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We consider a model of vertical quality differentiation. We show that in Cournot
(quality setting) competition firm’s profit is increasing in its own quality and
decreasing in its rival’s quality. This differs from the results for Bertrand (price
setting) competition and conforms to some previously made assumptions concerning
profit functions in a setting of vertical quality differentiation. However, even in this
case, when an initial stage in which firms make as costly investment in quality is
added, an asymmetric equilibrium results. This follows from the fact that in both
types of competition, it is possible to improve profit by moving away (either by
choosing higher or lower quality) from rival’s quality. This paper is the same as
manuscript dated 1988 of the same name.
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Cournot and Bertrand Competition with Vertical Quality Differentiation

Reiko Aoki

1 Introduction

We consider a model of two firms competing in a market for a good with vertically
differentiated quality. (That is, given two different qualities one is unambiguously better than the
other.) If the firms engage in Cournot (quantity setting) competition, a firm's equilibrium profit
increases when its quality increases and decreases when its rival's quality increases. This is in
contrast to the apparently paradoxical fact that in Bertrand competition a firm's profit is, in some of
the quality space decreasing in its own quality and increasing in its rival's quality. In some sense the
Cournot model seems to conform more closely to some intuition as to how equilibrium profit depends
on quality.

Significant differences between models with vertical and horizontal quality differentiation
have been demonstrated by Shaked and Sutton[1983]. In their model the two types of product
quality differentiation may have different implications for the possible number of firms in the
market. Gabszewicz and Thisse[1979] have examined a mode] of vertical quality differentiation and
how profit depends on the quality of the firm's own product as well as that rival's when two firms
engage in Bertrand (price setting) competition. Shaked and Sutton[1982] extended this analysis by

adding two stages prior to the Bertrand subgame: a first stage where entry decisions are made and a



willingness to pay for better quality among the consumers is bounded in a certain way, only two
firms will enter the market in the perfect equilibrium. In the second stage, the two firms choose
qualities that are distant from each other. This polarization of quality is a result similar to results
obtained for models with horizontal quality differentiation (D'Aspremont, Gabszewicz and
Thisse[1979], Neven[1985], Novshek[1980]). The result in the vertical quality model follows from an
aspect of the profit function which is similar to the profit function of the horizontal quality models.
As in the horizontal quality models, when the quality of the two firms approach each other (either an
improvement of lower quality firm or worsening of the higher quality firm), profit for each firm
approaches zero. This occurs because when the qualities are very close, the two products are almost
homogeneous and the equilibrium is close to the Bertrand equilibrium with homogeneous products in
which case each firm has zero profit. This occurs in both vertical and horizontal quality models.

In this paper we will see that the profit function is qualitatively different when firms engage
in Cournot {quantity setting) competition. Cournot competition with vertical quality has been
considered by Moorthy[5] when the quality and quantity choices are made simultaneously. Here, we
will consider a two—stage game where quality choices are made and observed, and then quantity
choices are made. By restricting ocurselves to more explicit functional forms similar to those in
D'Asprement, Gabszewicz, and Thisse[1979] or Shaked and Sutton[1982,83], we are able to explicitly
examine the profit functions as well as the equilibrium quality choices.

The monotonicity of Cournot profit function is significant in interpreting the R&D and
innovation literature. The difference between cost reducing and product enhancing innovations was
explicitly noted by Arrow[1962], but in the subsequent literature the difference or similarity of the
two types of innovation has largely been neglected, although there seems to be consensus that both
cost, reduction and quality improvement increase profits and thus it was largely a matter of choice

which type of innovation to consider.! However the results about vertical quality (Gabszewicz and



two innovations have qualitatively different effects upon profits and known results about cost
reducing innovation (Arrow[1962], Kamien and Tauman[1986}, Katz and Shapiro[1985),
Reinganum(1981}, to name a few) have limited applicability to the study of product innovation.
With what we show here about Cournot competition, we know that quality improving innovation in
fact will have some of the same effects upon the profit of the producer as cost reduction. The results
about cost reducing innovation may be relevant for the case 6f quality improving innovations as well.

We consider a model corresponding to the last two stages of Shaked and Sutton[1982]. There
are two firms that are going to sell a product differentiated by vertical quality. In the first stage,
firms make their quality choices, incurring a cost for choosing higher quality. The quality choices
become common knowledge at the end of this stage. In the second stage firms sell to consumers that
differ in their willingness to pay. Qur primary interest is to consider a case where this subgame is a
Cournot, game. We also analyze the game where the subgame is a Bertrand (sub)game and compare
the perfect equilibria for the two games.

The perfect equilibrium is characterized by solving the model backwards. Given two
qualities, we find the Cournot and Bertrand equilibrium strategies for each subgame as function of
the qualities. The payoff or profit of the second stage as function of the two qualities is defined by
these equilibrium strategies. We find that this function is non—monotonic in the Bertrand subgame
case, while in the Cournot subgame, the profit is monotonically increasing in firm's own quality and
decreasing in the quality of the rival.

Next we explore the implication this Cournot profit function has for the quality choice. In the
Bertrand game it is clearly not the case that there is a symmetric equilibrium because by choosing
quality below that of the rival, a firm can increase profit while simultaneously investing less in
quality. However in the Cournot case, profit is increasing in firm's own quality, independent of the
rival's quality, raising at least the possibility of a symmetric equilibrium. However this is not the

case. A discontinuity in the firm's marginal profit function at the point at which the two qualities



are equal implies that it is never a best response for a firm to choose the same quality as its rival.
Thus in spite of some qualitative diffefeuces in the equilibrium profit function the equilibrium
quality choice displays the same features as in models of horizontal quality or Bertrand competition.
- That is, the two firms will never choose the same quality (Hotelling[1928], Gabszewicz and

Thisse[1979], Osborne and Pitchik[1987]).

The main purpose of this paper is to examine the Cournot model and to compare the
equilibrium of that model with the equilibrium of the Bertrand model. Our analysis of the Bertrand
model confirms the results of earlier work (Gabszewicz and Thisse[1979], Shaked and Sutton[1982])
although the consumers are modeled slightly differently here.

The full model is presented in the next section. The equilibrium strategies for both the
Cournot and Bertrand subgames are characterized in Section 3. The profits in equilibrium as
functions of qualities is derived there also. In Section 4, we characterize the equilibrium quality
choices for the Cournot and Bertrand games using those profit functions. Section 5 includes the

‘concluding remarks.

2 The Model

There are two, initially identical, firms which we will call firm 1 and firm 2. The firms
compete in a two stage game. In the first stage the firms simultaneously undertake investment
which determines the quality of the product to be sold in the second stage. The quality of firm i is
represented by the quality index g € [0,). We assume that the relationship between investment and
quality is deterministic and strictly increasing. Thus we may think of the firm as choosing its
quality q and deterministically incurring the cost C(g). At the end of the first stage the quality

choice becomes common knowledge.



In the second stage, with their qualities determined, the firms sell to a heterogeneous set of
consumers. We assume that the quality differences are vertical, that is, that consumers agree on
which of any two qualities is better, though they may differ in their willingness to pay for the higher
quality. Consumers who are willing to pay more for the good are assumed to also be more willing to
pay for an increase in quality. More specifically, we assume that the consumers are uniformly
distributed over the interval [0,1]. For consumer t € [0,1] we let r(t,q) be his reservation price for
one unit of the good of quality . When more than one quality is available consumer t chooses the

quality which maximizes r(t,q) — p, ., where p q is the price of a unit of the good with quality q, as

long as this maximum is positive. 3Ve assume that the reservation price has the particular functional
form r(t,q) = B(q)t, where 3(-) is a differentiable fucntion, #(q) > 0 and 4 (q) > 0 for all q € [0,x).

We consider two different games, one in which the firms' strategies in the second stage are to
choose quantities and one in which their strategies are to set prices. In the case that the firms'
strategies are to choose quantities we call the subgame which follows the firms' quality choices the
Cournot subgame, and in the case that the strategies are to choose prices we call the subgame the
Bertrand subgame. The entire two stage game will be named according to the form of the second
stage. Thus a strategy for a firm will be a pair consisting of a quality choice and a function which
gives the quantity or price choice in the second stage as a function of the quality choice of the other
firm.

Because it significantly simplifies the analysis we assume that the marginal cost of production
is zero. It is possible to get qualitatively similar results if the marginal cost is constant and
independent of quality.

In the next section we calculate the equilibrium for the Cournot, subgame and the Bertrand
subgame and characterize the equilibrium as a function of the qualities chosen in the first stage. In

Section 4 we use these results to find the subgame perfect equilibrium of the entire game.



3 Cournot and Bertrand Competition — Second Stage

In this section we examine the subgames that follow the firms' choice of qualities, that is, we
take the qualities as given. It will be convenient to index the qualities not by the particular firm
which chose that quality but by the levels of the quality. Thus we consider two qualities qp, and Iy
with qg 2 qp. Also we let ﬁi = ﬂ(qi) and vi(t,pi) = r(t,qi) - for i = L,H, where p; is the price of
the product of quality q;- Let X; be the quantity demanded of the product of quality q;- Restating
the consumers' behavior given in Section 2 we have: consumer ¢ will purchase the product of quality
q; if Vi(t’pi) >0 and Vi(t’pi) > v j(t,pj) for j #i. The weak versions of these inequalities will affect
only a zero measure of consumers (actually one for each inequality) and so we need not be concerned
with them.

Now, let us define ti(pi) by Vi(ti(pi)’pi) = 0, or, equivalently ﬁiti(pi) = p;- For the case in
which 1 2 tp(pg) > t1(pp) 2 0, we also define ;J(DH,DL) by VH(i(pH,pL),pH) = VL(’;(pH,pL),pL)-
Thus t(pH,pL) is the point at which the lines vH(t,pH) and VL(t,pL) intersect. This is shown in
Figure 1. All consumers to the right of t(pH,pL) will purchase qg; while thoge between tL(pL) and
E(pH,pL) will purchase qp - Because of our assumption that the consumers are uniformiy distributed
with total mass 1 the quantities demanded, Xy, and xp, are given by the lengths of the intervals
[tL(pL),;;(pH,pL)] and [;;(pH,pL),l] respectively. This allows us to characterize the demand

functions xH(pH,pL) and xL(pH,pL) and the inverse demand functions pH(xH,xL) and pL(xH,xL).

We do this in the following two lemmas.

LEMMA L:

XH(pH’pL) :
= Min{ 1~py/fyy . 1~(pp-pp )/ (B ) } for pyy < Min{ fpy+py—~fp, Ay }
-0 for py; > Min{ Ag+p By , By }



x1 (PpPp,)
= Min{ I“PL/BU (pH_pL)/(ﬂH_ﬂL)_poﬂL } for pr, < Min{ ﬂLpHKﬁH’ ‘BL }
=0 for Py, > Min{ pHﬂL/ﬁH ) ﬂL |3

Proof: First we calculate X For P2 ﬂL no consumer values q, non—negatively. So as
long as the price of Gy is low enough, namely pg < ﬂH, CONSUINErs on [tH(pH),l] all buy qy; and the

demand is 1 — tH(pH). If p 2 By, no consumer values qp non—negatively and demand is zero.
_ Py P
For py < f;, consumers on {t; (py ),1] value q; non—negatively. If < s [t (pp 11 €
L L L\YL L HH BL LML

[tH(pH),l] but those on [tL(pL),l] value qpp higher. Thus all consumers on [tH(pH),l] buy qp. If

b P
—‘5% > —ﬂ% but p < B — ﬂL + pp,, then consumers on [tL(pL),l] value at least one of the products

non—negatively. Those on [;;(pH,pL),l] value qpy more, thus demand is 1 — i(pH,pL). Demand is
zero when the price is too high, Py 2 ﬂH — ﬁL + P

Now we calculate xp- For Py 2 ﬁH, the price of Py 18 t0o high and if pp < ﬂL, all consumers
on [tL(pL),l] will buy qr, When the price of qr, is also too high, i.e., Py 2 ﬁL, then the demand for
q, is zero.

For the case Py < ﬁH, if ﬂL > ﬂH — Py then it is possible to charge price py such that pp <
Py — ‘BH + ﬂL’ Although consumers on [tH(pH),l] value qy; non—negatively, [tH(pH),l] c [tL(pL) 1]
and those on [tH(pH),l} value q; more. Thus consumers on [tL(pL),l] all buy q; and demand is 1 —

tL(pL). If Py is such that there can be no Dy, to satisfy this condition, then demand takes only one
B p
of the next two forms. In case —%EH— >Dp, 2Py — ﬁH + ﬂL, those on [tL(pL),l] value one of the

two products nor—negatively but those on [tL(pL), i(pH,pL)] value q; more. Thus demand i3

. B p
t(pH,pL) — tL(pL). If Dy, is so high that —-Ig‘ﬁi < pp, then



even those that value qp, non—hegatively value gy more. 0
We can characterize pp(xg,xp ) and pp (XgpXp) as below.

LEMMA 2: ppr(xpp.xp) = (B0 )(1—=xg) + [ﬁL(l—xH—xL)]+ and
pL(xH,xL) = [ﬂL(l—xH—XL)]+.2

Proof Consider the case X+ %y ¢ 1, x> 0 and x; > 0. By solving the two relations 1 ~
Xg= t(pH,pL) and 1 — Xg— XL, = tL(pL) for py; and Py, We have pyy = [i’H(l - xH) — ﬁLxL and pp
= (1- xg— Xg,)- This is the value of the expressions in the Lemma for this case. When X+ Xp
> 1, price of qp, mMust drop to zero. The price of qy is determined by 1 — Xg= ;;(pH,O) which is
equal to py = (ﬂH—— [)’L)(l —xgy)- In the cases xpy= 0 or x; = 0, there is actually indeterminacy of
prices. pH(O,xL) may be any Py such that py, > ﬂH—ﬂL + pL(O,xL) and pL(xH,O) may be any price
such that Pp 2 ﬂL— ﬁH + pH(xH,O). o

A. Equilibrium of the Cournot Subgame

When firms set quantities as strategies, the market clearing price is determined according to

the functions given in Lemma 2. Profit of each firm as functions of quantities is given by the

following.

“H1
_H2
=7 (xH,xL)ExH(ﬂﬂwﬂL)(l—xH) xgtxp > L

L
pL(xH,xL) X, =7 (xH,xL) = ﬂL xp (L—xpg- X[, ) Xt xp <L



Profit of the lower quality firm when it produces X and Xptxg > 1 is zero since price will be zero.

The maximum of ;L(xH,xL) will occur at xp = (1—xp)/2 < l—xpy for any x;;. The maximum value

1=x
will always be positive. Thus the reaction function xLC(xH) = -2—H— Given the quantity for the

high quality firm, the low quality firm will sell to exactly half of the consumers that do not buy from
the high quality firm.

The maximum of 70.2(x Xy ) occurs at Xy = 1/2 for any x; and the maximized value is
_YHTL H L
(Bg—F1 /4. Maximum of rHI(xH,xL) oceurs at xpr = (fy—B; % )/208y; and the maximized value is
(B0, x 2 4f.,) which i3 decreasing in x; for x; < 1. Define X; as the solution (which is less
H “L*L H L L L
than 1) of (ﬂHw-ﬂLJch)2 /(48y) = (8g—B;)/4. Thus high quality firm's maximum is on the
L (xH,xL) portion for Xp < ;‘L and on the ;HQ(xH,xL) portion for Xp > ;L' When x; = ;{L’ there
are two maximizers. Thus the reaction function for the high quality firm is

o) = Ag-brx, N
H 'L 2E3H L-"L
= 1/2 XL 2 XL. i
When the quantity of the low guality firm is large (xL > xL), the high quality firm will dump xyg =
1/2 on the market and drive the price of qy, to zero. The intersection of the two reaction functions
will occur on the ﬁHmﬂLXL portion of x C( -} because x; °(+ ) is under the x;y = 1 /2 line (Figure
ZiiH H L H

2). The Cournot equilibrium quantities, ( XI(-:I’ xE ) and the corresponding prices are,

O ) ¢ Pu ( 2y -8 )
L S A Py = Py - B ’
<& = ﬂH ¢ _ ﬂLﬂH
L RO

The firm with the higher quality will always sell more and charge a higher price.



LEMMA 3: The Cournot equilibrium profit functions are,

2y ~ fp 2 g 2
TCH(qHaqL) = ﬂH [jﬂgﬂ%‘] and TCL(qHaqL) = ﬂL W}%ﬁL—} .

Remember that ﬂi is a function of q;. Marginal profits are easily calculated using the notation

Ci(qH,qL), i,j = H,L and higher derivatives are defined

6; = ﬂ'(qi) > 0. Let WCIj(qquL) = ‘ag_j T

similarly.
LEMMA 4:
By ( 28y — By )
o) = (8% - 288, + 57 ) > 0,
( 4&1{ - ‘BL )
4878 ( 2By — B )
WCHL(quqL)Z H “L H 3L <o,
( 4ﬂH - ﬂL ]
2
cL —QﬂﬁﬂL ﬁH
T lQeay ) = <0,
LT 4y - 8
2
Bifr” ( 40y + 87 )
TCLL(QH’QL): L’H H 3L S0
( 4ﬂH - ‘BL )

Profit is increasing in the firm's own quality and decreasing in the quality of the rival. The

cross derivatives are given in the following lemma. Let (= g ’(qi).

LEMMA 5:

cH H 8ybi fpfy, ( By — By, )

c _
T HL(qH’qL) =7 LH(qH’qL) = ( 46 — f )4 >0,
H L




A0y By (B - ) 8by7B By — B)

TCH (q »d )= ,
LLV*H™L (4ﬁH— 5L)3 (4ﬂH - ﬂL)4
“imtagar) = i g ~ ) O 5 Wby + ) Sﬁfﬂﬁz(ﬂﬂz By
(415}[_ 'BL) : HﬁH ~8;) )
cL cL —QﬂﬁﬂiﬂHﬂL ( SﬂH + ﬂL )
T HL(Q‘H’QL) =7 LH(qH’qL) = i ; )4 <0,
H "L

g = U O B0y )0

-28 2‘5 Bt 28 2,5'2(8[3 + ﬂ)
cL I Al LB 88y + By
T HH(qH’qL)“ — + : -

(4ﬁH - ﬂL) (4ﬂH _ 51,..)

We can sign '.rCLHH(qH,qL) and ICHHH(qH,qL) if #77(q) < 0. We may sign all the cross and
second derivatives if #-(q) = 0. The "horizontal effect" appears at the margin as summarized in the

following theorem.

THEOREM 1: In the equilibrium of the Cournot subgame,
(i) The profit of a firm is increasing in its own quality and decreasing in that of its rival.
(ii) If #(q) is linear in q, then the marginal profit with respect to its own quality increases (decreases)
as qualities become closer (more distant). The marginal loss with respect to the rival's quality

increases (decreases) as the qualities become closer (more distant).
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B. Equilibrium of the Bertrand Subgame

Using Lemma, 1, we obtain the profit functions ;’(ph,pL) i = H,L in prices. For convenience,

let us define two forms of profit functions for each quality, corresponding to the different segments of

the demand functions.

“H1 Py
T (PH,PL)zPH(l——gﬁ—),
“H2 Py — Pg,
= 1 -
T (PH:PL) Py ( _ﬂm ),
L1 P
T (PPt =D, (1 TE )
L2 B Pg ~ P Py
T (pH’pL) = Py, ( ’HH — og - ﬂH )
Using these, we obtain
-H - .
7 (PHpr) = le(PHpr) Py < Min{ ﬁH’ 3HPL/’BL }
= TH2(PH,PL) Min{ ﬂH’ﬂHleﬂL } < Py < Min{ ﬂHv ﬂHmﬁL+pL }
=0 Py 2 Min{ ﬁH’ ﬁH_ﬂL-i—pL }
- "1 ]
T (PH:PL) =T (pH’pL) P, < Mln{ BL’ ﬂL‘{'PH“‘ﬂH }
= "Lz(pHapL) Min{ ﬂLa ﬂL+pH"‘6H } < Py, < Min{ ﬁLa ﬂLprﬁH !

=0 Py, > Min{ ﬁLv ﬁLpH/ﬂH }



T3l

The reaction functions pr(pL) and pr(pH) for the extreme cases are obvious: for pr, 2 Bp,

b “H1 i - g
Py (Pp) = argmax © (py,Pp,) = ~—5— and for py > Ay, pr(pH) = arg max rLl(pH,pL) = *rL
For cases where the rival's price is too high for any consumers to buy, a firm will set its price

independent of that of the rival. These are actually monopoly prices.

“H1
(

For p, < ﬂL, the profit function is a combination of = 2

PP T (PP, and 0.
The reaction function is summarized as,

ﬂH + PL _ﬂL pLﬂH ﬁH + PL —ﬂL
Py (PL) - ) B < ) :
Prly by + pp B, pdy Oy
==F 7 SR < T2
By fn Py

The reaction function of the low quality firm can be found in a similar fashion.

Brp Byp
b Py LPH
Py, (PH) =—2ﬂH— PH—ﬂH+ﬂL<—2—ﬁ-I_r,
B;p B
=Py Agth _IQJ_ﬁE_SpH_ﬁH+5L<”%“’
i I
- —5 <Py By + Ay <Ay

Both reaction functions are increasing. However there always is an intersection between the
first portions of the reaction functions (Figure 3). Thus the Bertrand equilibrium prices are given as

solutions to the system of equations,
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The Bertrand equilibrium prices (pg,pE) and the corresponding quantities are,

xb _ zﬁH b _ zﬂH ( ﬂH - ﬂL )
H™ Mg =7, > PHT T 4 - i ’
){bz ﬂH b _ ﬂL(ﬁH_ﬂL) "

Again, the firm with better quality sells more at higher price. But for the same quality
configuration, prices are higher in Cournot than they are in Bertrand and more of the higher quality

is sold in Bertrand. Sale of the low quality good is the same in both subgames.

LEMMA 6: The Bertrand equilibrium profits are,

bH( 4ﬂH2 ( ﬁH - BL )

Buby ( By - 4
i) = R L (-0 )
(48 — B, )

' L VR

LEMMA 7: The derivatives of the profit functions are

WbHH(qH;qL) = ﬁ:ﬁﬂz X [4ﬂH2‘3ﬁH5L +25L2] > 6,
SR (T LA

waH(qH,qL) = ﬂﬁfr‘iﬂ; iﬂ?:)gl‘ ) >0,

ML (4 0) = Bu8i ( 48y — T8 [S] 0 <>t g E] g

( 4ﬂH "'ﬂL )3
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For completeness and use in the later section, we list the higher derivatives. They follow from simple

differentiation.
LEMMA 8:
2, 2
bH "S(ﬁﬁ) 03
T {qpar) = (38 + 87 )
HE\GH9L (43H—ﬁL)4 ) Sl
4848y 9 9
45" — 308 + 28 < 0,
8848 BB ( BBy + O; )
TbHHL(qH,qL):TbHLH(qH,qL _ )2 (0 Wag s LA AL ¢ ; L’ oo,
(484 - 8 )
2\ 2 2
bL -285(6;) Biby ( 4By — 78 )
T (Qppsd5 ) = (8f¢y + 7A; ) + < 0,
LT Cagy - p ) T H T L ( 4y - By )
2008 BB ( 88 + T, )
WbLLH(qH’qL)Z’TbLHL(qH’qL _ _“’w1Prfl! %%y : L’ o,
(48y - by )

We can summarize the results in the following theorem. It coincides with results in [4,10].

THEOREM 2: In the equilibrium of the Bertrand subgame,
(i} Prices and profits tend to zero as the two qualities become closer.
(ii) The high quality firm's profit is increasing in its own quality and decreasing in that of the rival.
(ili) An improvement in the rival's quality is proﬁta,\ble for the low quality firm. An improvement of
its own quality is profitable if the two qualities are far apart ( 46H > TﬂL ) and unprofitable if two

qualities are very similar ( 4ﬁH <7 5L ).
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We see that the improvement of its own quality is not always profitable for the firm. When
the two qualities are close ( 4ﬂH < ﬂL ), it is more profitable if the two qualities become further
apart. This implies that for the low quality firm, the profit increases when its own quality gets
worse. It 18 always profitable for the high quality firm if the quality becomes further apart.
However, if the qualities are very different ( 4;’3H > 3L ), the low quality firm is able to exploit
greater local monopoly power among the consumers with low evaluation and the profit becomes an
increasing function of its own quality in that range. |

Compared to the Cournot profits (Theorem 1), the most striking feature of the Bertrand
profits (Theorem 2} is the non—monotonicity. Note also that for the same configuration of qualities,
both low and high quality firms have larger profits in Cournot than in Bertrand markets. Consumers
are better off with Bertrand competition than with Cournot since more consumers buy the high
quality product at lower price and just as many consumers buy low quality with Bertrand than with
Cournot also at a lower price. The efficiency advantage of Bertrand competition over Cournot

competition is a familiar one from other models of product differentiation[12].

4 Quality Investment Decision — First Stage

Aniicipating the profit functions of Theorem 1 or 2 in the second stage, firms make their
quality choice in the first stage. We assume the two firms incur the same cost for choosing a quality
g, given by C(q) = kq2 where k is a positive constant, thus C’(q) > 0 and C"{(q) > 0. The payoff of
a firm from the second stage is the profit derived in the previous section. The total payoff from the
whole game is the payoff from the second stage less the cost of the quality investment. Firm i
maximizes rc(qi,q.) — C(g;) in the Cournot game and wb(qi,q.) — C(q;) in the Bertrand game. Using

J ]
the notation of preceding sections,
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(a;,09) = ™V(a,,9,) 4y < Gop
1°99 2.9 1 < 4o
. L
= lim Tc (qlan) 4; = 99
ql"q2
H
= TC (qlan) ql > q2'
q,%(qy) = arg max 1%qy,q5) — C(q,).
9
b L
r(q,q)=rb(q,q) Gy < Qo
1'% 9:41 15 %
. bL
= lim 7 (‘11:‘12) ql = qg:
LI
H
= (4;,95) 4 > gy
b b
ql (q2) S arg max ¥ (ql’q2) - C(ql)'
&5

Profits for the cage Q) = Qg are equal to the profit functions of Cournot and Bertrand competition
with homogeneous products and zero marginal cost. We assume §(q) = g, so ﬁH =q gy and ﬂL =
qr . Since the firms are identical, we construct here only the reaction functions qlc(qz) and qlb(q2)
for firm 1. The reaction functions of firm 2, (12i((11)a i=c¢,b, will have identical forms.

Properties of the reaction function in the Cournot case are summarized in the following two

Lemmas.

LEMMA 9: (1) q,°(0) = 1/(8k).
(2) qlc(qQ) > Gy for 4o < 1/{18k).
(3) a5 “(ay) < 1/(9K) < gy a5 2 1/(9K).

(4) qlc(qQ) -+ 0 as Qg - .
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(5} qlc(qg) is strictly increasing for qlc(qz) > g, and
qQC(ql) is strictly decreasing for qlc(q2) < gy

Proof: (1) q%0) = arg mgx q/4 ~ kq® = 1/(8K).
(2) For any g, rCH(qz,qz) = rCL(qz,qg) = qy/9. From monotonicity, TCL(qz,ql) < qy/9 for all

Gy < qq, and :rCH(ql,qz) > q1/9 for all qy > 4y Note that 1/(18k) = arg max q/9 — C(q). Thus
: g
for any 4 <4y <1 /(18Kk), we have the following relations:  max ICL(qz,ql) — C(ql) <
0<q 1SQQ

H
max q;/9-C(q) < max q;/9-C(g) < max ° (41,99} — C(ay). Thus
0<q,4q, Qg $qqSw Gy <Gy

c _ _ cH
05'3‘;‘2‘; (9-99) — Clay) Ogr(??-;cqzr (
1/(18K).

(3) Since r°L(1/(9K),(1/9k)) = 7 (1/(9k),(1/9k)) = 1/(9K) and 151 1(q;,q) < O, we have

CH(ql,qz) < C(q,) for all q; > g4 2 1/{9k). Thus qlc(q2} = arg max ICL(qz,q) — C(q). Since
q

14-05) — C{q;), which implies q; “(ag) > qj for gy <

T

Clq) < q/9 for all q S 1/(9K), TCL(qz,q) — C(q) < 0 for all q; > 1/(9k). Thus q,(ag) < 1/(9k) for
ay > 1/(18K).

(4) Follows from the fact that TCH(ql,qg) -0 as Qg - 0.

dq1

(5) The reaction function satisfies the First Order Condition of maximization, thus T
2

cH
T HL(ql’qz)

. c
i TR . > 0 from Lemma 5. Similarly for the case q; (qz) <Gy O
HHY1 12 4= 45 (45)
If the rival's quality is low, firm 1 chooses to be the higher quality firm. If firm 2's quality is
very high, firm 1 chooses the lower end of the market. Profit function for the portion above the

quality of the rival is concave while cost function is convex. Although profit is increasing in firm's
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own quality, it becomes more profitable to be the lower quality firm when the rival's quality is very
high. Thus we have (4).

From (2) and (3), we know that qlc(qg) will cross the 45 degree line in the interval
[1/(18k},1/(9k)} if at all. But we have the following Lemma.

LEMMA 10: For any q, rCHH(q,q) =7p(q)/27 > TCLL(q,q) =5 §(q)/27.

Proof: Follows from formula given in Lemma 4.

This implies that for eny differentiable cost function C(q), q will never be the best response to
q. The right derivative of the profit function at the quality level equal to that of the rival is given by

TCHH(q,q) while the left derivative is equal to wCL

L(q,q). According to the Lemma, if the First
Order Condition of profit maximization holds for the right derivative, marginal condition will be
negative with respect to the left derivative. If the FOC holds for the left derivative, marginal
condition will be positive with respect to the right derivative. Thus profit can be increased by
choosing quality either siightly lower or slightly higher than that of the rival. The reaction functions
will not cross the 45 degree line and there is a discontinuity somewhere between 1/{18k) and 1/(9k).
There i8 no symmetric equilibrium in which 4 = Q- From Lemma 8, we also know that the

reaction functions will intersect at least twice, once in the q; < g, region and once in the 4 > 4y

region (Figure 4). We summarize the preceding discussion in the following theorem.

THEOREM 3: (i) There are at least two asymmetric equilibria in the Cournot game, one in
which g, > 1/(8k) and 1/(18k) > 4 and one in which q, > 1/(8k) and 1/(18k) > qs-

(ii) There is no symmetric equilibrium where the two firms chose the same quality.



—90 —

The following two Lemmas characterize the reaction functions for the Bertrand game.

LEMMA 11: (1) q,(0) = 1/(8k).
(2) qlb(qz) > g, and increasing in the neighborhood of g = 0.
(3) qlb(qg) < q, and increasing for g, > 1 /(12k).
(®) 4, (ay) + 1/(3%) 88 a5+

Proof: (1) qlb(O) = arg max q/4 — qu = 1/(8k).

q
(2) In the neighborhood of o = 0 where Gy i very small, max ’b(qlqu) —C(q)= max wbH(q,qg) -
q QZQQ
Clq). qlb(q2) satisfies the First Order Condition. By totally differentiating the FOC,
dq, rbgL(ql /o)
= — > 0 from Lemma 8.
% Pha (a5,99) - & [a;=0;"(ay)
HH %199 9179; 99
(3) It can be shown that at Qo= 1/12k, bu(ql,QQ) = C(ql). For larger g,, rbH(ql,qz) - C(ql) < 0.
Thus max arb(ql,qz) — C(q)= max rbL(q2,q) —C(q). qlb(qz) satisfies the First Order Condition.
q ngZ
bL
e dg 7 ra(d:%)
By totally differentiating the FOC, P—— Y b > 0 from
2 T LL( q2:ql) -k 4,=4q; (QQ)

Lemma, 8.

(4) As qq gets large, since g, > 1/(12k), max xb(ql,qz) - C(q)= max 1rbL(
q

q2,9) = C(q)- As gy~ w,
QSQQ

rbL(qqu) -q;/16 . arg max (q;/16 —kql2 ) =1/(32k). o
The important difference between Cournot and Bertrand is property (3). In the Cournot

game, the reaction function of firm 1 was decreasing for high do's. Since with Bertrand competition,

increase of higher quality (for some range) increases profit of the low quality firm, the low guality
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firm invests more as the rival's quality increases. In the Bertrand case, it is clear from the profit
function that there is a discontinuity in the reaction function. Quality level q will never be the best
response to ¢ since revenue is zero at 9 = gy Lemma 11 is not sufficient to ensure that the reaction

curves will intersect. However, the following is true.
LEMMA 12: q,%(q,) > qy at 4, = 1/(32K).

Proof We show the existence of M > 0 and Q > Gy Such that

PH(Quay= 1/(32K)) - C(Q) > M > PL{qy= 1/(32K).q,) - Clay) Va, < ay

x

bL(qg,ql) takes maximum for q; <Gyingq; atq, = 4q2/ 7 and the maximum value 1s q2/24. At

4y = 1/(32K), *May= 1/(32k),0,) ~ Clay) < #°ay= 1/(32K), q;= 4ay/7) = a,/24 for all 4 <
;- Wecan choose M = 1/(32 x 24 x k). To find Q, we let 4y = 24, and show that thereis ¢ > 1
such that 1°7{q; =0ay,qy=1/(32K)) - C(ay) > M. Tn fact, *P(a/(32K),1/(32K)) — C(e/(32K)) — M

2 2

Il pa7(e-l) 307+ 4 . 2

= — }. When o = 3, the value is 3161/(11° x 32 x 12). Solet Q = 3 x
Bt gen)? T2

1/(32k).a

The reaction curves must intersect at least once in the region qy > 1/(8k) and q, < 1/(32k)
and at least once in the region q; < 1/(32k) and a, > 1/(8k) (Figure 5). The fact that in the
Bertrand case the firms will never chose the same quality follows from the fact that profits for both

the high quality firm and the low quality firm will go to zero as the two qualities approaches each

other.
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THEOREM 4: (i} There are at least two asymmetric equilibria in the Bertrand game with qy
> 1/(8k) and q,, < 1/(32k) or q; < 1/(32k) and g, > 1/(8k).

(ii) There never will be a symmetric equilibrium.

The upper bound of lower quality is lower than that of the Cournot game. Remember that
the Bertrand profit function for the lower quality firm had a maximum point. Because of the

increasing cost, firm chooses quality below this maximum point. Of course this result is consistent

with results in [9].

5 Conclusion

In this paper we analyzed a model of two firms that sell products differentiated by vertical
quality. The game evolves in two stages: in the first stage firms simultaneously choose their
respective quality; in the second stage, firms sell to consumers who differ in their willingness to pay
for better quality. Since we have vertical quality differentiation, all consumers agree on what is
better. Our major interest was the perfect equilibrium of the game in which the second stage is a
quantity setting game, i.e., a Cournot game. For comparison, we also considered a game in which
this subgame is Bertrand, or price setting for comparison. We verified that the results for the
Bertrand subgame coincided with results previously reported in slightly different models.

The second stage payoff or the Cournot profit induced by perfect equilibrium strategies as
function of qualities differs from the Bertrand subgame profits. In the Cournot subgame case, profit
of a firm is greater when firm's own quality is higher and less when quality of the rival is higher.
This was found to be true for any pair of qualities. This is in contrast with the Bertrand subgame

casc where for some pair of qualities, both firms may benefit from improvement of the higher quality
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and both may lose profit when the lower quality improves. On can say that the Cournot profit
function reflects the vertical aspect of quality differentiation, that is, since all the consumers agree on
what is better, firm always benefits from improving its own quality. On the other hand, Bertrand
subgame profits has property common with the horizontal quality models: as qualities become very
close, the competition becomes more like a homogeneous quality Bertrand competition.

Despite the fact that profit is increasing for a firm in its own quality independent of the
quality level of the rival, a firm will still avoid choosing the same quality as that of the rival for any
differentiable cost of quality function. This is because marginal profit is very sensitive to the quality
level of the rival in the Cournot subgame case as well. Marginal profit will discontinuously increase
at the level of the rival. Thus a firm will always find it profitable to either increase its quality above
or decrease it below the level of the rival. Even though the second stage profits as functions of
quality choices differ in the Cournot and Bertrand subgames, the quality choices are similar in that

firms never choose the same quality level.
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Footnotes

tFor an example of how two innovations yield different reuslts, see Kamien and Tauman{1986,88].

2[x]* = Max{ x,0 }.
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Figure 1

Model of the Consumers

by~ Py

b ~pp,

VH(tsPH) = l‘(t,qH) — Py

v (6pp) = t{tap) —py,



— 928 —

Figure 2

Cournot Subgame Reaction Functions

qr, firm's reaction function

1/2

4y firm's reaction fucntion

- > XL
0 1/2 XL 1 ﬁH/ﬂL
qp, firm's reaction fucntion xp (xyy) = (1 —xp)/2
BBy x
qp firm's reaction fucntion xpp(x ) = Max [ H—gﬂli—l‘— =% ]
H

xp, satisfies 7 (xg(xp ) x ) = (Bg—Bp)/4 -
(8er—B1 )/4 1s profit of qpy firm when pr = 0 and x; = 1/2.
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Figrue 4

Cournot Game First Stage Reaction Functions
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Figure 5

Bertrand Game First Stage Reaction Functions
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