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Abstract

Local asymptotic power advantages are available for testing the hypothesis that the
slope coefficient is zero in regressions of y;, — y; on x; for k£ > 1, when

{Ays} ~ 1(0) and {z;} ~ I(0). The advantages of these long-horizon regression
tests accrue in empirically relevant regions of the admissible parameter space. In
Monte Carlo experiments, small sample power advantages to long-horizon regression
tests accrue in a region of the parameter space that is larger than that predicted by
the asymptotic analysis.
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Introduction

Let r; ~ I(0) be the return on an asset or a portfolio of assets from time ¢ —1 to t and
let x; ~ 1(0) be a hypothesized predictor of future returns known at time ¢. In finance
r; might be the return on equity and x; the log dividend yield whereas in international
economics 7; might be the return on the exchange rate and x; the deviation of the
exchange rate from a set of macroeconomic fundamentals.! To test the predictability
of the return, one can perform a short-horizon regression test by regressing the one-
period ahead return r;,; on z; and doing a t-test on the slope coefficient. However,
empirical research in finance and economics frequently goes beyond this to employ a
long-horizon regression strategy in which a multi-period future return on the asset,

Yik = S5y Terj, is Tegressed on x,

Yi. ko = O + By + €1, (1)

and the null hypothesis Hy : O = 0 tested using a t-statistic constructed with a
heteroskedastic and autocorrelation consistent (HAC) standard error. Typically, re-
searchers find that there is a range over £ > 1 in which the marginal significance
level of a test of no predictability is declining in k. The short-horizon regression test
may fail to reject the hypothesis of no predictability when the long-horizon test does
reject. Not only do the asymptotic t-ratios tend to increase with horizon but so do
point estimates of the slope coefficient and the regression R2.

The underlying basis for these results are not fully understood and they are puz-
zling because the long-horizon regression is built up by addition of the intervening
short-horizon regressions. As stated by Campbell, Lo, and MacKinlay (1997), “An
important unresolved question is whether there are circumstances under which long-
horizon regressions have greater power to detect deviations from the null hypothesis
than do short-horizon regressions.” There are two aspects to this question. The first
is whether long-horizon regression tests can be justified on the basis of asymptotic
theory. The second question concerns small sample bias of OLS in the presence of a

predetermined but endogenous regressor and potential small sample size distortions

!This line of research includes Fama and French (1988) and Campbell and Shiller (1988) who
regressed long-horizon equity returns on the log dividend yield. See also Mishkin (1992), who ran
regressions of long-horizon inflation on long-term bond yields, Mark (1995), Mark and Choi (1997),
Chinn and Meese (1995) and Rapach and Wohar (2001) who regressed long-horizon exchange rate
returns on the deviation of the exchange rate from its fundamental value. Alexius (2001) and Chinn
and Merideth (2001) regress long-horizon exchange rate returns on long-term bond yield differentials.



of the tests. This paper is primarily concerned with the first question concerning
asymptotic justification.

Using local-to-zero asymptotic analysis, we show that there exist nontrivial regions
of the admissible parameter space under which long-horizon regression tests have
asymptotic power advantages over short-horizon regression tests. When the regressor
is exogenous, long-horizon regressions can have substantial local asymptotic power
advantages over short-horizon regressions but the power advantages occur in regions
either where the regression error or the predictor {x;} (or both) exhibit negative serial
correlation. While noteworthy, this does not provide the asymptotic justification for
empirical findings that returns are predictable. Negative serial correlation of the
regressor is not a prominent characteristic of the data used empirical applications of
long-horizon regressions nor is strict exogeneity is a realistic assumption in applied
work.

For example, endogeneity arises in the case of stock returns because both the
one-period ahead return r;; and the current dividend yield x; depend on the stock
price at time ¢ so that innovations to the time ¢ + 1 dividend yield will in general
be correlated with the regression error in (1) even though z; is not. In general, en-
dogeneity might arise simply because the short-horizon predictive regression is not a
structural equation but is a linear least squares projection of the future return r. 4
onto x;. When we relax the assumption of exogeneity in favor of a data generat-
ing process that exhibits local-to-zero endogeneity, we find that asymptotic power
advantages associated with long-horizon regression accrue in the empirically relevant
region of the parameter space—where {z;} is positively autocorrelated and persistent,
where the short-horizon regression error exhibits low to moderate serial correlation,
and where the innovations to the regressor and the regression error are negatively
contemporaneously correlated.

These theoretical power comparisons are valid asymptotically and for local alter-
native hypotheses. This leads to the question as to whether there are any practical
power advantages associated with long-horizon regression tests in samples of small
to moderate size. We investigate this issue by examining finite sample size-adjusted
power comparisons of long-and short-horizon regressions in a set of Monte Carlo ex-
periments. This analysis confirms that size-adjusted power advantages accrue to long-
horizon regressions even in sample sizes of 100. The power advantages are obtained
for persistent regressors in a similar but larger region as found in the asymptotic

analysis—that is where the regression error exhibits low to moderate serial correlation



and its innovation is negatively correlated with the regressor’s innovation.

We now mention related issues and papers in the literature. The long-horizon
regressions that we study regress returns at alternative horizons on the same explana-
tory variable. The regressions admit variations in £ but the horizon is constrained
to be small relative to the sample size with k/T — 0 as T" — oo. There is a dif-
ferent long-horizon regression that has been employed in the literature in which the
future k-period return (from ¢ to ¢t + k) is regressed on the past k-period return (from
t — k to t) [Fama and French (1988b)]. An issue that arises in this work is that
the return horizon k can be large relative to the size of the sample T'. Richardson
and Stock (1989) employ an alternative asymptotic theory in which both k£ — oo
and T" — oo but k/T — 6, (0 < 6 < 1) and show that the test statistics converge
to functions of Brownian motions. Daniel (2001) studies optimal tests of this kind.
Valkanov (1999) employs the Richardson and Stock asymptotic distribution theory to
the long-horizon regressions of the type that we study when the regressor x; ~ I(1).

A paper closely related to ours is Campbell (1993), who studied an environment
where the regressor {z; } follows an AR(1) and where the short-horizon regression error
is serially uncorrelated. Using the concept of approximate slope to measure its asymp-
totic power, he found that long-horizon regressions had approximate slope advantages
over short-horizon regressions but his Monte Carlo experiments did not reveal system-
atic power advantages for long horizon regressions in finite samples. Berben (2000)
reported asymptotic power advantages for long-horizon regression when the exoge-
nous predictor and the short-horizon regression error follow AR(1) processes. Berben
and Van Dijk (1998) conclude that long-horizon tests do not have asymptotic power
advantages when the regressor is unit-root nonstationary and is weakly exogenous—
properties that Berkowitz and Giorgianni (2001) corroborate by Monte Carlo analysis.
Mankiw and Shapiro (1986), Hodrick (1992), Kim and Nelson (1993), and Goetzmann
and Jorion (1993), Mark (1995), and Kilian (1999a) study small-sample inference is-
sues and Stambaugh (1999) proposes a Bayesian analysis to deal with small sample
bias. Kilian and Taylor (2002) examine finite sample properties under nonlinearity
of the data generation process and Clark and McCraken (2001) study the predictive
power of long-horizon out-of-sample forecasts.

The remainder of the paper is as follows. The next section reviews two canonical
examples of the use of long-horizon regression tests in the empirical finance and
international economics literature which motivate our study. Section 2 presents our

local-to-zero asymptotic power analysis when the regressor {z;} is econometrically



exogenous. In section 3 we relax the exogeneity assumption in favor of a sequence
of data generating processes that exhibit local-to-zero endogeneity. We include here
as well, the results of a Monte Carlo experiment to assess finite sample size-adjusted
relative power comparisons of the long- and short-horizon regression tests. Section 4

concludes. Derivations are relegated to the appendix.

1 Canonical empirical examples

We illustrate and motivate the econometric issues with two canonical empirical ex-
amples. The first example begins with Fama and French (1988b) and Campbell and
Shiller (1988) who study the ability of the log-dividend yield to predict future stock
returns. We revisit this work with an examination of dividend yields and returns on
the Standard and Poors (S&P) index of equities. Returns from month ¢ to ¢ + 1 on
the index from 1871.01 to 1995.12 are ry; = In ((P,y1 + D;)/P;) where P, is the price
of the S&P index and D, is the annual flow of dividends from ¢ — 11 through month
t.2 Here, the short-horizon regression is formed by annual (K = 12) returns since
dividends are an annual flow. Campbell et. al. (1997) show how the log dividend
yield is the expected present value of future returns net of future dividend growth. If
forecasts of future dividend growth are relatively smooth, this present-value relation
suggests that the log dividend yield is a natural choice for prediction of future returns.

We run the equity return regressions at horizons of 1, 2, 4, and 8 years and
compute HAC standard errors using the automatic lag selection method of Newey
and West (1994). As can be seen from panel A of Table 1, the evidence for return
predictability appears to strengthen as the horizon is lengthened. Slope coefficient
point estimates, HAC asymptotic t-ratios, and regression R?s for the stock return
regression all increase with return horizon.

In our second empirical example [see Mark (1995) and Chinn and Meese (1995)] the
long-horizon regression is used to test whether standard monetary fundamentals have
predictive power for future exchange rate returns. Here, the return is the depreciation
rate of the exchange rate r, 1 = In(S;,1/S;) where S; is the nominal exchange rate.
The regressor is z; = In(F;/InS;), the fundamental value is F; = (M;/M;)(Y;*/Y;)
where M; and Y; are the domestic money supply and domestic income respectively,

and asterisks refer to foreign country variables. According to the monetary model

2These data were used in Robert J. Shiller (2001) and were obtained from his web site.



of exchange rate determination, the exchange rate is the expected present value of
future values of the fundamental F;. Assuming that the pricing relationship holds
in the long run and noting that the fundamentals evolve more smoothly than the
exchange rate, suggests that the current deviation of the log exchange rate from the
log fundamental In(F;/S;) should predict future exchange rate returns.

We revisit the long-horizon predictability of exchange rate returns with an exami-
nation of US-UK data set.®> These data are 100 quarterly observations spanning from
1973.1 to 1997.3. Here, S; is the end-of-quarter dollar price of the pound, industrial
production is used to proxy for income, US money is M2 and UK money is M0 (due
to availability). Exchange rate regression estimates at horizons of 1, 2, 3, and 4 years
are shown in panel B of Table 1. The familiar pattern of t-ratios and regression R%s
increasing with horizon are present here as well.

We note that in both examples, the regressor {x;} is highly persistent. The
augmented Dickey—Fuller and Phillips—Perron unit root tests reported in Table 2 gives
a sense of this persistence. An analysis of the entire sample of 1500 observations of
the log dividend yield allows the unit root to be rejected at the 5 percent level but
if one were to analyze the first 288 monthly observations (or 24 years) the unit root
would not be rejected. Similarly, the third column of the table shows that a unit
root in the deviation of the log exchange rate from the log fundamentals cannot be
rejected at standard significance levels. Failure to reject the null hypothesis does
not require us to accept it and such a decision can be guided by the well known low
power properties in small samples of unit root tests. Evidence against a unit root
is potentially stronger in an analysis of a long historical record, as in Rapach and
Wohar (2001). In the ensuing analysis, we pay close attention to environments in
which {z;} is persistent but 1(0).

2 Asymptotic power under exogeneity

The analysis in this section is based on a sequence of data generating processes with

an exogenous regressor given by

Assumption 1 (Ezogeneity.) The observations obey

Ayerr = B1(T)ze + €1, (2)

3These data are from Mark and Sul (2001).



where T' is the sample size, and {x;} and {e;} are independent zero mean covariance
stationary sequences. The slope coefficient is given by the sequence of local alternatives
BUT) = by /T where by is a fized constant.

For analytical convenience, the constant in the regression is suppressed although
a constant is included in all of our Monte Carlo simulations. The short horizon
regression is the linear least squares projection of Ay, 1 onto x;. It is used to estimate
functions of the underlying moments of the distribution between {y;} and {z;}. By
construction, E(e;12;) = 0 but because (2) is not a structural equation, we do not
require the error sequence {e;} to be serially uncorrelated.

We use the following notation. Cj;(z) = E(z:x;—;) is the autocovariance func-
tion for {x;}, and p;(x) = C;(z)/Co(x) is its autocorrelation function. Note that
pj(x)z; is the linear least squares projection of z;y; onto ;. Analogously, the auto-
covariance and autocorrelation function for {e;} are denoted C;(e) = E(e;e;—;) and
pi(e) = Cj(e)/Co(e), respectively. Let v be the parameter vector of the data gener-
ating process. Although the above defined moments depend on v, we suppress the
notational dependence when when no confusion will arise.

Using the projection representation, x,1; = p;(z)x;+uiy;; where uyy; ; is the least
squares projection error, the long-horizon regression (k > 1) is obtained by addition

of short-horizon regressions,

Yirk — Yo = Ok(T)xs + €vip, (3)
where

b
VT

k k-1
by
ke = D€+ —= | D Uty | -
= j T (j:1 ]J)

B(T) =

1+ z_:ﬂj(x)} :

The dependence of €445 on the projection errors u,.;; vanish asymptotically. As
a result, the asymptotic variance of the OLS estimator is calculated under the null.

The asymptotic distribution for the OLS estimator of the slope coefficient By in the



k—horizon regression is*

V() 2 N [bl (1 s pj@)) via). @

where
5 Qok + 23752 Qi
V — J
(%) T )
Qp = lim B (2520 jrernerjnr) = Ci(@)Gjk(e), (6)
k—1
Gikle) = kCjle) + > (k—5)(Cj_s(e) + Cjisle)). (7)
s=1

Under the sequence of local alternatives, the squared t-ratio for a test of the null

hypothesis Hy : 0 = 0 has the asymptotic non central chi-square distribution

TAQ
2=k D20y,
V(Bk)

with noncentrality parameter

1 x )]

. V(Bi)

(8)

We are now ready to state the criterion under which a long-horizon regression test

has local asymptotic power advantage over the short-horizon regression test.

Proposition 1 Let v be the denote the parameter vector for the data generating
process. The long-horizon regression (k > 1) test of Hy : B, = 0 has an asymptotic

local power advantage over the short-horizon regression (k = 1) test if

M) (BN V()
W =50 (&(T)) Vg " ®)

We take 6(k,v) to be a measure of relative local asymptotic power.” Under as-

4See the appendix.
5We assume a local alternative hypothesis because the t-test is a consistent test under a fixed
alternative. That is, under a fixed alternative hypothesis, the power of both the short-horizon
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sumption 1, the ratio of the slope coefficients is 5, (T) /51 (T, ) = {1 + Yk Pj(x)}.

In the remainder of this section, we explore whether there exist regions of the
admissible parameter space under which long-horizon regressions satisfy (9). We
evaluate relative local asymptotic power of long-horizon regression tests under various
assumptions concerning the dynamics governing the regressor {z;} and the short-
horizon regression error {e;}. The regions of the parameter space over which there are
no power advantages to long-horizon regression hold little interest for us. Accordingly,
in the analysis to follow, we focus on parameter values under which long-horizon
regression tests do have power advantages.

We begin with the environment considered by Berben (2000) in which the regres-

sor and the regression error each follow independent AR(1) processes.

Case I. Let {x;} and {e;} evolve according to

e = peg_1+my (10)
Ty, = Qxp1+ vy, (11)

where (my,v;) % (0,1;). Then the parameter vector of the DGP is v = (¢, ) and

pi@) = &, pj(e) = 4. Let gju(e) = Gjale) /Cole) = kpd+ i (k—s) [ =1 + 73],
The measure of relative asymptotic power is

ewmw—mlkl‘wf( prmﬂaﬂ. 12)

= |\ 1—¢ >, gik(e)

For given values of |u| < 1 and |¢| < 1, we evaluate (12) over horizons 1 < k < 20.
The summations in forming the long-run variances are truncated at p = 1000. Ta-
ble 3 reports maximized values of 6(k;~) for selected values of v = (¢, pu). Table
entries of O(k;~) = 1 indicate local asymptotic power is maximized at k = 1. The
longest horizon for which long-horizon regression tests have local asymptotic power
advantages (0(k;y) > 1) is k = 2. As can be seen, asymptotic power advantages

accrue to the long-horizon test when the regression error {e;} is negatively serially

regression and the long-horizon t-tests are asymptotically 1. Because both tests are consistent, it is
becomes difficult to compare their asymptotic power. The analysis of power under local alternatives
lets the alternative get close to the null at the same rate as the accumulation of new information
leads to improved precision in estimation and inference, v/T. This serves to offset the power gains
one would observe under a fixed alternative. Power under local alternative remains modest (less
than 1) asymptotically thus facilitating an asymptotic comparison.



correlated although the regressor {z;} may exhibit either positive or negative serial
correlation. Values for which 6(k;y) > 1 are plotted in Figure 1 for £ = 2 in the
range —0.99 < p < —0.38 and 0 < ¢ < 0.7. The figure delineates the region of
the parameter space under which the regression test at horizon £ = 2 has a local

asymptotic power advantage over the short-horizon regression.

Case II. In this case, we allow {e;} to follow an AR(2) and {xz} to follow an AR(1),

er = €1+ Moo + My, (13)

Ty = Qmy1 -+, (14)
where v = (¢, p1, p2), (me,vy)' % (0, I), and pj(x) = ¢’. The first-order autocorrela-
tion for {e;} is p1(e) = p1/(1—p2). For j > 2, the autocorrelation function is obtained
recursively by the Yule-Walker equations, p;(e) = pipj_1(e) + papj—2(e). It follows
that 6(k,~) is given by (12) with g;x(e, ) = kp;(e) + 521 (k —s) [pj-s(e) + pjis(e)].
The admissible region of the parameter space is |¢| < 1 and the triangular region for
(11, p2) that ensures that {e;} is stationary.

Table 4 displays selected values of 6(k;y) in the region of positive serial correla-
tion (0 < ¢ < 1) of the regressor along with the horizon under which the measure of
relative asymptotic power is maximized. Summations for the asymptotic variances
are truncated at p = 1000.° The table also shows the first two autocorrelations for
{e:} and the variance ratio statistic for {e;} at horizon 10 as a summary of the auto-
correlation function of the error term. From the results given in the top half of the
table, it can be seen that for persistent regressors (large ¢), somewhat modest power
gains are available when both {x;} and {e;} are persistent. The dramatic asymp-
totic power advantages, however, accrue to the long-horizon regression test when the
error term exhibits negative serial correlation. Figure 2 displays subregions of the
parameter space under which power advantages are obtained with plots of 6(k;~) > 1
in regions of persistent {z;}. Each figure corresponds to a given value of ¢. Power
advantages of long-horizon regression test are concentrated in the region of complex

roots in which the autocorrelation function of {e;} fluctuates in sign.

Case III. We now assume that the error term follows an AR(1) and the regressor

6Local asymptotic power advantages were also found to accrue to long-horizon regression in the
region of (—1 < ¢ < 0) but these results are not shown as this is not empirically relevant.



follows an AR(2).

€t = per_1 -+ my, (15)

Ty = G1&-1 + Palio + Ut (16)
where y = (61, ¢a, 1), (m, 1) % (0, B), pj(e) = i, and g x(e,7) = kpf+XE2} (=l 4 pite).
The autocorrelation function for {z;} is obtained recursively for j > 1 by p;(z) =
$1Pj-1(x) + p2pj_a(x) with pi(z) = ¢1/(1 — ¢2). The measure of relative asymptotic

power of the long-horizon regression test is

L+ pi(x)

Jj=1

2
} P pi(x)gi(e,7)

Table 5 reports 6(k; ) evaluated at selected parameter values. As in case I and
case II, local asymptotic power advantages are available to long-horizon regression
when the regression error {e;} is negatively serially correlated. Given —1 < p < 0,
sizable relative local power accrues to the long-horizon test when {z;} is persistent but
in regions where the sign of the autocorrelations oscillate. For example, a measure of
relative power of 97.0 is obtained under high persistence of the regressor—the variance
ratio of {z;} at horizon 10 is 4.7. In regions of modest negative serial correlation of
{e:} (e.g., p = —0.42) and p;(x) > 0 for all j, long-horizon regression tests have much
smaller power advantages (0 = 1.097). Under case III, we find that relative power is
maximized at horizons ranging from £ =1, ... 10.

Figure 3 plots 6(k;~v) for selected parameter values under case III. Each figure
corresponds to a fixed value of . As can be seen, relative asymptotic power is most
sensitive to the properties of the regression error {e;}. The more negatively serially
correlated is {e;}, the larger the statistical advantage accruing to the long-horizon
test.

To summarize, when the regressor is econometrically exogenous, potential asymp-
totic power advantages are available to long-horizon regression tests. Power advan-
tages accrue to long-horizon tests in the empirically relevant case where the regressor
is persistent. These power advantages tend to be quite modest when the short-horizon
regression error term exhibits low or positive serial correlation and can be dramatic

when the error is negatively serially correlated. Large negative serial correlation of the

10



regression error, however, is not a feature of either stock return or foreign exchange
return data so the cases that we have studied in this section probably is not relevant
to the empirical work. Moreover, because the short-horizon regression is not a struc-
tural equation the assumption of exogeneity is typically violated in applications. In

the next section, we relax the exogeneity assumption.

3 Asymptotic power under endogeneity

In the short-horizon regression for stock returns discussed in section 1, we regressed
Ayiyr = In(Pyy + Dy) —InP, on 2y = In Dy — In P,. While regression error is
uncorrelated with the regressor by construction, the exogeneity of {z;} in this case
is an untenable assumption. This is because both 311 and z;;; depend on In P4
and we would thus expect that the regression error and the innovation to {x;} to
be negatively correlated, E(vi1€441) < 0. Similarly, in the short-horizon regression
for exchange rates, we regress Ay, 1 = InS;.y — InS; on 21 = InFyyy — In Sy
and expect the innovation to {z;;1} and the short-horizon regression error to be
negatively correlated. The expected negative correlation in the innovations to the
regression error and to the regressor are in fact present in the data. Fitting a first-
order vector autoregression to (e, v;)’, gives an estimated innovation correlation of
-0.948 for stocks and -0.786 for exchange rates.

A simple vector error correction model (VECM) makes a similar point. As an
example, suppose that the bi-variate sequence {(y;, 2;)'} obeys the first-order VECM

with cointegration vector (—1,1) and equilibrium error z; = z; — yy,

Ay, _ 0121 i api; Qg Ayy I €¢ ' (17)
Azt Oos—1 Q21 Q22 Azt—l Uy

To relate the VECM to the empirical examples, in the case of equity returns, y; is
the log price of the equity portfolio and z; is the log dividend. From Campbell et.
al. (1997), the return on equity has the approximate representation ry,1 ~ pAy,. 1 +
(1 — p)xy, where p is the implied discount factor using the average dividend yield as
the discount rate. In the analysis of exchange rates, Ay; is the exchange rate return
and z; is the log of the fundamentals.

The VECM (17) has the equivalent restricted vector autoregressive (VAR) repre-

11



sentation for (Ay, z;),
Ay, _ (ay1 + a12) (61 + a12) Ay
Ty (@22 — @12+ ag1 —ay) (1 + 62 — 61 + aze — ar2) Ty 1

' ( g (a12_i1222) ) ( szt/t; ) * ( ute_tet ) . (18)

By inspection of (18), {z;} and {Ay} are correlated both contemporaneously and
dynamically (at leads and lags). Writing out the first equation of (18) and advancing
the time index gives,

Ay = (61 + ar2)xe + ((a11 + a12) Ay — 1221 + €141) - (19)

The short-horizon predictive regression regresses Ay 1 on x;. The resulting slope
coefficient in such a regression is §; + a2 and the regression error is (a1 + ag2) Ay, —
a12%¢—1+€:11 which is serially correlated and is also correlated with x;. This latter cor-
relation is innocuous, however, because the objective of the short-horizon regression
is not to estimate this 6; +aqo per se, but it is to estimate the projection coefficient of
Ayiy1 on z; which includes the correlation between the regressor z; and (Ay, ;1)

in the error term.

3.1 Local-to-zero endogeneity

The VECM example motivates the presumption of endogeneity of the regressor in
the short-horizon predictive regression. We will investigate local asymptotic power
properties of short- and long-horizon regression in a less cumbersome representation

given by

Assumption 2 (Local endogeneity.) The observations obey

Ayir = bi(T)z + ey, (20)
Tepr = p1(T)T + sy, (21)

where p1(x)x; is the linear least squares projection of xivq onto xy and ugy1, is the

associated projection error. The errors (e;,us1) are covariance stationary and have

12



the Wold representation

( “ ) — U(L,T) ( " ) , (22)

¢11,j ¢12,j (T)

where (L, T) =372, ( VYor,;(T)  aa

), Yo (T) = 222 iy 5(T) = 24,

i 1 Prn (T
mangy ¥ 0.2 2@ = (L) 1) e e g s -

1,2, and for all j > 0 and pn, are fixed constants.

Endogeneity is regulated through 91 ;(1'), ¢12,;(T) and pps(T") and is local-to-zero in
the sense that E (e;u;—j1) — 0 as T — oo for all j. Representing e;; as a projection

onto x; plus a projection error, ;1 = ¢1(T)z;+ a1 gives the short-horizon regression
Ay = Bi(T)we + €411, (23)

where €11 = azy1,  Pi(T) = bi(T) + c1(T),b(T) = by/VT, and ¢,(T) = ¢ /VT.
The projection error a;y; = €41, is constructed to be uncorrelated with x; but will
in general exhibit local-to-zero dependence on x,_; for j # 0.

To obtain the local-to-zero two-period horizon regression, we add together the

short-horizon regression at t + 1 and t + 2,

Yera — Y = Bi(T) [1+ p1(z)] o + (arp2 + @1 + Usy11) -

Note that due to the local-to-zero dependence of a;; 5 on z;, the long-horizon slope
coefficient B5(T") is not B1(T") [1 + p1(x)] as was the case when z; is exogenous. In

general, we write the long-horizon regression as

Yirk — Yt = Br(T)ze + €1tk (24)

where 3, (T) = (by+cx)/V/T, but by, and ¢ depend not only on b; and ¢; but on X(T')
and W(L,T). Under local-to-zero endogeneity, potentially large power advantages
for long-horizon regression exist if 8,(T")/51(T) grows (locally) at a faster rate with k
than it does under exogeneity and this will be the case if (b /b;) > (cx/c1). Indeed, the

relative power advantage is arbitrarily large as b; + ¢; — 0. Because the endogeneity

13



is local-to-zero, the asymptotic variance of the OLS estimator is obtained under the
null hypothesis.
Determination of relative asymptotic power relies on Proposition 1 which contin-

ues to apply. We begin our investigation in this section with

Case IV. Let the observations be generated by

Ayiyr = bi(T)wy + eppa, (25)
Ter1 = QT+ Vet (26)

G-

( K ) Wo,nr),  N(T) = ( L punld) ) ,

where

Prmn(T) 1

12 Pmn
app(l) = —F&, mn(1) = —=,
12( ) \/T p ( ) \/T
v = (¢, b1, a11, 12, Prns )» a11| < 1, p1(x) = ¢, and vy = w1 is the projection
error. In the appendix, we show that the short-horizon regression is Ay, 1 = B1(T)zi+
err1,1 where 5i(T) = by(T) + e1(T, %), bi(T) = by /VT, er(T,7) = E(epaa) [E(x,)* =
ex(7)/7/T. amd

a) = B (1), (28)

The long-horizon regression is yirx, — yr = Bp(T)xt + €11k Where

1—¢* 1 —af
T
1_¢+Cl( 77)

Figure 4 gives a comparison of potential asymptotic power advantages for a par-

Pr(T) = b1(T) (29)

1—(111

ticular specification of endogeneity by plotting the ratio of the slope coefficients

CBT) EEb+ i (y)
Bk(f)/) - ﬂl(T) - bl +Cl('7) ) (30)

where ¢;(7) is given in (28) for a;; = 0.5,a15 = —0.1, pypp = —0.1,0y = 0.1,¢ = 0.9.
The figure also displays the ratio By(y) = (1 — ¢*)/(1 — ¢) with ¢ = 0.9 that obtains
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under exogeneity. The ratio of the slopes under endogeneity is increasing in k£ at a
faster rate and lies above the ratio under exogeneity over the range of £k = 1,...,16
considered.”
Table 6 reports values of the measure of relative asymptotic power
e gj,1(€)>
Y

Bkin) = Jim (B S SE
J=—p 75

(31)

where By() is given in (30), and g; x(e) follows analogously from case I for a persistent
regressor (¢ = 0.95), moderate asymptotic serial correlation for the regression error
(a11 = 0.5) and varying degrees of endogeneity (—0.9 < pp, < 0.9, —0.9 < a33 < 0.3).
There is a diagonal band along (pmn, a12) pairs for which long-horizon regression tests
have local asymptotic power advantages. For values of p,,, > 0.1, displayed in the
top portion of the table, values of 8(k;~y) > 1 are obtained either when the regressor
and the regression error are negatively correlated at all leads and lags E(z;—je;) < 0
for all 7 and finite 7" (which occurs for relatively low a2 values), or when the error is
negatively correlated with past values of x; (E(x,_je;) < 0 for j > 1), and positively
correlated (E(z;—je; > 0, for j < 1) with future x; (relative large a; values). In the
second two panels (—0.9 < py,,, < 0.1 and —0.8 < ay2 < 0.3), E(z;_je;) < 0 for all j.

Notice how the same values of 6(k;~y) recur for alternative values of v. We find
0(13) = 890.50 with (pmn,a12) = (0.7,—0.9), (0.5,-0.8), (0.3,—0.0), (7.1,—0.6),
(—0.1,0.5), (—=0.3,-0.4), (—=0.5,—0.4), (—=0.8,—0.6) and (—0.9, —0.5). Note also that
given k,aq1, ¢, the asymptotic variance V(Bk) is invariant to p,,, or ajs. The long-
horizon regression test has local asymptotic power advantages in empirically relevant
regions of the parameter space as well as in regions that do not conform well to our
canonical empirical examples (py, > 0).

Table 7 reports the analogous local asymptotic power comparisons over —0.9 <
Prn < 0.9, —0.9 < a;p < 0, for a persistent regressor ¢ = 0.95, and low asymptotic
serial correlation in the regression error a;; = 0.1. Long-horizon regression has local
asymptotic power advantages in a larger region of (pyn, a12) than obtained for a;; =
0.5. The largest long-horizon regression power gains occur in the region p,,, < 0 and
a1z < 0 and E(x;_je;) <0 for all j and finite T

"The ratio of the long-horizon to short-horizon regression slope coefficients has a limiting value
and is not forever increasing in k. Local power also is not forever increasing in k since V(0) is
forever increasing in k.
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Asymptotic serial correlation in {e;} is not necessary (nor, as we have seen suffi-
cient) to give rise to asymptotic power advantages in the long-horizon regression test.
In table 8, we set a;; = 0. Local power advantage are seen to accrue in the region
arz < 0.

Before concluding this section, we note that Campbell (1993) studied asymptotic
power of long- and short-horizon regressions in a model with endogeneity in which
the short-horizon regression error is serially uncorrelated and negatively correlated
with the innovation to z;,;. He showed that long-horizon regression tests had ap-
proximate slope advantages over short-horizon regression tests but did not find finite
sample power advantages in his Monte Carlo experiments. We cannot make a direct
comparison to his work because his approximate slope analysis was done under a fixed
alternative. The closest approximation that we can make to Campbell’s environment
is by setting a;; = a12 = 0. But under local-to-zero endogeneity, when ay; = 0 nei-
ther the slope coefficients nor the asymptotic OLS variances depend on p,,,,, and this
brings us back to case I with g = 0 which is a configuration under which long-horizon

regression tests have no local power advantages over short-horizon regression tests.

3.2 Monte Carlo Experiments

While our primary focus lies in understanding whether there are conditions under
which long-horizon regression tests have local asymptotic power advantages, it is the
finite sample properties of the tests are of ultimate interest. A potential pitfall of
local asymptotic analysis is that the effect of critical nuisance parameters (e.g., a2
and py,,) are eliminated from the asymptotic variances, although not from evaluation
of the ratio of the slope coefficients.

This section reports the results of a small Monte Carlo experiment that corre-
sponds to case IV. The experiment should shed light on two questions. The first
question is whether the power advantages of long-horizon regression predicted by the
local asymptotic analysis is present in samples of small to moderate size. If so, then
the second question is whether the small sample power advantages accrue in roughly
the same region of the parameter space as predicted by the asymptotic analysis.

The DGP for our Monte Carlo experiment is modeled after case IV which exhibits
endogeneity. We consider a sample size of T' = 100 and performed 2000 replications
for each experiment. The DGP under the null hypothesis is given by b; = a12 = pyn-
Under the alternative hypothesis, b; = 0.1 and a range of a2 and p,,,, are considered.
HAC standard errors are given by Newey—West (1987) with 20 lags.
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Table 9 reports the maximum size-adjusted relative power of a one-sided long-
horizon regression test at the 5 percent level over horizons 1 through 20. Under both
the null and alternative hypotheses we set a;; = 0.5,¢ = 0.95. Finite sample power
advantages are seen to accrue to long-horizon regression tests. The region of the
parameter space that predicts local asymptotic power advantages for long-horizon
regression tests is evidently a subset of the region that gives finite sample power
advantage.

Table 10 reports the results of an analogous experiment with a;; = 0.0 under both
the null and the alternative. Long-horizon regression tests continue to provide finite
sample power advantages over short-horizon regressions under a linear data generating
process and over a larger region of the parameter space than that predicted by the

asymptotic analysis.

4 Conclusion

In this paper we provide asymptotic justification for employing long-horizon predictive
regressions to test the null hypothesis of no predictability. Local asymptotic power
advantages accrue to long-horizon regression tests whether the regressor is exogenous
or endogenous although the assumption of exogeneity is often untenable in applied
work. Under an endogenous regressor, we find that both local asymptotic power
advantages as well as finite sample size-adjusted power advantages accrue to long-
horizon regression tests in empirically relevant regions of the parameter space. The
finite sample power advantages to long-horizon regression obtained in our Monte Carlo
experiments are not the artifact of small sample bias or size distortion.

Our results lend support to empirical findings that equity returns and exchange
rate returns are predictable but do not obviate the need to improve on the asymptotic
distribution as an approximation to the exact sampling distribution in applied work,
say via the bootstrap. This seems to be relevant for exchange rate prediction since
the time-series available over the modern flexible exchange rate experience begins in
1973 but is perhaps less of an issue for equities since reasonably long time series on

equity returns and dividend yields are available.
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Table 1: Illustrative Long-Horizon Regressions

A. Returns on S&P index
Horizon in years
1 2 4 8
I3 0.131 0.263 0.483 0.833
t-ratio 2.827 3.333 3.993 5.445
R? 0.151 0.285 0.492 0.701

B. Returns on $/£ exchange rate
Horizon in years
1 2 3 4
¢ 0.201 0.420 0.627 0.729
t-ratio 2.288 3.518 5.706 5.317
R? 0.172 0.344 0.503 0.606

Notes: Stock return data are monthly observations from 1871.01 to 1995.12. Foreign
exchange return data are quarterly observations from 1973.1 to 1997.3.

Table 2: Persistence of {z;} in the data.

Dividend Dividend Deviation from
yield T=1500 yield T=288 fundamentals T=100
ADF 7. -3.58 -2.02 -1.66
T -4.29 -2.66 -1.31
PP Te -3.45 -1.87 -1.78
T3 -4.09 -2.25 -1.63
AC 1 0.986 0.985 0.940
6 0.883 0.859 0.648
12 0.732 0.670 0.273
24 0.544 0.367 0.094
36 0.474 0.161 -0.170

Notes: 7. (7¢) is the studentized coefficient for the unit root test with a constant
(trend). ADF is the augmented Dickey—Fuller test and PP is the Phillips—Perron
test. AC is the autocorrelation.
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Table 3: Local asymptotic power under case I. Maximized 0(k;~y) for selected values
of v = (&, ).

1
¢ -095 -085 -0.75 -0.65 -0.55 -0.45 -0.35

-0.81 3.362 1.069 1.000 1.000 1.000 1.000 1.000
-0.61 6.160 1.974 1.137 1.000 1.000 1.000 1.000
-0.41 8.198 2.652 1.543 1.067 1.000 1.000 1.000
-0.21 9.476 3.103 1.829 1.283 1.000 1.000 1.000
-0.01 9.994 3.328 1995 1.423 1.106 1.000 1.000
0.19 9.752 3.326 2.041 1.490 1.184 1.000 1.000
0.39 8.750 3.097 1967 1.482 1.213 1.042 1.000
0.59 6.988 2.642 1.773 1.400 1.193 1.062 1.000
0.79 4.466 1960 1.459 1.244 1.125 1.049 1.000

Note: Values of 6(k;~y) > 1 obtained only for & = 2. Values of 0(k;y) = 1 occur
when k£ = 1, in which case long horizon regression tests have no asymptotic power
advantage.

Table 4: Local asymptotic power for case II. Selected 0(k;v), v = (¢, p1, fi2)-

O(k;y) k¢ fi p2  VR10] pi(e)  pa(e)
1.099 19 0980 1.880 -0.960 5145 0.959 0.843
1.197 14 0880 1.800 -0.960 2406  0.918 0.693
1.169 16 0.980 1.840 -0.960 3.565  0.939 0.767
1.197 14 0.880 1.800 -0.960 2.406  0.918 0.693
1.216 14 0980 1.800 -0.960 2406  0.918 0.693
1.197 14 0880 1.800 -0.960 2406  0.918 0.693
1.216 14 0980 1.800 -0.960 2.406  0.918 0.693

88.997 15 0.880 -1.920 -0.960 0.065 -0.980 0.921
57.359 2 0.780 -1.880 -0.920 0.059 -0.979 0.921
45.520 2 0.680 -1.800 -0.840 0.050 -0.978 0.921
29.953 2 0.480 -1.600 -0.640 0.036 -0.976 0.921
20.967 7 0.880 -1.760 -0.920 0.076 -0.917 0.693
11.011 9 0.980 -1.840 -0.920 0.083 -0.958 0.843
10.107 5 0.680 -1.640 -0.840 0.063 -0.891 0.622

Notes: VR,[10] is the variance ratio statistic at horizon 10 for the error term, {e;}.
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Table 5: Local asymptotic power for case III. Selected 0(k;~), v = (é1, P2, p)-

0(k,v) k  n $1 ¢ VRG[10] pi(z) pa(z)
96.990 2 -0.920 0.000 0.960 4.689 0.000 0.960
72.375 2 -0.920 0.000 0.920 4.397 0.000 0.920
44.031 2 -0.920 -0.040 0.840 2.734  -0.250 0.850
25.291 2 -0.920 -0.120 0.800 1.230  -0.600 0.872
15.611 2 -0.920 -0.040 0.480 1.898  -0.077 0.483
9.519 2 -0.920 0.320 0.360 4.078 0.500 0.520
5.640 2 -0.920 0.480 0.080 3.033 0.522 0.330
3.742 2 -0.720 0.160 0.600 4.601 0.400 0.664
1.169 10 -0.920 -1.720 -0.800  0.067 -0.956 0.844
1.407 8 -0.920 -1.600 -0.760  0.070 -0.909 0.695
1.588 6 -0.920 -1.440 -0.640 0.071 -0.878 0.624
1.002 3 -0.220 -0.120 0.800 1.230  -0.600 0.872
1.010 3 -0.220 0.240 0.720 8.639 0.857 0.926
238 2 -0.920 0.600 0.360 8.878 0.938 0.923
1.142 2 -0.620 0.600 0.360 8.878 0.938 0.923
1.097 2 -0.420 0.360 0.600 8.799 0.900 0.924

Notes: VR,[10] is the variance ratio statistic at horizon 10 for the regressor, {z;}.
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Table 6: Local asymptotic power for case IV. 0(k;y) with a;; = 0.5,6; = 0.1, ¢ = 0.95.

Optimal horizon in parentheses.

a2

pmn 09 08 -07 06 -05 -04 -03 -02 -01 0.0
0.9 16.805 4.133 1.996 1.274 1.005 1 1 1 01 00
1 (9  ©) (5) (2) o o O @ @
08 84.361 7.24 2741 1554 1.098 1 1 1 1) (1)
(12) ~ (10)  (9) (7) (4) o o O @O @
0.7 890.50 16.805 4.133 1.996 1274 1.005 1 1 1 1
(13) (A1) (9 (8) (5) @ @© @O @O @O
0.6 29.813 84.361 7.24 2741 1554 1.098 1 1 1 1
(13)  (12)  (10) (9 (7) 4 @O @O @O @
0.5 8.647 890.50 16.805 4.133 1996 1.274 1.005 1 1 1
(14)  (13) (A1) (9 (8) G @ O @O @O
0.4 3.929 29813 84.361 7.24 2741 1554 1.098 1 1 1
(15)  (13)  (12)  (10)  (9) " @ O @O @
0.3 2188 8647 890.50 16.805 4.133 1.996 1.274 1.005 1 1
(15) (14  (13) (A1) (9 ® 6 @ @O O
02 1.367 3.929 29.813 84.361 7.24 2741 1.554 1.098 1 1
(16) (35 (@3 (132 @0 © O @ @H @)
Pmn 08 07 06 05 o1 93 02 01 0 01
0.1 2188 8647 89050 16.805 4.133 1.996 1.274 1.005 1 1
(15) (14 (13) (11  (9) ® 6 2 @O @O
0 1.367 3.929 29.813 84361 7.24 2741 1554 1.098 1 1
(16) (15 (13) (12 (o) 9 O @ @O @)
01 1 2188 8647 890.50 16.805 4.133 1.996 1.274 1.005 1
O € N € £ R € ) ) B ) B ) R ) B ) I €Y
02 1 1.367 3.929 29.813 84.361 7.24 2741 1554 1.098 1
(1 (e (15 (13 (12) @10 (9 T @ @)
03 1 1 2188 8647 890.50 16.805 4.133 1.996 1.274 1.005
(1) 1y @ 14 @) a1y © B8  6) 2
04 1 1 1.367  3.929 29.813 84.361 7.24 2.741 1.554 1.098
(1) H @6 (@5 (@3 (12 (@10 O (1) (1)
Pmn 06 05  -04  -0.3 R 0 01 02 03
05 2188 8647 890.50 16.805 4.133 1.996 1.274 1.005 1 1
(15) (14  (13) (11  (9) ® 6 2 @O O
0.6 1.367 3.929 29.813 84.361 7.24 2741 1554 1.098 1 1
(16) (15 (13) (12 (o) 9 O @ @ @)
07 1 2188 8647 890.50 16.805 4.133 1.996 1.274 1.005 1
O € N € T A € ) ) B ) B ) A ) B ) B €Y
08 1 1.367 3.929 29.813 84.361 7.24 2741 1554 1.098 1
(1 (16 (@15 (1) (12) 1) (9 7O @ 1)
09 1 1 2188 8647 890.50 16.805 4.133 1.996 1.274 1.005
(1) H @5 (149 (@33 @Ay 9 B  (6) (2
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Table 7: Local asymptotic power for case IV. 0(k;~y) with a;; = 0.10,b; = 0.1,¢ =
0.95. Optimal horizon in parentheses.

prn 0.9 A R S ¥ e e 5 e N R
0.9 36.113 11.042 5425 328 2251 1.672 1.32 L1 1 1
(8) (8) @ © © 6 @ @ @O @O
0.8 42918 12.079 5757 3432 2329 1.718 1.348 1118 1 1
(8) (8) @ O @© 6 @ @ @O @
0.7 51.886 13.275 6.122 3.591 2411 1.765 1.378 1.136 1 1
(8) (8) @ O © 6 @ @ @O @O
0.6  64.05  14.663 6.524 3.761 2.499 1.815 1.408 1.155 1.009 1
(8) (8) @ O © 6 @ @ @ O
0.5 81144  16.288 6.97 3.945 2591 1.868 144 1174 1.019 1
(9) (8) @ @ © 6 @ @ @ O
0.4 106282 18.207 T7.465 4.144 2.689 1.923 1473 1194 1.03 1
(9) (8) @ ® (© 6 6 @ @ O
0.3 14539 20497 8.018 4.359 2.794 1.981 1.509 1218 1.041 1
(9) (8) @ O @© 6 6 @ @ O
0.2 21117  23.26  8.639 4592 2905 2.042 1.548 1242 1.052 1
(9) (8) ® O @© 6 6 @ @ O
0.1 334915 26.637 9.342 4.846 3.024 2.108 1.587 1267 1.067 1
(9) (8) ® O (@© © 6 @ @6 @
0 612179 30.827 10.137 5123 3.151 2178 1.629 1.293 1.083 1
(9) (8) ® M (@© © 6 @ 6 @O
0.1 1463.86 36.113 11.042 5425 3.286 2251 1.672 132 11 1
(9) (8) ® (M (© © 6 @ @6 @
0.2 7179.029 42918 12.079 5.757 3.432 2329 1.718 1.348 1.118 1
(9) (8) ® O O © 6 @ 6 @O
-0.3 149456.8 51.886 13.275 6.122 3.591 2411 1.765 1.378 1.136 1
(9) (8) ® O O © 6 @ 6 @
0.4 3447.781  64.05 14.663 6.524 3.761 2.499 1.815 1.408 1.155 1.009
(9) (8) ® O O © 6 @ 6 @
-0.5 1005.906 81.144 16.288 6.97 3.945 2591 1.868 1.44 1.174 1.019
(9) (9) ® O O © 6 @ 6 @
-0.6  470.857 106.282 18.207 7.465 4.144 2.689 1.923 1.473 1.194 1.03
(9) (9) ® O O © 6 6 @ @
0.7 271451 14539 20.497 8.018 4.359 2.794 1.981 1.509 1.218 1.041
(9) (9) ® O O © 6 6 @ @
0.8 176.073 211.17  23.26 8.639 4.592 2.905 2.042 1.548 1.242 1.052
(9) (9) ® ©® @O © 6 6 @ @
0.9 123.222 334915 26.637 9.342 4.846 3.024 2.108 1.587 1.267 1.067
(9) (9) ® ©® M © 6 (6 @ 6
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Table 8: Local asymptotic power for case IV. 8(k;~v), a1 = 0.0,b = 0.1,¢ = 0.95.
Optimal horizon in parentheses.

ajz  O(k;y) k ap O(k;y) k
-0.9 40.636 &8 0.1 1.000 1
-0.8 13.037 7 0.2 1.000 1
-0.7 6494 7 0.3 1.000 1
-0.6 3948 6 04 1.000 1
-0.5 2697 6 0.5 1.000 1
-04 1991 5 0.6 1.000 1
-0.3 1553 4 0.7 1.000 1
-0.2 1269 4 08 1.000 1
-0.1 1.08 3 09 1.000 1
0.0 1.000 1

Note: 0(k, ) is invariant to p,, when aq; = 0.
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Table 9: Monte Carlo experiment for case IV. Relative size-adjusted power a;; =
0.5,b; = 0.1, ¢ = 0.95, optimal horizon in parentheses. 7" = 100.

pon 09 08 07 06 -0.5a12 04 03 02 -01 00
09 54 28 18 13 11 10 1.0 1.0 1.0 10
2 © © @ @ O @O @O @O @
08 64 35 21 14 1.1 10 1.0 1.0 1.0 10
(10) (10) (o) ) 6 O o @O @O @)
0.7 89 51 28 17 13 10 1.0 1.0 10 10
(12) (10) (o) ) @ = O @O @O 1
06 103 62 35 21 14 10 1.0 1.0 10 10
12 a1y @ @ @ @ @O @O @O @1
05 132 77 42 26 15 11 10 1.0 1.0 10
12) (12 (12 @ @O O @O @6 @O @
04 209 98 57 30 19 13 10 1.0 10 10
(14) (14 ) @1 9 © @O @6 @O 1
03 309 148 79 42 24 15 10 1.0 1.0 10
(14)  (13) (1) (13) 13) (9 @) @O @O @)
02 675 229 105 56 30 18 13 1.0 1.0 10
(14)  (13) (14) (13) 13 (9 (6 1) 1) (1)
0.1 800 413 156 81 39 23 15 11 10 10
(13) (13) (13) (13) (13) (10) (6) (4 (1) (1)
0 1095 747 229 112 63 30 19 1.3 10 10
(13)  (13)  (13) (13) (13) (13) (6) (6) (1) (1)
0.1 1880 627 392 166 84 42 23 15 11 10
(19) (13) () (y @ay {1y (@ 6 6) (1)
0.2 4100 170.0 573 254 129 66 31 19 13 1.0
(16) ~ (16) (13) (16) (12) (8) (10) (8) (6) (2)
0.3 3725 3825 1560 537 213 104 49 25 16 1.1
(a7 (7 (12 (12) (12) (12) (1) (6) (6) (2)
0.4 3350 3475 357.5 725 368 156 7.5 34 20 1.3
(a7)  (18) (14) (14) (14) (1) (10) (10) (6) (6)
0.5 305.0 327.5 340.0 3400 70.0 29.0 111 52 26 15
(19)  (19) (19) (19) (14) (10) (10) (10) (1) (6)
0.6 2725 290.0 307.5 327.5 1340 450 183 7.5 32 1.8
a7 (19) (200 (20) (19) (12) (12) (12) (9) (5
0.7 235.0 245.0 260.0 277.5 300.0 126.0 43.0 143 55 29
(20)  (20)  (20) (20) (20) (20) (12) (12) (11) (6)
0.8 190.0 207.5 2225 240.0 2625 295.0 1260 44.7 115 4.5
(18) (19) (18) (18) (19) (19) (19) (11 (A1) (7)
0.9 160.0 1725 197.5 2125 237.5 265.0 3025 1360 39.0 9.6
(20)  (20) (20) (20) (20) (20) (20) (20) (20) (20)
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Table 10: Monte Carlo experiment for case IV. Relative size-adjusted power a1,

100.

0.1,b; = 0.1, ¢ = 0.95, optimal horizon in parentheses. T'
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Appendix

Derivation of eq.(3). Begin with Assumption 1, use the projection representation for
x411 and advance the time subscript in (2) to obtain Ay o = 51(T)xi1 + €2 =
Br(T)p1(z)xs + ery1 + B1(T)uss11. Add this result to (2) get for k = 2,

Yeaz — Y = Bu(T) 1+ pr(@)] @ + (€141 + €rv2 + B1(T)uer1,1)
Continuing on for arbitrary k& > 1 gives (3).

Derivation of egs. (5)—(7) The asymptotic variance of B is V(8) = Wi/ (BE(z)?)? =
Wk/Cg(flI), where Wk = Qo’k+2 Zjoil Qj,k, and ij = limTﬂoo E (xt,kxt,k,jet7ket,k,j7k).
Since €, is asymptotically independent of u; ;, it follows that

Qi = jlgI;OE (T4 k Ttk j €L kEL—k—jk)
k-1 k-1
= E(xti—p—;)E (Z ej Y €t—j—s>
s=0 s=0
= Cj(x)Gjx(e)
where
k—1 k—1 k—1
Gjr(e) =E (Z ej Y etjs> = kCj(e) + > _(k— ) [Cj_s(e) + Cjis(e)]
s=0 s=0 s=1

Derivation of (28). Let a1(L) = (1—an L)™' = X5, al,Li and ¢(L) = (1—@L)™! =
3320 ¢’ L. From (?7) we obtain,

erv1 = ar(T)ar(L)ve + ari(L)myyq
Ty = ¢(L)Ut
It follows that

Bleriz) = E([aa(T)an(Lve + arn(L)mi] [p(L)vi])

_ a12(T) + a11pmn(T) _ O + @11 Pmn (A.32)

1- CL11¢ (1 - CL11¢)\/T

We have determined that 81(T) 2 b1 (T) + ¢ (T') where

E(l‘t)2 N (1—6L11¢) \/T

e1(T) = E(er1ze) (a2 + a11pmn) 1 (1 _ ¢2)
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Derivation of (30) Note that for k = 2,

Yz — Y = bo(T)(1+ @)z + ariop

Atioo = erro+ e + F1(T)v
Therefore, by(T) = b1 (T)(1 + ¢) = % (14 ¢). As before, we can write
erys = 12(T)vepr + ar2(T)arrars (L)vy + myyo + a1imess + a%an(L)mt
Ty = ¢(L)Ut

from which we obtain,

a2 (T)arr  pmn (1) a1’ _an (@12 + Pmn G11)

1—an¢ l—an¢  (1—and) VT

E(eiiom:) = = anE(er124)

It follows that

a12 + PmnQ
12 T P 11)202()

(1 —ang)VT

E[at+2,2$t] = E[(et12 + er41)ze] = (1 + an) (

Continuing on in this way, it can be seen that for any k, by(T) = b1(T) (Z?;& gbj) =

b1(T) (%), and

a12 + Pmn011 L ( a12 + Pmndi1 ) (1 - a]f1>
E (e ) = | ———— a ) =
( t+k,k t) <(1 _ a11¢)ﬁ> (]ZO 11) (1 _ a11¢)\/T 1 —ay
Finally, divide by E (22) = Co(z) = (1 — ¢%) " to get

= (o) (i) =)
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