supercritical while the Hopf bifurcation in the full system is

subcritical (or vice versa). Thus, we see that, in general, it is not possible to predict the

criticality of a Hopf bifurcation in a slow-fast system with two or more fast variables in

the limit ε → 0 simply by observing the criticality of the associated Hopf bifurcation

in the fast subsystem. However, in the special case that the component of the vector

field associated with the slow variable is sufficiently aligned with the centre manifold

of the full system (5.13) then there is no such difficulty; the criticality of the Hopf

bifurcations in the ε = 0 limit of the full system and in the fast subsystem will be the

same.

Application to a model of intracellular calcium dynamics

To see how these results apply to a specific model with two fast and one slow variables,

we consider a simplified version of a model of calcium oscillations (Atri et al., 1993).

The formulation of this model is quite similar to equations (3.2) considered in chapter

3, except that we also include a dynamical variable n to describe the variation of

the fraction of IP3 receptors that have not been inactivated by calcium and omit the

consideration of the calcium diffusion term by setting the diffusion coefficient D = 0.

Specifically, the calcium equations studied here have the following form:

dc

dt
=

(
α + kf

c2

c2 + φ2
1

n

)
(ct − (γ + 1)c)− ksc+ ε(Jin − kpc),

dn

dt
=

1

τ

(
φ2

φ2 + c
− n

)
, (5.19)

dct
dt

= ε(Jin − kpc),

where values of all the system parameters are given in Table 5.1. In this model, c

represents the concentration of free calcium in the cytoplasm, ct is the total number of

moles of calcium in the cell, divided by the cytoplasmic volume, and n is the proportion

of IP3 receptors that have not been inactivated by calcium.

The original Atri model is known to be a multiple time scale system, and some

results about the original version of the model have been established with the help of
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Figure 5.2: Partial bifurcation diagram for the simplified Atri model, equations (5.19) with
various values of ε and other parameter values as in Table 5.1. The pink solid curve shows the
position of the unique equilibrium of the model. This equilibrium has two Hopf bifurcations
(labelled HB), with the equilibrium being of saddle-type for parameter values between the
two Hopf bifurcations and being stable otherwise. The remaining curves show the maximum
c-values attained by the periodic orbits created in the Hopf bifurcations, for three choices of ε,
i.e., ε = 10−4, ε = 10−2 and ε = 0 (fast subsystem) on the red thick dashed, blue dotted and
black thin solid curves, respectively. Panel (b) shows an enlargement of the marked rectangle
in panel (a). Note that the left-most Hopf bifurcation in panel (a) is subcritical when ε = 0
but supercritical for all ε > 0.

geometric singular perturbation theory to explain the dynamics observed in the model

(Domijan et al., 2006; Harvey et al., 2010, 2011). Our simplified version of the Atri

model is also a multiple time scale system. Specifically, for the values of the parameters

specified in Table 5.1, the right hand sides of the dc
dt
, dn

dt
and dct

dt
equations, respectively,

are O(1), O(1) and O(ε), respectively, and so the model has two fast variables and one

slow variable when ε ≪ 1.

Part of the bifurcation diagram for this model is shown in Fig. 5.2, for three different

choices of ε. The model has a unique equilibrium when ε ̸= 0, the position of which

does not depend on ε. This equilibrium has two Hopf bifurcations at parameter values

that depend on ε; we are interested in the criticality of the left-most Hopf bifurcation

for Jin ≈ 5.

As can be seen in Fig. 5.2, the left-most Hopf bifurcation for this model is subcritical

in the fast subsystem but supercritical for the full problem for the two non-zero choices

of ε shown. As shown in Fig. 5.3, the left-most Hopf bifurcation is in fact supercritical

(l1 < 0) for all choices of small ε > 0 and subcritical (l1 > 0) at ε = 0. Inspection of

equations (5.19) shows that the differential equation for the slow variable ct contains a

term that is linear in c, one of the fast variables, and this feature is not changed by the

transformation required to shift the branch of equilibria to the origin (which is linear

for the c component). As discussed at the end of section 5.3.3, we can thus expect

an O(1) difference between the first Lyapunov coefficients for the Hopf bifurcations in
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0 0.05 0.1

−4

0

4

l1

ε

Figure 5.3: The first Lyapunov coefficient of the left-most Hopf bifurcation plotted as a
function of ε for equations (5.19) with parameter values as in Table. 5.1. The blue solid curve
shows the first Lyapunov coefficient for 0 < ε < 0.1, and the red large dot marks the first
Lyapunov coefficient for ε = 0.

the fast subsystem and the full system in the model. Therefore, there is no reason to

expect the criticality of the Hopf bifurcations to be the same for the full system and

the fast subsystem. The Chay-Keizer model discussed above provides another example

of a specific model with the same difficulty.

5.3.4 Hopf bifurcation involving both fast and slow variables

In a range of biophysical systems, including Hodgkin-Huxley type neuronal models such

as system (5.5) and a variety of calcium models such as those discussed in Harvey et al.

(2010), Hopf bifurcations in the full system are found in the neighbourhood of a fold of

the critical manifold S0, as defined in Assumption 2. In such cases, neither the fast nor

slow subsystem has a Hopf bifurcation; instead the Hopf bifurcation involves both fast

and slow variables. This implies that the complex conjugate eigenvalues associated with

the Hopf bifurcation are λ1 and λ2 with λ1(µ̂, ε) = λ̄2(µ̂, ε) = iω, where ω = O(
√
ε)

and so the Hopf bifurcation vanishes in the singular limit. This special type of Hopf

bifurcation is known as a singular Hopf bifurcation (Baer and Erneux, 1986; Braaksma,

1998; Guckenheimer, 2008) and it is closely related to the notion of canard explosion

and type II folded saddle-node singularities in geometric singular perturbation theory;

we refer the reader to the literature on this subject (Krupa et al., 1997; Rubin and

Wechselberger, 2007). Since the singular Hopf bifurcation vanishes in the singular

limit, it is mandatory to calculate the criticality of the Hopf bifurcation for ε ̸= 0 and

we do not run into the same problem as in the previous case study. We are not tempted

to use the first Lyapunov coefficient from the singular limit to predict the value of l1

in the full system, since it is zero in the singular limit and clearly non-zero in the full
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system.

5.3.5 Hopf bifurcation in the slow subsystem

This case of Hopf bifurcation occurring in the slow subsystem is trouble free for a sin-

gularly perturbed system under Assumption 1 that the critical manifold S0 is normally

hyperbolic. In this case, Fenichel theory (Fenichel, 1979) applies and the slow flow on

the slow manifold Sε is a regular perturbation of the slow subsystem, a remarkable

insight from Fenichel’s work. It implies that if we have a Hopf bifurcation in the slow

subsystem then it persists generically as a Hopf bifurcation in the full problem. Fur-

thermore, the first Lyapunov coefficient l1(ε) is a regular perturbation of the singular

limit value l1(0), i.e,

lim
ε→0

l1(ε) = l1(0) . (5.20)

Thus, criticality of the Hopf bifurcation in the full system is then the same as criticality

of the Hopf bifurcation in the reduced problem, the slow subsystem.

On the other hand, if the Assumption 1 is not satisfied, the critical manifold loses

normal hyperbolicity at the Hopf bifurcation then we are dealing with a more degener-

ate bifurcation: a “fold-Hopf”-type bifurcation in the case where the critical manifold

is folded and a “Hopf-Hopf”-type bifurcation in the case of a simultaneous Hopf bifur-

cation in the fast subsystem. These cases are outside of the scope of this thesis and we

do not consider them further.

5.4 Summary

In this chapter, we have discussed some difficulties that may arise when computing the

criticality of Hopf bifurcations in slow-fast systems. We have identified two potential

problems. The first problem may occur in neural type models that have fast gating

variables. In biophysical systems of this type, a typical first step in the model analysis

is to reduce the dimension of the model by making a quasi-steady state assumption

and replacing the differential equations for one or more of the fast gating variables by

the steady state values. This technique is widely used in the analysis of biophysical

models, and is believed to preserve many important qualitative features of the dynam-

ics. However, we have shown that this reduction technique can change the criticality

of Hopf bifurcations in the system, which means that a subcritical Hopf bifurcation in

the full system becomes a supercritical Hopf bifurcation in the reduced system, or vice

versa. If the purpose of analysis is to determine the nature of the onset of oscillations,

it may not be advisable to perform a quasi-steady state reduction.



80 Chapter 5 Model reduction and criticality of Hopf bifurcations

We note that a change in the criticality of the Hopf bifurcation alone may not

make a significant change to the overall observed dynamics. For instance, in the Chay-

Keizer model (5.11) discussed in section 5.3.2, the branch of periodic solutions near

the Hopf bifurcation is very steep, in both the full system and the reduced system

obtained by applying a quasi-steady state assumption (see Fig. 5.1). This means that

the onset of oscillations occurs at almost the same parameter value in both the full

system and the reduced system, despite the criticalities of the Hopf bifurcations being

different. However, we also remark that the maximum amplitude of the oscillations is

very different in the two models, as is the overall parameter range for which oscillations

exist. Despite all these difference, the reduced model still captures the interesting

physiological feature, the potential bursting behaviour, of pancreatic β-cells. Therefore,

the widely used reduced model is quite helpful to analyze and understand potential

bursting dynamics of β-cells.

The second potential problem we discussed may arise if we attempt to use geomet-

ric singular perturbation theory in the analysis of a model with a Hopf bifurcation.

Geometric singular perturbation theory aims to use lower dimensional fast and slow

subsystems to make predictions about the dynamics in the full system. We have shown

that when a Hopf bifurcation in a full slow-fast system has a corresponding Hopf bi-

furcation in the fast subsystem, (i.e., the equilibrium has eigenvalues λ = ±iω with

ω = O(1)) the criticality can be different between the full system and the fast subsys-

tem. This means that the fast subsystem cannot be used to make predictions about the

criticality of the Hopf bifurcation in the full system. In some biophysical models, the

fast subsystem corresponds to a physically relevant state of the system. For example,

in models of intracellular calcium dynamics, the fast subsystem often can be thought

of a modeling the cell with no flux across the cell membrane. In such a situation, it is

tempting to presume that the dynamics of the fast subsystem will match the dynamics

of the full model in the limit that we approach the fast subsystem. We have shown

that this is not the case, at least for the criticality of Hopf bifurcations.

There are no such difficulties in computing the criticality of Hopf bifurcations that

involve slow variables. We discussed two cases. The first case occurs when the Hopf

bifurcation in the full model is caused by the interaction of a slow and a fast variable.

The Hopf bifurcation is a singular Hopf, i.e., the relevant eigenvalues for the Hopf

bifurcation are λ = ±iω with ω = O(
√
ε). In this case, the Hopf bifurcation vanishes

in the singular limit, and one is not tempted to deduce the criticality of the Hopf

bifurcation in the full problem from the dynamics of the fast subsystem or the reduced

problem. Alternatively, if the critical manifold is normally hyperbolic and there is a

Hopf bifurcation in the slow subsystem (i.e. λ = ±iω with ω = O(ε)), the criticality

of the Hopf bifurcation will be the same in the full system and the slow subsystem.

In recent work, Guckenheimer and Osinga (Guckenheimer and Osinga, 2012) inves-
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tigate two slow-fast systems in which the criticality of a Hopf bifurcation in the full

system does not match the criticality of the corresponding Hopf bifurcation in the fast

subsystem. They show that in each case there is a nearby torus bifurcation in the

slow-fast system and that the family of periodic orbits in the full system is O(ε) close

to the family of periodic orbits in the layer problem, regardless of the criticality of the

Hopf bifurcation. A practical consequence of their work is that observation of a torus

bifurcation close to a Hopf bifurcation in a slow-fast system is a possible indication

that the full system and the corresponding fast subsystem will have Hopf bifurcations

of different criticalities, so extra care should be taken in the analysis of the model with

this kind of bifurcation diagram.

A wide variety of biophysical models are of the types that are potentially affected by

the problems we have discussed in this chapter, including Hodgkin-Huxley type neural

models and many models of intracellular calcium dynamics. One specific example of

different criticalities of Hopf bifurcations in the full system and in the corresponding

fast subsystem of a calcium model was shown in chapter 3. In light of our results,

it seems advisable that care be taken when attempting to use either quasi-steady

state reductions or geometric singular perturbation theory for the analysis of slow-

fast systems with Hopf bifurcations.
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Chapter 6

Using Lin’s method to compute and

continue global bifurcations

Global objects, such as stable and unstable manifolds, play a very important part in

determining the dynamics of a system (Kuznetsov, 1998; Guckenheimer and Holmes,

1983). Global bifurcations involving saddle periodic orbits recently have been rec-

ognized as being involved in various new types of organizing centres for complicated

dynamics (Krauskopf and Riess, 2008; Doedel et al., 2008, 2009). The main emphasis

in these papers has been on heteroclinic connections between saddle equilibria and

saddle periodic orbits, called EtoP orbits for short, which can be found in vector fields

in R3. Thanks to the development of dedicated numerical techniques, EtoP orbits have

been found in a number of three-dimensional model vector fields arising in applications

(Aguirre et al., 2011; Krauskopf and Riess, 2008; Doedel et al., 2008, 2009). In chapter

2, we mentioned that a so-called EP1t point is in fact an intersection point between

the loci of two global bifurcations involving saddle periodic orbits, namely an EtoP

heteroclinic connection and a PtoE heteroclinic tangency. We argued in chapter 2 that

an EP1t point is one of the organizing centres of the global dynamics of the FHN

model, and that, locating the global objects helps us to obtain a clearer understanding

of the complex bifurcation structure of the FHN model.

Developing robust algorithms to calculate different types of global objects in a

dynamical system has been an active research field for a long time (Beyn, 1990; Doedel

and Friedman, 1989; Friedman and Doedel, 1993; Champneys et al., 1996). Recently,

in Krauskopf and Riess (2008), the authors developed an innovative approach to find

an EtoP connection in vector fields. The key idea of this approach is to apply Lin’s

theory (Lin, 1990) to formulate a well-posed boundary value problem. The solution to

this boundary value problem corresponds to an EtoP connection. Furthermore, with

one EtoP connection obtained with the Lin’s approach as an initial condition, a curve

of EtoP connections can be found by continuing in system parameters.
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Various numerical algorithms for finding and continuing EtoP connections have

been developed with different approaches, see e.g., Dieci and Rebaza (2004) and Doedel

et al. (2008). An advantage of Lin’s approach is that this algorithm can be applied to

find more complicated global objects. For instance, some new features of the bifurcation

set (e.g., EtoP bifurcations and EP1t bifurcation point) of the FHN model shown in

chapter 2 were calculated with this algorithm.

In this chapter we show details of how the algorithm developed by Krauskopf and

Riess, based on Lin’s approach, can be used to find and continue a codimension-one

heteroclinic cycle between two periodic orbits (PtoP) in a vector field. A homoclinic

orbit from a periodic orbit to itself is an example of a PtoP connection, but is generically

structurally stable in a phase space of any dimension. Until now, no example of a

concrete vector field with a non-structurally stable PtoP connection was known. We

present a first concrete example of a PtoP heteroclinic cycle of codimension one between

two different saddle periodic orbits; we found this example in a four-dimensional vector

field model of intracellular calcium dynamics. This calcium model is a variant of the

prototypical calcium model we considered in chapter 3. We first show that the model is

a good candidate system for the existence of such a PtoP cycle and then demonstrate

how a PtoP cycle can be detected and continued in system parameters using a numerical

setup that is based on Lin’s method.

The chapter is structured as follows. In section 6.1, we provide the definition of a

PtoP orbit of codimension d and then discuss the specific example of a codimension-one

PtoP heteroclinic cycle in R4; we also briefly discuss the Lin’s method setup for finding

PtoP orbits. In section 6.2, we introduce the four-dimensional prototypical model for

intracellular calcium dynamics. We first use a partial bifurcation set to demonstrate

that this model has the geometric elements required for the existence of a codimension-

one PtoP heteroclinic cycle. The codimension-one PtoP connection is then computed

and the codimension-zero PtoP connection is also found; the codimension-one PtoP

cycle is then continued as a curve in two system parameters. Section 6.3 shows how

PtoP homoclinic orbits and saddle periodic orbits can be found numerically near the

codimension-one PtoP cycle. We summarize our findings in section 6.4.

The work presented in this chapter was done in collaboration with B. Krauskopf

and V. Kirk and a manuscript has been accepted for publication (Zhang et al., 2012).

6.1 Introduction to Lin’s method

We briefly introduce some important ideas about the Lin’s method. First, we introduce

some notation, similar to that used in Krauskopf and Riess (2008). We consider a
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general autonomous vector field denoted by

dx

dt
= f(x, λ), (6.1)

where

f : Rn × Rm → Rn (6.2)

is sufficiently smooth; we assume that the function f is at least twice differentiable.

Here Rn is the phase space of (6.1) and the parameter λ is a vector in Rm. We denote

the flow of (6.1) by ϕt. Note that all objects involved (equilibria, periodic orbits, their

invariant manifolds, etc.) depend on the parameter λ, but we generally do not indicate

this explicitly in the notation. The unstable and stable manifolds of a periodic orbit Γ

are denoted as

W u(Γ) := {x ∈ Rn | lim
t→−∞

dist(ϕt(x),Γ) = 0}, (6.3)

and

W s(Γ) := {x ∈ Rn | lim
t→∞

dist(ϕt(x),Γ) = 0}, (6.4)

respectively.

6.1.1 PtoP connection of codimension d

We consider here a heteroclinic connecting orbit Q of system (6.1), between two hyper-

bolic periodic orbits Γ1 and Γ2, that exists for a given value of the parameter λ = λ∗.

Specifically, we assume that the connection is such that the flow is from Γ2 to Γ1,

meaning that the orbit Q belong to the intersection between the unstable manifold of

Γ2 and the stable manifold of Γ1 (Q ∈ W u(Γ2) ∩W s(Γ1) ⊂ Rn); if necessary, this can

be achieved by reversing time in system (6.1). We further assume that the following

conditions are satisfied.

(C1) The periodic orbit Γ1 is hyperbolic and its stable manifoldW s(Γ1) is of dimension

k ≥ 2.

(C2) The periodic orbit Γ2 is hyperbolic and its unstable manifold W u(Γ2) is of di-

mension l ≥ 2.

(C3) k + l ≤ n.

(C4) The connecting orbit Q at λ = λ∗ is isolated.
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(C5) The λ-dependent families of W u(Γ2) and W s(Γ1) intersect transversely in the

product Rn+m of phase space and parameter space.

Note that the conditions (C1)–(C5) ensure that the only source of codimension of the

PtoP connection is due to the dimensions of the two global manifolds W u(Γ2) and

W s(Γ1), so that Q ∈ W u(Γ2) ∩ W s(Γ1) ⊂ Rn has codimension d := n + 1 − k − l.

Note also that d ≥ 1 due to (C3). The PtoP connection Q can be found along an

(m−d)-dimensional subspace of the m-dimensional parameter region Λ. In particular,

one encounters the PtoP connection Q generically for m ≥ d. If the condition (C3) is

not satisfied, i.e., k + l > n, the PtoP connection Q is structurally stable, and we say

that Q is of codimension zero.

There is an important difference with the case of EtoP connections. One may find

codimension-one EtoP orbits in the phase space R3 when the dimension of the unstable

manifold W u(p) of the equilibrium p is one. A well-known example of such an EtoP

connection was found in the Lorenz system (Aguirre et al., 2011; Doedel et al., 2006,

2008; Krauskopf and Riess, 2008), and other examples of EtoP connections can also be

found in Dieci and Rebaza (2004) and Pampel (2001). For PtoP connections, on the

other hand, the dimensions k and l of W u(Γ2) and W s(Γ1), respectively, are at least

two, so that a PtoP connection Q with codimension d ≥ 1 can be found in the phase

space Rn only for n ≥ 4. It also requires that Γ1 ̸= Γ2, that is, the PtoP connection is a

heteroclinic orbit between two different periodic orbits. Note that any homoclinic PtoP

connection of a periodic orbit Γ = Γ1 = Γ2 is of codimension zero for any dimension n

of the phase space, because the dimensions of W u(Γ) and W s(Γ) for any Γ ∈ Rn add

up to n+ 1.

6.1.2 Codimension-one PtoP connection in R4

We would like to find such a codimension-one PtoP heteroclinic cycle Q in a four-

dimensional system, since it has the lowest possible phase space in which Q could

exist. The first task is to come up with a strategy to identify the position where one

might find two periodic orbits Γ1 and Γ2 with the required properties in the parameter

space. We propose here to look in a two-dimensional parameter plane near a curve of

saddle-node bifurcations of periodic orbits that creates Γ1 and Γ2 as saddle periodic

orbits in R4. It is required that Γ1 has a three-dimensional unstable manifold W u(Γ1)

and a two-dimensional stable manifold W s(Γ1), while Γ2 has a three-dimensional stable

manifold W s(Γ2) and a two-dimensional unstable manifold W u(Γ2). Furthermore,

the two-dimensional manifold Q0 = W u(Γ1) ∩ W s(Γ2) is a topological cylinder that

is bounded by Γ1 and Γ2 in the phase space. In other words, Γ1 and Γ2 have the

correct local properties as listed in (C1)–(C5). The main question is whether the two-

dimensional manifolds W u(Γ2) and W s(Γ1) are close enough to each other, so that they
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may pass through each other along a suitable path in the two-dimensional parameter

space. If they do then the codimension-one PtoP connection Q1 also exists and the

heteroclinic cycle is complete at the corresponding parameter values λ∗ along a curve

in the parameter plane.

6.1.3 Finding a PtoP connection with Lin’s method

The mathematical setup of Lin’s method for a PtoP connecting orbit Q is a direct

generalization of the corresponding setup for EtoP orbits except that the role of the

saddle equilibrium is taken by another saddle periodic orbit. Consider a cross section

Σ (an (n − 1)-dimensional submanifold) that intersects Q transversely and separates

Γ1 and Γ2 in the phase space. In many situations such a section can be found in the

convenient linear form

Σ = {x ∈ Rn | ⟨x− pΣ, nΣ⟩ = 0}, (6.5)

where pΣ is a point in Σ and nΣ is a fixed normal vector to the section Σ. Note that

transversality of the flow of (6.1) to Σ can be assured in practice at least locally near the

orbit Q, even when Q is not yet known. We now consider the parameter neighborhood

Λ of λ∗ and define for all λ-dependent (λ ∈ Λ) orbit segments

Q− = {q−(t) | t ≤ 0} ⊂ W u(Γ2) where q−(0) ∈ Σ, (6.6)

Q+ = {q+(t) | t ≥ 0} ⊂ W s(Γ1) where q+(0) ∈ Σ, (6.7)

from Γ2 to Σ and from Σ to Γ1, respectively. The integration times from Γ2 to Σ and

from Σ to Γ1 are denoted as T− and T+, respectively.

The key idea of Lin’s theory (Lin, 1990) is that the difference of the points on the

section, i.e., q−(0)−q+(0) ∈ Σ, can be required to lie in a d-dimensional linear subspace

Z, which is referred to as the Lin space.

Suppose that system (6.1) has a PtoP connectionQ satisfying conditions (C1)–(C5),

and let Z be a d-dimensional space with basis z1, · · · , zd. Then, in some neighbourhood

Λ of λ∗, for any λ ∈ Λ the difference between Q− and Q+ as defined by (6.6) and (6.7)

is uniquely defined by the function:

ξ(λ) := q+(0)− q−(0) ∈ Z.

Furthermore, there are d smooth functions ηi : Rm → R such that

ξ(λ) =
d∑

i=1

ηi(λ)zi and ηi(λ
∗) = 0 for all i = 1, . . . , d.
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This statement is typical for any setup of Lin’s method. The underlying idea is to

consider so-called Lin orbits, which may consist of any finite number of orbit segments

with ‘jumps’ in suitable Lin spaces from one orbit segment to the next; see, for example,

Knobloch (2000) and Yew (2001). Each such Lin orbit is well defined. When all jumps,

that is, all Lin gaps, are zero then one has found the desired global orbit. This approach

can be used to study EtoP and PtoP connections, as well as more general heteroclinic

networks involving periodic orbits; see Knobloch (2000), Knobloch and Riess (2010)

and Rademacher (2005) for more details. The main step in proving the general Lin’s

method is to show the uniqueness of the orbit segments Q− and Q+ for any λ ∈ Λ. The

properties of the functions ηi are a consequence of this uniqueness. Since the matrix

Dξ is non-singular due to condition (C5), the ηi(λ), which we refer to as the Lin gaps,

are well-defined test functions with regular zero solutions, including a joint regular zero

solution at λ∗. An approach to finding an unknown PtoP connection Q is, therefore, to

continue the λ-dependent orbit segments Q− and Q+ in parameters until all Lin gaps

ηi(λ) are closed.

This Lin’s method setup is sketched in Fig. 6.1 for the lowest-dimensional case of

a codimension-one heteroclinic PtoP connection in R4 with k = l = 2; then the Lin

space Z is of dimension one, and the PtoP connection can be found at an isolated

point λ∗ of a single parameter λ ∈ R. The situation depicted in panel (a) is for λ

near λ∗. The two-dimensional manifolds W u(Γ2) and W s(Γ1) of the periodic orbits

Γ2 and Γ1 are shown up to the three-dimensional section Σ, which they intersect in

one-dimensional curves (shown in the figure as two circles). The orbit segments Q− ⊂
W u(Γ2) and Q+ ⊂ W s(Γ1) end in Σ. The difference of their endpoints q+(0) and

q−(0) lies along the one-dimensional Lin space Z, giving rise to the single Lin gap

η1(λ) = q+(0) − q−(0) ̸= 0. While Q− and Q+ are continued in the parameter λ, the

Lin gap η1(λ) can be monitored. As is shown in Fig. 6.1(b), at the root λ∗ of η1(λ) the

orbit segments Q− and Q+ match up to form the PtoP connecting orbit Q. Note that

η1(λ) undergoes a sign change at λ∗ because it is regular zero solution.

6.1.4 Implementation of the method

The setup of Lin’s method presented in the previous section can be implemented numer-

ically by formulating a system of boundary value problems (BVP) for all the dynamic

objects involved, which typically includes Γ1 and Γ2, their unstable and stable eigen-

functions and finite-time approximations of the orbit segments Q− and Q+. In fact,

the continuation of families of orbit segments is a very powerful and accurate general

numerical method for the investigation of global objects in a dynamical system, such

as invariant manifolds, connecting orbits and slow manifolds; see Aguirre et al. (2011)

and Krauskopf et al. (2007) for more details. The key step is to formulate a suitable
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Figure 6.1: Schematic diagram illustrating the Lin’s method setup for finding a codimension-
one PtoP connecting orbit in R4. The end points of the two orbit segments, Q− ⊂ W u(Γ2)
and Q+ ⊂ W s(Γ1), in the three-dimensional section Σ lie in the one-dimensional Lin space
Z; in the numerical approximation Q− and Q+ are truncated to orbit segments whose other
end points lie on vectors vu

1 and ws
1 in the respective unstable and stable eigenspaces at

points g2 ∈ Γ2 and g1 ∈ Γ1, respectively. Panel (a) shows a nonzero Lin gap along the one
dimensional subspace Z for λ near λ∗, and panel (b) shows the PtoP connection Q = Q−∪Q+

for λ = λ∗ when the gap is closed.

parameterized system of well-posed BVP, which can then be solved, for example, with

the collocation solver of the numerical package AUTO. Solutions of the BVP can then

be continued in parameters with AUTO’s pseudo-arclength continuation routine.

A detailed guide to the setup of boundary value problems for general systems can

be found in Krauskopf and Riess (2008) and Doedel et al. (2008, 2009). We illustrate

Lin’s approach by finding various global bifurcations involving saddle periodic orbits

in a four-dimensional calcium model in the next section, including a codimension-one

PtoP connection in section 6.2.2.

6.2 A codimension-one PtoP cycle in a calcium model

Since it is not at all a straightforward task to find a vector field (of dimension at

least four) that features orbits Γ1 and Γ2 with the required properties (C1)–(C5),

all examples of PtoP connecting orbits considered so far in the literature (Dieci and
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Rebaza, 2004; Doedel et al., 2009; Krauskopf and Riess, 2008; Pampel, 2001) are of

codimension-zero. The lowest-dimensional example of a PtoP connecting orbit that

is not structurally stable requires n = 4, k = 2 and l = 2 so that the connection is

of codimension d = 1. Notice that such a PtoP connection of codimension one will

often be part of a heteroclinic cycle. More specifically, in the R4 phase space the global

manifoldsW u(Γ1) andW s(Γ2), which are of dimension (n+1−k) = 3 and (n+1−l) = 3,

respectively, would generally intersect in a two-dimensional manifold. In other words,

a codimension-one connection from Γ2 to Γ1 exists on a curve in the R4 phase space,

while a codimension-zero connection from Γ1 to Γ2 exists on a two-dimensional surface

in the R4 phase space.

In this section we show that this type of codimension-one PtoP heteroclinic cycle

indeed exists near a saddle-node of periodic orbits bifurcation in a simplified four-

dimensional model of intracellular calcium dynamics. To this end, we employ the

numerical implementation of Lin’s method.

6.2.1 Calcium model description and partial bifurcation set

of the model

The calcium equations we discuss here are very similar to the prototypical calcium sys-

tem (3.2) discussed in chapter 3. However, as mentioned before, the lowest dimension

of a model which has a codimension-one PtoP heteroclinic cycle is four, and so we

consider a four-dimensional variant of the prototypical calcium system in the travelling

wave coordinates as follows:

dc

dξ
= v,

D
dv

dξ
= sv −

(
α + kf

c2

c2 + φ2
1

n
)(γ(ct +Dv − sc)

s
− c
)
+ ksc− ε(J − kpc),

dct
dξ

= ε(J − kpc), (6.8)

s
dn

dξ
=

1

2

( φ2

φ2 + c
− n

)
.

The form of equations (6.8) is more or less the same as equations (3.7), except that

we introduce an extra dynamical variable n which represents the proportion of IP3

receptors that have not been inactivated by calcium. All the other variables and

parameters have the same meaning as those in equations (3.7). The parameter values

for the numerical computation of equations (6.8) are given in Table 3.1, with the

bifurcation parameters being J and s. Note that if the variable n is set to its quasi-

steady state value, then we can reduce the four-dimensional system (6.8) to the three-

dimensional system (3.7).
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It was argued in chapter 3 that a large number of reaction-diffusion calcium trav-

elling wave equations have a similar bifurcation structure of homoclinic and periodic

solutions, referred to as the “CU” structure (Champneys et al., 2007, 2009). Specif-

ically, these calcium models have a C-shaped curve of homoclinic bifurcation and a

U-shaped curve of Hopf bifurcation on a parameter plane. Unsurprisingly, equations

(6.8) also have this bifurcation structure, as shown in panel (a) of Fig. 6.2.

Equations (6.8) have a single equilibrium solution p, which is always of saddle

type, having one negative eigenvalue and three eigenvalues with positive real part

inside the region bounded by the Hopf curve (labelled H in Fig. 6.2), and having one

positive eigenvalue and three eigenvalues with negative real part outside this region.

The equilibrium undergoes a Hopf bifurcation on this U-shaped locus.

The C-shaped curve of homoclinic bifurcations of p is labelled hom in Fig. 6.2. The

numerics suggest that the upper end of the C-shaped homoclinic bifurcation curve ter-

minates at a codimension-two Shil’nikov-Hopf bifurcation point (Deng and Sakamoto,

1995; Hirschberg and Knobloch, 1993) when the homoclinic curve reaches a supercrit-

ical Hopf bifurcation on the U-shaped Hopf curve.

Unlike the case near the upper end, the lower end of the C-shaped curve does not

reach the Hopf bifurcation curve. Instead, the homoclinic curve has a sharp turning

point, with the branch tracing back on its locus in the parameter plane and stopping

near a Belyakov bifurcation point (Belyakov, 1980) where the saddle-quantity of the

equilibrium is equal to zero. Complex dynamics are known to arise in the neighbour-

hood of such Belyakov bifurcation points (Kuznetsov et al., 2001). In particular, we

can find a saddle-node bifurcation of periodic orbits (SL) and a heteroclinic connection

from the equilibrium point to a periodic orbit (EtoP), among other bifurcations.

These two codimension-one bifurcations can be followed in the (J, s) parameter

plane, resulting in panel (b) of Fig. 6.2. The SL bifurcation curve stops at a degener-

ated Hopf point on the U-shaped Hopf bifurcation curve. The EtoP bifurcation curve

terminates at the Hopf bifurcation curve, since across the Hopf bifurcation curve the

EtoP connection is structurally stable (of codimension zero). In the small parameter

region of panel (b) of Fig. 6.2, there are two periodic orbits, Γ1 and Γ2, created on the

SL bifurcation curve. Furthermore, a heteroclinic connection from the equilibrium p

to the periodic orbit Γ2 also exists. Indeed, Γ1 and Γ2 near the SL bifurcation curve of

the calcium model (6.8) have all the local properties listed in (C1)–(C5). Therefore, we

can hope to find a codimension-one heteroclinic connection between these two periodic

orbits in this region.

The existence of a codimension-one EtoP heteroclinic cycle gives a strong hint of

the existence of a codimension-one PtoP heteroclinic cycle, and the setup to find these

global bifurcations involving saddle periodic orbits is quite similar. To find a hete-

roclinic cycle between the equilibrium p and the periodic orbit Γ2 means to find a



92 Chapter 6 Using Lin’s method to compute and continue global bifurcations

1 5 9 13 17

5

15

25

35

45

55
(a)

J

s

2 2.4 2.8 3.2

8

10

(b)

hom

H

SL

J

s

EtoP

hom

H

SL

Figure 6.2: Panel (a) shows a partial bifurcation set in the (J, s)-plane for equations (6.8),
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Figure 6.3: Panel (a) shows the EtoP cycle for s = 10.0 and J = 2.71917 between the equi-
librium p and the periodic orbit Γ2, which consists of the codimension-one EtoP connection
Q1 and the codimension-zero EtoP connection Q0. Time traces (of the variable c) of the
computed orbit segments Q1 and Q0 are shown in panels (b) and (c), respectively.

‘forward’ connection from the equilibrium p to the periodic orbit Γ2 and the ‘back-

ward’ connection from the periodic orbit Γ2 to the equilibrium p. The method used to

find these connections is similar to the one described in Krauskopf and Riess (2008).

Specifically, the connection Q1 from p to Γ2 is of codimension one, and it occurs when

the one-dimensional unstable manifold W u(p) lies in the three-dimensional stable man-
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ifold W s(Γ2); see Fig. 6.3(a) and the time series of the variable c along Q1 in panel

(b). There also exists a structurally stable heteroclinic connection from Γ2 back to

p, which is the intersection of the two-dimensional unstable manifold W u(Γ2) with

the three-dimensional stable manifold W s(p); see Fig. 6.3(a) and the time series along

Q0 in panel (c). Once it was found as the solution of the corresponding BVP from

Krauskopf and Riess (2008), the locus of codimension-one EtoP connections was con-

tinued to yield the curve labelled EtoP in Fig. 6.2(b). This curve has one end point

at (Jin, s) = (2.93121, 10.51281) on the Hopf bifurcation curve and another end point

at (Jin, s) = (2.04216, 9.04523) on the homoclinic bifurcation curve (near the Belyakov

point). In the region of interest we also find the second periodic orbit Γ1, which bi-

furcates from the curve H in Fig. 6.2(b) and, hence, is quite close to the equilibrium

p. Therefore, the existence of the EtoP connections from p to Γ2 and back strongly

suggests that there may also be a PtoP cycle between Γ1 and Γ2. Overall, we conclude

that the global geometry of the phase space of (6.8) looks very promising for the hunt

for a codimension-one PtoP cycle.

6.2.2 Lin’s method for the heteroclinic connection between

periodic orbits

We now demonstrate how a heteroclinic connection between periodic orbits can be

found in model (6.8). We set the secondary parameter s = 9.0 initially. Two Hopf

bifurcation points at J ≈ 3.04800 and J ≈ 6.04467 can be found as we vary the primary

bifurcation parameter J . One periodic orbit Γ1 can be found by continuation from the

first Hopf bifurcation at J ≈ 3.04800 and the other periodic orbit Γ2 can be found by

continuation from the other Hopf bifurcation at J ≈ 6.04467.

Inspection of the Floquet multipliers shows that Γ1 is of saddle type with a three-

dimensional unstable manifold and a two-dimensional stable manifold while Γ2 is also

of saddle type with a two-dimensional unstable manifold and a three-dimensional stable

manifold. The periodic orbits and their corresponding unstable and stable manifolds

can be continued in system parameters. The continuation is stopped at J = 3.0, which

is a point close to the SN bifurcation curve in the region of interest in the parameter

plane, which agrees with the strategy discussed in section 6.1.2.

Since the unstable manifold of Γ1 is three-dimensional and the stable manifold of

Γ2 is three-dimensional so the connection from Γ1 to Γ2 is of codimension zero. On the

other hand, the stable manifold of Γ1 is two-dimensional and the unstable manifold of

Γ2 is two-dimensional so the backward connection from Γ2 to Γ1 is codimension one.

We define the section

Σ = {(c, d, ct, n) | ct = 36.0},
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Figure 6.4: Computing the codimension-one PtoP connection Q1 for s = 9.0. Panel (a) for
J = 3.0 shows two initial orbit segments Q−

1 from Γ2 to Σ = {ct = 36.0} and Q+
1 from Σ to

Γ1 with a Lin gap in Σ of η = 0.4065 along the direction Z. Panel (b) shows the connecting
orbit Q1 for J = 3.02661 where η = 0.

for which pΣ = (0, 0, 36, 0) and nΣ = (0, 0, 1, 0) in (6.5). The section Σ divides the

phase space of (6.8) into two parts, one containing Γ1 (where ct < 36.0) and the other

containing Γ2 (where ct > 36.0). Hence, any orbit connecting Γ1 and Γ2 must cross the

section Σ.

The codimension-one PtoP connection

We first consider the PtoP connecting orbit Q1 from Γ2 to Γ1 that, if it exists, is

of codimension one, since we have n = 4, k = 2, l = 2, and d = 1. An ini-

tial orbit segment Q+
1 from Σ to Γ1 can be obtained by continuation in T+ from

a base point g1 = (0.1347, 0.0023, 38.2595, 0.8728) ∈ Γ1 along the associated one-

dimensional stable eigenspace Es(Γ1), which is spanned by Floquet vectors ws
1 =

(0.0108,−0.0064, 0.9981,−0.0606) corresponding to the stable Floquet multiplier µs
1 =

0.3387 with the initial distance along this vector δ1 = 10−4. Similarly, another orbit

segment Q−
1 from Γ2 to the section Σ is found by performing a continuation in the

integration time T− from a base point g2 = (0.0915, 0.0019, 34.0078, 0.8833) ∈ Γ2 along

the associated Floquet vector vu
1 = (−0.1997,−0.1630, 0.9661, 0.0106) of the unstable

Floquet multiplier µu
1 = 95340 with the initial distance along the vector ε1 = 10−6.

Figure 6.4(a) shows the periodic orbits Γ1 and Γ2, the section Σ and the orbit segments

Q−
1 and Q+

1 for (J, s) = (3.0, 9.0) in projection onto (c, d, ct)-space. Also shown is the

Lin space Z, which we also refer to as the Lin direction because it is of dimension

d = 1. It is chosen here as the line through the two end points Q−
1 ∩ Σ and Q+

1 ∩ Σ

for (J, s) = (3.0, 9.0), and is spanned by a direction vector z1; the initial Lin gap is

η1 = 0.4065 in Fig. 6.4(a). We stress that the Lin vector z1 is kept fixed throughout

further computations, that is, it is not allowed to change with system parameters. Af-

ter these initial computations, the overall BVP for both Γ1 and Γ2 can be continued

in a single system parameter. Specifically, we continue Q−
1 and Q+

1 as solutions of the
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Figure 6.5: Computing the cylinder Q0 of codimension-zero PtoP connections from
Γ1 to Γ2 for s = 9.0 and J = 3.02661. Panel (a) shows two initial orbit segments Q−

0

from Γ1 to Σ = {ct = 36.0} and Q+
0 from Σ to Γ2 with a gap in Σ of η0 = 0.1624 along

the direction Z0. Panel (b) shows a codimension-zero PtoP connecting orbit Q0 where
η0 = 0. Panel (c) shows the one-parameter families Q−

0 and Q+
0 that form a cylinder

of connecting PtoP orbits, and panel (d) is an enlargement of Q−
0 and Q+

0 near their
intersection curve Q0 ∩ Σ.

overall BVP in the parameter J and thus detect that η1 = 0 for J = 3.02661. Fig-

ure 6.4(b) depicts the corresponding codimension-one PtoP connection Q1 from Γ1 to

Γ2, which is the concatenation of the two orbit segments Q−
1 and Q+

1 .

The codimension-zero PtoP connection

We next find the codimension-zero connectionQ0 from Γ1 to Γ2 at (J, s) = (3.02661, 9.0).

The roles of Γ1 and Γ2 are now exchanged in the formulation of the BVP. Fur-

thermore, n = 4, k = 3 and l = 3, so that W u(Γ1) intersects W s(Γ2) in a two-

dimensional surface. First, we consider an orbit segment Q−
0 whose starting point

lies near the base point g1 = (0.1405, 0.0020, 38.2727, 0.8708) ∈ Γ1 along the associ-

ated two-dimensional unstable eigenspace Eu(Γ1), which is spanned by Floquet vectors

v1 = (0.8676,−0.3284, 0.1326,−0.3491) and v2 = (−0.1038,−0.0434, 0.9936, 0.0092)

of the unstable Floquet multipliers µu
1 = 1.3045 and µu

2 = 695.9515; initial distances

along these vectors are ε1 = 10−4 and ε2 = 10−6, respectively. Continuation in the
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integration time T− is performed until the end point of Q−
0 lies in the section Σ.

Secondly and similarly, we find an orbit segment Q+
0 whose starting point lies in Σ

and whose end point lies near the base point g2 = (0.0919, 0.0020, 33.9624, 0.8823) ∈
Γ2 in the corresponding two-dimensional stable eigenspace Es(Γ2), which is spanned

by associated Floquet vectors w1 = (−0.0059,−0.0001, 0.9914,−0.1310) and w2 =

(0.2051,−0.1042, 0.9692, 0.0884) of the stable Floquet multipliers µs
1 = 0.2757 and

µs
2 = 0.0077; initial distances along these vectors are δ1 = 10−4 and δ2 = 10−6, respec-

tively. The periodic orbits Γ1 and Γ2 and the orbit segments Q−
0 and Q+

0 up to Σ for

(J, s) = (3.02661, 9.0) are shown in Fig. 6.5(a) in projection onto (c, d, ct)-space. To

find an actual PtoP connection we adapt a numerical setup that was first employed

in Krauskopf and Riess (2008). Specifically, we define the one-dimensional space Z0

as the direction given by Q−
0 ∩ Σ and Q+

0 ∩ Σ, spanned by the vector z0. While Z0 is

not a Lin space, it plays a similar role during the computation and remains fixed. The

initial gap size along Z0 is η0 = 0.1624. The idea is now to continue Q−
0 and Q+

0 as

solutions of this BVP with the gap size η0 as the main continuation parameter, while

all system parameters remain fixed. This continuation for fixed (J, s) = (3.02661, 9.0)

yields a zero of η0, which corresponds to the connecting orbit Q0 shown in panel (b) of

Fig. 6.5.

For fixed closed gap η0 = 0, the BVP has six free internal parameters T−, T+, ε1,

ε2, δ1, δ2 and five boundary conditions. Hence, a continuation of this BVP with η0 = 0

allows us to follow the initial connecting orbit Q0 (which is not isolated) in internal

parameters as it sweeps out the two-dimensional surface Q0 of connecting orbits from

Γ1 to Γ2. The surface Q0 is the topological cylinder bounded by the two periodic orbits

that is shown in Fig. 6.5(c) in projection onto (c, d, ct)-space. It consists of two bounded

cylinders, Q−
0 from Γ1 to Σ and Q+

0 from Σ to Γ2, which connect in the section Σ along

the closed curve Q0 ∩ Σ. Figure 6.5(d) shows Q0 ∩ Σ in (c, d, n)-space, together with

selected orbit segments of Q−
0 and Q+

0 .

Figure 6.6 shows the entire PtoP cycle between Γ1 and Γ2 for (J, s) = (3.02661, 9.0)

in projection onto (c, d, ct)-space. The codimension-one PtoP orbit Q1 connects Γ2 to

Γ1. The connection from Γ1 back to Γ2, on the other hand, consists of a one-parameter

family of connecting PtoP orbits (parameterized, for example, by Q0 ∩ Σ); it forms

the cylinder Q0 = W u(Γ1) ∩ W s(Γ2), which has been rendered in Fig. 6.6 as a two-

dimensional surface.

6.2.3 Continuation of the PtoP cycle

The locus of the codimension-one PtoP heteroclinic connection Q1 can be continued in

the system parameters J and s. The resulting curve, labelled PtoP, is shown in Fig. 6.7.

The curve has one end point on the curve of saddle-node of limit cycles bifurcations
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Figure 6.6: The heteroclinic PtoP cycle between Γ1 and Γ2 for (J, s) = (3.02661, 9.0),
consisting of the the codimension-one PtoP connection Q1 from Γ2 to Γ1 and the
bounded cylinder Q0 of PtoP connections from Γ1 to Γ2.

(SL), then follows the Hopf bifurcation curve (H) closely for increasing s and ends on

H; see Fig. 6.7(b). Along the curve PtoP we also continued Q1 and a single connecting

orbit Q0 of the family Q0 of codimension-zero PtoP connections on the (J, s) parameter

plane. This computation confirmed that the entire heteroclinic cycle exists along the

curve PtoP in Fig. 6.7.

Figure 6.8(a) shows the heteroclinic PtoP cycle that one finds when s = 10.0, and

panel (b) shows the heteroclinic cycle for s = 8.5. The surface Q0 was swept out by

continuation of the single orbit Q0. From Fig. 6.8(a) we observe that the amplitude

of Γ1 becomes quite small when s is increased from s = 9.0 and the curve PtoP is

close to the Hopf bifurcation curve H. At the end point of the curve PtoP on H, the

periodic orbit Γ1 finally disappears in the Hopf bifurcation of the equilibrium p. We

found numerically that this happens at (J, s) = (2.79, 24.64). When s is decreased from

s = 9.0 the periodic orbits Γ1 and Γ2 approach one another; see Fig. 6.8(b). Finally, at

the end point (J, s) = (2.98, 8.37) of the curve PtoP on the curve SL, the two periodic

orbits Γ1 and Γ2 meet and disappear.
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Figure 6.7: Partial bifurcation set in the (J, s) plane of equations (6.8). This figure
shows an enlargement of Fig. 6.2(a) with the addition of the curve of codimension-one
heteroclinic cycles between Γ1 and Γ2 (labelled PtoP), which has end points on the
saddle-node of limit cycles bifurcation curve SL and on the Hopf bifurcation curve H.
Panel (a) shows the region of interest where the PtoP connection was found, and panel
(b) shows the entire PtoP curve.
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Figure 6.8: The heteroclinic PtoP cycle between Γ1 and Γ2 for (J, s) = (2.95950, 10.0)
(a) and for (J, s) = (3.06319, 8.5) (b).

6.3 Finding PtoP homoclinic orbits and periodic

orbits near the PtoP cycle

In the vicinity of the heteroclinic PtoP cycle between Γ1 and Γ2 one can find other

dynamical objects, including orbits that are homoclinic to Γ1 and to Γ2 and saddle

periodic orbits that pass close to Γ1 and Γ2. We now show how these objects can be



6.3 Finding PtoP homoclinic orbits and periodic orbits near the PtoP cycle 99

(a)

c
d

ct

Γ1

Σ
Z0

Q
+

Γ1
Q

−

Γ1

0.1120.1160.0010.002

0.87

0.872

0.1120.1160.0010.002

0.87

0.872
(b)

c
d

n

Z0
Q

−

Γ1

Q
+

Γ1

(c)

cd

n

Z0
QΓ1

Figure 6.9: Finding a homoclinic PtoP orbit of Γ1 via the continuation of orbit seg-
ments Q−

Γ1
and Q+

Γ1
that connect Γ1 with the section Σ = {ct = 33.95}. Panel (a)

shows the start data for (J, s) = (3.02661, 9.0) where Q+
Γ1

= Q1 and Q−
Γ1

is a con-
necting orbit in Q0. Panel (b) shows Q−

Γ1
and Q+

Γ1
near the direction Z0 in Σ. In

panel (c) the gap along Z0 has been closed, yielding the homoclinic PtoP orbit QΓ1 for
(J, s) = (3.02807, 9.0).

found numerically with a BVP approach, using the heteroclinic PtoP cycle as start

data.

To find a homoclinic orbit connecting Γ1 to itself we consider two orbit segments:

Q−
Γ1
, which starts near the base point g1 ∈ Γ1 in the unstable Floquet space and ends

at a section Σ near Γ2, and Q+
Γ1
, which starts in Σ and ends near g1 in the stable

Floquet space. These orbit segments are readily available from knowledge of the PtoP

heteroclinic cycle. Specifically, as start data we set Q+
Γ1

= Q1 and Q−
Γ1

⊂ Q0. Then

the section Σ is chosen to contain the end points of Q−
Γ1

and Q+
Γ1

near Γ2. We define

the one-dimensional space Z0 to be the direction in Σ given by these end points;

the gap η0 is measured along Z0. The setup is the one considered in Krauskopf and

Riess (2008) for the computation of homoclinic PtoP orbits, and Q−
Γ1

and Q+
Γ1

can be

represented by and continued as solutions of a BVP. This boundary value problem has

a one-dimensional solution manifold, providing five boundary conditions for the six

free internal parameters T−, T+, ε1, ε2, δ1 and η0. Figure 6.9(a) and (b) shows the

start data for (J, s) = (3.02661, 9.0), given by the orbit segments Q−
Γ1

and Q+
Γ1
, the

section Σ = {ct = 33.95} and the direction Z0. In panel (c) the gap along Z0 has been

closed via the continuation of Q−
Γ1

and Q+
Γ1
, and the homoclinic PtoP orbit QΓ1 has

been found as their concatenation.

A homoclinic orbit connecting Γ2 to itself can be computed in exactly the same
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Figure 6.10: Finding a homoclinic PtoP orbit of Γ2 via the continuation of orbit
segments Q−

Γ2
and Q+

Γ2
that connect Γ2 with the section Σ = {ct = 38.27}. Panel

(a) shows the start data for (J, s) = (3.02661, 9.0) where Q+
Γ2

is a connecting orbit
in Q0 and Q−

Γ2
= Q1. Panel (b) shows Q−

Γ2
and Q+

Γ2
near the direction Z0 in Σ. In

panel (c) the gap along Z0 has been closed, yielding the homoclinic PtoP orbit QΓ2 for
(J, s) = (3.02723, 9.0).

way, by considering Q−
Γ2

and Q+
Γ2

from Γ2 to a section Σ near Γ1 and back. In fact,

the same initial data from the PtoP heteroclinic orbit can be used for these orbits.

Specifically, we set Q+
Γ2

⊂ Q0 and Q−
Γ2

= Q1, with the difference being that Σ is now

chosen through the end points of Q−
Γ2

and Q+
Γ2

near Γ1. Figure 6.10(a) shows this start

data for (J, s) = (3.02661, 9.0), where the section is now Σ = {ct = 38.27}. Panel (b)

shows the direction Z0 with an initial gap η0 between the end points of Q−
Γ2

and Q+
Γ2

in

Σ. Continue Q−
Γ2

and Q+
Γ2

until the gap is closed (η0 = 0) to find the homoclinic PtoP

orbit QΓ2 ; see Fig. 6.10(c).

In the continuation runs to close the gap η0 to find the homoclinic PtoP orbits

the parameter J was included in the choice of the six free parameters, and QΓ1

and QΓ2 were found at the nearby parameter points (Jin, s) = (3.02807, 9.0) and

(J, s) = (3.02723, 9.0), respectively. This choice illustrates the general fact that there

is considerable flexibility in setting internal and/or system parameters as the free con-

tinuation parameters. As such, QΓ1 and QΓ2 can be continued (together with the

respective periodic orbits and their Floquet vectors) in any system parameter. Fig-

ure 6.11 shows results of their continuation in J over the interval [3.0, 3.04], namely,

of QΓ1 in row (a) and of QΓ2 in row (b). Panels (a1) and (b1) show selected PtoP ho-

moclinic orbits in projection onto (c, d, ct)-space, demonstrating that they indeed are

close to the PtoP heteroclinic cycle between Γ1 and Γ2; compare with Fig. 6.6. Notice
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Figure 6.11: PtoP homoclinic orbits of Γ1 (a1)–(a2) and of Γ2 (b1)–(b2) continued
in the system parameter J over the interval [3.0, 3.04] for fixed s = 9.0. Panels (a1)
and (b1) shows selected homoclinic orbits in projection onto (c, d, ct) space, and panels
(a2) and (b2) show them as a waterfall diagram of time series of ct over the unit time
interval. The PtoP homoclinic orbits QΓ1 for J = 3.02807 from Fig. 6.9 and QΓ2 for
J = 3.02723 from Fig. 6.10 are highlighted.

further from Fig. 6.11(a1) that for any J ∈ [3.0, 3.04] the PtoP homoclinic orbit QΓ1

closely follows the codimension-one PtoP connection Q1 from Γ2 to Γ1, while different

orbits from the one-parameter family Q0 of codimension-zero PtoP connections are

followed. The waterfall diagram in Fig. 6.11(a2) shows that, as J is increased, the

number of loops of QΓ1 near the periodic orbit Γ2 decreases from about five to about

three; this is consistent with the fact that the computed family QΓ1 in Fig. 6.11(a1)

fills out the entire cylinder of the PtoP heteroclinic cycle in Fig. 6.6 as J varies. The

corresponding statement holds for the continuation of the PtoP homoclinic orbits QΓ2

in Fig. 6.11(b1), where now the number of loops near the periodic orbit Γ1 increases

in panel (b2) from about five to about six.

We finish by showing how saddle periodic orbits near PtoP homoclinic orbits can

be computed. As an example we compute a periodic orbit near QΓ2 . The idea is

simply to close the gap between the two end points of QΓ2 . Therefore, we choose the

section Σ = {ct = 33.95} and the direction Z0 defined by these end points, with gap

η0. This initial data is shown in Fig. 6.12(a) and (b). The orbit segment QΓ2 is a

solution of a smaller BVP, which provides one boundary condition for the two free
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Figure 6.12: Finding a saddle periodic orbit by continuation from the PtoP homoclinic
orbit QΓ2 for (J, s) = (3.02723, 9.0) from Fig. 6.10. Panel (a) shows the orbit segment
QΓ2 whose endpoints lie in the section Σ = {ct = 33.95}, and panel (b) shows QΓ2 near
the direction Z0 in Σ. In panel (c) the gap along Z0 has been closed by continuing in
the internal parameters T− and η0 until η0 = 0, yielding a saddle periodic orbit Γnew.

internal parameters T− and η0. Continuing solutions of this BVP until η0 = 0 yields a

saddle periodic orbit Γnew that closely follows the original PtoP homoclinic orbit QΓ2 ;

see Fig. 6.12(c). Once it has been found, Γnew can be continued in system parameters,

as usual, as a solution of a standard periodic orbit BVP.

6.4 Summary

We have presented the first example of a concrete vector field in which a non-structurally

stable PtoP heteroclinic cycle connecting two saddle periodic orbits has been located

numerically. The idea for the algorithm used was developed by Krauskopf and Reiss

(Krauskopf and Riess, 2008); the original contribution of the work in this thesis was

to find a model in which such a PtoP connection occurs and then to implement the

algorithm for this system. Specifically, we showed that a four-dimensional model of

intracellular calcium dynamics has a bifurcation structure with the necessary geomet-

ric ingredients, and then identified a codimension-one PtoP cycle numerically with an

implementation of Lin’s method. The PtoP cycle was then continued as a curve in the

relevant two parameter plane of the system. We also computed two nearby homoclinic

orbits of periodic orbits and a new saddle periodic orbit.

The Lin’s method approach that we employed here can be used, in principle, to

identify and continue in parameters any homoclinic or heteroclinic chain involving
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a (finite) number of equilibria and periodic orbits, as well as nearby global objects.

The ability to do these kinds of computations can be very useful in the context of

applications. For example, it was discussed in chapter 2 that one possible termination

mechanism for homoclinic curves in the FHN model was due to a codimension-two EP1t

bifurcation point, which was first conjectured in Champneys et al. (2007). However, the

EP1t points in the FHN system were not computed previously. Using Lin’s method,

we were able to find such EP1t points in the FHN model numerically in chapter 2,

which helped to explain some complex dynamics observed in the FHN system.

Other global bifurcations such as PtoP heteroclinic bifurcations are also thought

to occur near EP1t points, but, similarly, have not been directly computed because of

the lack of appropriate numerical algorithms. Thus, the availability of methods such

as those outlined in this chapter will enable fuller investigation of models of this type,

and may consequently lead to a better understanding of their dynamics.
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Chapter 7

Summary and future directions

The work presented in this thesis was primarily motivated by a desire to understand

wave solutions in models of intracellular calcium dynamics, specifically in non-excitable

cells. We performed detailed numerical experiments on the FitzHugh-Nagumo (FHN)

system and various calcium models, and examined singular limits of the models in an

attempt to understand the origin of the common features of these models (specifically,

the CU bifurcation structure discovered by Champneys et al. (2007)). This work on

specific models then inspired more general theoretical work on the validity of reduction

methods for biophysical models and some detailed numerical work on implementing a

new algorithm for studying global bifurcations. A detailed summary of our results is

given below.

In chapter 1, we reviewed some basic cell physiology and discussed some important

assumptions for constructing models of intracellular calcium dynamics for non-excitable

cells.

In chapter 2, we analyzed the wave solutions of the FHN model. The form of

FHN model we study includes a term modelling an applied current and is therefore

different from the classical form. With numerical algorithms based on Lin’s approach

(as discussed in chapter 6), we were able to obtain a more detailed bifurcation set

of the FHN model than had previously been obtained. Specifically, we computed

the locus of a codimension-two EP1t bifurcation point and some associated curves of

global bifurcations which act as organizing centres in the overall dynamics of the FHN

equations. The new features of the bifurcation set found in this thesis agree with

conjectures made in Champneys et al. (2007) about the FHN model.

The classical form of the FHN model has been widely studied by different people,

e.g., Bell and Deng (2002), Deng (1991), Jones et al. (1991), Krupa et al. (1997) and

Yanagida (1985). Most analytical results of the FHN model in the classical form were

established using the standard techniques of geometric singular perturbation theory

(GSPT). In order to make use of the results from previous analysis, we came up with
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a transformation to change the form of equations we study into the classical form.

We found that the numerical results we obtain for the new form are consistent with

the previously established theory of the classical form of FHN model for the range of

parameter values (especially small ε) for which the theory is valid.

In chapter 3, we analyzed wave solutions of a simplified calcium model which can

be regarded as a representative model for a variety of models of intracellular dynam-

ics. Based on numerical observations, it is conjectured that the existence of the CU

bifurcation structure in calcium models is not dependent on there being complicated

IP3 receptors dynamics in the model. Therefore, we used algebraic functions rather

than differential functions to describe the dynamics of IP3 receptors as one of our

simplifying steps. We performed a numerical bifurcation analysis of the prototypical

calcium model. The persistence of the CU structure in this prototypical calcium model

supports the conjecture that separation of different time scales between variables and

the existence of a cubic-shaped critical manifold in its singular limit are the underly-

ing mechanisms that give rise to the CU bifurcation structure in the calcium models.

We studied the dynamics of the calcium model in the singular limit, and made some

comparisons between the wave solutions in the singular limit and those in the full sys-

tem, finding that homoclinic bifurcation and Hopf bifurcation curves of the full system

arise as perturbations of singular homoclinic bifurcation and Hopf bifurcation curves.

However, it is not yet known in detail how more complex features in the full system

(e.g., homoclinic snaking) unfold from the singular limit.

In chapter 4, we compared the wave solutions in the FHN model and the prototyp-

ical calcium model. Even though the FHN model and the prototypical calcium model

have very similar dynamical behaviour in the absence of spatial diffusion, they display

some qualitative differences in the overall bifurcation structure in their singular limits.

Specifically, the Hopf bifurcations are generally degenerate in the singular limit of the

FHN model, while the Hopf bifurcations are generally not degenerate in the singular

limit of calcium models. There are also differences between the homoclinic bifurcations

in the singular limit between the FHN model and the calcium model due to the symme-

try of the FHN system. However, these differences do not appear to significantly affect

the dynamics associated with homoclinic bifurcations in the full systems. Since we find

that the canonical FHN system does not capture all the basic features, we maintain

that the FHN system should not be used as a prototypical model for understanding

wave solutions of calcium models.

In chapter 5, we investigated some model reduction techniques commonly used

to simplify biophysical systems and discussed some difficulties that may arise when

computing the criticality of Hopf bifurcations in such systems. In particular, the quasi-

steady state approximation and GSPT are often used to simplify biophysical systems

with multiple time scales. The key idea of the quasi-steady state reduction is to set
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certain fast variables equal to their equilibrium values, which has the effect of replacing

differential equations governing the evolution of such variables by algebraic equations.

However, the approach is not in general mathematically justified. We give conditions

under which this model reduction technique in a slow-fast system can be justified

mathematically. Furthermore, we provide counterexamples to show that this technique

may give misleading results near the onset of oscillatory behaviour, i.e., near Hopf

bifurcations which play an important role in the overall dynamics of a physiological

model.

We then showed that there are potential problems in applying GSPT to a slow-fast

system when computing the criticality of Hopf bifurcations. In particular, we showed

that the singular limit of the first Lyapunov coefficient of a Hopf bifurcation is not

always equal to the first Lyapunov coefficient of the Hopf bifurcation in the corre-

sponding fast subsystem. Consequently, one cannot deduce, in general, the criticality

of a Hopf bifurcation from the lower-dimensional fast subsystem in a slow-fast system.

In chapter 6, we outlined a numerical scheme which is helpful for obtaining detailed

numerical bifurcation results for some excitable systems. The numerical algorithm is

based on Lin’s theory (Lin, 1990) and was first developed in Krauskopf and Riess (2008).

We discussed how to find the generic codimension-d (d = 0, 1) PtoP connection from

a saddle periodic orbit to another saddle periodic orbit with Lin’s approach. The key

idea is to set up a boundary value problem that defines two separate orbit segments up

to a specified cross section, where the end points of the orbit segments are restricted

to lie in a well-defined d-dimensional space. The two orbit segments give rise to d

smooth test functions, known as the Lin gaps. One can find a codimension-d PtoP

connection in a systematic way by closing the Lin gaps in consecutive continuation

runs. Then we illustrated Lin’s method by finding a codimension-one heteroclinic

cycle in a four-dimensional prototypical calcium model; this is the first example in

which a non-structurally stable PtoP connection has been found in a physical model.

We expect similar dynamics can be observed in other models of calcium dynamics.

In summary, we have studied the wave solutions of a number of excitable sys-

tems from the viewpoint of bifurcation analysis, mostly using numerical and analytical

methods applied to travelling wave coordinates versions of the models of interest.

The work in this thesis has given rise to some possible directions for future work.

1. The existence and stability of solitary wave solutions of the prototypical calcium

have been studied from a largely numerical point of view in this thesis. Attempts

to prove results theoretically in the singular limit will be reported in Tsai et al.

(2012), but it is not yet known how to extend the theoretical results to the non-

singular case.

2. Solitary wave solutions with multiple pulses were shown to exist in the FHN
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model, but little is known about the solitary wave solutions with multiple pulses

in models of calcium dynamics. More work is required to understand the role of

multiple pulse solitary waves in calcium models.

3. Some results about the validity of the quasi-steady state approximation were

established in chapter 5, but there are outstanding issues to do with the effect

of the quasi-steady state approximation on the dynamics of a model when the

reduction method is not justified. For instance, how do the amplitude and fre-

quency of periodic orbits created in a Hopf bifurcation in a model compare with

the amplitude and frequency of the corresponding periodic orbit in a reduced

model obtained by application of the quasi-steady state approximation?

4. In the FHN equations and the prototypical calcium model studied in chapters 2-

4, we showed how the CU structure in the bifurcation set arose as a perturbation

of a similar CU structure in the singular limit. More work is required to explain

how complex features of the bifurcation set (e.g., EP1t points, PtoP heteroclinic

cycles, etc.) in these systems unfold from the singular limit.



Appendix A

Parameters and formulae for model

definitions

The following parameter values and function definitions were used in numerical inte-

gration of the Hodgkin-Huxley model, equations (5.5) in Section 5.2.1.

ĒNa = 0.5 ĒK = −0.77 ĒL = −0.544 ḡk = 0.3 ḡl = 0.0025

kv = 100mV ε = 0.0083 τm = 1 τn = 1 τh = 1

an(v) =
0.01(kvv+55)

1−exp
(
− kvv+55

10

) am(v) =
0.1(kvv+40)

1−exp
(
− kvv+40

10

) ah(v) = 0.07exp
(−kvv−65

20

)
bn(v) = 0.125exp

(−kvv−65
80

)
bm(v) = 4exp

(−kvv−65
18

)
bh(v) =

1

exp
(

−kvv−35
10

)
+1

n∞(v) = an(v)
an(v)+bn(v)

m∞(v) = am(v)
am(v)+bm(v)

h∞(v) = ah(v)
ah(v)+bh(v)

tn(v) =
1

an(v)+bn(v)
tm(v) =

1
am(v)+bm(v)

th(v) =
1

ah(v)+bh(v)

Table A.1: Parameter values and function definitions for the Hodgkin-Huxley model, equa-
tions (5.5).



110 Appendix A Parameters and formulae for model definitions

The following parameter values and function definitions were used in numerical

integration of the Chay-Keizer model, equations (5.11) in Section 5.3.2.

Cm = 1µF/cm2 ḡK,Ca = 0.09mS/cm2 ḡK = 12mS/cm2

ḡCa = 5mS/cm2 ḡL = 0.04mS/cm2 VK = −75mV

VCa = 100mV VL = −40mV V ∗ = 30mV

V ′ = 50mV Kd = 1µM f = 0.004

k1 = 0.0275µMcm2/nC kc = 0.02ms−1

an(V + V ∗) = 0.01( 10−V−V ∗

exp( 10−V −V ∗
10

)−1
) bn(V + V ∗) = 0.125 exp

(−V−V ∗

80

)
am(V + V ′) = 0.1( 25−V−V ′

exp( 25−V −V ′
10

)−1
) bm(V + V ′) = 4 exp

(−V−V ′

18

)
ah(V + V ′) = 0.07 exp

(−V−V ′

20

)
bh(V + V ′) = 1

exp( 40−V −V ′
10 )

Table A.2: Parameter values and function definitions for the Chay-Keizer model, equations
(5.11).



Glossary

ATP

Adenosine triphosphate

BVP

Boundary value problems

CICR

Calcium-induced calcium release

EP1t

A point of intersection between EtoP and PtoE tangency

ER

Endoplasmic reticulum

EtoP

A heteroclinic connection from an equilibrium to a periodic orbit

FHN

FitzHugh-Nagumo

GSPT

Geometric singular perturbation theory

HH

Hodgkin-Huxley

IP3

Inositol (1, 4, 5)-trisphosphate



112 Glossary

ODE

Ordinary differential equation

PDE

Partial differential equation

PtoE tangency

A heteroclinic connection from a periodic orbit to an equilibrium arising from

the tangency between the stable manifold of the equilibrium and the unstable

manifold of the periodic orbit

PtoP

A heteroclinic connection from one periodic orbit to another periodic orbit

SR

Sarcoplasmic reticulum



Bibliography

Aguirre, P., Doedel, E. J., Krauskopf, B., Osinga, H. M., 2011. Investigating the con-

sequences of global bifurcations for two-dimensional invariant manifolds of vector

fields. Discr. Contin. Dynam. Syst. – Series A 29, 1309–1344.

Atri, A., Amundson, J., Clapham, D., Sneyd, J., 1993. A single-pool model for intra-

cellular calcium oscillations and waves in the Xenopous laevis oocyte. Biophys. J.

65, 1727–1739.

Baer, S. M., Erneux, T., 1986. Singular Hopf bifurcation to relaxation oscillations.

SIAM J. Applied Math. 46, 721–739.

Baer, S. M., Erneux, T., 1992. Singular Hopf bifurcation to relaxation oscillations II.

SIAM J. Applied Math. 52, 1651–1664.

Bai, Y., Edelmann, M., Sanderson, M. J., 2009. The contribution of inositol 1,4,5-

trisphosphate and ryanodine receptors to agonist-induced Ca2+ signaling of airway

smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol. 297, L347–361.

Bai, Y., Sanderson, M. J., 2006. Airway smooth muscle relaxation results from a reduc-

tion in the frequency of Ca2+ oscillations induced by a cAMP-mediated inhibition

of the IP3 receptor. Respir. Res. 7, 34.

Bautin, A., 1975. Qualitative investigation of a particular nonlinear system. Applied

Mathematical Mechanics 39, 606–615.

Bautin, A., 1977. On the nonlocal application of the method of small parameter. Ap-

plied Mathematical Mechanics 41, 910–919.

Beck, M., Jones, C. K. R. T., Schaeffer, D., Wechselberger, M., 2008. Electrical waves

in a one-dimensional model of cardiac tissue. SIAM J. Applied Dynamical Systems

7, 1558–1581.

Bell, D., Deng, B., 2002. Singular perturbation of N-front travelling waves in the

FitzHugh-Nagumo equations. Nonlinear Analysis 3, 515–541.



114 Bibliography

Belyakov, L. A., 1980. Bifurcation of system with homoclinic curve of saddle-focus with

saddle quantity zero. Mat. Zametki 28, 910–916.

Benoit, E., Callot, J., Diener, F., Diener, M., 1986. Chasse au canard. Collectanea

Mathematica 23, 37–119.

Berne, R., Levy, M., Koeppon, B., Stanton, B., 2004. Physiology, 5th Edition. Elsevier

Science.

Berridge, M., Galione, A., 1998. Cytosolic calcium oscillators. FASEB 2, 3074–3082.

Bers, D. M., 2002. Cardiac excitation-contraction coupling. Nature 415, 198–205.

Beyn, W. J., 1990. The numerical computation of connecting orbits in dynamical sys-

tems. IMA J. Numer. Anal. 10, 379–405.

Braaksma, B., 1998. Singular Hopf bifurcation in systems with fast and slow variables.

J. Nonlinear Sci. 8, 457–490.

Champneys, A. R., Kirk, V., Knobloch, E., Oldeman, B., Rademacher, J., 2009. Un-

folding a tangent equilibrium-to-periodic heteroclinic Cycle. SIAM J. Applied Dy-

namical System 8, 1261–1304.

Champneys, A. R., Kirk, V., Knobloch, E., Oldeman, B., Sneyd, J., 2007. When

Shi’nikov meets Hopf in excitable systems. SIAM J. Applied Dynamical System 6,

663–693.

Champneys, A. R., Kuznetsov, Y. A., Sandstede, B., 1996. A numerical toolbox for

homoclinic bifurcation analysis. Int. J. Bifurc. Chaos 6, 867–887.

Chay, T. R., Keizer, J., 1983. Minimal model for membrane oscillations in the pancre-

atic β-cell. Biophys. J. 42, 181–190.

Colegrove, S. L., Albrecht, M. A., Friel, D. D., 2000. Quantitative analysis of mito-

chondrial Ca2+ uptake and release pathways in sympathetic neurons. Reconstruction

of the recovery after depolarization-evoked [Ca2+]i elevations. J. Gen. Physiol. 115,

371–388.

Constantin, J., Charles, A., 1999. Spontaneous action potentials initiate rhythmic in-

tercellular calcium waves in immortalized hypothalamic (GT1-1) neurons. J. Neuro-

physiol. 82, 429–435.

Crank, J., Nicolson, P., 1947. A practical method for numerical evaluation of solutions

of partial differential equations of the heat conduction type. Proc. Camb. Phil. Soc.

43, 50–67.



Bibliography 115

Deng, B., 1991. The existence of infinitely many travelling front and back waves in the

FitzHugh-Nagumo equations. SIAM J. Math. Anal. 22, 1631–1650.

Deng, B., Sakamoto, K., 1995. Shil’nikov-Hopf bifurcation. J. Differential Equations

119, 1–23.

Dieci, L., Rebaza, J., 2004. Point-to-periodic and periodic-to-periodic connections. BIT

Numerical Mathematics 44, 41–62.

Doedel, E. J., Friedman, M. J., 1989. Numerical computation of heteroclinic orbits. J.

Comput. Appl. Math. 26, 155–170.

Doedel, E. J., Kooi, B. W., Kuznetsov, Y. A., Voorn, G. A. K., 2008. Continuation of

connecting orbits in 3D-ODES: (I) : point-to-cycle connections. Int. J. Bifurc. Chaos

18, 1889–1903.

Doedel, E. J., Kooi, B. W., van Voorn, G. A. K., Kuznetsov, Y. A., 2009. Continuation

of connecting orbits in 3D-ODES (II) : cycle-to-cycle connections. Int. J. Bifurc.

Chaos, 159–169.

Doedel, E. J., Krauskopf, B., Osinga, H. M., 2006. Global bifurcations of the Lorenz

manifold. Nonlinearity 19, 2947–2972.

Doedel, E. J., Paffenroth, R. C., Champneys, A. R., Fairgrieve, T. F., Kuznetsov,

Y. A., Oldeman, B. E., Sandstede, B., Wang, X. J., Zhang, C., 2007. AUTO07P:

Continuation and bifurcation software for ordinary differential equations. Technical

Report.

Domijan, M., Murray, R., Sneyd, J., 2006. Dynamical probing of the mechanisms

underlying calcium oscillations. J. Nonlinear Sci. 16, 483–506.

Evans, J. W., Fenichel, N., Feroes, J. A., 1982. Double impulse solutions in nerve axon

equations. SIAM J. Applied Math. 42, 219–234.

Evans, J. W., Feroe, J., 1977. Local stability theory of the nerve impulse. Math. Biosci.

37, 23–50.

Evans, R. L., Park, K., Turner, R. J., Watson, G. E., Nguyen, H. V., Dennett, M. R.,

Hand, A. R., Flagella, M., Shull, G. E., Melvin, J. E., 2000. Severe impairment of

salivation in Na+/K+/2Cl−-cotransporter (NKCC1)-deficient mice. J. Biol. Chem.

275, 26720–26726.

Falcke, M., 2004. Reading the patterns in living cells. Advances in Physics 53, 255–440.



116 Bibliography

Feng, Z. S., 2002. On explicit exact solutions to the compound Burgers-KdV equations.

Phys. Lett. 293, 57–66.

Fenichel, N., 1979. Geometric singular perturbation theory. J. Differential Equations

31, 53–98.

Fitzhugh, R., 1961. Impulses and physiological states in theoretical models of nerve

membrane. Biophys. J. 1, 445–446.

Franzini-Armstrong, C., Protasi, F., Ramesh, V., 1999. Shape, size, and distribution

of Ca2+ release units and couplons in skeletal and cardiac muscles. Biophys. J. 77,

1528–1539.

Friedman, M., Doedel, E. J., 1993. Computational methods for global analysis of ho-

moclinic and heteroclinic orbits: a case study. J. Dyn. and Diff. Eq. 5, 37–57.

Gin, E., Crampin, E. J., Brown, D. A., Shuttleworth, T. J., Yule, D. I., Sneyd, J.,

2007. A mathematical model of fluid secretion from a parotid acinar cell. J. Theor.

Biol. 248, 64–80.

Gin, E., Falcke, M., Wagner, L. E., Yule, D. I., Sneyd, J., 2009. A kinetic model

of the inositol trisphosphate receptor based on single-channel data. Biophys. J. 96,

4053–4062.

Giovannucci, D. R., Sneyd, J., Groblewski, G. E., Yule, D. I., 2000. Targeted phospho-

rylation of inositol 1,4,5-trisphosphate receptors selectively inhibits localized Ca2+

release and shapes oscillatory Ca2+ signals. J. Biol. Chem. 275, 33704–33711.

Goel, P., Sneyd, J., Friedman, A., 2006. Homogenization of the cell cytoplasm: the

calcium bidomain equations. Multiscale Model. Simul. 5, 1045–1062.

Govaerts, W., Kuznetsov, Y. A., 2008. Matcont. Technical report.

Grubelnik, V., Larsen, A. Z., Kummer, U., Olsen, L. F., Marhl, M., 2001. Mitochon-

dria regulate the amplitude of simple and complex calcium oscillations. Biophysical

Chemistry 94, 59–74.

Guckenheimer, J., 2008. Singular Hopf bifurcation in systems with two slow variables.

SIAM J. Applied Dynamical System 7, 1335–1377.

Guckenheimer, J., Holmes, P., 1983. Nonlinear oscillations, dynamical systems, and

bifurcation of vector fields. Springer-Verlag, New York.

Guckenheimer, J., Kuehn, C., 2009. Homoclinic orbits of the FitzHugh-Nagumo equa-

tion: the singular-limit. Discr. Contin. Dynam. Syst. – Series S 2, 851–872.



Bibliography 117

Guckenheimer, J., Osinga, H. M., 2012. The singular limit of a Hopf bifurcation. Discr.

Contin. Dynam. Syst. – Series A, in press.

Harvey, E., Kirk, V., Sneyd, J., Wechselberger, M., 2010. Multiple time scales, mixed-

mode oscillations and canards in models of intracellular calcium dynamics. Chaos

20, 045104.

Harvey, E., Kirk, V., Sneyd, J., Wechselberger, M., 2011. Understanding anomalous

delays in a model of intracellular calcium dynamics. J. Nonlinear Sci. 21, 639–683.

Higgins, E. R., Goel, P., Puglisi, J. L., Bers, D. M., Cannell, M., Sneyd, J., 2007.

Modelling calcium microdomains using homogenisation. J. Theor. Biol. 247, 623–

644.

Hirschberg, P., Knobloch, E., 1993. Shil’nikov-Hopf bifurcation. Physica D 62, 202–216.

Hodgkin, A. L., Huxley, A. F., 1952a. Currents carried by sodium and potassium ions

through the membrane of the giant axon of Loligo. J. Physiol. 116, 449–472.

Hodgkin, A. L., Huxley, A. F., 1952b. A quantitative description of membrane current

and its application to conduction and excitation in nerve. J. Physiol. 116, 507–544.

Hodgkin, A. L., Huxley, A. F., 1952c. The components of membrane conductance in

the giant axon of Loligo. J. Physiol. 116, 473–496.

Hodgkin, A. L., Huxley, A. F., 1952d. The dual effect of membrane potential on sodium

conductance in the giant axon of Loligo. J. Physiol. 116, 497–506.

Jones, C. K. R. T., 1984. Stability of the travelling wave solution of the FitzHugh-

Nagumo system. Trans. Amer. Math. Soc. 286, 431–469.

Jones, C. K. R. T., Kopell, N., Langer, R., 1991. Construction of the Fitzhugh-Nagumo

pulse using differential forms. IMA Vol. Math. Appl. 37, 101–115.

Keener, J., Sneyd, J., 2008. Mathematical physiology, 2nd Edition. Springer-Verlag,

New York.

Knobloch, J., 2000. Lin’s method for discrete dynamical systems. J. Difference Equa-

tions and Applications 6, 577–623.

Knobloch, J., Riess, T., 2010. Lin’s method for heteroclinic chains involving periodic

orbits. Nonlinearity 23, 23–54.

Krauskopf, B., Osinga, H. M., Galan-Vioque, J., 2007. Numerical continuation methods

for dynamical systems. Springer-Verlag, New York.



118 Bibliography

Krauskopf, B., Riess, T., 2008. A Lin’s method approach to finding and continuing

heteroclinic connections involving periodic orbits. Nonlinearity 21, 1655–1690.

Krupa, M., Sandstede, B., Szmolyan, P., 1997. Extending geometric singular pertur-

bation theory to nonhyperbolic points - fold and canard points in two dimensions.

J. Differential Equations 133, 49–97.

Kuznetsov, Y. A., 1998. Elements of applied bifurcation theory, 2nd Edition. Springer-

Verlag, New York.

Kuznetsov, Y. A., Feo, O. D., Rinaldi, S., 2001. Belyakov homoclinic bifurcations in a

tritrophic food chain model. SIAM J. Applied Math., 462–487.

LeBeau, A. P., Yule, D. I., Groblewski, G. E., Sneyd, J., 1999. Agonist-dependent

phosphorylation of the inositol 1,4,5-trisphosphate receptor: A possible mechanism

for agonist-specific calcium oscillations in pancreatic acinar cells. J. Gen. Physiol.

113, 851–872.

Lee, K., Duan, W., Sneyd, J., Herbison, A. E., 2010. Two slow calcium-activated after-

hyperpolarization currents control burst firing dynamics in gonadotropin-releasing

hormone neurons. J. Neurosci. 30, 6214–6224.

Li, H., Guo, Y., 2006. New exact solutions to the Fitzhugh-Nagumo equation. Applied

Mathematics and Computation 180, 524–528.

Lin, X. B., 1990. Using Melnikov’s method to solve Shilnikov’s problems. Proc. R. Soc.

Edinb. 116, 295–325.

Lodish, H., Berk, A., Matsudaira, P., Kaiser, C. A., Krieger, M., Scott, M. P., Zipursky,

L., Darnell, J., 2003. Molecular cell biology, 5th Edition. W. H. Freeman.

Mckean, H. P., 1970. Nagumo’s equations. Advances in Mathematics 4, 209–233.

Nagumo, J. S., Arimoto, S., Yoshizawa, S., 1962. An active pulse transmission line

stimulating nerve axon. Proc. IRE 50, 2061–2070.

Palk, L., Sneyd, J., Shuttleworth, T. J., Yule, D. I., Crampin, E. J., 2010. A dynamical

model of saliva secretion. J. Theor. Biol. 266, 625–640.

Pampel, T., 2001. Numerical approximation of connecting orbits with asymptotic rate.

Numerische Mathematik 90, 309–348.

Pate, E., 2005. Mathematical analysis of the generation of force and motion in con-

tracting muscle. In: Sneyd, J. (Ed.), Tutorials in mathematical biosciences II. math-

ematical modeling of calcium dynamics and signal transduction. Lecture Notes in

Mathematics. Springer-Verlag, pp. 133–152.



Bibliography 119

Perez, J. F., Sanderson, M. J., Jun 2005a. The contraction of smooth muscle cells of

intrapulmonary arterioles is determined by the frequency of Ca2+ oscillations induced

by 5− HT and KCl. J. Gen. Physiol. 125, 555–567.

Perez, J. F., Sanderson, M. J., Jun 2005b. The frequency of calcium oscillations induced

by 5 − HT, ACH, and KCl determine the contraction of smooth muscle cells of

intrapulmonary bronchioles. J. Gen. Physiol. 125, 535–553.

Politi, A. Z., Donovan, G. M., Tawhai, M. H., Sanderson, M. J., Lauzon, A. M., Bates,

J. H., Sneyd, J., 2010. A multiscale, spatially distributed model of asthmatic airway

hyper-responsiveness. J. Theor. Biol. 266, 614–624.

Rademacher, J. D. M., 2005. Homoclinic orbits near heteroclinic cycles with one equi-

librium and one periodic orbit. J. Differential Equations 218, 390–443.

Rinzel, J., 1978. On repetitive activity in nerve. Federation Proceedings 37, 2793–2802.

Rinzel, J., 1985. Excitation dynamics: insights from simplified membrane models. Fed-

eration Proceedings 44, 2944–2946.

Rinzel, J., Lee, Y. S., 1986. On different mechanisms for membrane potential bursting.

In: Othmer, H. G. (Ed.), Lecture Notes in Biomathematics. Springer-Verlag.

Rocsoreanu, C., Georgescu, A., Giurgiteanu, N., 2000. The FitzHugh-Nagumo model

- bifurcation and dynamics. Kluwer.

Romeo, M. M., Jones, C. K. R. T., 2003. The stability of travelling calcium pulses in

a pancreatic acinar cell. Physica D 177, 242–258.

Rooney, T. A., Thomas, A. P., 1993. Intracellular calcium waves generated by

Ins(1, 4, 5)P3-dependent mechanisms. Cell Calcium 14, 674–690.

Rottingen, J., Iversen, J. G., 2000. Ruled by waves? Intracellular and intercellular

calcium signalling. Acta Physiologica Scandinavica 169, 203–219.

Rubin, J., Wechselberger, M., 2007. Giant squid - hidden canard: the 3D geometry of

the Hodgkin-Huxley model. Biological Cybernetics 97, 5–32.

Rubin, J., Wechselberger, M., 2008. The selection of mixed-mode oscillations in a

Hodgkin-Huxley model with multiple timescales. Chaos 18, 015105.

Sneyd, J., 2005. Modeling IP3-dependent calcium dynamics in non-excitable cells. In:

Sneyd, J. (Ed.), Tutorials in mathematical biosciences II. mathematical modeling of

calcium dynamics and signal transduction. Lecture Notes in Mathematics. Springer-

Verlag, pp. 15–61.



120 Bibliography

Sneyd, J., Dufour, J. F., 2002. A dynamic model of the type-2 inositol trisphosphate

receptor. Proc. Natl. Acad. Sci. 99, 2398–2403.

Sneyd, J., Tsaneva-Atanasova, K., Bruce, J. I. E., Straub, S. V., Giovannucci, D. R.,

Yule, D. I., 2003. A model of calcium waves in pancreatic and parotid acinar cells.

Biophys. J. 85, 1392–1405.

Sneyd, J., Tsaneva-Atanasova, K., Reznikov, V., Bai, Y., Sanderson, M. J., Yule, D. I.,

2006. A method for determining the dependence of calcium oscillations on inositol

triphosphate oscillations. Proc. Natl. Acad. Sci. U.S.A. 103, 1675–1680.

Sneyd, J., Tsaneva-Atanasova, K., Yule, D. I., Thompson, J. L., Shuttleworth, T. J.,

2004. Control of calcium oscillations by membrane fluxes. Proc. Natl. Acad. Sci.

U.S.A. 101, 1392–1396.

Spergel, D., Kruth, U., Hanley, D., Sprengel, R., Seeburg, P., 1999. GABA- and

glutamate-activated channels in green fluorescent protein-tagged gonadotropin-

releasing hormone neurons in transgenic mice. J. Neurophysiol. 19, 2037–2050.

Stephens, N. L., 2001. Airway smooth muscle. Lung 179, 333–373.

Szmolyan, P., Wechselberger, M., 2001. Canards in R3. J. Differential Equations.

Toyoshima, C., Nakasako, M., Nomura, H., Ogawa, H., 2000. Crystal structure of the

calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405, 647–655.

Tsai, J. C., Zhang, W., Kirk, V., Sneyd, J., 2012. Travelling waves in a simplified

model of calcium dynamics, submitted.

Wang, I., Bai, Y., Sanderson, M. J., Sneyd, J., 2010. A mathematical analysis of

agonist- and KCl-induced Ca2+ oscillations in mouse airway smooth muscle cells.

Biophys. J. 98, 1170–1181.

Wang, I., Politi, A. Z., Tania, N., Bai, Y., Sanderson, M. J., Sneyd, J., 2008. A

mathematical model of airway and pulmonary arteriole smooth muscle. Biophys. J.

94, 2053–2064.

Winslow, R. L., Hinch, R., Greenstein, J. L., 2005. Mechanisms and models of car-

diac excitation-contraction coupling. In: Sneyd, J. (Ed.), Tutorials in mathematical

biosciences II. mathematical modeling of calcium dynamics and signal transduction.

Lecture Notes in Mathematics. Springer-Verlag.

Yanagida, E., 1985. Stablity of fast travelling wave solutions of the FitzHugh-Nagumo

equations. J. Math. Biol. 22, 85–104.



Bibliography 121

Yew, A. C., 2001. Multipulses of nonlinearly-coupled Schrodinger equations. J. Differ-

ential Equations 173, 92–137.

Zhang, W., Kirk, V., Sneyd, J., Wechselberger, M., 2011. Changes in the criticality of

Hopf bifurcations due to certain model reduction techniques in systems with multiple

timescales. J. Mathematical Neuroscience 1:9.

Zhang, W., Krauskopf, B., Kirk, V., 2012. Continuation of a codimension-one hete-

roclinic cycle between two periodic orbits in an intracellular calcium model. Discr.

Contin. Dynam. Syst. – Series A, in press.


