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Abstract

Chemical signals are prevalent in sexual communication systems. Mate recognition has been extensively studied within the
Lepidoptera, where the production and recognition of species-specific sex pheromone signals are typically the defining
character. While the specific blend of compounds that makes up the sex pheromones of many species has been
characterized, the molecular mechanisms underpinning the evolution of pheromone-based mate recognition systems
remain largely unknown. We have focused on two sets of sibling species within the leafroller moth genera Ctenopseustis and
Planotortrix that have rapidly evolved the use of distinct sex pheromone blends. The compounds within these blends differ
almost exclusively in the relative position of double bonds that are introduced by desaturase enzymes. Of the six desaturase
orthologs isolated from all four species, functional analyses in yeast and gene expression in pheromone glands implicate
three in pheromone biosynthesis, two D9-desaturases, and a D10-desaturase, while the remaining three desaturases include
a D6-desaturase, a terminal desaturase, and a non-functional desaturase. Comparative quantitative real-time PCR reveals
that the D10-desaturase is differentially expressed in the pheromone glands of the two sets of sibling species, consistent
with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-
tetradecenyl acetate as sex pheromone component (Ctenopseustis obliquana and Planotortrix octo), the expression levels of
the D10-desaturase are significantly higher than in the pheromone glands of their respective sibling species (C. herana and
P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential
regulation of the same desaturase gene in two genera of moths. We suggest that differential gene regulation among
members of a multigene family may be an important mechanism of molecular innovation in sex pheromone evolution and
speciation.
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Introduction

Variation is the raw material of evolution; however the nature of

this variation remains a topic of much discussion amongst

evolutionary biologists [1,2,3]. The potential role in evolution of

mutations that impact gene regulation rather than the amino acid

sequence of a protein was initially proposed in the 1970s. King &

Wilson [4] noticed that orthologous proteins between humans and

chimpanzees were very similar at the amino acid level compared

to the phenotypic differences between the two species and

suggested that gene regulation could play an important role in

explaining some of the phenotypic differences between the two

primates. Since then the relative importance in evolution of

regulatory mutations (those affecting gene expression) versus

structural mutations (those resulting in amino acid substitutions

within the coding region of a protein) has been debated (e.g.,

Hoekstra and Coyne [1] and references therein).

While structural mutations between orthologous proteins are

easy to identify, mutations that affect the regulation of a gene are

more difficult to recognize. Regulatory mutations can fall close to

the gene in its promoter region (cis-regulatory mutations) or act at

a distance from the gene (trans-regulatory mutations). Cis-

regulatory mutations usually result in the gain or loss of a site

involved in binding a regulatory factor, such as a transcription

factor, whereas trans-acting regulatory mutations typically affect

the transcription factors themselves. Interestingly, trans-acting

regulatory mutations can involve both regulatory and structural

mutations of the transcription factor. The relative importance of

cis- versus trans-regulatory mutations in the course of evolution is

also predicted to be influenced by the degree of pleiotropy [5].
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Since transcription factors generally influence the expression of

multiple genes, trans-regulatory mutations are more likely to affect

a number of traits. On the other hand, cis-regulatory mutations are

more likely to impact the target gene alone [6]. In spite of this,

both types of regulatory mutations have been identified in the

evolution of distinct cases of beneficial traits within species [1] and

in the evolution of major morphological innovations at higher

taxonomic levels [7]. Despite these examples, there remains little

evidence regarding the nature of molecular innovations that

underpin the evolution of new species. Few genes involved in

speciation have been identified to date [8], and many causal

mutations associated with species differences remain unknown.

This makes the topic of great interest to further investigate the role

of structural mutations and gene regulation in traits that can lead

to speciation. Finally, whether these mutations are present as

standing variation in the ancestral species or if the process of

speciation is limited by the rate of acquisition of newly arising

mutations has only recently attracted attention, with most

discussion restricted to the acquisition of beneficial traits within

species [9,10].

Speciation is often associated with changes in mate recognition

systems [11]. Mate recognition has been extensively studied within

the Lepidoptera where the production of long-range species-

specific sex pheromone signals by females and their recognition by

conspecific males are critical steps. Furthermore, for many species

within the Lepidoptera, sex pheromones are often the defining

character for biological species [12]. The sex pheromones of many

species of moths have been identified [13], and in some systems,

enzymes involved in the biosynthesis of pheromone components

have been characterized [14,15]. An important structural

characteristic of moth sex pheromone components is the position

of double bond(s) along the fatty acid backbone of the molecule.

These double bonds are introduced at specific carbon positions by

distinct members of the fatty-acyl desaturase family that have

evolved a role in pheromone biosynthesis from an ancestral

function in essential fatty-acid biosynthesis [16]. A core set of

desaturase transcripts is typically found in the pheromone glands

of female moths of a given species [16], including two D9-

desaturases, one with a preference for 16 carbon (16C) fatty acids

over 18 carbon (18C) fatty acids and a second with the opposite

preference, together with one or several members of the so-called

D11-desaturase clade that includes enzymes that are increasingly

being shown to possess a wide range of desaturation abilities (e.g.

Liénard et al. [17] and references therein).

Changes in enzymes involved in pheromone biosynthesis,

including desaturases, have been implicated in pheromone

differences in both moths and flies. In the Lepidoptera, these

include examples of gene neofunctionalisation, where new

desaturases have arisen by gene duplication and then diverged

to evolve a new function [18,19]. In contrast, there is a single

example where differential expression of desaturase genes in the

Asian corn borer is responsible for producing distinct pheromone

blends [20]. In Drosophila differential regulation of desaturase F is

implicated in the production of distinct cuticular hydrocarbon

pheromones between species [21]. With only a few cases to draw

from, the importance of structural versus regulatory changes

involved in mate recognition and speciation is an open question

and more examples are required to form a consensus of their

relative contribution.

To investigate the role of desaturases in changes in sex

pheromone blends, we have studied the mode of evolution in

these enzymes within two genera of leafroller moths, Ctenopseustis

(brown-headed leafrollers) and Planotortrix (green-headed leafrol-

lers). Both genera are endemic to New Zealand, with species

within the two genera widely distributed across the two main

islands [22]. Sequence divergence at the COI locus averages 10%,

suggesting that the two genera diverged around 5 million years ago

[23]. Although some species develop on specific host plants, such

as P. aviciennae on mangroves (Avicienna marina) or C. fraterna on silver

fern (Cyathea dealbata), most of the species within the genera are

polyphagous, and can develop on angiosperms or gymnosperms,

including a number of horticultural and silvicultural crops. Many

of the sibling species are difficult to differentiate using classical

morphology [22] or mitochondrial bar-coding DNA markers [23],

suggesting that they have diverged in the last 500,000 years.

Despite this recent divergence, the different sibling species use

distinct sex pheromones. Their sex pheromone compounds are

tetradecenyl acetates that differ primarily in the position of a single

double bond within a fourteen carbon fatty acid backbone. They

are biosynthesized from fatty acids (myristic, palmitic or stearic

acid), which are desaturated at specific positions, chain-shortened

via b-oxidation, reduced to fatty alcohols, and acetylated to give

the final products. Within the genera sex pheromone blends

contain up to three components in specific ratios (Table S1) that

are desaturated at the D5, D7, D8, D9 or D10 positions, all in the Z

configuration [24]. Each genus contains a pair of sibling species

that utilize distinct sex pheromone blends. In Planotortrix, P.

excessana uses a blend of (Z)-5-tetradecenyl acetate (Z5-14:OAc)

and (Z)-7-tetradecenyl acetate (Z7-14:OAc) [25,26], while its

sibling species P. octo, utilizes (Z)-8-tetradecenyl acetate (Z8-

14:OAc) and trace amounts (2%) of (Z)-10-tetradecenyl acetate

(Z10-14:OAc) [25]. In Ctenopseustis, C. obliquana uses a blend of Z5-

14:OAc and Z8-14:OAc [27], while its sibling species C. herana

utilizes a sex pheromone consisting solely of Z5-14:OAc [28].

Thus each species pair is characterized by a gain or loss of a

particular pheromone component that differs only in the position

of a double bond.

Sex pheromones are central to mate recognition in moths and

form barriers to gene flow among the Lepidoptera. Species within

Ctenopseustis and Planotortrix are no exception. Males of these species

are specifically attracted to the sex pheromone blend of their

Author Summary

Chemical signals are prevalent in sexual communication
systems, especially within the Lepidoptera where sex
pheromones are typically one of the defining characteris-
tics of species. We have isolated six desaturases from two
groups of sibling species of leafroller moths belonging to
the genera Ctenopseustis and Planotortrix. Functional
analyses in yeast and quantitative RT–PCR indicate that
three of the desaturases are involved in the biosynthesis of
sex pheromone components in these species. One of three
enzymes is a D10-desaturase that is differentially ex-
pressed in the pheromone glands of the two sets of sibling
species, consistent with differences in the pheromone
blend in both species pairs. In the pheromone glands of
species that utilize (Z)-8-tetradecenyl acetate as sex
pheromone component (C. obliquana and P. octo), the
expression levels of the D10-desaturase are significantly
higher than pheromone gland expression levels in their
sibling species (C. herana and P. excessana). Our results
demonstrate that interspecific sex pheromone differences
are associated with differential regulation of the same
desaturase gene in these two genera of moths. Based on
these findings differential gene regulation among mem-
bers of a multigene family may be an important
mechanism of molecular innovation in sex pheromone
evolution and speciation.
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conspecific females, but not to that produced by the respective

sibling species, restricting gene flow between sibling species (see

Foster et al. [24] for a review). Briefly, Clearwater et al. [29]

investigated the cross responses of C. obliquana and C. herana males

to conspecific and sibling species sex pheromone blends, as well

as females, in wind tunnel and field cage experiments. They

found strong preferences for the conspecific pheromone in both

experimental formats. Furthermore, Foster et al. [30] tested the

attractiveness of a range of ratios of Z5-14:OAc and Z8-14:OAc

to C. obliquana and C. herana in a wind tunnel. C. obliquana never

landed on lures containing only Z5-14:OAc, while C. herana

males never landed on lures containing Z5-14:OAc and Z8-

14:OAc. Similarly, field cage cross attraction experiments using

P. excessana and P. octo showed high species specificity in male

mating behaviour [25]. The lack of interbreeding in the wild is

also supported by isozyme-based population genetics, with at

least one fixed difference identified for each sibling species pair

[31,32].

The biosynthesis of the compounds found in the pheromone

blends of the Ctenopseustis and Planotortrix species have been studied

by Fatty Acid Methyl Ester (FAME) analysis of pheromone glands

[33] and by monitoring the incorporation of labelled precursors

[34,35,36]. The Z8-14:OAc used by P. octo is the product of D10-

desaturation of palmitic acid followed by chain shortening,

reduction and acetylation [35], while the Z5-14:OAc and Z7-

14:OAc used by P. excessana are the products of D9-desaturase

activity [36]. The D10- and D9-desaturases responsible for these

activities have been isolated and characterized from P. octo [37].

The biosynthesis of Z5-14:OAc used by Ctenopseustis species was

investigated by labelling experiments in C. herana, where unlike in

Planotortrix, FAME analysis implicated the action of a specific D5-

desaturase [34]. Therefore at least four desaturases are thought to

potentially contribute to pheromone biosynthesis in these two

genera: two D9-desaturases, a D10-desaturase and a D5-desaturase

(Figure 1).

We set out to investigate whether structural mutations within

coding regions of these desaturases or differential regulation of a

standing set of desaturase genes are responsible for the diversity in

sex pheromone components used by species within the genera

Ctenopseustis and Planotortrix. To obtain a general picture of the set

of genes present in these leafroller moths, we first isolated and

characterized desaturases from genomic DNA and cDNA from the

pheromone glands of C. obliquana, C. herana, P. octo and P. excessana.

We then performed functional assays and quantitative real-time

PCR to identify the desaturases likely to have a role in sex

pheromone biosynthesis in these species. Finally, we compared

coding region sequences and the expression of the genes in the

pheromone glands of the sibling species to address our question.

Figure 1. Schematic outlining the likely biosynthetic routes of the sex pheromone components of C. obliquana, C. herana, P. octo, and
P. excessana. Desat1, desat5 and desat6 correspond to the desaturase genes encoding a D9 desaturase with a preference for 16.18 carbon fatty
acids, a D10-desaturase and a D9-desaturase with a preference for 18.16 carbon fatty acids, respectively. Desat? refers to a yet to be identified D5-
desaturase. Chain shortening by b-oxidation is indicated by ‘22C’. The minor products of the two D9-desaturases in P. excessana (desat1 and desat6)
are indicated in brackets. We also note that Z10-14:OAc is a very minor (2%) component of the pheromone blend of P. octo (not shown).
doi:10.1371/journal.pgen.1002489.g001
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Results

Isolation and phylogenetic analysis of desaturase genes
Initially we isolated as many desaturase-encoding sequences as

possible from two sets of sibling species in the genera Ctenopseustis

and Planotortrix. By Polymerase Chain Reaction (PCR) using

degenerate primers designed to target conserved regions of

lepidopteran fatty acyl desaturases, we isolated 29 desaturase-like

sequences from genomic DNA and/or pheromone gland cDNA of

C. obliquana, C. herana, P. excessana, P. octo and in some instances,

also from the more distantly related Planotortrix species, P. notophaea.

For many of these genes, sequences were recovered from two

strains of P. excessana (the North Island and South Island strains).

The sequences fall into six groups of desaturase-like genes (desat1-

6). Rapid Amplification of cDNA Ends (RACE) PCR was used

together with genome walking and analysis of preliminary whole

genome sequencing assemblies of C. obliquana and P. octo

(unpublished data) to construct predicted coding regions for each

ortholog of each desaturase-like gene. The resulting gene contigs

were confirmed by PCR and sequencing from pheromone gland

cDNA wherever possible. Coding regions were obtained for all

genes from all species except for desat3 and desat5 from C. herana,

and the final 39 ,100 bp of desat5 from C. obliquana. Desat1 and

desat5 of P. octo were isolated previously by Hao et al. [37]. All

sequences isolated during this study have been deposited on

GenBank (accession numbers JN022472–JN022498). An amino

acid alignment derived from the 29 sequences grouped into each

of the six desaturase-like genes is presented in Figure S1.

The predicted desaturases for which we obtained full length

coding regions ranged in size from 331 to 358 amino acids

(Table 1, Text S1, S2, S3, S4, S5, S6). Between species (excluding

P. notophaea), amino acid sequence identities were highest for desat6

(98.6%–100%) followed by desat1 (97.4%–99.4%) and desat2

(96.1%–99.4%), with the lowest displayed by desat3 (90.4%–

95.5%) and desat4 (90.2%–96.8%). The full length sequence of the

desat5 was only obtained for Planotortrix species, where the amino

acid identity between sibling species was 99.4%. Intron positions

were inferred by PCR from genomic DNA or in the case of C.

obliquana and P. octo by direct observation from genome scaffolds.

Where determined, intron positions were conserved among

orthologous genes. Desat2 contains no introns, desat4 contains

two introns and the remaining desaturase-like genes, desat1, desat3,

desat5 and desat6 each contain three introns. The relative positions

and phase of the introns are indicated on the alignments presented

in Text S1, S2, S3, S4, S5, S6.

Phylogenetic analysis was conducted on all predicted desa-

turases from Ctenopseustis and Planotortrix reported above or

previously [37], as well as a set of currently available lepidopteran

desaturase sequences (Figure 2). Three well-supported clades were

observed including a D9-desaturase (16C.18C) clade into which

the predicted protein desat1 falls, a D9-desaturase (18C.16C)

clade into which desat6 falls and a so-called D11-desaturase clade

into which all the remaining Ctenopseustis and Planotortrix desa-

turases (desat2, desat3, desat4 and desat5) fall. In each case, the

Ctenopseustis and Planotortrix orthologs group together, well

supported by high bootstrap values. Moreover, some Ctenopseustis

and Planotortrix desaturases group closely with previously charac-

terized desaturases from other species. First, the Ctenopseustis and

Planotortrix desat2 orthologs group closely with a non-functional

desaturase from Choristoneura rosaceana [38]; second, the desat6

orthologs group with a D9-desaturase from Epiphyas postvittana [39];

and third, even though less closely related, desat3 groups with a

terminal desaturase from Operophtera brumata [40]. Finally, the six

predicted desaturases from Ctenopseustis and Planotortrix are all well

separated from each other in the phylogenetic tree, with many

other lepidopteran desaturases inter-dispersed between them.

We looked for evidence of nonsense or missense mutations in

the sequence of the desaturase-like genes that might impact

function and explain differences in the pheromone components

used by the different species. No amino acid substitutions were

found in the active site regions, such as the histidine-rich regions

involved in ion coordination, and no premature stops or frame-

shift mutations could be identified. We then undertook likelihood

ratio tests using PAML to look for evidence of selection acting on

the coding regions of the six desaturases [41]. There was some

evidence for positive selection in one of three model comparisons

for desat3 and desat5 (Table 2), together with some significantly

selected sites identified in desat3 (7), desat4 (2), desat5 (1) and desat6

(1) (Table 3). However, the ratio of non-synonymous to

synonymous (dN/dS) nucleotide substitutions (M0) were less than

one for all genes, indicative of overall purifying selection and

suggestive of conserved function (Table 1).

Functional analysis of desaturases in yeast
We then examined the function of the predicted desaturases, or

more specifically substrate preference and desaturation specificity

within the fatty acid precursors. We investigated sufficient

desaturases so that at least one ortholog of each of the six

predicted desaturases was characterized. The open reading frames

of predicted desaturases were subcloned into the YEpOLEX or

pYEX-expression vectors and functional expression was conduct-

ed in desaturase-deficient yeast strains. FAME extracts from

transformed yeast were analysed to infer the ability of each

desaturase to introduce double bonds to pheromone precursors at

specific positions and DiMethyl-DiSulphide (DMDS) derivatiza-

tion was performed to verify the structural identity of the

unsaturated products. Since functional analyses from P. octo have

shown that desat1 has D9-desaturase activity with a preference for

16C over 18C precursors, and desat5 is a D10-desaturase [37], we

focused on orthologs of desat2, desat3, desat4 and desat6.

Desat2 from C. obliquana or C. herana had the same profile as

Cu2+-induced yeast transformed with the pYEX-CHT-only vector

(Figure 3A), indicating that they were unable to utilize typical sex

pheromone precursors as substrates.

FAME analyses from yeast transformed with desat3 from P.

excessana and desat4 from C. herana revealed the presence of three

and two additional mono-unsaturated products, respectively. In

Table 1. Summary statistics for desaturases from
Ctenopseustis and Planotortrix species.

sa Nb Sc kd vM0e vM3f

desat1 5 352 0.332 1.87 0.035 0.035

desat2 4 331 0.313 2.37 0.056 0.056

desat3 3 332 0.566 1.42 0.111 0.124

desat4 3 349 0.296 4.54 0.233 0.233

desat5 6 358 0.839 2.33 0.391 0.472

desat6 6 353 0.421 3.08 0.526 0.135

anumber of sequences.
bnumber of codons.
ctree length.
dtransition/transversion ratio.
ev under M0.
fv under M3.
doi:10.1371/journal.pgen.1002489.t001
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Figure 2. Phylogeny of 86 lepidopteran desaturases including those encoded by desat1-6 from Ctenopseustis and Planotortrix. The
phylogeny was constructed from protein sequences using PHYML implemented within Geneious using JTT distances. Complete amino acid sequence
information was obtained from GenBank, along with desaturases predicted from the genomic sequence of Bombyx mori from the Silkmoth database.
Sequences are abbreviated as following: Ape, Antherea pernyi; Ase, Ascotis selenaria; Ave, Argyrotaenia velutinana; Bmo, Bombyx mori; Cpa,
Choristoneura parallela; Cro, Choristoneura rosaceana; Che, Ctenopseustis herana; Cob, Ctenopseustis obliquana; Cpo, Cydia pomonella; Epo, Epiphyas
postvittana; Has, Helicoverpa assulta; Hze, Helicoverpa zea; Lca, Lampronia capitella; Mbr, Mamestra brassicae; Mse, Manduca sexta; Pex, Planotortrix
excessana; Poc, Planotortrix octo; Pno, Planotortrix notophaea; Onu, Ostrinia nubilalis; Ofu, Ostrinia furnacalis; Osc, Ostrinia scapulalis: Obr, Operophtera
brumata; Sli, Spodoptera littoralis; Tni, Trichoplusia ni; Tpi, Thaumetopoea pityocampa; Ypa: Yponomeuta padellus. After the abbreviated species name
are the desaturase activity if known with NF = non-functional in pheromone biosynthesis; TerDesat = terminal desaturase activity; Z or E, geometry
of the double bond. The GenBank accession numbers are given in brackets for previously described desaturases. Bootstrap values in percentages
from 1000 bootstrap replicates supporting the three major clades (D9-desaturase 16C.18C, D9-desaturase 18C.16C, and D11-desaturase) and the
groups containing the Ctenopseustis and Planotortrix desaturases, indicated by the red outline boxes, are given above the relevant branches.
doi:10.1371/journal.pgen.1002489.g002

Sex Pheromone Evolution in Leafroller Moths
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the case of desat3, all DMDS adducts exhibited a diagnostic ion at

m/z 61, corresponding to FAMEs with a terminal double bond.

These were subsequently identified as the D13-14:Me (m/z 334

[M+], 61 and 273), the D15-16:Me (m/z 362 [M+], 61 and 301)

(Figure 3B–3E) and the D17-18:Me (m/z 390 [M+], 61 and

329) (Figure 3B). The DMDS adducts for desat4 exhibited a

diagnostic ion at m/z 175, which is characteristic of FAMEs

with a double bond at the sixth carbon position (D6) and was

absent in control samples (Figure 3C). The DMDS adducts

corresponded to the D6-14:Me (m/z 334 [M+], 175 and 159)

(Figure 3D) and D6-16:Me (m/z 362 [M+], 175 and 187)

(Figure 3D, 3F). No other characteristic ions for mono-unsaturated

compounds were detected.

YEpOLEX-Cob-desat6 yeast transformants were able to grow

on media lacking Unsaturated Fatty-Acids (UFAs), indicating that

desat6 from C. obliquana encodes a functional desaturase that could

complement the UFA auxotrophic ole1 strain. Methylated fatty-

acid extracts from yeast bearing desat6 transformants showed two

major peaks with retention times corresponding to Z9-16:Me and

Z9-18:Me (Figure 4A). DMDS analyses revealed a diagnostic ion

at m/z 217, confirming the identity of unsaturated FAMEs with a

double bond at the D9 position. In addition, more Z9-18:Me than

Z9-16:Me was produced, with small amounts of Z9-14:Me (m/z

334 [M+], 217 and 117), Z9-15:Me (m/z 348 [M+], 217 and 131)

and Z9-17:Me (m/z 376 [M+], 217 and 159) also detected

(Figure 4B).

Table 2. Likelihood ratio tests between nested site-specific
models.a

2Dla 2Dl 2Dl

gene M0 v. M3 sig M7 v. M8 sig M8a v. M8 sigb

desat1 0 NS 0.217 NS 0.121 NS

desat2 0 NS 0.001 NS 0 NS

desat3 10.706 p = 0.03 3.303 NS 0 NS

desat4 0 NS 0 NS 0 NS

desat5 3.356 NS 3.877 NS 4.151 p = 0.04

desat6 5.513 NS 3.877 NS 0 NS

aTwice the difference of log likelihood between the two models (x2) =
probability that two models should differ in log likelihood, as much as that
observed, given the degree of freedom. Degrees of freedom are equal to the
difference in the number of parameters between models; M0 v. M3 = 4, M7 v.
M8 = 2, M8a v. M8 = 2, M8a v. M8 = 1. M8a v. M8 comparison significance is
determined by a P-value for the 50:50 mixture of distributions.

doi:10.1371/journal.pgen.1002489.t002

Table 3. Putative positively selected sites and posterior
probabilities under M8.

gene Site # M8v
M8 (BEB) posterior
probability

Amino acids at
selected site

desat1 - - - -

desat2 - - - -

desat3 14 0.593 E,A,D

43 0.730 L,I

54 0.713 S

101 0.611 F,M

305 0.741 V,L,A

316 0.714 G,L

320 0.755 E,S

desat4 12 0.610 K,E,D

162 0.618 K,T

desat5 11 0.503 Q,R,C

desat6 97 0.817 S

doi:10.1371/journal.pgen.1002489.t003

Figure 3. GC-MS analyses. GC-MS analyses of DMDS derivatives from
methanolysed Cu2+-induced ole1 elo1 S. cerevisiae yeast supplemented
with Z9-18:Me and transformed with (A and C) control pYEX-CHT
vector, (B) pYEX-CHT-Pex-desat3 and (D) pYEX-CHT-Che-desat4. The
chromatogram traces represent the ion currents obtained by selection
of the characteristic ion of terminal and D6-DMDS adducts at m/z 61 (A
and B) and m/z 175 (C and D), respectively. (E) and (F) represent the
mass spectra for terminal C16 DMDS adducts (D15-16) (m/z 362 [M+],
61, 301 (A+) and 269 (A+-32)) and D6-16 DMDS adducts (m/z 362 [M+],
187, 175 (A+) and 143 (A+-32), respectively. The mass spectra for other
DMDS adducts present in the extracts are not shown and displayed a
spectrum with the characteristic ions at m/z 334 [M+], 61 and 273 for
D13-14, at m/z 390 [M+], 61 and 329 for D17-18 and at m/z 334 [M+], 175
and 159 for D6-14, respectively.
doi:10.1371/journal.pgen.1002489.g003
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We are therefore able to summarise the activities of the six

predicted desaturase groups, assuming that their function is

conserved among orthologs. Desat1 encodes a D9-desaturase, with

a preference for 16C over 18C precursors, desat2 encodes an

enzyme for which an activity has not yet been detected, desat3

encodes a terminal desaturase, desat4 encodes a D6-desaturase,

desat5 a D10 desaturase and desat6 a D9-desaturase with a

preference for 18C over 16C precursors. Based on these functional

analyses we concluded that desat1, desat5 and desat6 are likely to

play a role in sex pheromone biosynthesis in these species.

Gene expression analysis of desaturase genes
Initial gene expression analysis using quantitative real-time PCR

conducted from cDNA from pooled tissue samples (approx. 100

pheromone glands) by species was undertaken on all six

desaturases to examine relative gene expression in larval fat

bodies, adult male and female abdomens and adult female

pheromone glands. The apparently non-functional desat2 was

highly expressed only in larval fat bodies, while all other

desaturases had detectable levels of expression across all tissues

with desat1, desat5 and desat6, showing high levels of expression in

the pheromone gland (data not shown). Because of these results

and the unlikely involvement of desat2, desat3 and desat4 in

pheromone biosynthesis based on their desaturase activities, we

focused on the analysis of the expression levels of desat1, desat5 and

desat6, comparing gene expression from pheromone glands of

individual female moths. Our hypothesis was that expression

differences among the desaturases are responsible for the observed

pattern of sex pheromone component differences between the

sibling species.

The most striking expression differences in the pheromone

glands compared with adult abdomens of the different species

among the three desaturases were observed for desat5 (Figure 5).

Levels of gene expression were higher in C. obliquana (34-fold) and

P. octo (273-fold) pheromone glands compared with abdomens

than in C. herana and P. excessana, respectively, where no significant

differences in expression were observed between both tissues.

Differences in expression of desat1 and desat6 between species and

tissues were also observed, but were far less striking than for desat5.

Desat1 was more highly expressed in the pheromone glands than in

abdomens of P. excessana (3.7-fold) and P. octo (3.3-fold), while for

desat6 P. octo showed higher levels of expression than P. excessana

both in the gland and the abdomen (1.8-fold). No significant

differences in desat1 and desat6 expression were found in the two

Ctenopseustis species. To verify that the primers used for

quantitative RT-PCR were able to amplify the appropriate

desaturase gene with low or barely detectable levels of expression

in a particular species (for example desat5 from C. herana and P.

excessana), PCRs were conducted using genomic DNA or plasmids

containing the relevant desaturase cDNA. In all cases, melting-

curve analysis confirmed the presence of a single product of the

expected size and/or sequence and negative controls contained no

product (data not shown).

Discussion

The molecular mechanisms involved in the production of the

variants that underpin the evolution of new mate recognition

systems and new species remain poorly understood. Toward

addressing this, we have investigated the molecular differences in

desaturase genes involved in pheromone biosynthesis in sibling

species within the Ctenopseustis and Planotortrix genera of leafroller

moths. We were particularly interested in whether differential

regulation of a standing set of desaturase genes within a multigene

family is involved in the observed differences in sex pheromone

composition between the sibling species, C. obliquana vs. C herana

and P. octo vs P. excessana.

Initially, we set out to identify the sequences encoding the four

desaturases previously identified biochemically within the phero-

mone glands of these species. In total we isolated 27 new

lepidopteran desaturase-like sequences from five species within the

leafroller moth genera Ctenopseustis and Planotortrix (C. obliquana, C.

herana, P. octo, P. excessana and P. notophaea). Together with the two

desaturases previously isolated and characterized from P. octo [37],

these 29 sequences represent six orthologous desaturases. We

examined the ability of a representative subset of these predicted

desaturases to introduce double bonds in sex pheromone

precursors such that at least one member of each set of six

orthologous desaturases has now been functionally characterized.

Two of the six desaturases from Ctenopseustis and Planotortrix

encode D9-desaturases (desat1 and desat6) that display highly

conserved functions across all lepidopteran insects investigated to

date [17,19,37,38,39,42]. For example, desat6 from C. obliquana

Figure 4. GC-MS analysis. GC-MS analysis of methanolysed total lipid
extracts from ole1 S. cerevisiae yeast transformed with YEpOLEX-Cob-
desat6. (A) Total ion current (TIC) chromatogram of fatty acid methyl
esters of yeast expressing the Cob-desat6 gene. (B) DMDS derivatives of
methanolyzed YEpOLEX-Cob-desat6 yeast extracts. The chromatogram
traces represent the ion current obtained by selection of the
characteristic ion of D9-adducts at m/z 217.
doi:10.1371/journal.pgen.1002489.g004

Sex Pheromone Evolution in Leafroller Moths

PLoS Genetics | www.plosgenetics.org 7 January 2012 | Volume 8 | Issue 1 | e1002489



and its ortholog from E. postvittana (Epo-Z9) encode a D9-

desaturase with a preference for 18 carbon fatty acid precursors

over 16 carbon precursors [39]. The remaining four desaturases all

fall into the so-called D11 clade. While desat2 from C. obliquana

and C. herana have no activity on typical sex pheromone fatty acid

precursors, similar to desaturases identified previously from

Choristoneura rosaceana and Ch. parallela [38,43], we identified two

desaturases showing interesting activities: desat3 and desat4. Desat3

from P. excessana encodes a desaturase with terminal desaturase

activity, an activity that has recently been implicated in

pheromone biosynthesis in the winter moth, Operophtera brumata

[40]. In contrast with Ctenopseustis and Planotortrix, however, the sex

pheromone of the winter moth is not derived from saturated fatty

acids, but from linolenic acid. Desat4 from C. herana on the other

hand encoded an enzyme with D6-desaturase activity. Like the

terminal desaturase activity, this desaturation ability has only

recently been observed in pheromone biosynthesis within the

Lepidoptera. Wang et al. [18] described a D6-desaturase from the

Chinese tussah silkworm, Antheraea pernyi, involved in the

biosynthesis of the (E)-6-hexadecenoic acid as an intermediate in

the pathway to producing the dienoic sex pheromone composed of

(E,Z)-6,11-hexadecadienal, (E,Z)-6,11-hexadecadienyl acetate and

(E,Z)-4,9-tetradecadienyl acetate. Despite these interesting associ-

ations with pheromone biosynthesis in other Lepidoptera, it is

unlikely that desat3 and desat4, as well as desat2, are involved in

pheromone biosynthesis in Ctenopseustis and Planotortrix because of

their inability to produce desaturated precursors of the sex

pheromone components found in the respective species, and their

low level of gene expression levels in pheromone glands of all four

species.

There are a number of examples of desaturase orthologs within

the Lepidoptera that share a conserved biological function,

especially within the two highly conserved D9-desaturase subfam-

ilies (desat1 and desat6) (e.g., Roelofs et al. [19], Hao et al. [37]).

Within the D11-like clade, in which the desat2, desat3, desat4 and

desat5 orthologs all fall, the most widespread function is D11-

desaturase activity. Members of this gene subfamily have been

shown to evolve more rapidly than the D9-clades [19], which

results in D11-like orthologs from distantly related species being

less conserved (50–60%) and displaying more variable activities

(i.e., D10, Z/E11, terminal desaturase activity, bifunctional D10/

12 or D11/13). However, in closely related species the function of

orthologs is usually conserved. This is the case for the Z/E11-

desaturases from Ostrinia spp. [19], non-functional desaturases (e.g.

desat2 orthologs) from Choristoneura spp. [38,43] or Z11-desaturases

from Helicoverpa spp. [42,44]. Only in the case of Choristoneura

parallela and Ch. rosaceana did two D11-orthologs that shared 92%

protein identity differed slightly in activity, producing E11-14:acid

or a mixture of Z/E11-14:acids, respectively [38,43]. Still both

enzymes introduced double bonds at the 11th carbon position, only

differing in their isomeric preference. Of course one cannot rule

out that some of the amino acid differences identified between the

different orthologs might encode functional differences. However,

we provide circumstantial evidence this is not the case from high

sequence conservation (90–99% identity), from phylogenetic

relationships within groups (desat2, desat3, desat4 and desat5,

respectively), from tests of selection and overall evidence of

purifying selection on coding region sequences (Table 1, Table 2,

Table 3), and from the position of the amino acid differences being

outside the active site regions. We also have tested some

orthologous desaturases and do not find differences in activity.

Altogether, evidence from previous desaturase studies together

with our sequence, phylogenetic and functional analyses provide

strong support that significant functional differences between

desat3, desat4 and especially desat5 orthologs are unlikely.

Desat1, desat5 and desat6 have biological activities that are

sufficient to explain all but one of the observed sex pheromone

components and their routes of biosynthesis (Figure 1). Foster [36]

provided evidence for the role of two distinct D9-desaturases in the

biosynthesis of the Z5-14:OAc (desat6) and Z7-14:OAc (desat1)

components of the P. excessana sex pheromone blend and a D10-

desaturase (desat5) in the biosynthesis of Z8-14:OAc in P. octo [35]

and C. obliquana [33]. The exception is the biosynthesis of Z5-

14:OAc in C. herana and C. obliquana that is thought to be produced

directly from myristic acid by a D5-desaturase [34], rather than

from palmitic or stearic acid via desat1 or desat6, respectively,

followed by rounds of chain shortening as found in P. excessana

[35]. Despite intensive efforts, we are yet to identify another

member of the fatty acyl desaturase family displaying D5-

desaturase activity from any of the four species.

We then examined whether differential gene regulation of

desat1, desat5 and desat6 could be responsible for the different sex

pheromone components produced by the sibling species pairs C.

Figure 5. Gene expression of desat1, desat5, and desat6 in the
pheromone gland and abdomen of virgin females in Ctenop-
seustis obliquana, C. herana, P. excessana, and P. octo relative to
housekeeper genes. In panel (A) the normalised expression levels in
the pheromone gland [PG] of C. herana (Che; light brown; n = 20) and C.
obliquana (Cob; dark brown; n = 21) was compared with those in the
abdomen [Ab] of C. herana (n = 20) and C. obliquana (n = 21), while in
panel (B) the normalised expression levels in the pheromone gland of P.
excessana (Pex; light green; n = 39) and P. octo (Poc; dark green; n = 24)
are compared with those in the abdomen of P. excessana (n = 39) and P.
octo (n = 25). Bars are the mean normalized gene expression, with error
bars representing SEMs. Different small case letters indicate significant
differences between tissues and/or species at the 95% level using the
Bonferroni correction for each desaturase gene.
doi:10.1371/journal.pgen.1002489.g005
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obliquana vs C. herana and P. octo vs P. excessana. Interestingly,

whereas desat1 and desat6 were expressed at largely similar levels in

the four species, desat5 showed substantial differences in gene

expression in the pheromone gland of female moths between C.

obliquana vs C. herana, and P. octo vs P. excessana (Figure 5). C.

obliquana had higher levels of expression of desat5 in female

pheromone glands compared with C. herana and similarly, P. octo

had higher levels of expression of desat5 compared with P. excessana,

which can be associated with the presence (in C. obliquana and P.

octo) or absence (in C. herana and P. excessana) of the Z8-14:OAc sex

pheromone component.

While we have found evidence for the role of differential gene

regulation in the evolution of new pheromone blends, structural

mutations have been implicated in this process in genes

immediately downstream of the desaturation step within the

Lepidoptera. In the European corn borer, Ostrinia nubilalis, a fatty-

acyl reductase has been identified that alters the specificity for the

desaturated precursors, leading to the production of distinct sex

pheromone blends between the so-called Z and E races [45]. Since

only a single reductase allele has been identified that is active in

pheromone biosynthesis in these moths, with the two alleles

diverging at more than 30 amino acid positions (8%) together with

several coding regions being under positive selection, only

structural mutations are postulated to be responsible for sex

pheromone diversity at the reduction step in this species [45]. In

contrast, there was no strong evidence for structural mutations

being responsible for the production of different sex pheromone

components by the sibling species pairs P. octo vs P. excessana, since

the desat5 genes are highly conserved (99% identity) and neither

candidate loss of function mutations nor any evidence for selection

acting on the coding regions of the orthologous desaturases were

identified (Table 1, Table 2, Table 3). Although we miss the

comparison between complete desat5 cDNA sequences for C.

obliquana and C. herana, P. octo and P. excessana differ by only two

amino acid differences at the desat5 locus. The first difference is a

single amino acid deletion that occurs only in P. octo with respect to

other Planotortrix desat5 orthologs, and still confers this species with

an intact D10-desaturase activity [37]. The second difference is a

glutamic acid to lysine substitution two amino acids towards the C

terminus from the indel. Despite the possibility that one or both of

these substitutions might impact the desaturase activity of desat5 in

P. excessana, the fact that they lie outside active site regions suggests

this is unlikely. Together, these changes in gene expression

strongly suggest that a differential gene regulation of desat5 controls

the presence/absence of the Z8-14:OAc in the sex pheromone of

these sibling species pairs. These results also suggest that the same

molecular mechanism may have been involved independently in

pheromone evolution in the two genera.

In both genera a major change in expression of desat5 in the

pheromone gland has occurred. The evolutionary event may have

been either a loss of expression event from an ancestor expressing

high levels of desat5 in their pheromone glands, or a gain event

with the ancestor expressing little desat5 in their pheromone gland.

We can reasonably infer the order of these evolutionary events by

looking at sex pheromone composition in basal species in the two

genera (see Newcomb and Gleeson [46] for discussion). Both Z8-

14:OAc and Z10-16:OAc are synthesised from palmitic acid by a

D10-desaturase (desat5), with Z8-14:OAc being produced following

a round of b-oxidation, before reduction and acetylation (see

Figure 1). Within Ctenopseustis, the basal species, C. servana, does not

use any pheromone components that contain a double bond in an

even position, suggesting that there has been a gain of the use of

Z8-14:OAc or Z10-16:OAc early in the evolution of the genus

after the split from C. servana. The use of these components

presumably through the gain of expression of desat5 in their

pheromone glands, then become widespread, used by both C.

obliquana (Z8-14:OAc) and C. filicis (Z10-16:OAc). Subsequently

South Island populations of a C. obliquana-like ancestor lost the

expression of desat5 in the pheromone gland to give rise to C.

herana, which only produces Z5-14:OAc. A similar loss of desat5

expression may also have occurred in the formation of the C.

obliquana type II that occurs in a highly restricted North Island

population and also only uses Z5-14:OAc as its sex pheromone

[29,47]. The most parsimonious scenario that explains sex

pheromone evolution within Ctenopseustis thus suggests that desat5

pheromone gland expression was lost in C. herana following

divergence from its C. obliquana-like ancestor. In contrast, the

evolution of D10- and D8-unsaturated sex pheromone components

within Planotortrix likely derives from an evolutionary scenario

involving a gain of expression of desat5 in the pheromone glands of

P. octo. Hence in this genus, components such as Z5-14:OAc and

Z7-14:OAc that are derived from the action of D9-desaturases are

widespread within the group and thus probably represent the

ancestral pheromone blend. The use of Z8-14:OAc is restricted to

just two species within the genera, P. octo and its geographically

isolated relative P. octoides, the latter of which is only found on the

Chathman Islands. Therefore, the presence of Z8-14:OAc is a

derived condition within the genus and indicates that desat5

expression in the pheromone glands of P. octo is likely a gain of

function event. The alternative scenario that all species but two in

the Planotortrix genus have lost expression of desat5 independently is

a less parsimonious explanation. Simultaneously or subsequently

to producing Z8-14:OAc P. octo must have also lost the ability to

produce Z5-14:OAc and Z7-14:OAc. This may have come about

through a change in one or both of the D9-desaturases.

Apart from this study, sex pheromone evolution through

regulatory changes in desaturases has been investigated only in

the corn borer moths, Ostrinia furnacalis and O. scapulalis [20]. In

this example a D11- and D14-desaturase show alternate expression

in the pheromone gland of the two species, with the D11-

desaturase being expressed in the pheromone gland of O. scapulalis

but not in O. furnacalis and vice versa for the D14-desaturase.

Together these examples point to differential gene regulation

among a standing set of desaturase genes as a mechanism involved

in producing novel sex pheromone components and blends within

the Lepidoptera. A further example comes from Drosophila

melanogaster where differences in mating ability between African

and cosmopolitan populations are caused by sex pheromone

differences and have been suggested as a case of incipient

speciation [48]. Here, a D9-desaturase is differentially regulated

in the population through a cis-regulatory deletion within the

promoter of the gene resulting in cuticular hydrocarbon sex

pheromone differences that may ultimately promote the speciation

of the two D. melanogaster races.

Differential gene regulation can result from two classes of

mutation; either changes in the regulatory region of the

differentially expressed gene (cis-regulatory mutation) or changes

in transcriptions factors that bind to the promoter (trans-regulatory

mutation). Trans-regulatory mutations are often associated with

pleiotropic impacts on the regulation of other genes due to

transcription factors typically acting on several promoters.

Therefore it is perhaps more likely that cis-regulatory mutations

are responsible for the differential regulation of desat5 in

Ctenopseustis and Planotortrix, an hypothesis which we are currently

in the process of testing. In conclusion we show that interspecific

pheromone differences between sibling species are determined by

parallel changes in desaturase gene expression in two sister genera.

This case study suggests that differential regulation within large
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multigene families may be an important process in speciation, with

changes in gene expression underpinning the evolution of novel

mating systems.

Materials and Methods

Insects
Ctenopseustis herana, C. obliquana, Planotortrix excessana, P. octo and P.

notophaea were obtained from the Plant & Food Research insect

rearing facility at the Mt Albert Research Centre, Auckland, New

Zealand. The history of these strains is reported in Newcomb and

Gleeson [46], except that an additional strain of P. excessana

derived from material caught in the South Island of New Zealand

was used to generate a P. excessana South Island strain and the

original P. excessana strain is now known as P. excessana North

Island. Insects were reared on a 16:8 light cycle, with larvae reared

at 20uC and pupae and adults at 18uC.

Gene isolation
Genomic DNA was extracted using the DNeasy Blood & Tissue

Kit (Qiagen). Total RNA was extracted from two distinct regions

of the abdomen of 2–3 day old virgin adult females and from fat

bodies of 5th instar larvae. From the adult females the pheromone

gland, located within the dorsal region of the 8th and 9th

abdominal segments (denoted ‘pheromone gland’) was dissected.

As a control, a lateral region of the 4th to 6th abdominal segments

of the same adult females (denoted ‘abdomen’) was also dissected.

RNA was isolated from dissected tissue using 800 ml of Trizol

(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s

instructions. The expression of desaturase genes was initially

characterized from RNA generated from pools of 100 pheromone

glands, while RNA from single pheromone glands was used for

subsequent Quantitative Real-Time PCR experiments. After

DNase treatment (DNaseI amplification grade, Invitrogen), the

cDNA synthesis was carried out using the iScript cDNA Synthesis

Kit (Bio-Rad) from 1 mg of total RNA or approximately 100 ng of

total RNA for single samples, and incubated at 50uC for 1 hr,

followed by 70uC for 15 mins.

In order to identify the different desaturases involved in sex

pheromone biosynthesis, a progressive approach using successive

and complementary methods was used for each species. Initially,

degenerate primers were applied to genomic and pheromone

gland cDNA using primers designed to conserved amino acid

motifs found in lepidopteran desaturases. Sequences of the coding

region of desaturase genes were then extended by means of 59 and

39 Rapid Amplification of cDNA ends (RACE), genome walking,

or Inverse PCR. All the primers used are listed in Table S2. All

PCR amplifications were performed on a GeneAmp 9700

(Applied Biosystems). The fragments of interest were cloned into

pGEM-T Easy Vector System (Promega) and transformed into

JM109 competent E. coli cells, according to the manufacturer’s

instructions. Sequencing was performed at the Allan Wilson

Centre Genome Service (AWCGS) at Massey University,

Palmerston North, New Zealand or Macrogen in South Korea.

Degenerate PCR was performed for each species on the

genomic DNA or pheromone gland cDNA using 0.2 ml of

Platinum Taq DNA polymerase (5 units/ml, Invitrogen), 1.5 mM

Mg2+, 0.2 mM of each dNTP and 2 mM of each degenerate PCR

primer (Table S2). Cycling conditions were 2 min at 94uC, 35

cycles of 94uC for 10 s, 50uC for 10 s and 72uC for 1 min, and a

final extension of 72uC for 10 min.

The 39 ends of the coding regions were obtained using a

modified version of the 39 RACE System for Rapid Amplification

of cDNA ends (Invitrogen). First strand cDNA synthesis was

carried out in a final volume of 14 ml using 1–2 mg total RNA, 1 ml

39AP (or RoRidT16) primer (10 mM), 1 ml of 10 mM dNTPs, and

incubated at 65uC for 5 min, and placed on ice for 1 min. Then,

4 ml of 56 first strand buffer, 1 ml of 0.1 M DTT and 1 ml of

Superscript III (200units/ml, Invitrogen) were added to the

mixture. The reactions were incubated at 50uC for 1 hr, followed

by 70uC for 15 min. The 39-tagged products were detected by

PCR amplification using forward desaturase group-specific

primers (39 RACE-F primers) and the 39AUAP (or Ri) primer,

with 0.2 ml of Platinum Taq DNA polymerase (5units/ml,

Invitrogen), 1.5 mM Mg2+, 0.2 mM of each dNTP and 0.2 mM

of each primer. Cycling conditions were 2 min at 94uC, 30 cycles

of 94uC for 10 s, 55uC for 30 s and 72uC for 1 min, and a final

extension of 72uC for 10 min.

The 59 ends of cDNAs were amplified using the 59 RACE

System for Rapid Amplification of cDNA ends kit (Invitrogen).

Oligo-dC tails were added to purified 39 RACE cDNA in a final

volume of 20 ml with 4 ml of 56 first tailing buffer, 2 ml of 2 mM

dCTP, 3 ml of 5 mM CoCl2. Reactions were incubated at 94uC
for 3 min and placed on ice for 1 min. Then, 1 ml of TdT

(400units/ml) was added, and the reaction was incubated at 37uC
for 10 min and stopped at 65uC for 10 min. Oligo-dC-tailed

products were amplified by normal PCR (30 cycles), and 1 ml of

the later reaction was used for a nested-PCR (25 cycles), using the

59 RACE-F and 59 RACE-R primers (Table S2).

Inverse PCR was performed by digesting genomic DNA

overnight at 37uC with NdeI or SalI, BSA (100 mg/ml) and

Spermidine (2 mM). Classical phenol/chloroform extraction and

ethanol precipitation were used to purify the digested products.

These were then circularized by ligation overnight at 16uC with

T4 DNA ligase (400 units/ml, New England Biolabs), and purified

as previously described. The 39 ends of two distinct fragments were

amplified in C. herana using the Inverse PCR primers (Table S2)

under the same conditions as described for the 39 RACE.

In some cases, genome walking was used to extend the coding

sequences of desaturase genes. For this approach genomic DNA

was digested overnight at 37uC with DraI, EcoRV, PvuII and StuI,

separately, and the products purified with the DNA Isolation Kit

for Cells and Tissues (Roche). GenomeWalker adapters were then

ligated to both ends of the digests by incubating 3 ml of template

overnight at 16uC with 2 ml of adapter primers (100 mM) and 1 ml

of T4 DNA ligase (400 units/ml, New England Biolabs) in a final

volume of 20 ml. Specific tagged-products were amplified by

normal and nested-PCR (see 59 RACE), using the GW1-F and

GW1-R primers (Table S2). Gene-specific PCR was conducted

using highly specific PCRs (Gene-specific primers, Table S2) to

verify all contigs of the coding regions.

Bioinformatics
Sequences were analysed using Geneious Pro v5.3.4 (Biomat-

ters). Sequences were aligned using ClustalX [49] and codon

aligned nucleotide alignments were produced using RevTrans

version 1.4.1 (www.cbs.dtu.dk/services/RevTrans/). For phyloge-

netic analyses, explicit models of evolution were determined using

Modeltest [50] and GTR+I+C was implemented for likelihood

and Bayesian analyses. Parsimony and maximum likelihood

analyses were performed in PAUP v4.0b (Sinauer Associates,

Sunderland, Massachusetts), and Bayesian inference was imple-

mented in MrBayes v3.0b4 [51]. Evidence for selection was tested

by looking for deviations from neutral expectations using the

CODEML program in the PAML package [41]. Multiple models

were run (M0, M3, M7, M8 and M8a) to assess selection pressures.

Comparisons of nested models were used to assess heterogeneous

selective pressure amongst sites (M0–M3) or positive selection
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(M7–M8). Nested models were compared by the implementation

of a likelihood-ratio test (LRT), where the LRT is twice the log-

likelihood difference of the nested models. Significance was tested

using a x2 test with degrees of freedom equal to the difference in

the number of parameters between the two models.

Quantitative real-time RT–PCR
Pheromone glands were dissected from two-day-old virgin adult

females of C. herana, C. obliquana, P. excessana and P. octo. Pheromone

glands were pooled in lots of 100 or used singly in RNA

extractions. Fat bodies were dissected from 5th instar larvae, and

pooled in lots of five, while abdomens were extracted singly. RNA

and cDNA were extracted as described in the gene isolation

section.

The expression of the desaturases together with the housekeeper

genes actin, a-tubulin and elongation factor 1 a were determined

using primers described in Table S2. All quantitative real-time

PCRs were performed for the pheromone gland and the abdomen,

for each specimen, in duplicate. Experiments were performed on

the LightCycler480 Real-Time Instrument (Roche Diagnostics,

Basel, Switzerland), in a final reaction volume of 10 mL, with

80 ng of cDNA, 5 mL 26 SYBR Green Mix (Bio-Rad), and

0.5 mM of each primer. The PCR cycling conditions were set to

2 min at 95uC followed by 45 cycles of 15 s at 95uC, 30 s at 60uC
and 30 s at 72uC. A final dissociation curve analysis was added

(15 s at 95uC, 15 s at 60uC, and a gradual heating to 95uC at

0.01uC/s) to confirm the presence of a single amplicon.

Relative expression levels were calculated according to the

DDCp method [52,53]. The amplification efficiency was calculat-

ed for each PCR using the LinRegPCR software [54]. For each

sample, the average Threshold Cycle values were extracted, and a

normalization factor, based on the geometric averaging of the

reference gene expression levels, was determined using geNorm

[55]. Normalization factors allowed correction for PCR efficiency

and normalization of the gene expression levels. To test for

differences in levels of normalised relative expression between

species and tissues one way ANOVAs were conducted using

GraphPad Prism 5, with individual comparisons made using

Bonferroni-corrected t-tests at the 95% significance level.

Desaturase activity assessment in yeast
Functional assays were performed with at least one ortholog of

each of the desaturases. The Cob-desat2, Cher-desat2, Pex-desat3

and Cher-desat4 ORFs were cloned into pYEX-CHT vectors and

transformed into the desaturase- and elongase-deficient (elo1 ole1)

strain of Saccharomyces cerevisiae (MATa elo1::HIS3 ole1::LEU2 ade2

his3 leu2 ura3) [52]. In the same way, the Cob-desat6 ORF was

cloned into the YEpOLEX vector and transformed in the

desaturase-deficient (ole1) strain of S. cerevisiae (MATa ole1D::LEU2

leu2-3 leu2-112 trp1-1 ura3-52 his4) [56,57]. Functional assays were

performed with the S.c. Easy Transformation kit (Invitrogen AB,

Lidingö, Sweden). pYEX-CHT and YEpOLEX vectors only were

used as negative control.

Transformed ole1 elo1 or ole1 yeast cells were incubated for 4

days at 30uC on selective medium plates containing 0.7% YNB

(w/o amino acids, with ammonium sulphate) and a complete

drop-out medium lacking uracil and leucine (ForMedium LTD,

Norwich, England), 2% glucose, 0.01% adenine, 1% tergitol (type

Nonidet NP-40, Sigma-Aldrich Sweden AB, Stockholm, Sweden)

and 0.5 mM unsaturated oleic acid (Larodan Fine Chemicals,

Malmö, Sweden). Note that in addition to Z9-18:Acid, ole1 elo1

yeast contained residual traces of Z9-16:Acid because of

supplementation during the earlier procedure of making cells

competent.

Individual ole1 elo1 colonies were selected and incubated in

10 ml fresh selective medium and cultures were incubated in

inclined position at 30uC for 48 hr and 250 rpm (Innova 42, New

Brunswick Scientific). Yeast cultures were diluted to an OD600 =

0.4 in 10 ml fresh SC-U medium and supplemented with 25 ml

CuSO4 1 M in water (final concentration: 2.5 mM). After 48 hr of

incubation at 250 rpm in presence of copper, yeast cells were

collected by centrifugation at 2,0006 g (Labofuge 200, Heraeus

Instruments) and washed with sterile water. The total yeast lipid

fraction was extracted with chloroform:methanol (2:1, v:v) and the

extracts were base-methanolyzed according to standard protocols

[17,58]. Double bond localization in methyl esters was determined

by dimethyl disulfide (DMDS) derivatization [59] before GC-MS

analysis.

To test for genetic complementation of the ole1 auxotrophy by

the YEpOLEX-Cob-desat6, individual SC-U-Leu yeast colonies

were selected and patched onto YPAD plates lacking Fatty Acids

(FA) and incubated for 4 days at 30uC. Positive transformants were

subsequently grown for 48 hr at 30uC and 300 rpm in 10 ml SC

medium without FA, recovered by centrifugation and washed with

water, followed by base methanolysis and DMDS derivatization.

Before analysis by GC-MS analyses, samples were concentrated

under a gentle flow of pure nitrogen to a final volume of approx.

50 ml. For analysis of fatty acid methyl esters (FAMEs), 3 ml was

injected on a gas chromatograph (Hewlett Packard HP 5890II GC

system) coupled to a mass selective detector (HP 5972) and

equipped with a polar INNOWAX column (100% polyethylene

glycol, 30 m60.25 mm60.25 mm, Agilent Technologies). The

GC-MS was operated in electron impact mode (70 eV) and the

injector was configured in splitless mode at 220uC with helium

used as carrier gas (velocity: 30 cm/s). The oven temperature was

maintained for 2 min at 50uC and increased at a rate of 10uC/min

up to 220uC, held for 20 min.

For analysis of DMDS adducts, 2 ml was injected on a GC

(Hewlett Packard HP 6890, Agilent Technologies) equipped with

an HP-5MS capillary column (5% Phenyl Methyl Siloxane;

30 m6250 mm: df = 0.25 mm; carrier gas: helium; velocity:

30 cm/s), an automatic injector (HP-7683), and coupled to a HP

5973 mass selective detector. The injector was configured in

splitless mode at 250uC. The oven temperature was maintained for

2 min at 80uC, increased at a rate of 15uC/min up to 140uC,

increased at a rate of 5uC/min up to 280uC, and held for 10 min.

Supporting Information

Figure S1 Amino acid alignment of desat1-6 from Ctenopseustis

obliquana (Cobl), C. herana (Cher), Planotortrix octo (Poct), P. excessana

North Island (PexcN), P. excessana South Island (PexcS) and P.

notophaea (Pnot).

(PDF)

Table S1 Sex pheromone blends used by species within the

genera Ctenopseustis and Planotortrix.

(DOCX)

Table S2 Polymerase Chain Reaction primers used in this study.

(DOCX)

Text S1 Amino acid alignments of desat1 orthologs, among

species within the genera Ctenopseustis and Planotortrix. Variable

amino acids are in black, while invariant positions are in grey. The

positions of introns are noted above the alignment with phase

indicated in brackets.

(PDF)

Text S2 Amino acid alignments of desat2 orthologs, among

species within the genera Ctenopseustis and Planotortrix. Variable
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amino acids are in black, while invariant positions are in grey. The

positions of introns are noted above the alignment with phase

indicated in brackets.

(PDF)

Text S3 Amino acid alignments of desat3 orthologs, among

species within the genera Ctenopseustis and Planotortrix. Variable

amino acids are in black, while invariant positions are in grey. The

positions of introns are noted above the alignment with phase

indicated in brackets.

(PDF)

Text S4 Amino acid alignments of desat4 orthologs, among

species within the genera Ctenopseustis and Planotortrix. Variable

amino acids are in black, while invariant positions are in grey. The

positions of introns are noted above the alignment with phase

indicated in brackets.

(PDF)

Text S5 Amino acid alignments of desat5 orthologs, among

species within the genera Ctenopseustis and Planotortrix. Variable

amino acids are in black, while invariant positions are in grey. The

positions of introns are noted above the alignment with phase

indicated in brackets.

(PDF)

Text S6 Amino acid alignments of desat6 orthologs, among

species within the genera Ctenopseustis and Planotortrix. Variable

amino acids are in black, while invariant positions are in grey. The

positions of introns are noted above the alignment with phase

indicated in brackets.

(PDF)
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