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Abstract

Mathematical modelling languages such as AMPL, GAMS, and Xpress-MP en-
able mathematical models such as mixed-integer linear programmes (MILPs) to
be expressed clearly for solution in solvers such as CPLEX, MINOS and Gurobi.
However some models are sufficiently difficult that they cannot be solved using
“out-of-the-box” solvers, and customisation of the solver framework to exploit
model-specific structure is required. Many solvers, including CPLEX, Symphony
and DIP, enable this customisation by providing “callback functions” that are
called at key steps in the solution of a model. This approach traditionally involves
either expressing the mathematical formulation in a low-level language such as
C++ or Java, or implementing a complicated indexing scheme to be able to track
model components such as variables and constraints between the mathematical
modelling language and the solver’s callback framework.

In this paper we present Dippy, a combination of the Python-based mathemat-
ical modelling language PuLP and the open source solver DIP. Dippy provides
the power of callback functions, but without sacrificing the usability and flexibil-
ity of modelling languages. We discuss the link between PuLP and DIP and give
examples of how advanced solving techniques can be expressed concisely and
intuitively in Dippy.

1 Introduction

Using a high-level modelling language such as AMPL, GAMS, Xpress-MP or OPL
Studio enables Operations Research practitioners to express complicated mixed-
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integer linear programming (MILP) problems quickly and naturally. Once de-
fined in one of these high-level languages, the MILP can be solved using one of
a number of solvers. However these solvers are not effective for all problem in-
stances due to the computational difficulties associated with solving MILPs (an
NP-Hard class of problems). Despite steadily increasing computing power and
algorithmic improvements for the solution of MILPs in general, in many cases
problem-specific techniques need to be included in the solution process to solve
problems of a useful size in any reasonable time.

Both commercial solvers such as CPLEX and Gurobi and open source solvers
such as CBC, Symphony and DIP (all from the COIN-OR repository [1]) provide
callback functions that allow user-defined routines to be included in the solution
framework. To make use of these callback functions the user must first create their
MILP problem in a low-level computer programming language (C, C++ or Java
for CPLEX, C, C++, C#, Java or Python for Gurobi, C or C++ for CBC, Symphony
or DIP). As part of the problem defintion, it is necessary to create structures to
keep track of the constraints and/or variables. Problem definition in C/C++/Java
for a MILP problem of any reasonable size and complexity is a major undertaking
and thus a major barrier to the development of customised MILP frameworks by
both practitioners and researchers.

Given the difficulty in defining a MILP problem in a low-level language, an-
other alternative is use a high-level mathematical modelling language. By care-
fully constructing an indexing scheme, constraints and/or variables in the high-
level language can be identified in the low-level callback functions. However
implementing the indexing scheme can be as difficult as using the low-level lan-
guage to define the problem in the first place and does little to remove the barrier
to solution development.

The purpose of the research presented here is to provide a tool, Dippy, that
supports easy experimentation with and customisation of advanced MILP solu-
tion frameworks. To achieve this aim we needed to:

1. provide a modern high-level modelling system that enables users to quickly
and easily describe their MILP problems;

2. enable simple identification of constraints and variables in user-defined rou-
tines in the solution framework.

The first requirement is satisfied by the modelling language PuLP [3]. Dippy
extends PuLP to use the Decomposition for Integer Programming (DIP) solver,
and enables user-defined routines implemented in the same Python file as the
MILP model to be accessed by the DIP callback functions. Variable scope in the
Python computer programming language [5] can be used so that any constraints
or variables defined in the MILP model are easily accessible in the user-defined
routines. In addition to this, DIP is implemented so that the MILP problem is
defined the same way whether branch-and-cut or branch-price-and-cut is being
used – it hides the implementation of the master problem and subproblems. This
makes it very easy to switch between the two approaches when experimenting
with solution methods. All this functionality combines to overcome the barrier
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described previously and provides researchers, practitioners and students with a
simple and integrated way of describing problems and customising the solution
framework.

The rest of this article is structured as follows. In section 2 we provide an
overview of the interface between PuLP and DIP, including a description of the
callback functions available in Python from DIP. In section 3 we describe how
Dippy enables experimentation with improvements to DIP’s MILP solution frame-
work by showing example code for a common problem. We conclude in section
4 where we discuss how this project enhances the ability of researchers to experi-
ment with approaches for solving difficult MILP problems. We also demonstrate
that DIP (via PuLP and Dippy) is competitive with leading commercial (Gurobi)
and open source (CBC) solvers.

2 Combining DIP and PuLP

Dippy is the primarily the “glue” between two different technologies: PuLP and
DIP.

PuLP [3] is a mathematical modelling language and toolkit that uses Python.
Users can define MILP problems and solve them using a variety of solvers includ-
ing CPLEX, Gurobi and CBC. PuLP’s solver interface is modular and thus can be
easily extended to use other solvers such as DIP. For more details on PuLP see the
PuLP project in the COIN-OR repository [1].

Decomposition for Integer Programming (DIP) [4] provides a framework for
solving MILP problems using 3 different methods1:

1. “branch-and-cut”,

2. “branch-price-and-cut”,

3. “decompose-and-cut”.

In this paper we will restrict our attention to branch-and-cut and branch-price-
and-cut.

Branch-and-cut uses the classic branch-and-bound approach for solving MILPs
combined with the cutting plane method for removing fractionality encountered
at the branch-and-bound nodes. This framework is the basis of many state-of-
the-art MILP solvers including Gurobi and CBC. DIP provides callback functions
that allow users to customise the solution process by adding their own cuts and
running heuristics at each node.

Branch-price-and-cut uses Dantzig-Wolfe decomposition to split a large MILP
problem into a master problem and one or more subproblems. The subproblems
solve a pricing problem, defined using the master problem dual values, to add
new variables to the master problem. Branch-and-cut is then used on the master
problem.

1The skeleton for a fourth method (branch, relax and cut) exists in DIP, but this method is not
yet implemented.
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The cut generation and heuristic callback functions mentioned previously can
also be used for branch-price-and-cut. Extra callback functions enable the user
to define their own routines for finding initial variables to include in the master
problem and for solving the subproblems to generate new master problem vari-
ables. For details on the methods and callback functions provided by DIP see [4].

In addition to the DIP callback functions (see §2.1), we modified DIP to add
another callback function that enables user-defined branching in DIP and so can
be used in any of the solution methods within DIP.

2.1 Callback Functions

Advanced Branching We replaced chooseBranchVar in the DIP source with a
new function chooseBranchSet . This is a significant change to branching in DIP
that makes it possible for the user to define:

• a down set of variables with (lower and upper) bounds that will be enforced
in the down node of the branch; and,

• an up set of variables with bounds that will be enforced in the up node of
the branch.

A typical variable branch on an integer variable x with integer bounds l and u
and fractional value α can be implemented by:

1. choosing the down set to be {x} with bounds l and ⌊α⌋;

2. choosing the up set to be {x} with bounds of ⌈α⌉ and u.

However, other branching methods may use advanced branching techniques
such as the one demonstrated in §3.1. From DIP, chooseBranchSet calls
branch_method in Dippy.

Customised Cuts We modified generateCuts (in the DIP source) to call
generate_cuts in Dippy. This enables the user to examine a solution and gen-
erate any customised cuts as necessary. We also modified APPisUserFeasible to
call is_solution_feasible in Dippy, enabling users to check solutions for feasi-
bility with respect to customised cuts.

Customised Columns (Solutions to Subproblems) We modified the DIP func-
tion solveRelaxed to call relaxed_solver in Dippy. This enables the user to utilise
the master problem dual variables to produce solutions to subproblems (and so
add columns to the master problem) using customised methods. We also modi-
fied generateInitVars to call init_vars in Dippy, enabling users to customise the
generation of initial columns for the master problem.

Heuristics We modified APPheuristics (DIP) to call heuristics (Dippy). This
enables the user to define customised heuristics at each node in the branch-and-
bound tree (including the root node).
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2.2 Interface

The interface between Dippy (in Python) and DIP (in C++) is summarised in fig-
ure 1.

Dippy (Python) DIP (C++)

solve(prob)

solve

  DippyDecompAlgo

    DippyDecompApp

prob = DipProblem()

branch_method
DippyDecompAlgo::chooseBranchSet

chooseBranchSet(xhat)

prob

xhat

downLB, downUB, upLB, upUB

generate_cuts
DippyDecompAlgo::generateCuts

generateCuts(sol)

sol

cuts

relaxed_solver
DippyDecompAlgo::solveRelaxed

solve_relaxed(prob,index,

            redCosts,convexDual)decompVars

...

heuristics
DippyDecompAlgo::APPheuristics

APPheuristics(prob,xhat,costs)

solutions

prob,xhat,costs

Figure 1: Key components of interface between Dippy and DIP.

The MILP is defined as a DipProblem and then solved using the solve

command in Dippy, that passes the Python DipProblem object, prob , to
DIP in C++. DIP solve creates a DippyDecompAlgo object that contains a
DippyDecompApp object, both of which are populated by data from prob . As
DIP solve proceeds branches are created by the DippyDecompAlgo object us-
ing chooseBranchSet which passes the current node’s fractional solution xhat

back to the branch_method function in the DipProblem object prob . This func-
tion generates lower and upper bounds for the “down” and “up” branches
and returns to DippyDecompAlgo::chooseBranchSet . When DIP generates cuts,
it uses the DippyDecompApp object’s generateCuts function which passes the
current node’s solution sol to the DipProblem object’s generate_cuts function.
This function generates any customised cuts and returns a list, cuts , back to
DippyDecompApp::generateCuts . These interfaces are replicated for the other call-
back functions provided by Dippy.
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3 Dippy in Practice

We will use the Capacitated Facility Location problem from the PuLP documen-
tation [3] to demonstrate the implementation of customised branching rules, cus-
tom cuts, heuristics, and a column generation algorithm.

The solution of the problem determines where, amongst m locations, to place
facilities and also assigns production of n products to these facilities in a way
that (in this version) minimises the wasted capacity of facilities. Each product
j = 1, . . . , n has a production requirement rj and each facility has capacity C.
Extensions of this problem arise often in MILP in problems including network
design and rostering.

The MILP formulation of the capacitated facility location problem is straight-
forward. The decision variables are

xij =

{

1 if product j is produced at location i

0 otherwise

yi =

{

1 if a facility is located at location i

0 otherwise

wi = “wasted” capacity at location i

and the formulation is

min
m
∑

i=1

wi

s.t.
m
∑

i=1

xij = 1, j = 1, . . . , n (each product produced)

n
∑

j=1

rjxij + wi = Cyi, i = 1, . . . , m (aggregate capacity at location i)

xij ≤ yi, i = 1, . . . , m, j = 1, . . . , n (individual production at location i)

xij ∈ {0, 1}, wi ≥ 0, yi ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n

Note that the contraints to for individual production at a location are not nec-
essary for defining the solution, but tighten the MILP formulation by removing
fractional solutions from the solution space.

3.1 Adding Customised Branching

In §2.1 we explained the modifications made to DIP and how a simple variable
branch would be implemented. The DIP function chooseBranchSet calls Dippy’s
branch_method at fractional nodes. The function branch_method has two inputs
supplied by DIP:

1. prob – the DipProblem being solved;

2. sol – an indexable object representing the solution at the current node.
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We define branch_method using these inputs in the same Python file as the model
definition, allowing Dippy to access the variables from the original formulation
and eliminating any need for complicated indexing.

We can explore custom branching rules by trying to reduce the symmetry in
the solution space of the facility location problem. Inefficiencies arise from solvers
considering multiple equivalent solutions that have identical objective function
values and differ only in the subset of the identical facilities selected. One way to
address this is to add a constraint that determines the order in which the facilities
can be considered:

yi ≥ yi+1, i = 1, . . . , m− 1

43 # Ordering constraints
44 for index, location in enumerate(LOCATIONS):
45 if index > 0:
46 prob += use_vars[LOCATIONS[index-1]] >= use_vars[locati on]

These ordering constraints also introduce the opportunity to implement an effec-
tive branch on the number of facilities:

If
m
∑

i=1

yi = α /∈ Z, then:

the branch down restricts the branch up restricts
m
∑

i=1

yi ≤ ⌊α⌋
m
∑

i=1

yi ≥ ⌈α⌉

and the ordering means that and the ordering means that
yi = 0, i = ⌈α⌉, . . . , m yi = 1, i = 1, . . . , ⌈α⌉

We can implement this branch in Dippy by writing a definition for the
branch_method .

48 def choose_antisymmetry_branch(prob, sol):
49 num_locations = sum(sol[use_vars[i]] for i in LOCATIONS)
50 up = ceil(num_locations) # Round up to next nearest integer
51 down = floor(num_locations) # Round down
52 if (up - num_locations > tol) \
53 and (num_locations - down > tol): # Is fractional?
54 # Down branch: provide upper bounds, lower bounds are defaul t
55 down_branch_ub = dict([(use_vars[LOCATIONS[n]], 0)
56 for n in range( int(down),
57 len(LOCATIONS))])
58 # Up branch: provide lower bounds, upper bounds are default
59 up_branch_lb = dict([(use_vars[LOCATIONS[n]], 1)
60 for n in range(0, int(up))])
61 # Return the advanced branch to DIP
62 return {} , down_branch_ub, up_branch_lb, {}

By adding the ordering constraints we decrease the branch-and-bound tree
size from 419 nodes to 77 nodes. Adding the advanced branching solves the prob-
lem very quickly, decreasing the tree size further to 3 nodes.
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3.2 Adding Customised Cut Generation

To add user-defined cuts in Dippy, we first define a new procedure for gen-
erating cuts and (if necessary) a procedure for determining a feasible so-
lution. Within Dippy, this requires two new functions, generate_cuts and
is_solution_feasible . As in §3.1, Python’s scoping rules allow us to access the
solution values of variables in our problem. Both these functions have the same
inputs as branch_method :

1. prob – the DipProblem being solved;

2. sol – an indexable object representing the solution at the current node.

If a solution is determined to be infeasible either by DIP (for example some integer
variables are fractional) or by is_solution_feasible (which is useful for solving
problems like the travelling salesman problem with cutting plane methods), cuts
will be generated by generate_cuts and the in-built Cut Generator Library (CGL)
(if enabled).

Marchand and Wolsey [2] define many types of cuts for MILP problems. One
of these is the weighted inequality. For each facility location i and some subset
Si(⊆ {1, . . . , n}) of the products we can calculate

µi = C −
∑

j∈Si

wjxij

and use it to generate a weighted inequality

∑

j∈Si

wjxij +
∑

j /∈Si

(wj − µi)
+xij ≤ C − µi

which forms a valid inequality for the facility location problem.
The cut generating function creates the subsets Si for each location from the

fractional solution in a greedy way depending on the xij values, and from these
we generate a set of weighted inequality cuts. The code listing below shows how
to build the set of cuts, and omits the generation of Si for the sake of brevity.

67 def generate_weight_cuts(prob, sol):
68 # Define mu and T for each knapsack
69 mu = {}
70 S = {}
71 for i in LOCATIONS:
72 mu[i] = CAPACITY
73 S[i] = []

...
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98 # Generate the weight cuts from the sets found above
99 new_cuts = []

100 for i in LOCATIONS:
101 if len(S[i]) > 0: # If an item assigned to this location
102 con = LpAffineExpression() # Start a new constraint
103 con += sum(REQUIREMENT[j] * assign_vars[(i, j)]
104 for j in S[i])
105 con += sum( max(0, REQUIREMENT[j] - mu[i]) *
106 assign_vars[(i, j)] for j in PRODUCTS
107 if j not in S[i])
108 new_cuts.append(con <= CAPACITY - mu[i])

110 # Return the set of cuts we created to DIP
111 return new_cuts

Adding the weighted inequality cut generator reduces the branch-and-bound
tree size from 419 nodes to 77 nodes.

3.3 Adding Customised Column Generation

Using Dippy it is easy to transform a problem into a form that can be solved
by either branch-and-cut or branch-price-and-cut. Branch-price-and-cut decom-
poses a problem into a master problem and a number of distinct subproblems.
We can identify subproblems using the relaxation member of the DipProblem

class. Once the subproblems have been identified, then they can either be ignored
(when using branch-and-cut – the default method for DIP) or utilised (when us-
ing branch-price-and-cut – specified by turning on the doPriceCut option).

In branch-price-and-cut, the original problem is decomposed into a master
problem and multiple subproblems [6]:

min c⊤1 x1 + c⊤2 x2 + · · · + c⊤KxK

subject to A1x1 + A2x2 + · · · + AKxK = b
F2x2 = f2

. . .
...

FKxK = fK
x1 ∈ Z

+
n1

, x2 ∈ Z
+
n2

, . . . , xK ∈ Z
+
nK

(1)

In (1), there are K − 1 subproblems defined by the constraints Fkxk = fk, k ∈
2, . . . , K. The constraints A1x1 + A2x2 + · · · + AKxK = b are known as linking
constraints. Instead of solving (1) directly, column generation uses a convex com-
bination of solutions yk to each subproblem j to define the subproblem variables:

xk =

Lk
∑

lk=1

λk
lk
yklk (2)

where 0 ≤ λk
lk

≤ 1 and
∑Lk

lk=1
λk
lk

= 1. By substituting (2) into the linking con-

straints and recognising that each yklk satisfies Fkxk = fk, xk ∈ Z
+
nk

(as it is a solu-
tion of this subproblem), we can form the restricted master problem (RMP) with
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corresponding duals (π, γ1, . . . , γK):

min c⊤1 x1 +

L2
∑

l2=1

(

c⊤2 y
2

l2

)

λ2

l2 + · · · +

LK
∑

lK=1

(

c⊤Ky
K
lK

)

λK
lK

subject to A1x1 +

L2
∑

l2=1

(

A2y
2

l2

)

λ2

l2 + · · · +

LK
∑

lK=1

(

AKy
K
lK

)

λK
lK

= b : π

L2
∑

l2=1

λ2

l2 = 1 : γ1

. . .
...

LK
∑

lK=1

λK
lK

= 1 : γK

L2
∑

l2=1

y2l2λ
2

l2
∈ Z

+
n2

. . .
...

LK
∑

lK=1

yKlKλ
K
lK

∈ Z
+
nK

x1 ∈ Z
+
n1
, λ2 ∈ [0, 1]L2

, . . . , λK ∈ [0, 1]LK

(3)

The RMP provides the optimal solution x∗
1, x

∗
2, . . . , x

∗
K to the original problem (1)

if the necessary subproblem solutions are present in the RMP. That is, if yk,∗lk
, lk =

1, . . . , Lk, k = 2, . . .K such that x∗
k =

∑Lk

lk=1
λk
lk
yk,∗lk

, k = 2, . . . , K have been in-
cluded.

Given that x∗
k, k = 1, . . . , K are not known a priori, column generation starts

with an initial solution consisting of x1 and initial sets of subproblem solutions.
“Useful” subproblem solutions, that form columns for the RMP, are found by
looking for subproblem solutions that provide columns with negative reduced
cost. The reduced cost of a solution yklk ’s column, i.e., the reduced cost for λk

lk
, is

given by c⊤k y
k
lk
− π⊤Aky

k
lk
− γk. To find a solution with minimum reduced cost we

can solve:

Sk : min (ck − π⊤Ak)
⊤ xk − γk (reduced cost for corresponding λk)

subject to Fk xk = fk (ensures that yk solves subproblem k)
xk ∈ Z

+
nk

(4)

If the objective value of Sk is less than 0, then the solution yk will form a column
in the RMP whose inclusion in the basis would improve the objective value of the
RMP. The solution yk is added to the set of solution used in the RMP. There are
other mechanisms for managing the sets of solutions present in DIP, but they are
beyond the scope of this paper.

Within DIP, hence Dippy, the RMP and relaxed problems Sk, k = 2, . . . , K are
not specified explicitly. Rather, the constraints for each subproblem Fkxk = fk are
specified by using the .relaxation[j] syntax. DIP then automatically constructs
the RMP and the relaxed problems Sk, k = 2, . . . , K. The relaxed subproblems
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Sk, k = 2, . . . , K can either be solved using the default MILP solver (CBC) or a
customised solver. A customised solver can be defined by the relaxed_solver

function. This function has 4 inputs:

1. prob – the DipProblem being solved;

2. index – the index k of the subproblem being solved;

3. redCosts – the reduced costs for the xk variables ck − π⊤Ak;

4. convexDual – the dual value for the convexity constraint for this subproblem
γk.

In addition to subproblem solutions generated using RMP dual values, initial
columns for subproblems can also be generated either automatically using CBC
or using a customised approach. A customised approach to initial variable gen-
eration can be defined by the init_vars function. This function has only 1 input,
prob , the DipProblem being solved.

Starting from the original capacitated facility location problem from section 3:

min

m
∑

i=1

wi

s.t.
m
∑

i=1

xij = 1, j = 1, . . . , n (each product produced)

n
∑

j=1

rjxij + wi = Cyi, i = 1, . . . , m (aggregate capacity at location i)

xij ≤ yi, i = 1, . . . , m, j = 1, . . . , n (disaggregate capacity at location i)

xij ∈ {0, 1}, wi ≥ 0, yi ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n

we can decompose this formulation:

min 1w2 · · · +1wm

s.t. Ix2 · · · +Ixm = 1 (each product produced)
r⊤x2 −Cy2 +1w2 = 0 (aggregate cap. at loc. 2)
Ix2 −ey2 ≤ 0 (disaggregate cap. at loc. 2)

. . .

r⊤xm −Cym + 1wm = 0 (aggregate cap. at loc. K)
+Ixm −eym ≤ 0 (disaggregate cap. at loc. K)

where

xi =







xi1
...

xin






, r =







r1
...
rn






and e =







1
...
1






.

Now the subproblems Fkxk = fk, k = 2, . . . , K are

[

r⊤ −C 1
I e

]





xi

yi
wi





=
≤

[

0
0

]

,
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c⊤k =
[

0 0 1
]

, Ak =
[

I 0 0
]

,

so Sk becomes

Si : min
∑n

j=1
−πjxij +1wi −γi

subject to
∑n

j=1
rjxij −Cyi +1wi = 0

xij −yi ≤ 0, j = 1, . . . , n
xij , yi, ∈ {0, 1}, j = 1, . . . , n, wi ≥ 0

where πj is the dual variable for the assignment constraint for product j in the
RMP.

In Dippy, we define subproblems for each facility location using the
.relaxation syntax for the aggregate and disaggregate capacity constraints:

32 # Aggregate capacity constraints
33 for i in LOCATIONS:
34 prob.relaxation[i] += lpSum(assign_vars[(i, j)] * REQUIREMENT[j]
35 for j in PRODUCTS) + waste_vars[i] \
36 == CAPACITY * use_vars[i]

38 # Disaggregate capacity constraints
39 for i in LOCATIONS:
40 for j in PRODUCTS:
41 prob.relaxation[i] += assign_vars[(i, j)] <= use_vars[i]

All remaining constraints (the assignment constraints that ensure each prod-
uct is assigned to a facility) form the master problem when using branch-price-
and-cut. To use branch-price-and-cut we turn on the doPriceCut option:

206 dippy.Solve(prob, {
207 'TolZero' : '%s' % tol,
208 'doPriceCut' : '1' ,
209 'generateInitVars' : '1' , } )

Note that symmetry is also present in the decomposed problem, so we add
ordering constraints (described in §3.1) to the RMP :

43 # Ordering constraints
44 for index, location in enumerate(LOCATIONS):
45 if index > 0:
46 prob += use_vars[LOCATIONS[index-1]] >= use_vars[locati on]

Using branch-price-and-cut, the RMP takes about ten times as long to solve
as the original formulation, and has a search tree size of 37 nodes. The
generateInitVars option uses CBC by default to find initial columns for the RMP
and then uses CBC to solve the relaxed problems. Dippy lets us provide our
own approaches to solving the relaxed problems and generating initial variables,
which may be able to speed up the overall solution process.

In the relaxed problem for location i, the objective simplified to min
∑n

j=1
−πjxij+

1wi − γi. However, the addition of the ordering constraints and the possibility
of a Phase I/Phase II approach in the MILP solution process to find initial vari-
ables mean that our method must work for any reduced costs, i.e., the objective
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becomes min
∑n

j=1
djxij + fyi+ gwi−γi. Although the objective changes, the con-

straints remain the same. If we choose not to use a location, then xij = yi = wi = 0
for j = 1, . . . , n and the objective is −γi. Otherwise, we use the location and yi = 1
and add f to the objective. The relaxed problem reduces to:

min
∑n

j=1
djxij +gwi −γi

subject to
∑n

j=1
rjxij +1wi = C

xij , wi ∈ {0, 1}, j = 1, . . . , n

However, the constraint ensures wi = C −
∑n

j=1
rjxij , so we can reformulate as:

min
∑n

j=1
(dj − grj)xij +fC − γi

subject to C −
∑n

j=1
rjxij ≥ 0 ⇒

∑n
j=1

rjxij ≤ C

xij , ∈ {0, 1}, j = 1, . . . , n

This is a 0-1 knapsack problem with “effective costs” costs for each product j of
dj − grj . We can use dynamic programming to find the optimal solution.

In Dippy, we can access the problem data, variables and their reduced costs,
so the 0-1 knapsack dynamic programming solution is straightforward to imple-
ment and use:

66 noEmpty = dict([(loc, True) for loc in LOCATIONS])
67 def solve_subproblem(prob, key, redCosts, convexDual):
68 loc = key

70 # Calculate effective objective coefficient of products
71 effs = {}
72 for j in PRODUCTS:
73 effs[j] = redCosts[assign_vars[(loc, j)]] \
74 - redCosts[waste_vars[loc]] * REQUIREMENT[j]

76 avars = [assign_vars[(loc, j)] for j in PRODUCTS]
77 obj = [-effs[j] for j in PRODUCTS]
78 weights = [REQUIREMENT[j] for j in PRODUCTS]

80 # Use 0-1 KP to max. total effective value of products at locat ion
81 z, solution = knapsack01(obj, weights, CAPACITY)

...
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83 # Get the reduced cost of the knapsack solution and waste
84 rc = redCosts[use_vars[loc]] -z + \
85 redCosts[waste_vars[loc]] * CAPACITY
86 waste = CAPACITY - sum(weights[i] for i in solution)

88 # Return the solution if the reduced cost is low enough ...
89 if rc - convexDual < -tol:
90 var_values = dict([(avars[i], 1) for i in solution])
91 var_values[use_vars[loc]] = 1
92 var_values[waste_vars[loc]] = waste

94 var_tuple = (waste, rc - convexDual, var_values)
95 return [var_tuple]
96 # ... or an empty location is "useful"
97 elif noEmpty[loc] and (-convexDual < -tol):
98 noEmpty[loc] = False

100 var_values = {}

102 var_tuple = (0.0, -convexDual, var_values)
103 return [var_tuple]

105 return []

Adding this customised solver reduces the solution time because it has the
benefit of knowing it is solving a knapsack problem rather than a general MILP.

To generate initial facilities (complete with assigned products) we implemented
two approaches. The first approach used a first-fit method and considered the
products in order of decreasing requirement:

146 def first_fit_heuristic():
147 # Sort the items in descending weight order
148 productReqs = [(REQUIREMENT[j],j) for j in PRODUCTS]
149 productReqs.sort(reverse= True)

151 # Add items to locations, fitting in as much
152 # as possible at each location.
153 allLocations = []
154 while len(productReqs) > 0:
155 waste = CAPACITY
156 currentLocation = []
157 j = 0
158 while j < len(productReqs):
159 # Can we fit this product?
160 if productReqs[j][0] <= waste:
161 currentLocation.append(productReqs[j][1]) # index
162 waste -= productReqs[j][0] # requirement
163 productReqs.pop(j)
164 else:
165 # Try to fit next item
166 j += 1
167 allLocations.append((currentLocation, waste))
168 # Return a list of tuples: ([products],waste)
169 return allLocations

14



172 def first_fit(prob):
173 locations = first_fit_heuristic()
174 bvs = []
175 index = 0
176 for loc in locations:
177 i = LOCATIONS[index]
178 var_values = dict([(assign_vars[(i, j)], 1) for j in loc[0]])
179 var_values[use_vars[i]] = 1
180 var_values[waste_vars[i]] = loc[1]
181 dv = (loc[1], var_values)
182 bvs.append((i, dv))
183 index += 1
184 return bvs

The second approach simply assigned one product to each facility:

186 def one_each(prob):
187 bvs = []
188 for index, loc in enumerate(LOCATIONS):
189 lc = [PRODUCTS[index]]
190 waste = CAPACITY - REQUIREMENT[PRODUCTS[index]]
191 var_values = dict([(assign_vars[(loc, j)], 1) for j in lc])
192 var_values[use_vars[loc]] = 1
193 var_values[waste_vars[loc]] = waste

195 dv = (waste, var_values)
196 bvs.append((loc, dv))
197 return bvs

Using Dippy we can define both approaches at once and then define which
one to use by setting the init_vars method:

199 prob.init_vars = first_fit
200 ##prob.init_vars = one_each

These approaches define the initial sets of subproblem solutions yklk , lk = 1,
. . . , Lk, k = 1, . . . , K for the initial RMP before the relaxed problems are solved
using the RMP duals.

The effect of the different combinations of column generation, customised sub-
problem solvers and initial variable generation methods, both by themselves and
combined with branching, heuristics, etc are summarised in Table 1. For this size
of problem, column generation does not reduce the solution time significantly (if
at all). However, we show in section 4 that using column branching enables DIP
(via Dippy and PuLP) to be competitive with state-of-the-art solvers.
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3.4 Adding Customised Heuristics

To add user-defined heuristics in Dippy, we first define a new procedure for node
heuristics, heuristics . This function has three inputs:

1. prob – the DipProblem being solved;

2. xhat – an indexable object representing the fraction solution at the current
node;

3. cost – the objective coefficients of the variables.

Multiple heuristics can be executed and all heuristic solutions can be returned to
DIP.

216 def heuristics(prob, xhat, cost):
217 sols = []
218 if prob.root_heuristic:
219 prob.root_heuristic = False # Don't run twice
220 sol = first_fit()
221 sols.append(sol)
222 if prob.node_heuristic:
223 sol = frac_fit(xhat)
224 sols.append(sol)
225 return sols

227 prob.heuristics = heuristics
228 prob.root_heuristic = True
229 prob.node_heuristic = True

A heuristic that solves the original problem may not be as useful when a fractional
solution is available, so we demonstrate two different heuristics here: a “first-fit”
heuristic and a “fractional-fit” heuristic.

In the facility location problem, an initial allocation of production to locations
can be found using the same first-fit heuristic that provided initial solutions for
the column generation approach (see §3.3). The first-fit heuristic iterates through
the items requiring production and the facility locations allocating production at
the first facility that has sufficient capacity to produce the item. This can then be
used to provide an initial, feasible solution at the root node within the customised
heuristics function.
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141 def first_fit():
142 # Use generic first-fit heuristic that is shared
143 # between heuristics and initial variable generation
144 allLocations = first_fit_heuristic()

146 # Convert to decision variable values
147 sol = {}
148 for i in LOCATIONS:
149 for j in PRODUCTS:
150 sol[assign_vars[(i, j)]] = 0
151 sol[use_vars[i]] = 0
152 sol[waste_vars[i]] = 0

154 index = 0
155 for loc in allLocations:
156 i = LOCATIONS[index]
157 sol[use_vars[i]] = 1
158 sol[waste_vars[i]] = loc[1]
159 for j in loc[0]:
160 sol[assign_vars[(i, j)]] = 1
161 index += 1

163 return sol

At each node in the branch-and-bound tree, the fractional solution (provided
by xhat ) gives an indication of the best allocation of production. One heuristic
approach to “fixing” the fractional solution is to consider each allocation (of an
item’s production to a facility) in order of decreasing fractionality and use a first-
fit approach.
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165 def frac_fit(xhat):
166 # Initialise solution
167 sol = {}
168 for i in LOCATIONS:
169 for j in PRODUCTS: sol[assign_vars[(i, j)]] = 0
170 sol[use_vars[i]] = 0
171 sol[waste_vars[i]] = 0

173 # Get the list of non-zero fractional assignments
174 fracAssigns = [ (xhat[assign_vars[(i, j)]], (i, j))
175 for i in LOCATIONS for j in PRODUCTS
176 if xhat[assign_vars[(i, j)]] > tol ]
177 fracAssigns.sort()

179 # Track which products and locations have been used
180 notAllocated = dict((j, True) for j in PRODUCTS)
181 notUsed = dict((i, True) for i in LOCATIONS)
182 while len(fracAssigns) > 0:
183 fracX = fracAssigns.pop() # Get best frac. assignment left
184 (i,j) = fracX[1]
185 if notAllocated[j]:
186 if notUsed[i]: # Create a new location if needed
187 notUsed[i] = False
188 sol[use_vars[i]] = 1
189 sol[waste_vars[i]] = CAPACITY
190 if REQUIREMENT[j] <= sol[waste_vars[i]]: # Space left?
191 sol[assign_vars[(i, j)]] = 1
192 notAllocated[j] = False
193 sol[waste_vars[i]] -= REQUIREMENT[j]

195 # Allocate the remaining products
196 unallocated = [(REQUIREMENT[j],j) for j in PRODUCTS
197 if notAllocated[j]]
198 unallocated.sort(reverse= True)
199 unused = [i for i in LOCATIONS if notUsed[i]]
200 while len(unallocated) > 0:
201 waste = CAPACITY
202 index = 0
203 loc = unused.pop()
204 while index < len(unallocated):
205 (j_req, j) = unallocated[index]
206 if j_req <= waste:
207 unallocated.pop(index)
208 sol[assign_vars[(loc, j)]] = 1
209 waste -= j_req
210 else: index += 1
211 sol[use_vars[loc]] = 1
212 sol[waste_vars[loc]] = waste

214 return sol

Running the first-fit heuristic before starting the branching process has little
effect on the solution time and does not reduce the number of nodes. Adding the
first-fit heuristic guided by fractional values increases the solution time slightly
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and the number of nodes remains at 419. The reason this heuristic was not that
helpful for this problem instance is that:

• the optimal solution is found within the first 10 nodes without any heuris-
tics, so the heuristic only provides an improved upper bound for < 10
nodes;

• the extra overhead of the heuristic at each node increases the solution time
more than any decrease from exploring fewer nodes.

3.5 Combining Techniques

The techniques and modifications of the solver framework can be combined to
improve performance further. Table 1 shows that it is possible to quickly and
easily test many approaches for a particular problem, including combinations of
approaches2. Looking at the results shows that the heuristics only help when
the size of the branch-and-bound tree has been reduced with other approaches,
such as ordering constraints and advanced branching. Approaches for solving
this problem that warrant further investigation use column generation, the cus-
tomised solver and either ordering constraints or the first-fit heuristic to gener-
ate initial variables. Tests with different data showed that the solution time for
branch-price-and-cut doesn’t increase with problem size as quickly as for branch-
and-cut, so the column generation approaches are worth considering for larger
problems.

4 Performance and Conclusions

In section 3 we showed how Dippy works in practice by making customisations
to the solver framework for an example problem. We will use the Wedding Plan-
ner problem from the PuLP documentation [3] to compare Dippy to two lead-
ing solvers that utilise branch-and-cut: the open-source CBC and the commercial
Gurobi. This particular problem is useful for comparing performance because it
has a natural column generation formulation and can be scaled-up in a simple
way, unlike the Facility Location problem which is strongly dependent on the
specific instance being tested.

The Wedding Planner problem is as follows: given a list of wedding attendees,
a wedding planner must come up with a seating plan to minimise the unhappi-
ness of all of the guests. The unhappiness of guest is defined as their maximum
unhappiness at being seated with each of the other guests at their table, making it
a pairwise function. The unhappiness of a table is the maximum unhappiness of
all the guests at the table. All guests must be seated and there is a limited number
of seats at each table.

This is a set partitioning problem, as the set of guests G must be partitioned
into multiple subsets, with the members of each subset seated at the same table.

2All tests were run using Python 2.7.1 on a Windows 7 machine with an Intel Core 2 Duo
T9500@2.60GHz CPU.
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The cardinality of the subsets is determined by the number of seats at a table and
the unhappiness of a table can be determined by the subset. The MILP formula-
tion is:

xgt =

{

1 if guest g sits at table t

0 otherwise

ut = unhappiness of table t
S = number of seats at a table

U(g, h) = unhappiness of guests g and h if they are seated at the same table

min
∑

t∈T

ut (total unhappiness of the tables)

∑

g∈G

xgt ≤ S, t ∈ T

∑

t∈T

xgt = 1, g ∈ G

ut ≥ U(g, h)(xgt + xht − 1), t ∈ T, g < h ∈ G

Since DIP, and thus Dippy, doesn’t require a problem to be explicitly formu-
lated as a Dantzig-Wolfe decomposition, a change from DIP to CBC is trivial. The
only differences are that:

1. A LpProblem is created instead of a DipProblem ;

2. No .relaxation statements are used;

3. The LpProblem.solve method uses CBC to solve the problem.

To see if CBC and Gurobi would perform well with a column-based approach, we
also formulated a problem equivalent to the restricted master problem from the
branch-price-and-cut approach and generated and added all possible columns
before the solving the MILP. Finally we used to Dippy to develop a customised
solver and initial variable generation function for the branch-price-and-cut for-
mulation in DIP. In total, six approaches were tested on problem instances of in-
creasing size:

1. CBC called from PuLP;

2. CBC called from PuLP using a columnwise formulation and generating all
columns a priori;

3. Gurobi called from PuLP;

4. Gurobi called from PuLP using a columnwise formulation and generating
all columns a priori;

5. DIP called from Dippy using branch-price-and-cut without customisation;

6. DIP called from Dippy using customised branching, cuts and column gen-
eration callback functions.
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In Table 2 and Figure 2 we see that3:

• Gurobi is fastest for small problems;

• The symmetry present in the problem means the solution time of CBC and
Gurobi for the original problem deteriorate quickly;

• The time taken to solve the columnwise formulation also deteriorates, but
at a lesser rate than when using CBC or Gurobi on the original problem;

• Both DIP and customised DIP solution times grow at a lesser rate than any
of the CBC/Gurobi approaches;

• For large problems, DIP becomes the preferred approach.

The main motivation for the development of Dippy was to alleviate obsta-
cles to experimentation with and customisation of advanced MILP frameworks.
These obstacles arose from an inability to use the description of a problem in a
high-level modelling languag integrated with the callback functions in leading
solvers. This is mitigated with Dippy by using the Python-based modelling lan-
guage PuLP to describe the problem and then exploiting Python’s variable scop-
ing rules to implement the callback functions.

Using the Capacitated Facility Location problem we have shown that Dippy is
relatively simple to experiment with and customise, enabling the user to quickly
and easily test many approaches for a particular problem, including combina-
tions of approaches. In practice Dippy has been used successfully to enable final
year undergraduate students to experiment with advanced branching, cut gener-
ation, column generation and root/node heuristics. The Wedding Planner prob-
lem shows that Dippy can be a highly competitive solver for problems in which
column generation is the preferred approach. Given the demonstrated ease of the
implementation of advanced MILP techniques and the flexibility of a high-level
mathematical modelling language, this suggests that Dippy is effective as more
than just an experimental “toy” or educational tool. It enables users to concen-
trate on furthering Operations Research knowledge and solving hard problems
instead of spending time worrying about implementation details. Dippy breaks
down the barriers to experimentation with advanced MILP approaches for both
practitioners and researchers.

3All tests were run using Python 2.7.1 on a Dell XPS1530 laptop with an Intel Core 2 Duo CPU
T9500@2.60GHz and 4 GB of RAM. We used CBC version 2.30.00, Gurobi version 4.5.1, and Dippy
version 1.0.10.
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Figure 2: Comparing solver performance on the Wedding Planner problem. In
this figure the times for generating the columns for “CBC with columns” and
“Gurobi with columns” have been included in the total solve time. The time
required for solving the original formulation sharply increases for both Gurobi
and CBC (marked with crosses) but at different problem sizes. However the
time for the column-wise formulation is similar for Gurobi and CBC. The time
for DIP does not smoothly increase with problem size, but is consistently lower
than Gurobi for instances with 16 or more guests.
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Strategies Time (s) Nodes

Default (branch and cut) 0.26 419
+ ordering constraints (OC) 0.05 77
+ OC & advanced branching (AB) 0.01 3
+ weighted inequalities (WI) 0.34 77
+ WI & OC 0.17 20
+ WI & OC & AB 0.06 4
+ first-fit heuristic (FF) at root node 0.28 419
+ FF & OC 0.05 77
+ FF & OC & AB 0.01 3
+ FF & WI 0.36 77
+ FF & WI & OC 0.14 17
+ FF & WI & OC & AB 0.05 3
+ fractional-fit heuristic (RF) at nodes 0.28 419
+ RF & OC 0.05 77
+ RF & OC & AB 0.01 3
+ WI & RF 0.38 77
+ WI & RF & OC 0.14 17
+ WI & RF & OC & AB 0.05 3
+ FF & RF 0.28 419
+ FF & RF & OC 0.05 77
+ FF & RF & OC & AB 0.01 3
+ WI & FF & RF 0.38 77
+ WI & FF & RF & OC 0.14 17
+ WI & FF & RF & OC & AB 0.05 3
+ column generation (CG) 2.98 37
+ CG & OC 2.07 23
+ CG & OC & AB 0.56 10
+ CG & customised subproblem solver (CS) 2.87 37
+ CG & CS & OC 1.95 23
+ CG & CS & OC & AB 0.44 10
+ CG & first-fit initial variable generation (FV) 3.96 45
+ CG & CS & FV 3.72 45
+ CG & CS & FV & OC 1.70 18
+ CG & CS & FV & OC & AB 0.22 3
+ CG & one-each initial variable generation (OV) 3.40 41
+ CG & CS & OV 3.33 41
+ CG & CS & OV & OC 2.23 24
+ CG & CS & OV & OC & AB 0.27 3

Table 1: Experiments for the Capacitated Facility Location Problem
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# guests Time (s)

CBC CBC & columns Gurobi Gurobi & columns DIP Customised
gen vars solve gen vars solve DIP

6 0.07 0.01 0.06 0.04 0.01 0.05 0.90 0.33
7 0.07 0.01 0.12 0.04 0.01 0.11 1.77 0.57
8 0.90 0.01 0.27 0.07 0.01 0.25 4.78 0.57
9 2.54 0.01 0.57 0.09 0.01 0.55 2.11 0.78
10 3.83 0.01 1.23 0.13 0.01 1.15 5.60 0.94
11 6.48 0.01 2.46 0.14 0.01 2.36 8.62 0.91
12 26.73 0.01 4.64 0.34 0.01 4.55 25.17 2.80
13 53.18 0.01 8.57 0.39 0.01 8.28 14.86 1.40
14 70.51 0.01 15.27 0.38 0.01 14.65 20.09 2.66
15 97.79 0.01 26.26 0.47 0.01 25.07 33.52 1.59
16 >1000 0.01 43.86 68.08 0.01 42.11 26.73 2.09
17 – 0.01 72.07 79.71 0.01 68.87 50.48 3.92
18 – 0.01 115.64 96.03 0.01 110.52 40.80 4.67
19 – 0.01 181.39 113.01 0.01 173.13 78.20 2.64
20 – 0.02 283.16 >6000 0.01 270.08 61.86 5.31
21 – 0.02 434.60 – 0.02 418.04 77.66 4.23
22 – 0.02 664.87 – 0.02 639.04 134.76 4.63
23 – – >1000 – – >1000 149.82 9.16
24 – – – – – – 110.24 6.51
25 – – – – – – 202.59 8.80
26 – – – – – – 185.21 18.47

Table 2: Experiments for the Wedding Planner Problem
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