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Abstract
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1. Introduction

We consider the fractional process X; generated by the model
(1-LY' X, =u, t=0,1,.. (1)

Our interest is primarily in the case where X; is nonstationary and d > %, so in (1)
we work from a given initial date ¢t = 0, set u; = 0 for all j < 0, and assume that u,
(t > 0) is stationary with zero mean and continuous spectrum f,(\) > 0. Expanding
the binomial in (1) gives the form

Z (—d)kXt—k =y, (2)

where

T(d+k)
d), = ————2
is Pochammer’s symbol for the forward factorial function and T'(-) is the gamma
function. When d is a positive integer, the series in (2) terminates, giving the usual

formulae for the model (1) in terms of differences and higher order differences of X;.
An alternate form for X; is obtained by inversion of (1), giving

=(d){d+1).(d+k—-1)

X =(1-L) %y, zt: k—) (3)

Throughout this paper it will be convenient to assume that the stationary com-
ponent u; in (1) is a linear process of the form

ut:C(L)stzzcjst—ja Zjlcjl < 00, C(l)?éoﬁ (4)
j=0 7=0

for all t and with & = #d (0,0?) with finite fourth moments. The summability
condition in (4) is satisfied by a wide class of parametric and nonparametric models
for us, enables the use of the techniques in Phillips and Solo (1992), and ensures that
partial sums of u; satisfy a functional central limit theorem, which will be needed
later.

Under (4), the spectrum is f,(A) = -g—:r

2
0 cje”)‘| . In view of (1), it is natural
to define

fa0) = 1 = 72 (N). (5)
The function f;(A) gives the spectrum of X; when it exists and X; is stationary (i.e.
for |d| < § and under infinite past initialization of X; in (3)) and is the analogue of
the spectrum in the nonstationary case when d > % even though it is not integrable.
In that case, Solo (1992) gave a formal justification of f;(\) as a spectrum in terms

of the limit of the expectation of the periodogram. Taking logarithms of (5) produces
the equation

In(fz(A)) = —2dIn(|1 — €)) + In(fu(N)), (6)




which motivates a linear log periodogram regression for the estimation of d, in which
fz(A) is replaced by periodogram ordinates I;(\) evaluated at the fundamental fre-
quencies A, = 22 g = 0,1,...,n— 1. Here, Io(Xs) = wa(As)wa(As)* and we(),) is the
discrete Fourier transform (dft) wa(Xs) = 2= 7 ; aze™™ > of a time series a;. With

vimn
this substitution (6) becomes

In (I (As)) = —2dIn |1 s

+1n(fu (X)) + U (As), (7)

where U (As) = In[I; (As) / fz (As)] . By virtue of the continuity of f,, fu (As) is effec-
tively constant for frequencies in a shrinking band around the origin, suggesting a lin-
ear least squares regression of In (I (\s)) on In ’1 — ei’\SI over frequencies s = 1,...,m
(with m a truncation number). The method has undoubted appeal, is easy to perform
in practice and has been commonly employed in applications. However, (6) is a mo-
ment condition, not a data generating mechanism, and the analysis of this regression
estimator is complicated by the difficulty of characterising the asymptotic behaviour
of the dft w;(A,), which is the central element in determining the properties of the
regression residual U (A,) in (7).

An important contribution by Kiinsch (1986) showed that, for fractional processes
like (1), wz(As) has quite different statistical properties from the corresponding dft,
wy(Ag), of the stationary process u; for frequencies in the immediate neighbourhood
of the origin. In particular, for A; = % — 0, with s fixed as n — oo, the dft ordinates
are asymptotically correlated, not uncorrelated. Recent analysis by Robinson (1995a)
and Hurvich, Deo and Brodsky (1998) for Gaussian u; has provided an asymptotic
theory in the stationary case, thereby placing log periodogram regression on a rigorous
footing. Another semiparametric estimation procedure (suggested by Kunsch, 1987)
is the Gaussian estimator which maximises a local version of the Whittle likelihood,
and it is known to have a smaller variance than log periodogram regression in the
stationary case (Robinson, 1995b). This estimator also relies on the behavior of
wz(Ag) for frequencies in the vicinity of the origin.

The present paper provides some new methods for studying the asymptotic be-
havior of wz(As) for nonstationary values of d. The approach relies on an exact
representation of wg(A;) in terms of the dft w,();) and certain residual components.
This representation aids in the analysis of the properties of w;(As) and, thereby, in
the study of log periodogram regression and local Whittle estimation. The represen-
tation also provides a frequency domain version of the data generating mechanism
(1) above. As such, it is useful in motivating some alternative approaches to inference
about d that we will propose here and which are being explored in other work.

The paper is organised as follows. Section 2 gives the new frequency domain
representation of wy;(X), derives another useful representation and studies some of
their features. Section 3 develops some asymptotic approximations that help to
simplify the representation and suggest new approaches to inference about d. Section
4 describes some statistical applications of the results to spectral estimation and to
semiparametric estimation of the memory parameter. Particular attention in the
latter case is given to log periodogram regression and local Whittle estimation. Some
modified versions of these procedures are suggested which conveniently extend their




range of applicability to the nonstationary case.Proofs and some technical results
that are of independent interest are given in Section 5. Notation is summarized in
Section 6.

A final word of introduction. While our focus is on the case where d € (3, 1),
the methods introduced here are applicable when d > 1, and in modified form when
|d| < % A particularly useful approach is to combine the exact representation (14)
that applies when d = 1 with results for fractional d to produce valid representations
for the d > 1 case. Paragraphs 2.6 - 2.8 indicate some of these possibilities.

2. Frequency Domain Decompositions

It is convenient to manipulate the operator (1 — L)d in (1), with its polynomial ex-
pansion (2), in a form that more readily accommodates dft’s. This can be done
algebraically, as in Phillips and Solo (1992), by expanding the polynomial operator
about its value at the complex exponential €**, leading to the following decomposi-
tion.

2.1 Lemma Define D, (L;d) = ¥} %qu Then
Dy (Lyd) = Dn (¢*;d) + Dpa (e L;d) (e72L — 1), (8)

where f)n;\ (e‘”‘L; d) = E;:é JApe_ipApr and JAP = Z:=p+1 %“-eﬁc)‘.

The representation (8) is an immediate consequence of formula (32) in Phillips
and Solo (1992) and can be obtained by straightforward algebraic manipulation.
No summability conditions are required here for its validity since it is a finite sum.
However, the value of d does affect the order of the terms in this expansion and,
consequently, the order of magnitude of these terms when n — oo, a fact that does
affect subsequent theory. Additionally, when A depends on n, the order of these terms
is affected and this too needs to be accounted for in the asymptotic theory. Much of
the present paper is devoted to this accounting to assist in characterizing the limit
behavior of the dft w, (A\) = ﬁ S Xpetth,

Using the operator (8), we may write the model (1) in the following form for al}
t<n

il

Uy

D, (L§ d) X
= Dy (e;d) X, + Dpa (e-”L; d) (e -1) X.. (9)

Taking dft’s of the left and right sides of {9) now yields an exact expression for w, (A)
in terms of wy, (A) . The result is stated as follows.

2.2 Theorem




where Dy, (e”; d) =3 %=0 -——k(_:!) ekA

~1
Xon(d) = Dos (672 L5 d) X, = nz drpe P Xpp

p=0
and .
3 —tX T, - T —ipA . 3 = (_d)k kA
Dy (e L,d) = Z dype " PLY,  with dyp = Z —roe (11)
p=0 k=p+1 ’

2.3 Remark Equation (10) provides an exact representation of wy (A) in terms of
wy (A) and a residual component involving n_%X,\n(d). Explicitly,

1

V2mn

In fact, (10) or (12) may be interpreted as a frequency domain version of the original
mode] (1). In terms of periodogram ordinates, we have the corresponding equation

wy (N) = Do (%) ™ 1w (A) D (%) (Zaold) - ™ Xyn(d)) . (12)

L) = ()P = | (50) [wu( . —ﬁ (Xrold) —e"")")?;.m(d))} ’
= |Dn (e“‘;d)rz [Iu()\s)——2Re{\/2ﬂ_n ()ha[,(d)hxx n(d)) Wy, ().,,)*}
| (Bon(@ - Zon@) [ (13)

which may be interpreted as the data generating mechanism for the ordinates I {X,)
that are used in a log periodogram regression. Equation (13) reveals the model

. -2
that is implicit in (7) above. To the extent that ‘Dn (e“\a;d)| can be replaced by

‘1 - e”‘ﬂ| and the component n~2X,,,(d) is small enough to be neglected, (13)

and (5) might seem to suggest that U (A;) = In[I; (As) / fz (As)] will behave like the
corresponding functional, log (I, (As) / fu (As)], of the errors in (1). However, as will
become apparent in our analysis, the residual component n~:X an(d) in (12) and
(13) cannot be neglected, in peneral, and its importance grows as d increases.

2.4 Remark When d = 1, the forward factorial (~d), = 0 for all k¥ > 1, so that
series involving these coefficients terminate at & = 1. In this case D, (ei’\; 1) =

(1 — e"‘\) ,dyo = —e*, X o(1) = —e* Xg, and X3n(1) = —X,,. Equation (10) then
reduces to the simple form

el

Vern

wy (A) = (1 - ei’\) wz (A) + (ei"’\Xn - Xo) , (14)




an expression obtained by the author in earlier work (lemma B of Corbae, Quliaris and
Phillips, 1999). In this case, it is apparent that n‘%f()\,n(d) —ehnTiX, = (1) for
all A;. Thus, in the unit root case, the residual correction term n~7 X A,n(d) definitely
matters, plays a role in the asymptotic behavior of w; (A;) at all frequencies and
thereby affects the asymptotic theory of estimators of d like those arising from log
periodogram regression and local Whittle estimation. Indeed, in those cases the
author has shown in other work (1999) that the estimators have a limiting mixed
normal distribution rather than a normal distribution when d = 1.

2.5 Remark When v, = 0 for t < 0, in (1), it follows that X; = 0 for ¢ < 0 and
hence Xg(d) = 0. In this event, expression (10) becomes

) ein,\ - .
wy(A) = wy(A) D (e‘)‘;d)— \/27r_nD’“ (e_”"L;d)Xn
i ez’nA -
= w (N Du (e ;d)— 5= "m(d), (15)
or, in the unit root case,
. iA .
wy (V) = (1- ), (X) + —f%em*x,,,, (16)

in place of (14). Since these initial conditions are assumed in (1), and since the effect
of relaxing them will usually be apparent, we will henceforth use (15) in place of (10).

2.6 Remark Another useful representation for the dft of X; can be obtained by
combining the representation (15) with the unit root decomposition (16). It is espe-
cially useful when d > 1. Write (1) as

1-L)X;=1-L) =2 (17)

so that Xy = 3°%_y 2; + Xo. Then, taking dft’s in (17), we first apply (16) to write
wg (As) in terms of w, (A;) and then use (15) to reduce w; () in terms of wy, (X;)
and a correction term. The outcome is formalized in the following theorem.

2.7 Theorem If X; follows (1), then

 LiAn
wy (N) (1_eﬂ) = wy(A) — e \/%:" (18)
tAn ezAn
- D, (ef*;f) wa () — j_U,\n (f) — e " (19)

27N V2mn
where f =1 —d and

n—1 N n _ )
ﬁAn (f) = Bn)\ (e_iAIH f) Un = Z f).peiipl\un—p, and f,\p = Z ( f) ek,
p=0

k=p+1




2.8 Remark Some further decomposition beyond (18) and (19) is possible. As
in Phillips and Solo (1992), we can decompose the operator C (L) that appears in
= C(L)e; as

C(L)y=C (ei") +C (e-“L) (e‘“‘L - 1) , C(L) = iEjLJ, & Z ks
j=0 k=j+1

where 3732, ¢; < 0o in view of the summability condition on ¢; in (4). Then,
=C(L)ee=C (ei’\) er + e Penit — Exe, (21)

is a valid decomposition of u; into the iid component C ( i") & and a stationary error

that telescopes under the dft operation, with ey; = c ( “\L) £t = ZJ 0Cje "jstﬂ-.
In particular,

wa(A) =C (M)ws(,\wr %(sm—em’\em):C’(”‘)wg(,\)-t—O (7)

Using this representation in (19) we get

2nn 2mn

] . . iAn L ptAn
we () (1= 6%) = D (¢ £) € () we (V= =n (= 52240, (2 ).
2
Additionally, 2 in (17) can be written as
a=C(e?)(1-Ly e+ (1-L) (e-"‘L —1)en. (23)

Set n, = (1 — L)fat, My = (1= L)fs,\t in (23) and take dft’s, giving

—\/% (WAO - ein)‘ﬂ)m)

= C (eif‘) wy (A) + Oy (%) , (24)

since 1,, is stationary with finite variance for all d € (%, %) because then |f| < %
(Note that n,; = e when d = 1). Next write

ne = (1 — L) &y = [Dn (L; f) + Ra (L; )] & (25)

w(A) = C(e*)w, (V) +

with
k=n+1
and note that

ut = R (Li [ &0 = O, (L)

natf




Applying (10) to the dft wy (A) calculated from (25) we have

wy () = 2 (3) D (6% 1) + == (o) = ™ Eanl)) + e (), (26)

with

n—1 n
E.\n(f) = Z pre—szEn—p, pr = Z ( k'):)ke'tk,\, (27)
P=0 .'C=p+1 H
and

Wne (A) = Z Ente”

Now wne (A) = Op (n‘f) because

E [tne (M) wne (\)7] = % iiei%“_")E (entens) = :-2»% i Zn:O ( —1- 2f) 0 ( —2f) )
(28)

t=1s5=1 {=1s=1

Using (26) and (28) in (24) we get

. . 1 : 1 1
_ iA iA. ~ A el el
Wy (A) =C (e ) {Dn (e ’f) We (’\) + \/271'_11, (EAU(f) = E)m(f))]_"op (\/ﬁ)‘("op (nf) .
29)
Then, combining (29) with the unit root decomposition (18) leads to the representa-
tion

ix Xn
2mn

\/21#_”6( u\) (sm(f) _ einAgAn(f)) + O, (n—lf) . (30)

This representation is likely to most useful when A = A; = 2% — 0 and 8 — o0.

wy(A) (1=e?) = C(e?) Dy (e f)we () —e

-+

2.9 Remark The representations (15), (18), and (19) hold for all fundamental
frequencies A; = % They are helpful in providing asymptotic representations of
wz {As) . In such expansions, it is useful to allow for situations where s — oo as well
as n — oc0. In some cases, as in spectral density estimation at some frequency ¢ # 0,
we want the expansion rate of s to be the same as n, so that we can accommodate
As — ¢ asn — co. In other cases, as in log periodogram and Gaussian semiparamectric
regression, interest centres on frequencies A; in the vicinity of the origin, so then we
consider cases where s is fixed or s — 00 and £ — 0 as n — co. The following section
gives results that are helpful in the determination of the asymptotic form of these
representations as n — oo under these various conditions.




3. Asymptotic Approximations

3A. Component Approximations

We start with the sinusoidal polynomial D, (e“‘; d) =¥ k=0 (_,j Yi gikX that appears
in the decomposition (8) and theorems 2.2 and 2.7. The series can be summed in
terms of hypergeometric functions and the asymptotic form taken as n — co depends
on A. The behavior is described in the following lemma.

3.1 Lemma Suppose d > 0 and is noninteger. Then

D) = (1= - SRR o (im0 (o)

and, for cos(\) < %,

in, g (1 i etnt (—d), ., ) .L
Da o) = (1) + oy iy 2R (10t 2w ) @)

The following asymptotic representations hold:

(a) For fired A#£0

. R ini
D» (eﬂ;d) = (1 - et'\)d T (—dl) nl+d 16— ein [1 +0 (%)] '

b) For A=X; =2 ) gnd s — 00 as n — 00
n

Dn (e”\’;d) - (1 B eu,)d * %F (—jl) nds [1 to (é)] 0 (#)

¢) For A=A, =238 , 0 and s fized as n — o0
n

. 1 1
5. Vo — M ] —_—
Dn (8 ,d)—m lFl(l,l—d, _27”'8)+O(nl+d)'

(d) For A=0 o 1
Da(lid) = Fr—g 7 [1+0(;)].

In the above formulae, 1Fi (a,b; z) and 2 F) (a,b,c; 2) denote the confluent hypergeo-
metric function and the hypergeometric function, respectively.

From part (d), it follows that D, (1;d) differs from zero by a term of O (n*d) .

From part (c), the same also applies to D,, (ei’\”; d) when s is fixed and X, = 22 - Q.

n




Of course, in the event that d is a positive integer, we have the following terminating
polynomials

D, (i) = 3> e 3 (_,j)‘” = i (Z’) (-D)F=(1-1"=0,
k=0 k=0 k=0
and N
D (¢%i) = - SO -5 (4 (o) = (1- )’
in this case.

Our next focus of interest is the correction term in (15) that involves Xon(d). We
are especially interested in deriving an asymptotic approximation to Xx,(d) at the
fundamental frequencies A;. As in Lemma 3.1, the asymptotic behavior of X, ,(d) is

sensitive to the value of s in A, 2’“’ . In particular, when d € ( ) , the asymptotic
form of X e n(d) differs, dependmg on whether s is fixed or whether s — co asn — oo.
In the latter case, n“%XA,,n(d) = 0p (1), while in the former n‘%)?;\a,n(d) =0,(1).

On the other hand, when d = 1, n_%)?)\a,n(d) = 0, (1) for all s # 0. The results are
given in the following theorem.

3.2 Theorem Suppose d e (%, 1). Then

(a) For fized A#0 as n — oo,

Boald) X (1)
N (1 e yn P\ pi—d

1
=0 (4a)

(b) For A=), _m_.;(] and ;&5 — oo, aanoo,forsomeae(%,l)

Xy, n(d) gt ( 1 ) e Xn | 1
vnoo ( — eix) 1™ d\f st—d (—2wis) ™% pd-3 K (31 d)

(€) For A= X, = 2% and s fived, as n — oo,

Xonld)  1F(1,1— d;—2mis) / omisr
\/7_1 = F(l —d) A c Xn’d('f')d’r‘
1 1 . 1
_mfo 171 (1,1 — d; —2misr)r™ Xnd(l——r)d'r+0 ( = d)
P(l) bl

where X, 4(r) = %.




(d) When d =1, the equation

Xi;,—fl) _ _eu% = 0, (1)

holds for A fived, or X = Ay = =2 — 0 with s — 00, or A = 2 5 O with s
fized.

In parts (a) and (b) of theorem 3.2 the leading term in the asymptotic approx-

imation of n~2.X an(d) is the same and so, although the error order of magnitude
differs, we may write

Xon(d) et Xn gt X,
Vn (1 - e Vol (1—eN=4y/n
for both these cases Further, the leading term of n -3 X anld) is Op( —) for fixed
A0, 1SO( ) for Ay = %—-)Oand—aﬁoo and is Op(1) for A, = 2 — 0 with

s fixed. Thus, the correction term n~ X an(d) is nonnegligible in a region around
the origin when d € (1 ) The asymptotic form of n_%)?}\n(d) in that case (i.e.

case (c), with A, = ZZ%, and s fixed) is more complicated than the other cases and it
involves hypergeometnc series. The representation given in case (c) actually includes
s = 0, for which we have the simpler form

X nld 1 1 1
A\o/ﬁ( ) 1—d)/ Xnd(r m/{) r anyd(l—T)dT-FOp (F)
(33)

When d = 1, the formula given in (d} is exact, as follows directly from (16).

Finally, we look at the correction term Uy, (f) that appears in (19). We concen-
trate on the interesting case where A is in the vicinity of the origin and give the result
corresponding to part (c) of theorem 3.2.

3.3 Theorem Suppose d € (2,2) and f =1—d. Then, for A= X; = 2:‘9 and 8
fixed, as m — oo

ﬁlsn(f) _ 1 1 . , ! —9rigr
ﬁ = \/ﬂr(l_f)nf{1F1(1,1—f,—2ﬂ'28)/(; e ? an(l—r)

- /01 =R (1,1 — £ —2misr) d X, (1 —r)} + Oy (%) , (34)

where Xo(r) =n=2 Y™l v, When £ =0, Uy, ,(0) = 0.

10




3B. Approximations for w, ()
Evaluating (15) at A, we have

1
V2mn

We use lemma 3.1 and theorem 3.2 to obtain explicit expressions for w, (A,) in terms

of wy (As) and a correction term. When d = 1, the following exact form comes directly
from (16)

e () = Do (e%1d) i ) + o= Fonld)]

Bi.z\s X'n.
1 —es \forn’

and holds for all s = 1,2,.... When d € (3,1), it is convenient to separate the
following three cases:

we () = (1— ) wy (M) - (35)

(a) Case \; - ¢ #0

Here, from lemma 3.1 we have

| ‘ tnAs
D, (ezz\s;d) = (1—e’,\u)d_r(_d1)n1+d 1e_eu, [1+0(%)]
- (=)0 (i),

uniformly for A, € By = {¢ — &, ¢ + £} where M — co as n — co. Similarly, from
theorem 3.2,

Xanld) e X, to ( 1 )
\/'ﬁ - (1 _ei)\s)lvd\/'f_l P nl—d
uniformly for A, € By. It follows that
. —d e'iAa X 1
e (As) = (1= s w(As) — - r-—n )
wy (As) ( e ) wy (Ag) T Jors +0p (nl—d , (36)

uniformly for A € By.

(b) Case A, = 2 — 0 and s — 0

From lemma 3.1 (b) when s — oo as n — o0

D, (eu,;d) _ (1 _ ez’,\,)d+ mﬁ [1 +0 (é)} +0 (#) .

And from theorem 3.2 (b) with % — oo for some a € (%, 1) , 48 N — 00,

Xy,n(d) eirs X 1
— =)

—= +o
Vvn (1-eir)=dym = F

11




It follows that if > + % — 0 as n — oo, for some a € (%, 1) , then

—d
wy (As) = (1 - e“’)_d Wy (As) — 1 _:M \/m + op -(-1—‘:—4) . (37)

Observe that the first two terms of (36) and (37) are the same. Although the order
of magnitude of the error differs in the two cases, we may write

} —d 1./\ e'i,)\s X
— _ plAs
wy (Ns) = (1 e ) wa () = T \/ﬁ ( ) f) (38)
for both these cases, and (38) is valid for all A, = <% with 2~ — (.
(c) Case A\; = 2% — ( and s fixed
From lemma 3.1 (c) when s is fixed as n — oo, we have
iX, 1 1
Dn (e ,d) = F(l——dm 1F] ( d 27T’LS) + O l+d (39)
and it follows that
1 1 1 1 -1
—awy (As) = —i [W 1F1(1,1 —d; 27rzs)+0( 1+.1)]
1
X As) + —— X nld ,
[0+ —2=Ton( )]
giving
we (Ag) T'(l1-4d) [ 1 ] 1
nt 1R (1,1 —d;—2mis) wa (Ae) + \/anXA’n(d) +Op (n) - (40)
Further, from theorem 3.2 (c),
Xanld Fi (1,1 —d; —2mis) [Y 5 ...
Af/%( ) _ 2f (m g ) | X (e
1 1
_m/(] 1Fy (1,1~ d; —2misr) r2 X, o(1 — r)dr + Op ( 11 d)
so that
1 - F(l - d) 2misr
dVs M) = o T oy e () / Xnalr)dr
(27)°7

—d
_ X (1 —
P (11— d; —2nis) / 17 (1,1 — d; —2misr)r nd(l—r)dr

+0, ( 1d) (41)

12




Unlike (36) and (38), the term

(W X
_E—A_” (42)
1—e¢e* \/21n

does not figure directly in (41). In fact, as the alternate representation shown in the
next section shows, the term (42) is absorbed into the series expression in (41), so it
is still present and figures in the leading term of the dft w, (As) when s is fixed.

(c) Case A, = £ _, () and s fixed: An alternate form.

Theorem 2.7 gives

we (M) (1 - €)= Du (e £) w0 (As) - \/%ﬁ,\m (f) - e

Xn
Vern’

(43)

with f =1 — d, Lemma 3.1 (¢) gives

D, (e“";f) = ‘I“U—IW 171 (1,1 — f; —2mwis) +O(E1Tf)’

and theorem 3.3 gives

U)\an(f) - 1 1 . : ! —2mesr
S = mras e WL £ [ e )

1 1
- ~f R Sy _ _—
/(; r 11 (1,1 — f; —2misr) dX, (1 r)} + 0, (\/ﬁ) .
Also,
1 L St 1 & n—k Up_k 1 1 . 1
A = e21rsz;u — e27rszT n — / e—2msran 1 —7)4+0 (_) )
wu (As) Vv2mn ; t 2 ?::’1 vn V21 Jo ( ) PAn

Combining these last three representations in (43), we get

we (A) (1)

1 ) ——1 ' —2mwisr 1
- mlﬂ(l’l_ﬁ_zms)m/o e an(l'TH—Op(;)
1 1 3 ! ~2wisr
—\/ZTFP(I_f)nf lFl(l,l—f;—qus)/o 2 dX, (1—7)
+ 1 1 /17'_f F(1,1— f;-2msr)dX, (1 —7r) — x, An
VarT( -yl o " (1) e T
1
+Op(_)
n
1 1 1 o 1
— 7f ]_— . - Xn 1 — B ia, " (_)
\/ﬂf(l—f)nf_/ﬂr 171 (1, fi—2misr)dX, (1 —r)—e QWH‘FOP 1),
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leading to

;}Ewm (As) = \/_I‘ i f)';(l =5 J, 1F1 1= fs —2misr)dX, (1 —7)
1 g X, 1
Ty O ( d__) (44)

which shows how (42) continues to play a role in the leading term of w, (A,).

3C. Limit Theory
Under (4}, partial sums of w; satisfy the functional law

[pr]

Xn(r) = Zut —q B(r), (45)

where B is a Brownian motion with variance w? = 02C(1)? (e.g. Phillips and Solo,
1992). There is a corresponding functional law for suitably standardized elements of
the time series X;. Akonom and Gourieroux (1987) showed such a functional law for
n%‘dXt when the components u; follow a stationary ARMA process and the following
simply extends their result to the linear process u;.

3.4 Lemma For wu satisfying ({) and with e, iid (0,0%) and E|&|f < oo for
P > max (d__l'l'v2 ,
2
[nr] d

Xoar) = 2 4 B = i [ - 9 dB(6), (46)

n

a fractional Brownian motion where B(s) is Brownian motion with variance w?.

Like X, the fractional Brownian motion Bg_1(r) is initialized at the origin, and
therefore has nonstationary increments, in contrast to the other fractional process

Wi (r) = 5% [ [fe- 9} {(_3)+}H—%] aB(s), H=d-z, (47)

1
o< 2 =
C(H)={2}‘I+/ [(1+8)H_%—SH_%] d,g}z’ O<H<1

introduced by Mandelbrot and Van Ness (1968) and studied by Samorodnitsky and
Taqqu (1994, p.321) in this form. Both processes reduce to Brownian motion for
special cases of the parameters, viz. d = 1 for (46), and H = § for (47).

These functional laws enable us to get limit representatlons of the correction term
n"iX A,n(d). The case where where s is fixed as n — co is especially interesting, the

other two cases following immediately from (46} and the respective expressions (36)
and (37).




3.5 Lemma For A, = % — 0 and s fired

‘)EAsn(d) d 1 ! 2misr I A Y /1 2wisr
N - F(l—d)/o e ™ Bag_1(r)dr 1F1 (1,1 — d; —2mis) e“™"dB (r}.

r=0
(48)

The next result gives formulae for the stochastic Fourier integral [ e?™*4dB(q)
that appears in (48) and (when s = 0) for the constituent Brownian motion B in
terms of the fractional Brownian motion By_;.

3.6 Theorem For fized integer s

r , 1 r
[ ermete=anig) = o [ R (01— ds—2istr - )~ 0) Bua(a)da
0 raa-d Jjo

(49)
and, in the special case where s = 0,

BO)= =g ), 7~ 90 Baal@ia (50)

The equality (50) is the inverse (integral) transform of the fractional Brownian
motion Bg_1(r). In effect, the right side of (50) is the (1 — d)’th fractional integral of
the (d — 1)’th fractional derivative of Brownian motion. Formula (49) extends this
representation to the case s # 0. When r = 1, (49) becomes

1 .
[) e*"*dB(q) = r—(l“li“aj /01 11 (1,1~ d; —27is(1 — ¢)) (1 - ¢) ™ Be-1(g)dlg.

3.7 Theorem Suppose d € (%, 1). The following limit results apply.

(a) Let ¢ >0 and suppose As; € By = {¢ — 557, 6 + 557} for a finite set of distinct
integers s; (j = 1,...,J). When M — oo as n — oo, the family {ww()\sj)}jzl
are asymptotically independently distributed as complex normal N (0, f (¢))

where fi (¢) = |1 — ei® e ful(o).

(b) Let {s;}/_; be distinct integers with 0 < | < s; < L for each j and with
L2 5 0asn-— oo, for some a € (%,1) . The famaly {(Asj)dwz()\sj)}jzl
are asymptotically independently distributed as N (0, fi, (0)).

(c) Let {s, }3-’:1 be a finite set of distinct positive integers which are fized as n — co.
Then, for each j

L.
v () & 75z [ B ), (51)
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where By_1 is the fractional Brownian motion given in (46). Joint convergence
also applies.

When d = 1, the following limits apply.

(d) Let ¢ > 0 and suppose As; € By = {¢ — §3. 0+ {7} for a finite set of distinct
integers s; (j = 1,...,.J). When M — oo as n — oo, the family {wz()s;)}]—
are asymptotically distributed as

1 e J
{1 _ eid,gj - 1— ei¢n}j=lv (52)

where the {fj}jl=1 are 1id N, (0, fu. (¢)) and are independent of

_BQ)
"= (53)
2

where B is Brownian motion with variance w=*.

(e} Let {sj}d;f:1 be a finite set of distinct positive integers for which X — 0 as
n — co. The family {As;wz(As;)} oy are asymptotically distributed as

i(&-n), (54)
where £; and 1 are as in (52) and (53).

(f) When s; is fized as n — oo, the &; in (e) have the representation

1o,
= —— [ iR (r), 55
&= 7= [ @B ) (55)
and . ) )
_ d - 2mi8;T
S Wa ()\SJ.) = \/ﬁ/o e“"%" B (r) dr, (56)

which also holds for s; = 0.

Parts (a) and (d) show that Hannan’s (1973) result for the limit theory of dft’s of
stationary processes extends to fractional processes at frequencies removed from the
origin when d € (%, 1) but not when d = 1. In the latter case, the leakage from the
the zero frequency is so substantial that it affects the limit theory of the dft at all
frequencies, although the limit distribution is still normal. Moreover, as is apparent
from the form of (52), the limit variates are spatially correlated across frequency
by virtue of the presence of the random component 7, through which the leakage is
transmitted.

Part (b) shows that, when d € (-21;,1), a version of Hannan’s result applies to
the scaled transforms (fni)dwm().sj) in a (distant) vicinity of the origin where A, =
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zl:ﬂ — 0 but % — 0 as n — oo, for some o € (%,1). However, when d = 1, the
scaled transforms 2w, (),,) are asymptotically dependent across frequency.

Part {c) shows that in the immediate vicinity of the origin (i.e. for A,, = 21:-?—’ —0
with s; fixed), the n_dwm()\sj) are asymptotically dependent for d € (3, 1] and each
converges weakly to an integral functional of fractional Brownian motion that involves
the integer s;. In earlier work, Akonom and Gourieroux (1987} gave (51) in the case

of ARMA ;. An alternate expression for (51), which relates to (44) is

1 d 1 ! : ; d
Fww (As_,') — —m\/o ]_Fl (1,1+d, —2777”5]'7')?" dB (]. —7')
and can be obtained from the formula
12"”’”3 d 1 ' Fy (1,1 +d; —2misr) r¥dB (1
/Oe a—1(7) r—m/u 1£1 (1,1 + d; —2misr)r (1-7),

which is proved in Lemma E in the technical appendix.

4. Some Statistical Applications

4A. Spectrum Estimation for fractional processes

The limit theory in section 3C is useful in obtaining the asymptotic behavior of
spectral estimates for fractional processes. We give some results for smoothed pe-
riodogram estimates for frequencies at the origin and away from the origin. The
former are of interest in procedures that are used to estimate the memory parameter
d. The latter reveal any leakage from low to high frequencies that occurs in spectrum
estimation.

For frequencies away from the origin such as ¢ # 0, the usual smoothed peri-
odogram estimator of f; (¢) is given by

Fe@=2 T wmOnu (), (57)

As€B(¢}

™

where B, (¢) = (¢— 537, ¢+ 557), M is the bandwidth parameter that determines the
number of frequencies m = # {A; € B (¢)} = [n/2M] used in the smoothing. At the
zero frequency ¢ = 0, we consider a one sided average of m periodogram ordinates
at the origin

m—1
Fea (0) = = 3 wa (M) (A" (58)
5=0

The following theorem gives the asymptotic behavior of frg (¢) for these two cases
and for d € (3,1) and d = 1.
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4.1 Theorem
(a) For 9 #£0and § <d< 1

ﬁ:m (¢) —p fz (d)) = "M

|1 — et

(b} For e #0and d =1

=2

Fra (@) 4 @)+ o= [1- 9 BOY.

(c) For % < d <1 and m such that % — oo with a > %
m -~ 1 1 2
Tafe O =a 5= [ B (e

(d) For d =1 and m such that % — 00

L -~ ]. 1 2
D Fee 0 =4 5 /0 B(r)dr.

According to part (a), spectral estimates like _)”;z (¢) at frequencies removed from

the origin are consistent for f, (¢) = ‘1 — e"‘”| 2 fu (@) provided d < 1, When d = 1,
the estimate is inconsistent and converges weakly to a random quantity. In this
case, the leakage from low frequency behavior is strong enough to persist in the
limit at all frequencies ¢ > 0. Part (d) was given in earlier work by Phillips (1991),
where it was shown to be useful in analysing regression in the frequency domain
with integrated time series. A new and simpler derivation is given here based on
the decomposition (16). Part (c) can be expected to be useful in similar regression
contexts with fractional processes.

4B. Semiparametric Estimation of d

We now indicate some potential applications of the present theory for the estimation
of the memory parameter d in (1). This is a large subject which goes beyond the scope
of the present paper and for which the theoretical development is now underway. It
will therefore be reported in detail in later work. The presentation here will focus on
the new ideas and not the technical details.

Our concern is with the case where little is known about the short memory com-
ponent u; of (1) and its spectrum f,(A) is treated nonparametrically. In both log
periodogram estimation and local Whittle estimation, this is accomplished by working
with the dft w; (A,) of the data X; over a set of m frequencies {\; = 2? :s=1,...,m}
that shrink slowly to origin as the sample size n — oo by virtue of a condition on
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m of the type 70 — 0. It has been suggested that, in view of the asymptotic corre-

lation of the ordinates in the vicinity of the origin (Kiinsch, 1986) that it may be
useful to trim this set of frequencies away from the origin and restrict attention to
{As = S . s = ,...,m} where | is a trimming number that satisfies | — oo and
M — 0 (Robinson, 1995a), although it is now known that this trimming is not
necessary (Hurvich, Deo and Brodsky, 1998).

From (37) we know that for d € (3,1), the dft w, (\s)

. —d
- =) (59)

)~ X
we () = (1= e™) wa () — 1= = o | S |

when £+ ”8: — Qasn — oo, forscme a € (%, 1) . The asymptotic behavior of w, (Ag)
is dominated by the first two terms of (59), and as d — 1 the importance of the second
term in (59), which is Op(n?/s), rivals that of the first term, which is O,(n?/s%).
Apparently, therefore, it would seem desirable to correct the dft w, (A,) for the effects
of leakage in semiparametric estimation of d simply by adding the correction term

supplied by the known form of the expansion (59). For log periodogram regression
this amounts to using the quantity

e‘i/\s X
e (Ag) = A —
Vg (As) we (Ag) + 1—6"‘*’\/27r—n (60)

in place of wg (Ay) in the regression. Thus, in place of the usual least squares regres-
sion {over s =1, ...,m)

-~ o (2
In(I; (X)) =€—dln |1 —e™|” 4+ error

that is inspired by the form of the moment relation (6) in the frequency domain, the
argument above suggests the linear least squares regression

~ o2
In(l, (X)) =¢—dln |1 — | + error, (61)

in which the periodogram ordinates, I (A,) , are replaced by I, () = vz (As) vz (Ag)™ .
We call this procedure modified log periodogram regression. This replacement is in-
spired by (59), which approximates the data generating process of the dft ws (\s)
over the relevant set of frequencies as m — oo in the regression. In place of the
‘regression model’

. 2
MUﬂ%ch—deﬂé“ +u(d),

with ¢ = In(f, (0)) and

u(As) =1In [l (As) /fo (As)] +1In (fu (As) / fu (0)),




as in (7}, we now have from (59)

2
1+ (1 _ ei)\,)dwu ()\s)_lop (”;)]
oo (i)

In (I, (As)) = ¢ — d1In |1 — e

LX) = (1-e“a)"dwu()\3)+op (”d)

oy |—2d
= |1—eP| 7 I, (A)

—2d

= |L—e| " I, ()

which leads to the new regression model

2
+a{lg), (62)

with
a() =L ) /O (O /£ O) 40y (7). (69)

This relationship holds for frequencies A, satisfying £ + 2= — 0 as n — 00, in view
of (59).

The new regression (61) seems likely to be most useful in cases where nonstation-
arity is suspected. Note, however, that when d < %, the correction term in (60) is

0p(1) when 3/5_'3 — 0, so that use of (61) can also be expected to be satisfactory in the
stationary case. When d = 1, the correction is exact for all frequencies, as is clear
from (16). In that case, therefore, (62) is an exact regression relation whose error is
given by

a(As) = In L (As) /fu (As)] +1n (fu (As) / £ (0)) . (64)

It is then a relatively straightforward matter to show that the modified log peri-
odogram estimator has the following limit theory

2
\/ﬁ(d—d)iN(O,gZ), (65)
i.e., the same limit distribution as the log periodogram estimator in the stationary
case (Robinson, 1995a, and Hurvich, Deo and Brodsky, 1998). By contrast, the usual
log periodogram estimator d has a mixed normal limit theory when d = 1, as shown
in Phillips (1999). (The mixed normal limit arises because of the presence of the
term (Qw)‘%e““n_%Xn in (16) which is Op(1) as n — 00).

The modified regression (61) appears to be even more useful in the nonstationary
case when d > 1. In that case, the usual estimator d is inconsistent, and d —p 1, afact
that can be established using the expansions obtained in sections 2 and 3, whereas
d is consistent and has the same limit distribution as that shown in (65). Details of
this work will be reported later.

The intuition leading to the modified regression (61) can also be employed in
the case of the local Whittle estimator (Kitnsch, 1987; Robinson, 1995b)). We will
not go into details here. Suffice to remark that we would simply replace I, (Ay; d)
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in the extremum estimation problem (72)-(74) given below by I,()\;), which can
be computed from vz(As) as in (60). The resulting estimator is a modified local
Whittle estimator, and, like the modified log periodogram regression estimator in
(61), its asymptotic properties can be expected to be the same for stationary and
nonstationary values of the memory parameter, including those for which d > 1.
Details of these results and related applications will be reported in subsequent work.

Our theory also suggests some other possibilities. In particular, we may build on
the idea noted above that (62) gives an exact relationship when d = 1 with error
(64). Indeed, the decomposition (15) implies the following exact relation between the
transforms w, (A;) and w, (As)

wy (As) = Do (€%43d) 7 [wu (A) = —m=Fra(d)|

1
Va2rn
Define the new transform

1
Vamn

which is dependent on the memory parameter d and for which the equation

ve (Asid) = we (A) = Do (€™;d) " ———Xsa(d). (66)

vy (As3d) = Dy (ei’\’;d)_l Wy (Ag) (67)

holds exactly. Extending the ideas that led to (62) above, we have the exact peri-
odogram relation

0 |12
In (I, (As;d)) = c — dln |1 — et a()), (68)

with Iy (Ag;d) = vz (As;d) vz (As; )™, and

a(As) =In[Iu (As) / fu (As)] +1In (fu (Xs) /Fu(0)),

just as in (64). In place of linear least squares regression, it is now possible to apply
nonlinear regression directly to the regression model (68). Let Y, (d) = In (I, (A\s;d)),

12
and A, = 1n |1 — elhs

. Then, nonlinear regression leads to the following extremum

estimator
d* = arg Indin Qm (d),
where
(@ =3 [(% @) -T@) -a{a, -] [{¥. @ - %@} - {4~ T}
s=1

The advantage of d* is that it is the natural estimator of d that emerges from the
exact formulation of the regression model in the frequency domain, i.e (68). Its
disadvantage is that it is more complicated to compute than the conventional log
periodogram regression estimator d and the modified estimator d, neither of which
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require numerical methods. Some simplifications in computation can be obtained by
using some of the approximations developed in section 2.

Finally, we remark that the exact relationship (67) can be used to obtain an exact
form of local Whittle estimator under Gaussian assumptions about w¢. The local
Whittle likelihood suggested by Kiinsch (1987) and studied by Robinson (1995b) has

the form
m

_ 1 ), A
Km (Ga d) - E ; [log (GAS ) + FI.’I: (As) 3 (69)
and is minimised jointly with respect to the parameters (G,d), where Gy = f,(0) is
the true value of G. The (negative) Whittle likelihood (e.g. Hannan and Deistler,
1988, pp. 224-225) based on frequencies up to A, and up to scale multiplication is

I, (M)
Zlogfu (A,)+Z i ew] (70)

The objective function (69) is derived from (70) by using the approximate relationship

wg (As) ~ (1 - ei’\’)_d wy (Ag) ~ (_AS)_d wy (As) ,
I, () ~ A2, (),

to transform (70) to be data dependent, in conjunction with the local approximation
fu(Ag) ~ Go. We may now proceed to transform (70) using the exact relationship
between wy, (As) and wy () that is given by (67) and (66). We get

m )| 5 (As; d)
S {on (M} R0

=1

and this leads directly to the following ‘exact’ version of the local Whittle likelihood

1 & e, |2 D (eu,;d)‘?
= E Z log (|Dn (ez ";d)l G) + —G‘—Iv (/\s;d) . (71)
s=1

The new estimates are obtained from the joint minimization
(G**,d™) = argléliGan (G.d).
Concentrating out G, we find that d** satisfies
d*™ = arg m}n R, (d), (72)

with

R (d) = log G** (d) — 2—7}1— i log IDn (eﬂs; d) :
=1
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where

G** (d) = % i |Dn (e“";d)r I, (A\s; d) . (74)
j=1

The estimator d** would seem to offer an attractive semiparametric procedure because
it is based on likelihood principles and involves the exact data generating mechanism
for the discrete Fourier transforms. Some small scale simulations the author has
conducted seem promising, but are more computationally intensive than those of
the usual Whittle estimator. The asymptotic properties of the estimator are under
investigation and will be reported later.

5. Technical Appendix and Proofs

5A. Preliminary Results

We provide some technical lemmas that are useful throughout the paper. Lemmas
A and B provide results on binomial coefficients and hypergeometric functions that
are either standard (e.g. Erdélyi, 1953) or follow from standard results. We give
them here to facilitate our own derivations and to make the paper more accessible.
Lemmas C and D provide some more specific results on sinusoidal polynomials and
hypergeometric functions of sinusoids that are immediately relevant to formulae in
the paper. Lemma E gives a useful inverse transform of fractional Brownian motion,
an inverse transform for a hypergeometric series of fractional Brownian motion and
some useful relationships between certain integral functionals of fractional Brownian
motion and Brownian motion.

Lemma A

(a) () = (1)~ gk,

(b) (p+a); = TR, (a),,, = (@)sa+ )

(€) Tp o = =Day (4 £0,1,.) + 0o EDe1(d = 0,1,..).
(d) Fg =no? [1+0(3))

Proof Part (a) is immediate from the definition

(d): d! dd—1)..(d—k+1)

flod) Atk =) e (),

k) T @d—k)K k! =(-1) k! kK

The second formula in Part (b) is immediate from the definition of the forward
factorial. The first formula in Part (b) follows from




(p+a), = Plpta+j) _T+a+4)T(j+a)/T(a)
! I'(p+a) T(j+a) T(p+a)/T(a)

RN O
B (J+a)p (a)p'

For part (c), we write the sum as a terminating hypergeometric function, and use
Lemma B (a) & (c) to obtain

" (—d ~d
s 9

L oF(—n,1;d-n+1;1)

k=0

(=d), T@I'(d=n+1) T(-d+n)d—n
n! T(d+1)T(d-n) T(-dn! d
'(—d+n+1) (1-d),
r(-d+1)n! ~  al ~

for d #0,1,2, .., while for d = 0,1, . the sum ¥3%_o S2% simply terminates at k = d.
Part (d) is a standard result that follows from the Stirling approximation (e.g.
Erdélyi, 1953, p. 47). R

Lemma B In the following formulae, 3Fi{a,b,c;z) = Y hey %fébr:kzk 18 the hyper-
geometric function.

(a)
Zn: (_k(f)kzk = (~7§l[)nzn 2 Fy (_”al'»d —-n+ 1;‘271) 1{d#0,1,.)
k=0 '
d
'y (”le!szl(d = 0,1,.),

(0) Ty Gzt =t Cnts By (ot 1 —d, 1im 4 2;2),

(¢) 2F1(a,b,c1) =T (e)T(c—a—b) /[T (c—a)T (c—b)] for Re{(c —a —b) > 0and
c#0,-1,-2,....,

(d) If |z] <1and |2/(z - 1)] < 1

2Fl(a’?b;c; z) = (1 - z)—a ZF]_(G;,C - b;c; z/(‘z - 1))1 (75)

the right hand side giving an analytic continuation of the hypergeometric func-
tion to the half-plane Re(z) < %




(e)

N\ Kk
n (_d) et —d —iAn .
3 —'“IS—) - % 2Fi(—n, i1 —di1—e™)1(d £0,1,.)

+Z~Tl(d = 0,1,.),

(f) If Re(c) > Re(b) >0

2F1(a, by c; 2) = Tb)rf(fcg——)/ 2711 — 1) (1 — t2) "t (76)

which gives an analytic continuation of 2F(a,b;c; z) to the entire z plane cut
along [1,00], i.e. to all z for which arg(l — 2) < 7.

Proof Part (a) is given in Erdélyi (1953, p. 87, 101) in terms of binomial coeffi-
cients. Using the form given there and Lemma A (a), we have for d # 0,1, ...

~ (g x _ <~ (d
Z klkz - Z(k)(_z)k

k=0 ) k=
— d n . e |
= (n) —z) 2F1(—n,1,d—n+1,z )
(_d)n m

ol 251 (—n,l;d—n+1;z-1)l

When d = 0,1, .. the sum simply terminates at k = d and the stated result follows.
For part (b) we have

i (_]j)kmk — wm—f—li (_d)T+1';k‘xk
k=mt+1 iz (m+1+4)!

_ mﬂi F'im+1+k-d) o
«T(—d)T (m+2+k)

— gmHl (m+1-d), I'(m+1-d) ,
Z (m+2), T(~d)T(m+2)"

R r(m+1‘ z(”"“‘d)k(”mk
F(-d)T(m+2) = (m+2),k!
r‘ —

= pmtl (m+1 d) 2F1(nz—|—1—d,1;m+2;33) (77)

T(—d)T (m +2)

—d
= mmﬂﬁ 2Fi(m+1—-4d,1;m+ 2;x),
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The hypergeometric function 2 Fy(a, b, c; 2) = Y ey —k),k(Tkhz is absolutely convergent
for all |z| < 1 when Re(a+b—¢) < 0 (Erdélyi, 1953, p. 57). Hence, the series in
(77) converges absolutely for all |z| <1 when d > 0.

Part (c) is a well known summation formula (Erdélyi, 1953, p. 61). Part (d) is
Euler’s formula (Erdélyi, 1953, pp. 64, 105). The series for 9Fy(a, b,c; z) converges
absolutely for all |2] < 1 and converges absolutely for |z| = 1 when Re(c —a — b) >
0 (Erdélyi, 1953, p. 57). The series for 2Fi(a,c — b;¢;2/(z — 1)) converges for
|2/(# — 1) < L. Since the latter inequality holds for all z for which Re(z) < 1, it
follows that the right side of (75) gives the analytic continuation of 2Fy(a, b;c; 2) to
the half plane Re(z) < % (Erdélyi, 1953, p. 64).

Part (e) is obtained by direct calculation. Using (a), we proceed as follows for
the case d # 0,1, ...:

-1 k
En: . ( /\) = (=d), (e'“)n oF (—n,l;d—n+ l;ei'\)

SRS (=m); () L+ (2 = 1))’

n! = 7! (d—n+1)j
_ ClaetnE (n (5 ey
- ;,Z:%(d—njl)quo(Q) (1)
_ (e E& (m); L i\
- n! ,Z;, (d—n+1); ,IZU (7 - q)lq! (¢ )

— (_d)ne—i}m = 1 et ( ).7'
B ! ;@( A_l) Z(d—n+1) (-9t

(=d), e ™" 1 (e -

nl

1)’ Z( Mera 8+ -

= q! (d n+1)5+q

Since (—n)y, = (—n),(-n+4q),,and (d—n+ 1), = (d—n+1) (d—n+1+g),
from Lemma A (b), (78) becomes

(—d)pe™™ g~ M)y (g —n), (g +1),
n! g__%(d—n-sl)q( A_l) Z(d—n—f-l+qr)

(cd)pe™ g (Mg a1y
= et —1 Filg—n,g+1;9—n-+d+ 1;1)79
n! qzz;](d—n-l—l)q( ) 2F1 (g (79)

In this expression, the F} series terminates, so Lemma B (c) holds and (79) sums to

(e g~ (1), (¢4 - 1)t La—n+d VT (d-g)
. Zx{d-n+1),\ T(d+1)T(d—n)

_ (_d)n g—iAn i (—n)q (l)q (e”‘ _ )q r(d —n+ 1) F(d - Q)

n! = q! Fd+1)T'(-n+d)
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| don(d et e 0y Wy 0 T g

d n! = q! T (d)
_ (=d) e B (=) (1), q 1
- n! = ) (et -) (d—1)(d-2)..(d—q)
(A =-d), e & (-n), (1), 4, g (—1)2
- n! = J q@h_l)(1_@q
= QifgfjﬁgﬂpﬂhLl—ml—éﬂ,

giving the stated result for the case d # 0,1,.... The result for d = 0,1, .. follows
immediately because the series terminates at k = d.

Part (f) is a standard result (Erdélyi, 1953, p. 59). H
Lemma C Assume d #0,1,.. . Then:
(a) For fized A#0 as n — o

- (—d)y ik 1
Z k!ke =O(n1+d)'

k=n+1

(b) For Ay =%2 (0 and s > 0 as n — 00

S = g [0 (3)] o ()
z 2Tkt -~ N1 4+0(=}|+0 _
wimi H 2mi I (—d) nds s nl+d
(c) For X\ =22 — 0 and s fized as n — oo
3 (_k(f)kei)\gk s (id) _
k=n+1 ) n

Proof Using Lemma B (b), Lemma A (d) and Lemma F (b) we get

Z (_]j)k ei.\k
k=n+1 ’

_ Nl F(n+1—d)
= (%) T(—d)T (n+2)

) 1 1 1 1 1
_ id(n+1) - il — -~
R g P o(3)l [1 +o (n)} 0 ().

giving part (a). For A=\, = 2% — 0 and s — o0 as n — 0o we have, using Lemma
F (a),

2Fy (n+1—d,1in+2,e?) (80)

(em)nﬂ F'(n+1-d)

F —d. 1 9. gita
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- fieo 1)] F<n+1 f1in s 2eh)
- P(—d)n1+d 241 1y 78

- g | £ R o ()]
+0((f2-s[1+0(%ﬂ)'°)}[“0(%)}

- F(—d)nlwl—l:" [HO() (1)]

- regrerte o) o)

- e o ()] o )

- R [m@]m( ).

giving result (b). Finally, for s fixed as n — oo, we have

5 Gl -o( £ k) o),

k=n+1

giving part (c).
|

Lemma D Assume d # 1,2,..., let r € (0,1) and let Ay = % — 0 with s fized as
n — 00. Then:

2Fi(=[nr], 1,1 = d; 1 — ™) = 1 F (1,1 — d; 2misr) + O (n-l) : (82)

oFi(—=[nr], 1,1 — dye™s — 1)= 1M (l,1-d;2misr) + O (n"l) \ (83)

and for nonnegative integer p < n

Proof The same argument gives both results (82) and (83). We prove (82).

oF1(—[nr],1,1 — d;1 — ')

B (o)




= i (1) 27rzsr)” +0 (n ) - i —(l)l-—— (27r'és?‘)j (85)

j=[nr]+1 (1 -d); J!
= 1F(1,1-d;2nisr)+0 (n—l) ,
because
i (1); 2 . ZN+1 Z
jone1 (1= d); 5! )k+N+1
ZN+L ok
T rTa-d ' & Z T(k+2+N—d)
- N+1P( T (Uk

T(N+2- d)Z(2+N d), k!
N+lr(1_ ) N+1-d [00 (l)k
V2T (N 42— )N [ = (24 N —d) k!

1
= O(W)’

for all 6 > 0 and all finite . Line {85) above follows because, for 1< j < [nr],

\1% =|1_<1)(1_F;_])__.(1_%;_]1)15’1_(1_1'[_7;1_1)1 _

and

frr}

L E (1 ) J (27ri37')j (86)

= ( % (1 — 2msr) )
= O (% 1F1 (3,1 —d, 271'1'57')) =0 (—1—) \

n

since the ; F; function is everywhere convergent.
Next, for (84) we have

oFi(—p, 1,1 —d;1 — ™)
£ (-p); mEs J
- Eo(f_pfi).(%w(n”))
G )] (?+O( ))+ (=p) (=p+1) (27ris+0(n_2))2

1—-d (1—d), n
(-p), (2mi _n\?
et G gy _pd’;p (Ln‘? +0 (n 2))
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_ —1)(-1+0(p! . 1)
= 1+ f_l()i(Qﬂzsr-i-O( ))-{—( )((1_+d)2(19 ) (2ms%+0(n 1))

(=1+0@M)" (., . 1\
4.+ (1_;; (2wzs%+0(n ))

, (10 () (-2misZ + 0 (n))’

1—d) 7!

- ¥

0

P
= i a El) ( 27rzsp) +0 (p_l) ++0 (n_l) (87)

n

_ i r%).jj!(—%ris%)j

j=p+1°
= 1R (1,1 —d; —27ris%) +0 (n_l) + 0O (p_l) )

giving (84). Again, line (87) above follows because

1& (1)jj2 . pYy!
P T-d; 7 (-2ris2)

i

Lemma E

(a) For j =1,2,..
NG+1-a)™ [ =5/ Bas(s)ds = (3)‘1];0 (r— )™ Blo)dg
and for 7 =0,1,2,...
C+1-d7 [y s (s =TG+ 17 [ r -0 aBlo)
(b)

=) [FaF (L= di—2mis(r = ) (r =)™ Bur (@) dg = [ e 0B (g).
qg=

(c)

1 1
- F d; —2misT) r%dB (1 —
Ti+d /0 171 (1,1 +d; —2misr) 7 (1—7)

1 1 1
T TA-§f (—27rsq;)/0 r~ 1R (1,1 - f;—2misr)dB (1 —7) +

mf"d-l (1).
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(d)

1 1 1 i
f(l—ﬁLd)/o 1Fi (1,1 + d; —2misr) r2dB (1 — r) ZA 2T B (r) dr

In the above formulae, B(r) is Brownian motion with variance w*® and By_1(r) =
r‘_(ldj J5 (r = 8)*"' dB(s) is a fractional Brownian motion initialized at the origin, as
n Lemma 3.5.

Proof To prove (a) we use an operator approach with D = £ and allow for frac-

tional powers of D with a Weyl integral interpretation {see Lavoie et al, 1976, and
Phillips, 1986, for the approach used here). The operator €77 is treated at the trans-
lation operator, so that e?? f(z) = f(z + q). Setting By_1 (s) = 0 for all s < 0 we
have

1 " j—d _ 1 ® i-d
m/o (r—8)""By_1(s)ds = m[zzoqj Bg-1(r—q)dq
= D*7'By_y (%) o=r
= DYITIDYR (1) |,e,
D B(x) |z=r

r .
= F(j)_lf ¢~'B(r—q)dg
q=0
= T [ -9 B@d (9)
g=
giving the first of the stated results and, consequently,

r(l-d)(1-d); - -
T(]) 2 q:()(r_q)] IB(q)dq

To obtain the second form of the result we use integration by parts to give

fr (r—s)"9By_1(s)ds =
0

¥

r) [ - B = G [ -ay 4B

= 1+ [ ¢-9idBo).  (59)

q=0
Combining (88) and (89), we have

-f—(j-l—ll——d) /0” (r— S)j_d By 1(8)ds=T(j+ 1)_1 LT (r— q)j dB(q)

which holds also when j = 0, giving the inverse relation

1 T _
Fiod ]0 (r — 8) % Ba_y (s)ds = B(r), (90)
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(see Theorem 3.6). An alternate weak convergence proof of (90) is given in the proof
of Theorem 3.6 below and, from this result, (89) can alternatively be obtained by
subsequent integration.

To prove (b) we proceed as follows:

;—d) /r 11 (1,1 —d; —2mis(r - q)) (r — @)™ ¥ By_1 (q) dg

1 (1), (
- r(1—d)E

1) fo (2mis(r —q))’ (r — q) " Ba_1(q) dg

1“(11— d) & Z ((Izjiis))j /0 (r—q)"?By_1(g)dg

* (- 2ms) (L—d); fr i

- i% [ -0 By

& (—2wis)

using (89) in the penultimate line. This proves (b).
To prove (c), we expand the ; F} function on the right side of the formula and use

1

1
By (1) = -1,—“_)/0 (1—-s)*1dB(s) = —F—%) /01 4 1dB(1 - r),

to get

“2750) / PR (1,1 = f;—2misr)dB (1 —7) + (—24171*3’5)1961_1 (1)

1
r-n(
_ 1 () (- 27rsz) 1T._f . _ .
N I‘(l—f)(—27rsi)jz_;) W1 = f); /0. 1B (1 -r) - (27Tsz l—f)/ 7dB(1 ~r)
1
)

i (l)j(—27rsi)j lfrj‘f .
T S, b A

> (—2msi)? 1

e
= ;mﬁ'r dB(1-r)

g=1
27st)
- Zr(k:+1+d) RIS
3 1 (1), (—2msi)* 1
= 1"(1+a‘),§ WAt Jo " 4B-7)

32




1 1 . .
= I‘(1—+d),/0 1Fi1 (1,1 +d; —2misr)r%dB (1 — 1),

giving the stated result.
To prove (d) we use the exponential expansion for e?™*" in the integral on the
right side, giving

I L 1 .
/ estrBd_l (7‘) dr = / eZmS(l—'r)Bd_l (1 _ 7") dr = / e—-2msrBd_1 (1 _ T) dr
0 0 0

00 Vel
~ Zuﬂ]s_%)f W By_s (1 —r)dr
. : 0

_ Z( —2nsi)’ /(1—7~)J,5'ﬂt L (r) dr. (91)

=0

From part (a) we have

T . T .
P(+1—d) /0 (r— Y9 By 1 (s)ds =T (j + 1)~ / [(r—g) D),
q:
and setting £ = j — d and r = 1 gives the formula

I‘(k+1)_1/01 (1—8)* By1 (s)ds =T (k+d+1)" /10(1—q)k+ddB(q),

g=
or

1 1
T (k+1)"! ] By (1—s)ds =T (k+d+1)"" ] B —q).  (92)
0 q=0

Using (92) in (91) we get

oc Y]
27rsz

1 T
/ TRy (r)dr = / ™Bg (1 —r)dr
0 0

a
o

I
M

ad 27rsz)‘7 I'{(j+1) Voivd
- dB(1 —
= ! I‘(j+d+1)_/oq (1-9)

(=2msi)! (1); Vit
dB(1 —
i F(j+d+1)ﬁ 7 (1-q)

] o (=2msig) (1),
P(d+ 1) Jo = 7! (1+d),
1

1
= —— F - 97i d —
T+ 1)/3 1F1 (1,1 + d; —2wisq) ¢*dB(1 — q),

f
Mg

0

a®dB(1 - g)

giving the stated result.
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Lemma F Let a and B be constants for which Re(3), Re(S ~ ) > 0. The following
asymptolic expansions to some given order k hold

(a) Let A, =2 If £ 5 0asn— oo and s — oo, then

n 1

2 (a,n - Bin; ei’\s)

- e [ o)) o (2 o))

(b) Let A#0 be fixred as n — o0o. Then

oy (a,n — B;m; EM)
= (- Eé, P (%ewfii w0 (%)DJ o (%)} |

(c) Let A\, = 222 Jf

7+ —0asn,s,p— 00, then

o F) (a,p — Bip; ei’\")
- e SO o ()] o (i Lo G]))]

Proof Since Re(S—a) > 0, the series for o F} (@, n — 8;n; ei’\’) converges absolutely
for all A,. Using (75) from Lemma B (d), we write

, : pite
2F1 (a,n - Bin; 8')‘5) =(1-e™)™" 3R (a:ﬁ;n; m) . (93)

where the right side has a convergent series representation for suitable X,, viz. when
leths /(e — 1)| < 1, or cos(As) < 3. Although the domain of convergence of the
series on the right side series is restricted, the right hand side has a valid asymptotic
expansion for large n that applies to all A, as we shall now show.

First observe that as n,s — oo with £ — 0, the complex quantity

ez’)\s

n
Zns = ’ —_— n
etrs —1  2nis [

o(%)}— " 14 o(1)] (94)

mis

lies inside the plane cut along [1,00], i.e. |arg{l — Z,,)| < 7. Hence, we may usc the
analytic continuation of the right hand side of (93) based on the following integral
representation (Erdélyi, 1953, p. 59; Lemma B (f)):

21 (B, 05m; Zng) = fﬁ&i /01 (1) (1 = tZ,.) P dt. (95)
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An asymptotic series that is valid even for |Z,;| > 1 for large n may now be obtained
using a method due to MacRobert (see Erdélyi, 1953, p. 76) as follows. Expand the
last binomial factor in (95) in MacLaurin’s expansion up to k terms with remainder
as

(1= tZna) Z (ﬁ)J (tZns k)lk (tzﬂs)k /01 k(11— Q)k_l (1- thns)_ﬁ_k dq.

Now scale this expansion by ﬂﬁﬁ—a)t“ 1(1 — )" ! and integrate term by term,
using the formula

() it F() Tlat)T(n—a) (a);
()Fm—aL/t+ = = T Tmrs) (),
This leads to

2Fl (Ba O’," ‘n’- Zﬂs’)

_ Z (a)_’l(ﬁ)] ZJ + Ry,

_ zm—)@(% 10 ()| [1+0()]) + Ren

=
k—1 r N g
_ (@);(8); AT
= ;} ;.! ! (zm _1+0(n)_) + R, (96)
where
1 1
Ry = —-———k!B((Cf)T’:_a)/O o1 (1—t)mt (tzm)’“/o k(1—q)" (1 —qtZ,,) 2% dqdt

k(@)r(B)k (5 L+ O ()"
(n)pk!'B (o + k,n — @)

1 1 —B—k
at+k—1 77 _ p\n—a-—1 k-1 a2 g
X /0 t (1—1) /0 (1-q) (1 qt27ris [1 +0 (H)D dgdt,

since the beta function factors as follows

1 . T'(n)
Bla,n—a)  T(a)T(n—-a)
Ptk Dotk (@)

T(@T(n+ k)T (et kT (n—a) (Blatkn—a)

In view of (94) there exists a constant ¢ > 0 for which |Im(Z,;)| > c. Then, for any
given @ and k, there exists an M, independent of n and s, such that

sup ‘(l—thm —h- k|<M
t,9€[0,1]
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Then,

k(a)k(ﬁ) ( T8 [1+O(%)]) a+ n—u— 1 —_
|Bin| < M (n)kk:ch(a—{—k n—a) /0 ot (1 1) lfo (1-q)*tdg
_ e (R 1+ 0
= M (n)kk'Bz(a-i—kn— o) B(oa+k,n—a)B(k,1)
a8 G2 140G T@®
(n )kk! L(k+1)

(@B (3 L+ 0@ [t+0 (3)])

=M Kl

- (L o2

so that Ry, has the same order of magnitude as the first neglected term in the
expansion (96). Thus, (96) is a valid asymptotic expansion of the form

n pomzig 1o (2)])
5 (st o () <o (a0 ()])):

giving the required result for part (a). Part (b) follows in an identical manner using

ei)\

eirt —1

in place of Z,,.
To prove (c} we proceed as in the proof of part (a), setting Z,, =
(94). Then

gita

PR Y as 1n

2F1 (8,05 P; Znis)
Z (a (ﬂ )J Z) o+ Rinp
_ Z * () U”J (ﬁ {1+o (%)DJ + Rimp

(P!

_ ‘(@;(ﬂh( "o ()] [+ o () + B

7! 2misp

o)) -

since Enf — ¢co. The remainder is

Bk L - . 1 - .
m/o ol (1—1t)? (tZns) fO k(1-q) (1 — qtZn,) dqdt

= Y,
»-O

I
M'M

Rknp =
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Ka)e(@ (g5 L+ 0 ()"
(p)xk!B (x + k,p — @)

1 1 — Bk
k=17 _ p\p—a—1 RV W S U il
x/Ot (1-1) /0(1 9) (1 gt [1+o(n)]) dqdt.

As in the case of Ry, we have
(@)x(B)k 1 8 1 ¥
[Biny < M8 (zmp [1 +0 (E)] [1+0(p )])

s (2 o)

k! 2misp
again since % — 00. Thus, Rgnp has the same order as the first neglected term in
the series and we get the asymptotic expansion

giha
2F1 | B, a; p; prsv—

- B ko @ o (o)),

which leads to the stated result. W

5B. Proofs
5.1 Proof of Lemma 2.1 See Phillips and Solo (1992, formula (32)). W

5.2 Proof of Theorem 2.2 From (9) we have the following alternate form for the
model (1) for all t <n

us =1 ~L) Xy = D, (L;d) X; = Dy, (e"*; d) X; + Dny (e d) (e -1) X,

(97)
Observe that

D (e_”L; d) (e"“L - 1) X, = (B_D‘L - 1) X = e Xy 1(d) — Xpe(d), (98)

where X at(d) = D (e*"’\L; d) X, = E;;é d, ,\pe‘ipAXt_p. Since the right side of (98)

is a telescoping Fourier sum, taking dft’s of (98) leaves us with Xyold) — e X ;\n(d)) :

1
vatn (
It follows that when we take dft’s of expression (97) we have

[ ()] s () + = (Bool@) = €™ o) = s (). (99

giving the required formula (10). B

5.3 Proof of Theorem 2.7 Equation (18) follows immediately from the defin-
ition (1 - L)X; = % and (16). Equation (19) follows by applying (15) to 2 =
1-L)Y . =
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5.4 Proof of Lemma 3.1 Using the hypergeometric series representation from
Lemma B (b), and the asymptotic expansion in Lemma A (d), we have for d > 0

D, (e“, d)

“ (—d)g s = o= | ()
— ’;] k!kezk)\z (;}ﬁkz ) k!kekA

= = —n-1

_ ot d_ i(nt+1)A F(Tl+1—d)
L) —e NEICES)]
eint+1)A 1 "
T (—d)nitd [1+0(5)} 2F1 (n+1-d,1;n+2;¢™) (100)

2 F (n+1 —d,1;n+2;e“)
1 —ei)‘)d —

giving (31). Formula (32) follows immediately from Lemma B (d), noting that
le?*/(e* — 1)] < 1 when 2cos()) < 1.
Next, using Lemma F (b}, we have for fixed A # 0,

oFy (n +l-dlin+2 ei*) = (1 - )71 [1 +0 (%)] ) (101)
It follows from (100) and (101) that as n — co and for fixed A # 0
ir _ i d B 1 ei('n.—i—l),\ l
Dn (¢%5d) = (1= )~ prmgyamma p o 14015
giving part (a).

When A, = % — 0 asn — co and s — o0, we proceed as follows. Using Lemma,
F (a) in the hypergeometric factor in the second term of (100), we have

2B (n+1 ——d,l;n—l—2;ei’\’)

e S (o () o (s o G

2

Then, as in the argument leading to (81), the second term of (100) admits the fol-
lowing valid asymptotic expansion for A=A; > 0asn — oc and s — 0o :

ei/\,, 1 i
1 1 1 1
- g 1700)] o () (103)

and so from (100) and (103) we get

e (e%10) = (=)' g [ -0 ()] +0 (7).

giving part (b).
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For part (c), we start by using the following summation formula from Lemma B
(e) \
n (—d)y (eu’) (1—d), et*sm

Y x = - oF1(—n,1,1 — d; 1 — ™),
k=0 ) :

Since s is fixed, we have from Lemma D (84) withp=n
2F1(—n, 1,1 —d;1 —e™™) = | F (1,1 — &; —27is) + O (n‘l) .

It follows that

Nk .
Zn: (—d)kk('e f‘s) _ (1- 027 gidan [ \Fy (11— ds —2ris) + O (n—l)]
k=0 : '
— (1;—:1)71 WFL,1—-4; 2ms)+0( 11+d) (104)

and, then, for fixed s as n — oo, we have

7: i _d EM‘“k 1 1
Dn(eAa;d):Z( )£' zr(l—d)nd lFl(]-a —d; 27’!’%8)+0( 1+d)
k=0 :
(105)

as required for part (c).
Part (d) follows as a special case of formula (105) with s = 0. We also get the
result directly from Lemma A (c), viz.

n (Lid) = Z = nf)f)l 1‘(11—)1[1+0(n)]

It follows that Dy, (1;d) differs from zero by a term of O (n‘d) . u

5.5 Proof of Theorem 3.2
Parts (a) and (b). We write X,,(d) as the sum of two components, the first

involving L + 1 components, with 1 < L < n and where the choice of L will be
discussed below. We then have:

= = —iAp. e —ipA B N T _ipA
Xon(d) = Dox (e Lid) X = Y dape™ X =3 [ 30 e | e X,

p=0 p=0

i( Z ( d)k zlc)\) —1pAX ~p+ Z ( Z kd) eikk) e—ip/\Xn_p'
=0 ! !

k=p+1 p=L+1 \k=p+1
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Then

1 = " (=) i) —ipa Xne
+n]_d Z (Z k‘)kz kA)e ipA n_éa (106)

p:L+1 k:p-l—l

Next, look at the sinusoidal sum 3>3_, %ﬁ kA that appears in (106). We usc the
truncated binomial series formula from Lemma B (b) in this sum, giving

— (=) in
ke
kgp;rl k!
_ - ( Ak (= d)lc ctrk
k=§-1 k—zﬂ;-l k!
) —d ;
() ((p PR (14 d tp e, e)
- (e"’\)n+1 ((n_(i)ﬂ-lj)_l 2 (n+ l1-d,1;n+2, 6”‘) (107)

For large n and fixed A # 0 we have, using Lemma C (a),
o0
(=D ixk 1
> S =0(m). (108)
k=n+1
while for A = A, = % — 0 and 3 — oo as n — oo we have from Lemma C (b)
o0
(=D ixk 1 1 [ 1 1
3 gidek L 1+0(—)]+0(1d) (109)
Mo PR I' (—d)n? 27is 3 +
So, neglecting the second term of (107) in view of (109), we get

2 G ) = R (s )io ()

d
(110)
for all s — 0o, as n — oo. Finally, for s fixed as n — oo, we have from Lemma C (c)

5 o)

so that (110) also holds with s fixed.
Using (110), we deduce that

— Z( ) (=), d 'Lk)\s) o—iPAs

p=0 \ k=p+1
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- nl dZ p+,1 251 (1+p—d,1;p+2,e""s)+0(£)

ns

_ s p+1 . iAg
= e nl—dzo( il 2F1(1+p-d,1,27+‘2,e )
p=

—ein L f: %QF (1+p d1p+ze“‘)+o L (111)
nl- dp o 0+ 1! ! ns/’

Now

o0
Z( p+1 F1(1+p d,1;p+2, PM)

P—O(

& () & (L+p—d), (1),

v ‘[’1)'Z REr,

_ e (l+p—d)y o

a kz_‘;pz_%( +1)! p+2),c te

_ () (1-d+ k), (2), (1 d)ew.k,

- Yy e a o

o =)y U =d+ k), (2), | (1-d),

> g(pfﬂ' o | o (112

Next, since (2), = (p+ 1)! and
ri-d —d —
(—d), ;= (lr(—d)ﬂ):( )F((ll_d<§+p) (~d) (1 - d),
we have
(—d)p (1 —d+k),(2), (1-d+k),
1;)(19+1 T, r2), ~ (d)z k+2),

R (A-d+ k), ),
= d)pz:% (k +2), 7!
= (—d) 2FA(k+1-4d,1;k+2;1)
_ (g D@
- Tkt )T (1+d)
= —(k+1), (113)

where the penultimate line follows by the summation formula of Lemma B (c). Using
(113) in (112) we get

= = (), (1 —d+k),(2), | (1-d), oy
kz% pz_% P+ (A-d),(k+2),| (2)
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_ _i (k+1)(1_d)keiAk

2k

- _Z Mk

k=0
1
= T (114)
Thus,

= d)p+1

Z s 2F1(1+p d,1;p+2,e* )

p=0
oo s (=) (1 -d+ ), (2), (l_d)keiksk
- ; Z P+ DI (1-d),(k+2),| @k
= ——l——, (115)

(1 — e'cka)l_d

Next, using Lemma F (c¢) we find that for 2 + £ — 0 (which holds under the
conditions on s and L that are given below),

p+1)!

) ( ,-,H(pfﬁl Ge [”O(S—T;)])
- o 5 sl feo(3)])
(2

i Dpia 2B (1+p—d,1;p+2,ei)‘s)
—L+

p—

Id1 - e*)‘ ) (116)

It follows from (111), (115) and (116) that

d) oA | gmipAs 1 e's L
nl —d Z ( > T ) € T pld (1 eyl +0 (E)

f

p=0 \k=p+1

®  (—d .
+ 1d 3 (p )”“ F1(1-+-p—d,1;p+2,e”\*’)

1 gihs L n® 1
= -0 Y T +0({—]+0 3o . (117)
¢ (1 — eits) ns 1% s

The first term in (117) is O (s%d) and dominates the second term. The first term

also dominates the third term when 7. — 0, which will be the case when 5 — oo,

as n. — o9, for some a € (0,1) and L = [n'"®] and when d < 1. (Note that for s
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fixed the last term of (117) does matter, and this distinguishes the s fixed case, which
will be considered below in the proof of part (c)}. Hence, when n — oo, A, — 0 and

% — oo (with L chosen as L = [n!79]), we have

d i X
e dZ( E ( n zk)\,) ipAs <2 —P d__

p=0 \k=p+1

= dz( z (—d) d zka\,) —ipA, [‘Z(" +0p(l)} (118)

1
p=0 \k=p+1 2

_ 1 G X, 1
- _”l_d(l eiAs)“dnd-%+op st=d

()

Line (118) above is justified by a separate argument, which we now develop. We use
the fact, from Lemma 3.4, that n%‘anmp = 0p(1) and p < L = [n'7%] . We proceed
as follows. Select K = [nl"?] — oo with 0 < n < a (we will place a further condition
on 7 below). Then, £ + £ — 0 and we may write (for large n)

H

Xo—p 1 (), 1 & (d) 1 X (d);
= —7F ) —Un—p_j = —T — L Unpjt+ —T > LUy
nd=3 nd=2 jgo 7! P pd-s j=§+1 gt s _1';0 b "
e T 1 K\i-: 1 K (d),
= T nepJ [1 +Op(—)] + ("") —I E —,'iun_p_]’

= ) e () o ()
=5 o () o ((5)7)

k—
— i T up g (K+P)d7% r 1 Un—k
= (% I-d  /n n = ( ﬁ_p)l_d K+p




Observe that for any 6 > 0, 322, ﬁun_k converges almost surely since Y2 4 ﬁrE |tn—k| <

c0. Then,
i 1 e 1 > 1
El Y v €Y maPlmal < Y mFluns
k=HK+p+1 k=K+p+1 k=K+p+1
1 i 1 1
< = Z —Eu _k|=o(—)
= 1—d—é 1+6 n 1—d+6 |
K 1c=1k'+p+1‘lc Ko
and so
> v =0 ()
9-dn—k = 9p I-d—6 ) -
k:K+:p+1k K

It follows that
7n
p 1 _ P 1 _ L
1, 2 e = o (G~ (o)

K+4+p+1
_ v
= %\ a(—d-5)-5

uniformly for p < L. For K = [n!~7] and with 7 satisfying

n
P 1
d-1 Z k2—dun—k=017(1)= (121)
n" 2 p=K+p+l

uniformly for p < L.
Using (121}, we find that (120) can be written as

Xop _ [ 1 &) K+p\t 32 1
X, K\43% 1 X,
= nd_% + Op (;) + Op (E) + Op(l) = nd_l + Op(l),

uniformly for p < L = nl~* with o > %, thereby establishing (118).
When n — oo with fixed A # 0, we have, in view of the use of (108) rather than

(109) in the above arguments, the same expression but with an o, (n‘(l_d)) €rror.
Specifically,

L nf = Dk i) mipr, Xno
WZ(Z T e

1
p=0 \k=p+1 n- oz
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n
Ind 1 1 1
+0 (nLd 1 iA) + (nl—d nd)
1 et? Xn 1
TR (] _ gy a1 +op (nl-d) : (122)

In both cases the dominant approximation is given by the first term and we can write

d) zkA —1 AX n-p _ ZA X ( eiA X )
nl- d;)(k%l k! ) i nd—3 ( ezA)l d\/_ (1—e?) 1-d . /n}°

It remains to show that we may neglect the second term of (106). Using Lemma

C(b), Lemma 3.4, (110) and Lemma F (c), we have, when n — co, \; — 0 and
2 socoand [ = nl «

nQ
n-—1 n
11——d > (_a:)k kA e—ipA,Xn—lp
n k! nd_'

p=L+1 \k=p+1 2
1 n—1 ez'A_,(p-H) (—d) ) .\ 1 » X,
= i ( p+ 1) 2t 2F1(1+p—d,1;19+26 )+0(T> e p’\“ﬁ
p=L+1 : neo2
e S ((=d) ~ 1
€ P+l i n—p
= 2F1 (1 —-d, 1 2,e" -
nl_dp=§r1 ((p+1)! 1( Tp-dliptie )) d-1 +0p (3)

- o[ 3 (G o (3)) 2) -0 )
nd 1
= O (Ld )+0 (3) (123)

which is Op(sl—];ar) since 75 — 0.
For the case of fixed A # 0 and with L = n}~* we get

1 = (=g aen, ) —ipr, Xnp
me )P (Z P L

p=L+1 \k=p+1 2

nl-d 14-d 1
p=L+1 p ni2

1 1 1

In both cases (123) and (124), the order is smaller than the leading term of (119) and
(122), respectively. Hence, for both fixed A # 0 and Ay — 0 and =% — oo as n — oo,
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we have

k=p+1

—d X
\/FL — — dZ( Z ( ')k: zk)\) 71p)\3 d—_

B ez}\ _n ez,\ Xn
T Ta—ey e P e VR
giving the required results.

Part (c). Our interest is in

Xunld) 1 [ & (=g i —ipA, Xn—p

From Lemma B (e) we have

() o

= = -0 oFi(-m, 1,1 —d;1 — e, (125)

k=0

Since s is fixed, 1 — e™* = 21 4 ) (n=2) and using Lemma D and (125) we get

) k
z": (—d)y (e ,\,) _a ;!d)n 171 (1,1 — d;—2mis) + O (ﬁ) : (126)

]
pir! k!

Using (125) with m = p and Lemma D again we obtain

P (~d)y (™) (1 d) et |
Y = Rl Ll dl e

(1- d)p giAeP 1
= —————p! 1Fi ( —d; 271'7,3—) + 0 (p“"i) (127)

Now n%‘an_p = 0 (1), uniformly in p < n, so that

k=0

nl L Z ( _zp;l k.) zk)\,) —ipA, Xd:_p _ Ll dz;) (kgpil }f) zkA_,) e | 0, (1)
Using (126) and (127) and noting that 3°7_qp~17¢ = O(1), we have
d . An—
00, B (0= B ()| K
B nl‘d = { n! p! } ¢ i35

1
ro,(=7).
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Next observe that, since s is fixed as n — oo,

1 n _1p-’\s - _ 1 1 & —ipA,s Xﬂ—]’J 1
nl Z -3 r(1—d)ﬁze d—%+o”(ﬁ)

p=0 n

1 1 —2rigk Xn*lﬂ (1)
= -y TEIE o (=

_ m / eI (1 - r)dr + O, ( )

— 1 27isr 1
- i /0 X (r)dr + O, (E)
Further,

1 i (1 — d)p 11 (1, 1 —d; —Qﬁisg) Xn—p
nt—d p! nd—3

_ * 1F1 1,1 - d;—Zm’sE)Xn 1
- r(l— nldz P : nd—%wf’(—nl—d)

L Fi(1,1-4d;-2 -
211 ms)X"”+0 1
(&) nt=2 ni=

l
n
. _ 1
= 1 — / (1,1 —d—2misr) r ¢ X, a(1 —r)dr 4+ O, (n—l_—g) :

We deduce that

(= jikn, | p—ipr, Xn-p
ni-d Z( > %! € it

p=0 \k=p+1
. Z{(l—d) 1F1 (1,1 - d;=2mis)  (1—d), e 1 F1 (1,1 —d; —2m‘sr)} iy X p
n

nl B P AL
1

+0; (71)

1

i
= ———————— —2misr e B
- T(1-4d) [fo e 1F1(1,1 —d; —2mis) X, g(1 — r)dr

! 1
—/0 1Fu(1,1 - d; —2misr) r 9 X, 4(1 — r)dfr] +0, (};i'—_d)
Fi (1,1 -d;-2mis) (! o
— 171 ( T (1 — d) ) ‘/0 62" san,d("')dT'

1 1 oy |
_]f‘(l——d) j(; 1F1 (1,1 — d; -2wisr) 1™ X a(1 — r)dr + Op (F) ,

giving the stated result.




Part (d). When d = 1 the series expression for n~% X an(d) terminates because
(—d), = 0 for all k > 1, so that only the term involving p = 0 is retained. We then
have

XAn(l) o _ei)\é

Vn Vo
which holds for all A. W

5.6 Proof of Theorem 3.3 By definition, 2, = (1 — L)l_d u = (1~ L)f wy, and
from theorem 2.7 we have

. X
_ tA _ gt n
wy (A) (1 e ) = w;(A)—e T
. iAn X
= Do (e Flw, (\) -~ —=0 _er T
(557) ) = =l () = 2 5
where
F7 N —iA g —ipA r3 - (— )k ik
UAn (f) = DnA (e L,f) Uy, = Of‘\pe Un—p, and pr = ) E 1 ] e,
p= =pt

Now, as in Lemma B (e}, we have

ﬁAan(f) 1 ey —ipA,
o V2 Pape™ un—p
p=0

1 = o (=k aeng | ipa, Une

—p+1
1 = (1 — f)'n €
V2r = n!

(1= 1),
O Dyt

Il

TAgTL

2F1(—n,1,1 — fi1 — e )

N

As in the proof of theorem 3.2 and using the fact that 3°7_, p 7y, =0,(1) as
n — oo, we proceed as follows

2F(-p, 1,1 - fi1~- e”‘s)} e~ n—p.

Onan(f)
- \/%p; { (1—fly 154 (71“ 1 — f;—2nis)

(L= f)pethP 1Flp(!L 1 — f;—2misE) o (_1117) } e_magn;;
_ \/Lz'wg:% { (1-f)p 1 B2 (Tll; 1 - f;—2mis)
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(1— e 1Ry (L1 - fi=2misB) ) ) uny L
- P! © R O (\/_)
— 1 ( _ f)n 1F1 (17 1- fﬁ _27”:3) i —1;(1)\3 n-p
Vor T A
_ 1 n 1 — f)p 1F1 (1, 1-f; —27risg) Un—p L
\/—Eo 7 7+ ()
— 1 (1 _ f)n 11 (171 - f; —27!"6'8) ! —2miar —r
- = = /0 2T gX, (1 — )

s eoQ)] e somet) 52 0 ()
B \/12_7r(1—f)n 1F1(;;1—f;—27”5) /(]le‘z“isran(l—r)

= . . P\ Un— 1
Varr (1= fyn Z 7 if (1’1 -1 —27”5”) N (—\/ﬁ)
_ 1 -7, 1F1(1,1~ f, —2mis) [\ i )
- /0 e dX,(1—7)

V2 n!
1
_\/;_.R-F(l‘_lf)nf‘/o T'—f lFl(l,].—f;—ZWiST)an(l—r)+Op (%)

1 .

_fol,.—f 1A (l,l—f;—str)an(l_r)}+Op (%)

So we have

ﬁz\sn(f) _ 1 1 . . ! —2misr
e = \/ﬂr(l—f)nf{1F1(1,1—f,—2ms)/0 e eTdX, (1 —r)

_/Olr—f VP (1,1 — f;—2misr) d Xy (1 —r)} +0, (:}—ﬁ)

as required. Note that when f = 0, we get
1FL(L 1 =2mis) = e 2™ =1, 1 F (1,1 —2misr) = ¢~ 277,
and Uy, (0) =0. B
5.7 Proof of Lemma 3.4 Akonom and Gourieroux (1987) prove the result when

ut follows a stationary and invertible ARMA process. Using the device in Phillips
and Solo (1992), we write

=C(L)€t =C(1)£t+gt_1 — &




where & = C (L)e;, = 320 CiEt—j and ¢j = Zk—g+1 cx. Under (4), £; is stationary
with mean zero and ﬁmte variance ¢ E; 0 ¢2. Then

X=01-L %u=C1)(1- L)—daL —(1-L)" %,

Now for % <d <1,& = (1 — L)1, is stationary with mean zero and finite variance,
so that n':li_dg (nr] —p 0. On the other hand, Xf = (1 - L)%¢, is a fractional process
constructed from iid (0,0?) innovations with E|ei|P < oo, and so from Akonom and
Gourieroux (1987)

€ _ 1 e d 0 /r -1
Xn,d(r) = —_nd‘%X[m] — T(d @ Jo (r—s)* " dW(s).
It fellows that
ocC (1
Xnalr) = d__X[n-r] 9, Ba_a(r) = F(c(i)) / (r — s)* " dW(s)

= — 7‘r——sd_l S
- F(d)/o( ) dBs),

as stated. W

5.8 Proof of Lemma 3.5 By theorem 3.2 (c¢), lemma 3.3 and the continuous
mapping theorem we have

X 1,1 —d; —2mis) 1 ., .
Xm\/_’r(bd) — lFl(I:(l__;j) TFZS)./O e2msan’d(,r)d,r

1 p . 1
,_mfo V(L1 = d; —2misr) X g1 — r)dr + O, (nl d)

—_ ] — ; 1 .
i lFl (11:1(1 —d:i) 27”3) /0 e-—21rzsrBd_1(1 _ ,,,)d,,.
1 1
—F(Td—) -/0 1F1 (1, 1- d; —27T'i87‘) T_dBd_l(]_ - 'l')dT'. (128)

In the above, we can replace X, ¢(r) by a continuous polygonal version up to an o,(1)
error uniformly over r € [0,1]. The continuous mapping theorem then applies since
the mapping f —— fol r~@f(1 — r)dr is continuous when d < 1 for all continuous
functions f, and since the confluent hypergeometric function y Fi (a, ¢; ) is an entire
function of x.

Now observe from Lemma E that
1 )
T(l-d)" / VFy (1,1 — d; —2ms (1 - q)) (1 — q) % Ba_y (q) dg = f e~ (-0 dR (q) .
0 g=0
It follows that (128) is

171 (1,1 — d; —2wis)

1
—2imrisr _
F(l —d) 0 € Bd—l(l T')d’r‘
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1 1
e /0 1Py (1,1 — d: —2misr) r~4By_1 (1 — r)dr
— 4 1 . 1 )
151 (].I,‘](.l ‘d;i) 271'25) /0 ezms(l_r)qu(l - ?‘)d’l‘ _ / 0€—2‘ms(1—q)dB (q)
q=
151 (1,1 ~ d; —2mis) /1 Imisr L o
= e“ ™" By 4 'r)dr—-/ e“™dB (q) . 129

Then,

-)E/\n(d) d lFl (1,1—d;—27’l”£8) /l 2misr L 2Trisg
il s e [ e s (r)ar /qzoe dB(g), (130)

giving the first stated result.
[ |

5.9 Proof of Theorem 3.6 We offer two proofs of (50). The first is by operational
techniques and is given in the proof of Lemma E (a) - see (90). The second is by way
of weak convergence of the two sides of (15) as n — co. At Ay =0, (15) is

1 1 & 1
— =— ) X;Dn(l,d) - —
Vv2mn ;ut Vv2rn ; Dn (1,d) Varn

From Lemma A (c) for d € (3, 1]

Xag.n(d). (131)

D, (17d) - i (_d)k — (1 _d)n

so that
i 1 1 X
g Da(1,d) = g d)ntzlnd_i [1+0(n )]
1
E’Fﬁ——d) /0 Ba_1(r)dr. (132)

From theorem 3.2 (c), (33), lemma 3.3 and the continuous mapping theorem we have

Xaon(d 1 1 1 1 1
= g Xt~ gy [ el = 0y (53)

% 1_, [/ By )dr‘/ol""_dBd—l(l*T)d"'}- (133)

(
It follows from (131), (132) and (133) that

1 & d
ﬁ;ut—»Bu r(1— /(1 =4 By_1(r)dr, (134)
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Applying the same argument to the relation

[nr] [nr]

1 -~
XD, (1,d) — —=X d),
Z 271%; t ( ) omn Ao,[nrl( )

instead of (131), we obtain the more general formula

1 4 _d
= — By 1(q)dq.
BO) =g ) -9 Busa)ds
To prove (49), we can proceed in the same way using (15) and theorem 3.2 (c).
Or we can employ operational techniques, as in the proof of Lemma E (b), which
gives the stated result directly. B

5.10 Proof of Theorem 3.7 Part (a) follows from the representation (36) and
standard results on the asymptotic behavior of the dft of a stationary process whosc
spectrum is continuous. Indeed, from (36) and using lemma 3.4 we have

o iAs;
we () = (1) () - o, (L)

= (e () o0 (57)] < 0n ()

where the error magnitudes hold uniformly for A, € By = {¢ — §7,¢ + £} . Theo-
rem 3 of Hannan (1973) implies that the quantities {wu(/\sj)}j:l are asymptotically
independent and distributed with the same complex normal distribution N.(0, f,(¢))
as n — co. The stated result for the quantities {wz(x\sj)}jzl follows directly.

Part (b) proceeds as follows. From (37) we have

- i\ —d oihe; X, (1 ot )—d
Wy (,\sj)—(l—e J) w“(’\sj)_—i,\, +op | ————

Then,

1Ay,

'i,] —d
)‘sj d’wm )\s,- = ASJ 1—9 Aej _dwu As,' - )\55 d“e—:)‘!_i_’_op S;l (1(:;)\(1)
1—

e i Vv 2mn
(=) ) [rro (7))
27TSJ n 1 Xn 1
" ( ) 2mis; [1 O (_”;) V2mrnl-d pd—3 +op (n"(l_d))
xdi L 1
- egwu()\sj)+0p( )+OP(W)

I
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d J
uniformly over s;. It follows that the family {(Asj) Wy ()\s J)} are asymptotically

i=1
xdi J
{e z wy, (Aaj)}j=1 )

that is, the members of the family are asymptotically independent and have the same
complex normal distribution, e™" Ne(0, £u(0)) or simply N(0, f.(0)), as n — oo.
For part (c) note that for each j

distributed as

iwm ()\9') _ 1 l i an ersiit _ 1 /1 eZmis;T nd(r)dr + 0y (1)
né ’ \/ﬁn t=1 nd‘i \/ﬂ 0 ’

and so, by the continuous mapping theorem,

1 d 1 ! 2misir
;L—dwm ()\sj) — Eﬁ € 7 Bd-](T)dT,

giving the stated result for each s;. It is clear from the Cramér-Wold device that
joint convergence for {n~%wsz(As;) : j = 1,...,J} also applies. Another approach to
this result is to note from (40) that (dropping the subscript on s;)

wg (As) _ r(1—-4d 1 -~ 1
nd L (L1 = d; —2mis) !:’Ulu (As) + \/Q_‘JT_’ILXASH(G:):I + Op (E) . (135)

Now

'wu s

271'31— 1 /1 2T 8ir
—_— dX, 1), 136
\/ﬁz =T b € () +op(l),  (136)

where X, (r) = \/— E[ml u, and from (130) it follows that we may write

X—Asn(d) _ 1F1 (1’ 1- d; _27Tis) ! 2misr /1 2misq
N Ti—d A €T X a(r)dr q=oe dX, (g) +o,(1).

(137)

Combining (136) and (137) in (135} we get

A 1 . 1 1 .
’wzrfd 5) 2/0 62msan,d(r)dr_'_op(1) _Cl_} ZWA eQmsrBd,l(?‘)dT,
as above.
Part (d) follows from (16) and (45). Explicitly,
i
_ ) 7! _ L_XL
) = (1) )

Pl

[1 +0 (%)] (138)

= [1-6 ()\s,-) —e‘¢\/27r—n




where the family {fj}3-7=1 are tid N¢ (0, fu (¢)) as in part (a), and the £; are indepen-
dent of B(1)

= —==, 139

= (139)

where B is the Brownian motion in (45), since the ordinates wy(As,) are asymptoti-
cally independent of w,(Ag) for all s; # 0.
For part (e), (16) yields

tAs
(h)ua () = (%) ﬁw (%) = (%) ﬁi

2mn
- )o@ ol
(g -n),

where the family {£;}7_, are iid N, (0, f, (0)), and the £; are independent of 7, which
has the same form as in {139) above. Finally, when s; is fixed, (45) and the continuous
mapping theorem imply that

1 Xt 2 L 1 1 IS
2 A ) = nisy _) / TisiT B d
nwm ( s,) 271' n Z \/2_7T o € (’P) T, (140)

which gives (56). Since €2™%" is continuously differentiable we may apply by inte-
gration by parts to (140), giving

1
2mis;

. 1
1 [ e?™i%™ B ("") fl 28T IR (7‘)
0

V2 2mis;

which leads to the representation

1 ! 2mis;r
=—= | ™% dB(r),
2 vam ./0 )
giving (55). Obviously, (140) also holds for s; = 0, and part (f) is proved. W

1 1 ! 2mis;r
= EQWiSj [B (1) ~L e“M%TdB (7‘)] ,

0

5.8 Proof of Theorem 4.1 From (36) and lemma 3.4 we have

L\ e X, 1
wg (Ag) = (1—6'\8) wu(/\s)————l_emg\/%_nJrop( 1d)

_ (l_ewﬁ)_dwu(/\s) [1+O(M)]+O ( 1103)

where the error magnitudes hold uniformly for A; € By = {¢ — &,¢ + %} . Then,
asn—»oow1thM—>0 we have

fzw(é) = % Z Wy (As) W (As)”

AsEB(¢)
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= —;ﬂ“% > we (w0005 (37) 0 ()

1 A EB(3)

1
'& |1 _ei¢|2dfu (¢)v (141)

by virtue of the consistency of the smoothed periodogram estimate in the stationary
(linear process) case (e.g. Hannan, 1970, ch. IV ), giving part (a).
For part (b), when d = 1 we have from (138)

wg (Ag) = [(1 - eiqb)"l wy (Ns) — : _“iw \/)'2(%1 [1 +0 (%)] ,

and, as n — oo with %’L’— — (0, we have

— 1 .
fzz(¢) = E Z wm(As)wm()\s)
AsEB(d)
1 1 2 1 e X
= ——— Y wwO) - ——sRe [ Y wa () S
e, 2, 1 - ef? m,\.,gs:(w V2rn
o (FX” )2+0 (32)
{l—ef‘i’|2 2mn PAM
d 1 B(l))2

in view of (141) and (45).
To prove part (c), we write the sum (58) as the sum over the full set of frequencies
{As}72d and a residual, ie.,

= = fe /\s z /\s *
T Fe) = Y elu)ua (A

=0
3 "f we (As) wa (As)* "i:l wa (Ag) Wy (X))
- po nd nd pl nd nd
1 & /X \2 S wp (M) ws (A,)*
= 52 () - Z
1137 X 2 & we () we (A)*
= ﬂ; tz_l(ndA%) - ;m nd nd . (142)

(t

1 1 i\~ e X, et X
Fﬂlm (As) — [(1 — € ) Wy, (As) - mm + Op (W \/_)]
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uniformly for s > m. When m is such that % — oo, it follows that

1 1
e 0 = (12a).

and then

n—1 *
5 Wy (Ag) Wy (i\s) = o, (n?ad) = 0p (1) (143)

d
s=m w

for o chosen such & > 5. We deduce from (142), (143), (45) and the continuous
mapping theorem that

11 & 1 1 9
df:c:c :—TI'EZ::( d—) +Op(1) —d ‘2_71'_[) Bd—% (T) dr,

giving the stated result (c). Part (d) follows in an analogous fashion with d = 1 and
a>i. M
=32

6. Notation

—as. almost sure convergence
=4 distributional equivalence
= definitional equality
oa_s»(l) tends to zero almost surely
op(1) tends to zero in probability
—rp convergence in probability
E», —d weak convergence

[] integer part of
(@) (a)(a + 1) .(@ + k — 1) forward factorial
1Fila,cz) Yoo Wz confluent hypergeometric function

(
ok (a,b,¢2) 2, %‘)“(—k),&zk hypergeometric function
)

1(A mdlcator of A

Xn(r) ”_5 Et Out

Xn,d(r) n2 dX[nT]

I'(z J5° 7't 1dtgamma function (Re(z) > 0)
B(z,w) Fr(}if beta function

wyg (A) o S ateiﬁ’\discrete Fourier transform
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