http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
The Effect of AAV_{1/2} Mediated Delivery of Brain-Derived Neurotrophic Factor and Fibroblast Growth Factor-2 on Adult Rodent Neurogenesis

Rebecca Ann Henry

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy, Faculty of Medical and Health Sciences, The University of Auckland, 2006
The University of Auckland

Thesis Consent Form

This thesis may be consulted for the purpose of research or private study provided that due acknowledgement is made where appropriate and that the author's permission is obtained before any material from the thesis is published.

I agree that the University of Auckland Library may make a copy of this thesis for supply to the collection of another prescribed library on request from that Library; and

I agree that this thesis may be photocopied for supply to any person in accordance with the provisions of Section 56 of the Copyright Act 1994.

Signed:

Date:
Abstract

Neurogenesis is the process by which functionally integrated neurons are generated from progenitor cells. In the adult mammalian brain two sites of high density cell division have been identified that contain neural progenitor cells retaining the ability to generate new neurons: the subgranular zone of the hippocampus (SGZ) and the subventricular zone (SVZ) lining the lateral ventricles in the forebrain. Several studies have suggested that SVZ neural progenitor cells in the adult brain can migrate into regions other than the olfactory bulb after either administration of growth factors, induction of neuronal cell loss or injury. Brain-derived neurotrophic factor (BDNF) and fibroblast growth factor (FGF-2) play major roles in regulating the survival and fate of progenitor cells in the adult mammalian brain. To determine the effect of BDNF or FGF-2 on neurogenesis in the injured adult brain, BDNF or FGF-2 were over-expressed in the subventricular zone (SVZ) via recombinant adeno-associated virus (AAV1/2) delivery and newly generated cells were identified using bromodeoxyuridine (BrdU; 150mg/kg intraperitoneal) labelling. Selective striatal cell loss was induced in a subgroup of rats by unilateral striatal injection of the excitotoxin quinolinic acid (QA) 21 days after AAV1/2 injection and 24 hours prior to BrdU labeling. The results of this thesis demonstrate that BDNF augments the recruitment, neuronal differentiation and survival of progenitor cells in both neurogenic and non-neurogenic regions of the unlesioned or QA lesioned brain. BDNF also appears to contribute to the persistence of newly generated neurons in the QA lesioned striatum. Our results provide the first evidence demonstrating the neurogenic effect of BDNF on compensatory striatal neurogenesis in the injured adult brain and suggest that enhanced BDNF expression may be a viable strategy for inducing or augmenting endogenous neural progenitor cell neurogenesis. Unlike the effect of BDNF, FGF-2 appears to have no effect on proliferation and/or survival of neural progenitor cells in either the normal or damaged brain. FGF-2 appears to be unable to act as a positive mediator of SVZ progenitor cell proliferation and neurogenesis in this study. However, FGF-2 may be having an inhibitory effect on progenitor cell differentiation. The negative result of the FGF-2 study may be of major significance in indicating the potential requirement of additional factors interacting with FGF-2 to influence neurogenesis. The results from the FGF-2 study contribute to the research field in highlighting the complexity of the mammalian neurogenic process. This thesis highlights the need for further investigation into multiple factor interactions, tighter regulation of the transgenic protein expression from the AAV1/2 delivery vector or alternative progenitor cell labelling paradigms. However, it does show that if neurogenesis can be induced or augmented exogenously, neural progenitor cells may provide a substrate for repair in the adult brain and dramatically change therapeutic approaches towards the treatment of neurodegenerative diseases.
For Anthony

Without you, I would never have started or finished.
Acknowledgements

I would never have got this thesis finished (or started) without the help and support of a lot of people.

Firstly, I would like to thank my primary supervisor Dr. Bronwen Connor, who took me on even though I knew nothing about the brain except that I was pretty sure I had one and I knew how to use it! I have learnt so much working in your lab Bronwen and you’ve given me every opportunity to grow and learn, so thank you.

I would also like to thank my co-supervisor Prof. Richard Faull for seeing my potential and introducing me to Bronwen to get the ball rolling and for reading various abstracts, manuscript drafts and funding applications. Thank you also to all the members of the During/Young Lab for giving me space to work in when I first started, for gifting us the luciferase control plasmid and all the advice about packaging.

A very special thank you goes to all the members (past and present) of the Connor Lab. You guys made all the hours doing surgeries, perfusions, immuno, microscope work and all those other mind numbing jobs so much easier to bear. I also have to thank everyone in the Pharmacology Department and the wider HRC and Auckland Neuroscience Network community. Everyone I have been involved with has made my time enjoyable and oh so entertaining. Thanks especially to all those people who frequented the tearoom for making lunch time something to really look forward to everyday and always making me laugh (often at myself!)

I don’t know what I would have done without the love and support of all my friends and family. Thank you some much Matt and Marie for giving me somewhere to live when I first moved up to the big smoke and for looking after me while I found my feet. And thank you Mum and Dad for worrying about me and making sure I always looked after myself and for trying to understand what it I do. To all my friends new and old; I don't know what I would have done without you keeping me sane and knowing when not to ask how 'it' was going.

Finally to Anton, I don’t know what was, worse rats or flies?! But, you believed in me even when I didn’t believe in myself and have kept me going throughout all of this. You encouraged me to start and reminded me that I was good enough to keep going and finish. Thank you for doing this PhD with me.
Table of Contents

1 Chapter One: Introduction

1.1 Neurogenesis

1.1.1 Adult Mammalian Neurogenesis

1.1.2 Neural Stem/Progenitor Cells

1.1.3 Neural Stem/Progenitor Cells in the Adult Mammalian Brain

1.1.4 The Subventricular Zone (SVZ)

1.1.4.1 Classification of Cell Types in the Subventricular Zone

1.1.5 The Subgranular Zone (SGZ)

1.1.6 Other Potentially Neurogenic Regions of the Adult Mammalian Brain

1.1.7 Strategies for Labelling Neural Progenitor Cells

1.1.7.1 5-Bromo-2'-deoxyuridine (BrdU) Labelling

1.1.7.2 Retroviral Labelling

1.2 Regulation of Adult Neurogenesis

1.2.1 Progenitor Cell Response to Injury

1.2.1.1 Cerebral Ischemia

1.2.1.2 Seizures

1.2.1.3 Traumatic Brain Injury (TBI)

1.2.1.4 Selective Apoptosis

1.2.1.5 Neurodegenerative Diseases

1.2.2 Additional Factors Influencing Neurogenesis

1.2.2.1 Aging

1.2.2.2 Neurotransmitters and Other Factors

1.2.2.3 Environment Enrichment and Exercise

1.2.2.4 Growth and Neurotrophic Factors

1.3 Brain Derived Neurotrophic Factor (BDNF)

1.4 Fibroblast Growth Factor-2 (FGF-2)

1.5 Quinolinic Acid Model of Excitotoxic Cell Loss

1.6 Adeno-Associated Viral Vectors (AAV)

1.7 Adeno-Associated Viral Vectors, Neurotrophic Factors and Therapy

1.8 Research Objectives
2 Chapter Two: Methods

2.1 Molecular Cloning Methods

- **2.1.1** Making *Escherichia coli* DH5α Competent Cells
- **2.1.2** Heatshock Transformation
- **2.1.3** Maintenance of Bacterial Cultures
- **2.1.4** Colony PCR
- **2.1.5** Expand High Fidelity PCR
- **2.1.6** Small Scale DNA Preparation
- **2.1.7** Large Scale DNA Preparation
- **2.1.8** Spectrophotometric Determination of DNA Concentration (GeneQuant)
- **2.1.9** Analytical Restriction Enzyme Digestion
- **2.1.10** Agarose Gel Electrophoresis
- **2.1.11** DNA Extraction from Low Melting Point Agarose
- **2.1.12** DNA Ligation
- **2.1.13** Sequencing

2.2 Cell Culture Methods

- **2.2.1** Thawing and Growing Frozen HEK 293 Cells
- **2.2.2** Replating and Splitting HEK 293 Cells
- **2.2.3** Freezing HEK 293 Cells
- **2.2.4** Counting Cells
- **2.2.5** Coating Plates with Poly-D-Lysine
 - **2.2.5.1** HEK 293 Cells
 - **2.2.5.2** Primary Cultures
- **2.2.6** Transfection of HEK 293 Cells with Plasmid DNA
- **2.2.7** AAV Vector Production
 - **2.2.7.1** Transfection for AAV Vector Production
 - **2.2.7.2** Heparin Column Purification
- **2.2.8** Genomic Titering of Recombinant AAV
 - **2.2.8.1** Extraction of Viral DNA
 - **2.2.8.2** Plasmid Standard Curve
 - **2.2.8.3** Real Time PCR Reaction Preparation
 - **2.2.8.4** Setting up of the ABI Prism 7700
 - **2.2.8.5** Data Analysis
- **2.2.9** AAV Transduction of HEK 293 Cells
- **2.2.10** AAV Transduction of HT1080 Cells
- **2.2.11** Neuronal Primary Cell Culture

2.3 In Vivo Studies Methods

- **2.3.1** Rat Surgical Procedure for Viral Vector Injections and QA Administration
- **2.3.2** Motor Function Testing
 - **2.3.2.1** Exploratory Forelimb Use Test – Cylinder Test
- **2.3.3** BrdU Injection and Labelling Paradigm
- **2.3.4** Fixation of Brain Tissue for Immunocytochemistry
- **2.3.5** Fresh Dissection of Brain Tissue for ELISA
- **2.3.6** Brain sectioning
3 Chapter Three: Recombinant Adeno-Associated Viral Vector Development and Testing……..58

3.1 Introduction………………………………………………………………………………………58
3.2 Results……………………………………………………………………………………………...60

3.2.1 Generation of AAV2 Expression Plasmids……………………………………………….60

3.2.1.1 Insertion of bdnf cDNA into the pGEM-T® Easy Vector………………………...60

3.2.1.2 Insertion of fgf-2 cDNA into the pGEM-T® Easy Vector…………………………61

3.2.1.3 Insertion of bdnf or fgf-2 cDNA into the AAV2 Expression Plasmid…………….....62

3.2.2 In Vitro Testing of AAV2 Expression Plasmids…………………………………………64

3.2.2.1 In Vitro Transfection of HEK 293 Cells with AAV2 Expression Plasmids………..64

3.2.2.2 Determining BDNF or FGF-2 Protein Levels from AAV2 Expression Plasmids Using ELISA………………………………………………………………………….66

3.2.3 AAV1/2 Viral Vector Production from Transfected HEK 293 Cells…………………..66

3.2.3.1 Genomic Titering of AAV1/2 Viral Vectors…………………………………………66

3.2.4 In Vitro Testing of AAV1/2 Viral Vectors……………………………………………….67

3.2.4.1 Transduction of HEK 293 Cells with AAV1/2-luciferase or AAV1/2-bdnf-HA Viral Vectors………………………………………………………………………….67

3.2.4.2 Transduction of HT1080 Cells with AAV1/2-CBA-fgf-2-HA Viral Vector………….68

3.2.5 In Vitro Testing of AAV1/2 Viral Vectors Using Primary Embryonic Culture Assays…69

3.2.5.1 Transduction of Embryonic Striatal Cultures with AAV1/2-bdnf-HA………………69

3.2.5.2 Transduction of Embryonic Ventral Mesencephalon Cells with AAV1/2-fgf-2-HA……………………………………………………………………………...71

3.2.6 In Vivo Testing of AAV1/2 Viral Vectors in the Unlesioned Adult Rat Brain………….72

3.2.6.1 In Vivo Testing of Luciferase Transgenic Protein Expression and Determination of Stereotaxic Injection Co-ordinates…………………………………………………73

3.2.6.2 In Vivo Testing of BDNF and FGF-2 Transgenic Protein Expression……………..74

2.4 Immunocytochemistry Methods……………………………………………………………….50
2.4.1 Immunocytochemistry on Fixed Cultured HEK 293 or HT1080 Cells Using DAB…50
2.4.2 Immunostaining Fixed Tissue Using DAB/Nickel Sulphate…………………………...51
2.4.3 BrdU Immunocytochemistry Using DAB/Nickel Sulphate…………………………….51
2.4.4 Coverslipping slides………………………………………………………………………..52
2.4.5 Fluorescent Immunostaining of Fixed Tissue Using DNAseI Treatment…………….52

2.4.5.1 Double Fluorescent Immunostaining………………………………………………...52

2.4.5.1.1 BrdU/NeuN………………………………………………………………………………52

2.4.5.1.2 BrdU/GFAP, BrdU/MAP2, BrdU/DARPP-32 or BrdU/Calbindin…………………..53

2.4.5.2 Triple Fluorescent Immunostaining…………………………………………………..54

2.4.5.2.1 BrdU/NeuN/DARPP-32 or BrdU/NeuN/GAD-65/67……………………………..54

2.4.6 Microscopy and Photography……………………………………………………………..55

2.4.7 ELISA (Enzyme-Linked Immunosorbent Assay) Assays………………………………55

2.4.7.1 ELISA on Cell Culture Media…………………………………………………………55

2.4.7.2 ELISA on Brain Tissue…………………………………………………………………55

2.5 Quantification and Analysis……………………………………………………………………56

2.5.1 Quantification of BrdU Labelled Cells…………………………………………………….56

2.5.2 Statistical Analysis………………………………………………………………………….57
A.1.1 Luria Broth (LB) ... 145
A.1.2 Antibiotics and Media Additives .. 145
A.1.2.1 Ampicillin .. 145
A.1.2.2 X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) 145
A.1.3 Solutions and Buffers for Molecular Cloning 146
A.1.3.1 Competent Cell Solution (CCS) 146
A.1.3.2 GTE (Glucose/Tris/EDTA) ... 146
A.1.3.3 Potassium Acetate (pH 4.8) ... 146
A.1.3.4 50x TAE Buffer (Tris Acetate EDTA Buffer) 146
A.1.3.5 1 M Tris-HCl (pH 7.5) .. 146
A.1.3.6 0.5 M EDTA ... 146
A.1.3.7 TE Buffer (Tris EDTA Buffer) .. 146
A.1.3.8 10x Gel Loading Dye ... 146
A.2 Cell Culture Materials .. 150
A.2.1 Media ... 150
A.2.1.1 Stock DMEM media .. 150
A.2.1.2 Stock IMDM Media ... 150
A.2.1.3 Leibovitz L15 ... 150
A.2.1.4 Maintenance Media .. 150
A.2.2 Buffers and Solutions for Cell Culture 151
A.2.2.1 Freezing Solution .. 151
A.2.2.2 2x HeBs Buffer (pH 7.05) ... 151
A.2.2.3 Poly-D-Lysine Stock Solution 151
A.2.2.4 Glucose (100x) .. 151
A.3 Animal Studies Materials .. 152
A.3.1 Solutions and Buffers for Animal Studies 152
A.3.1.1 Cryoprotectant ... 152
A.3.1.2 4% Paraformaldehyde (pH 7.4) 152
A.3.1.3 50 nM Quinolinic Acid .. 152
A.3.1.4 40 mg/ml 5-Bromo-2'-deoxyuridine (BrdU) Solution 152
A.4 Immunocytochemistry and ELISA Materials 154
A.4.1 Solutions and Buffers for Immunocytochemistry 154
A.4.1.1 0.1 M Phosphate Buffer (pH 7.2) 154
A.4.1.2 0.4 M Phosphate Buffer ... 154
A.4.1.3 10x Phosphate Buffered Saline (PBS) (pH 7.2) 154
A.4.1.4 1x PBS/0.2% Triton X-100 Buffer 154
A.4.1.5 1x PBS/0.2% Triton X-100/1% Normal Goat Serum Immunobuffer 154
A.4.1.6 1 mg/ml 3,3'-Diaminobenzidine-tetrahydrochloride (DAB) Stock Solution .. 154
A.4.1.7 0.5 mg/ml DAB Working Solution 154
A.4.1.8 0.5 mg/ml DAB/4% Nickel Sulphate Working Solution 155
A.4.1.9 10x Tris Buffered Saline (TBS) (pH 7.3) 155
A.4.1.10 1 x TBS/0.1% Triton X-100 Buffer 155
A.4.1.11 1 x TBS/0.1% Triton X-100/3% Normal Goat Serum Immunobuffer (TBS-Tgs) 155
A.4.1.12 DNAasel Buffer .. 155
A.4.2 Solutions and Buffers for ELISA .. 157
A.4.2.1 *Homogenisation Buffer* ... 157
A.4.2.2 *OPD detection* .. 157

A.5 Plasmid Maps .. 158

A.6 Publications Resulting in Part or in Full from this Thesis 170
A.6.1 Publications ... 170
A.6.2 Abstracts ... 170

References .. 194
List of Tables

Table 2.1: AAV1/2 and Quinolinic Acid Stereotaxic Injection Co-ordinates and Volumes………………46

Table 3.1: Real-Time PCR Genomic Titres of Packaged AAV1/2 Viral Vectors………………………….67
Table 3.2: Average Numbers of Calbindin Positive Cells after AAV1/2-bdnf-HA or AAV1/2-luciferase
Transduction of Primary Embryonic Striatal Cultures……………………………………………………….70
Table 3.3: AAV1/2 Stereotaxic Injection Co-ordinates and Volumes………………………………………….73

Table 4.1: Representative Mean Number of BrdU Immunopositive Cells per Section Co-expressing
Neuronal or Glial Markers……………………………………………………………………………….101
Table 4.2: Summary of BrdU Immunoreactivity in Specific Brain Regions of the Normal and
QA Lesioned Adult Rat Brain……………………………………………………………………………….108

Table 5.1: Summary of BrdU Immunoreactivity in Specific Brain Regions of the Normal and
QA Lesioned Adult Rat Brain………………………………………………………………………………….132

Table A.1: Plasmids and Bacterial Strain ………………………………………………………………………147
Table A.2: Synthetic Oligonucleotides Used in this Study………………………………………………….148
Table A.3: Restriction Enzymes Used in this Study…………………………………………………………149
Table A.4: Additives needed for Maintenance Media………………………………………………………151
Table A.5: Treatment Groups and Animal Numbers for BDNF and FGF-2 Studies…………………………153
Table A.6: Antibodies Used in this Study……………………………………………………………………156
List of Figures

Figure 1.1: Schematic diagram showing the different classes of mammalian stem cells..................3
Figure 1.2: Schematic sagittal view of the adult rat brain showing the two main neurogenic regions.....4
Figure 1.3: Organisation of the adult subventricular zone...6
Figure 1.4: Organisation of the adult subgranular zone...7
Figure 1.5: Incorporation of thymidine analogue BrdU into DNA during S phase of DNA replication...9
Figure 1.6: Integration of the retroviral genome into the host genome during mitosis....................10
Figure 1.7: Schematic representation of cerebral ischemia induced neurogenesis in the SVZ............12
Figure 1.8: Schematic representation of cerebral ischemia induced neurogenesis in the dentate gyrus...12
Figure 1.9: Representative diagram of seizure induced SVZ neurogenesis and hippocampal
neurogenesis in the adult rat brain..13
Figure 1.10: Representative diagram showing targeted apoptosis of corticothalamic projection neurons.15
Figure 1.11: Biology of wildtype and recombinant adeno-associated viral vectors........................26

Figure 2.1: Schematic diagram of recombinant viral vector production..41
Figure 2.2: Stereotaxic atlas figures schematically representing AAV1/2 or QA injection sites in the
adult rat brain..48
Figure 2.3: Schematic diagram showing brain regions analysed for BrdU immunopositive cell count.....56

Figure 3.1: Human bdnf cDNA sequence inserted into AAV2 backbone containing C-Terminal HA tag.63
Figure 3.2: Human fgf-2 cDNA sequence inserted into AAV2 backbone containing C-Terminal HA tag.64
Figure 3.3: Luciferase, BDNF-HA and FGF-2-HA protein expression in AAV2 transfected HEK 293
cells...65
Figure 3.4: Luciferase or BDNF-HA protein expression in AAV1/2-luciferase or AAV1/2-bdnf-HA
transduced HEK 293 cells...68
Figure 3.5: FGF-2-HA protein expression in AAV1/2-fgf-2-HA Transduced HT1080 cells..................69
Figure 3.6: Transduction of primary embryonic striatal neural cultures with AAV1/2-bdnf-HA.........71
Figure 3.7: Transduction of primary ventral mesencephalon cultures with AAV1/2-fgf-2-HA................72
Figure 3.8: Exogenous Luciferase protein expression after stereotaxic injection of AAV1/2-luciferase
into the SVZ or LV of the unlesioned adult rat brain...74
Figure 3.9: Exogenous BDNF-HA or FGF-2-HA protein expression after stereotaxic injection of
AAV1/2-bdnf-HA or AAV1/2-fgf-2-HA into the SVZ of the unlesioned adult rat brain...............75
Figure 3.10: BrdU positive cells in the SVZ and RMS after 21 days of i.p BrdU administration...........76

Figure 4.1: BDNF-HA and Luciferase protein expression in the SVZ 42 and 84 days after AAV1/2
injection into the anterior SVZ of unlesioned animals...84
Figure 4.2: Exogenous BDNF-HA protein expression and QA lesion position 42 and 84 days after
AAV1/2 injection..85
Figure 4.3: BDNF-HA expression in cells present in the olfactory bulb and cerebral cortex 42 days after AAV1/2 injection into the anterior SVZ of unlesioned animals.

Figure 4.4: BDNF protein expression levels increased after AAV1/2-bdnf injection.

Figure 4.5: Experimental timeline.

Figure 4.6: BrdU immunoreactivity in the SVZ of BDNF or control treated, unlesioned animals, 42 days after AAV1/2 injection.

Figure 4.7: BrdU immunoreactivity in the RMS of BDNF or control treated, unlesioned animals, 42 days after AAV1/2 injection.

Figure 4.8: BrdU immunoreactivity in the striatum of BDNF or control treated, unlesioned animals, 42 days after AAV1/2 injection.

Figure 4.9: BrdU immunoreactivity in the olfactory bulb of BDNF or control treated, unlesioned animals, 42 days after AAV1/2 injection.

Figure 4.10: BrdU immunoreactivity in the SVZ of BDNF or control treated, QA lesioned animals, 42 days after AAV1/2 injection.

Figure 4.11: BrdU immunoreactivity in the RMS of BDNF or control treated, QA lesioned animals, 42 days after AAV1/2 injection.

Figure 4.12: BrdU immunoreactivity in the Striatum of BDNF or Control treated, QA lesioned animals, 42 days after AAV1/2 injection.

Figure 4.13: BrdU immunoreactivity in the olfactory bulb of BDNF or control treated, QA lesioned animals, 42 days after AAV1/2 injection.

Figure 4.14: Total BrdU immunopositive cell count of BDNF or control treated unlesioned and QA lesioned animals, 42 days after AAV1/2 injection.

Figure 4.15: Regional distribution of BrdU immunopositive cells in the SVZ, RMS, striatum and olfactory bulb of BDNF or control treated animals.

Figure 4.16: Confocal analysis of fluorescently labeled cells in BDNF treated animals for BrdU and NeuN.

Figure 4.17: Confocal analysis of fluorescently labeled cells in BDNF treated animals for BrdU and MAP2.

Figure 4.18: Confocal analysis of fluorescently labeled cells in BDNF treated animals for BrdU and GFAP.

Figure 4.19: Schematic diagram of differential distribution of neuronal or glial differentiation in the QA lesioned striatum.

Figure 4.20: BDNF over-expression in the anterior SVZ results in a preservation of motor function in QA lesioned rats.

Figure 5.1: FGF-2-HA and Luciferase protein expression in the SVZ 42 and 84 days after AAV1/2 injection into the anterior SVZ of unlesioned animals.

Figure 5.2: Exogenous FGF-2-HA protein expression and QA lesion position 42 and 84 days after AAV1/2 injection.

Figure 5.3: FGF-2-HA expression in cells present in the olfactory bulb and cerebral cortex 42 days after AAV1/2 injection into the anterior SVZ of unlesioned animals.

Figure 5.4: FGF-2 protein expression levels increased after AAV1/2-fgf-2-HA injection.

Figure 5.5: Experimental Timeline.

Figure 5.6: BrdU immunoreactivity in the SVZ of FGF-2 or control treated, unlesioned animals.
42 days after AAV_{1/2} injection...119

Figure 5.7: BrdU immunoreactivity in the RMS of FGF-2 or control treated, unlesioned animals, 42 days after AAV_{1/2} injection...120

Figure 5.8: BrdU immunoreactivity in the striatum of FGF-2 or control treated, unlesioned animals, 42 days after AAV_{1/2} injection...121

Figure 5.9: BrdU immunoreactivity in the olfactory bulb of FGF-2 or control treated, unlesioned animals, 42 days after AAV_{1/2} injection...122

Figure 5.10: BrdU immunoreactivity in the SVZ of FGF-2 or control treated, QA lesioned animals, 42 days after AAV_{1/2} injection...124

Figure 5.11: BrdU immunoreactivity in the RMS of FGF-2 or control treated, QA lesioned animals, 42 days after AAV_{1/2} injection...125

Figure 5.12: BrdU immunoreactivity in the striatum of FGF-2 or control treated, QA lesioned animals, 42 days after AAV_{1/2} injection...126

Figure 5.13: BrdU immunoreactivity in the olfactory bulb of FGF-2 or Luciferase/PBS treated, QA lesioned animals, 42 days after AAV_{1/2} injection...127

Figure 5.14: Total BrdU immunopositive cell count of FGF-2 or control treated unlesioned and QA lesioned animals, 42 days after AAV_{1/2} injection...128

Figure 5.15: Regional distribution of BrdU immunopositive cells in the SVZ, RMS, striatum and olfactory bulb of FGF-2 or control treated animals ...129

Figure 5.16: FGF-2 over-expression in the anterior SVZ does not result in a restoration of motor function in QA lesioned rats...131

Figure A.5.1: Physical Map of During #400 – pAM/CRE-BDNF-WPRE-bGHpA...158

Figure A.5.2: Physical Map of During #498 – pAM/CB-luc-WPRE-bGHpA...159

Figure A.5.3: Physical Map of During #577 – pAM/CAG-C-termHA-WPRE-bGHpA...160

Figure A.5.4: Physical Map of pGEM-T[®] Easy Vector...161

Figure A.5.5: Physical Map of Connor #4 – pT7T3-Pacl-FGF-2...162

Figure A.5.6: Physical Map of Connor #11 - pGEM-T[®]-FGF-2...163

Figure A.5.7: Physical Map of Connor #12 - pGEM-T[®]-BDNF...164

Figure A.5.8: Physical Map of Connor #13 – pAM/CAG-BDNF-C-termHA-WPRE-bGHpA...165

Figure A.5.9: Physical Map of Connor #22 – pAM/CAG-FGF-2-C-termHA-WPRE-bGHpA...166

Figure A.5.10: Physical Map of During #463 – pFΔ6...167

Figure A.5.11: Representative Map of During #465 – pRV1...168

Figure A.5.12: Representative Map of During #539 – pH21...169
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>bp</td>
<td>Basepairs</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>DNaseI</td>
<td>Deoxyribonuclease</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Dinucleotide triphosphates</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>HA</td>
<td>Haemagglutinin</td>
</tr>
<tr>
<td>ITR</td>
<td>Inverted terminal repeats</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>kD</td>
<td>KiloDalton</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>M</td>
<td>Moles/L</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>μl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>mM</td>
<td>Millimoles per Litre</td>
</tr>
<tr>
<td>mRMA</td>
<td>Messenger ribonucleic Acid</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>RNaseI</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>S Phase</td>
<td>Synthesis Phase</td>
</tr>
<tr>
<td>TGF-α</td>
<td>Transforming Growth Factor-alpha</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular Endothelial Growth Factor</td>
</tr>
<tr>
<td>+</td>
<td>Positive</td>
</tr>
<tr>
<td>-</td>
<td>Negative</td>
</tr>
<tr>
<td>°C</td>
<td>degrees celcius</td>
</tr>
<tr>
<td>λ</td>
<td>Lambda</td>
</tr>
</tbody>
</table>