Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form
The *AtMRS2* gene family from

Arabidopsis thaliana

Revel Scott MacGregor Drummond

Plant Science Research Group, School of Biological Sciences, University of Auckland.

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

December 2004
Acknowledgements

Well it’s been a long road getting here, but this is it.

If you are reading this book it’s because I have finished my PhD. The people and events that we have to thank for me achieving this goal deserve as much credit as me in the end. So here is a selection, in chronological order, of those people and events.

Mum and Dad, and Troy, my brother. A great family. And also Fiona, Ryan and Logan, the other half of my family.

Gareth and Gavin my most steadfast childhood friends.

Mr Munroe, a primary school teacher. For annoying me to such an extent that I had to prove that he was wrong - that I was certainly amongst the smartest kids in the class.

Mr MacArthur, Ms Stuart and Ms O’Brian, the high school teachers that inspired me most. Mr Laver, who forced me to teach myself 7th form chemistry and Dr Colvine, who showed me physics was cool and also for annoying me in to proving that I was going to ‘get somewhere’, academically speaking, in the end.

Dan, Catherine and Vincent, Alexei, Jo S, Phil, Rachael, Dave, Caroline, Shelley, Jamie, Lee, Pete, Van, Jo H, Annemarie. Great friends.

Jeanette and Keith, the ever helpful and wise PMB lab technicians.

Richard Gardner. Supervisor, mentor. The guy most directly to blame for me walking around with an honorific.

And finally to Jo. My other half and great support crew.

Not exactly effusive but it’s all you’re getting. Thanks one and all.
Abstract

Magnesium (Mg$^{2+}$) is an essential mineral nutrient for plants and is the most abundant free divalent cation in plant cells. However, our knowledge of the role of this ion in the plant cell is limited, and the mechanisms of homeostasis and transport of the ion are almost completely unknown.

A. Tutone (this laboratory) identified an Arabidopsis thaliana gene by the complementation of a Mg$^{2+}$-uptake yeast mutant (CM66). This gene, referred to as AtMRS2-11, was expressed as cDNA from a strong yeast promoter and allowed the growth of the CM66 yeast strain on standard media. The conceptually translated AtMRS2-11 protein sequence was used in this study to identify nine additional proteins by sequence homology searches using the BLAST algorithm. The corresponding genes have been cloned from cDNA (A. thaliana ecotype Landsberg erecta) and sequenced. Protein sequence similarity suggests that the family forms a sub-section of the CorA super-family of Mg$^{2+}$ transport proteins.

The mutant yeast used to identify the family initially was also used to show that two family members in addition to AtMRS2-11 were able to complement the Mg$^{2+}$-dependent growth phenotype. When fused to eGFP, these proteins showed a localisation consistent with some of the protein reaching the yeast cell membrane. The other members of the family were also fused to eGFP and showed a range of localisation patterns within the yeast cell. None of the three AtMRS2 proteins previously able to complement the yeast mutant phenotype did so when fused to eGFP.

RNA transcripts from the AtMRS2 family were detected by RT-PCR in organ-scale preparations of total RNA from A. thaliana. Most family members were detected in all of the organs tested. Northern analysis of AtMRS2-11 RNA transcript level showed that the gene was more highly expressed in leaf tissue, but was not affected by decreased levels of Mg$^{2+}$ in the growth media. The levels of steady state AtMRS2-11 mRNA transcript were elevated two-fold in the light during the diurnal cycle, but no change was detected during light-induced greening of etiolated seedlings. A stable transgenic A. thaliana line expressing the gusA gene from the promoter region of AtMRS2-11 was used to localise the promoter’s activity to cells containing chloroplasts. The expression appeared highest in younger cells.
The AtMRS2-11 protein was predicted to contain a chloroplast targeting peptide. Western analysis demonstrated that AtMRS2-11 was enriched in the total proteins of isolated chloroplasts as compared to extracts from whole plants. The AtMRS2-11:eGFP fusion protein was also detected in chloroplasts by fluorescence microscopy.

Flame atomic absorption spectroscopy was used in conjunction with isolated chloroplasts to try to determine the effects of the overaccumulation of the AtMRS2-11 protein in a transgenic *A. thaliana* plant line (constructed by A. Tutone). A rapid uptake or binding of Mg$^{2+}$ was seen in chloroplasts isolated from both wild type and transgenic lines, but no differences were observed in either the rate of Mg$^{2+}$ uptake/binding or the final Mg$^{2+}$ content.
Table of Contents

Chapter 1 Magnesium in the biological world

1. **Overview**
2. **Chemistry**
3. **Biochemistry**
4. **Transport of Mg$^{2+}$ across biological membranes**
 1.4.1 Bacterial Mg$^{2+}$ transport
 1.4.1.1 Magnesium transport in bacteria before the identification of the transport genes
 1.4.1.2 CorA
 1.4.2 Yeast Mg$^{2+}$ transport
 1.4.2.1 Mg$^{2+}$ transport in yeast before the identification of the transport genes
 1.4.2.2 ALR1 and ALR2
 1.4.2.3 MRS2
 1.4.3 Metazoan Mg$^{2+}$ transport
 1.4.3.1 MRS2
 1.4.4 Plant Mg$^{2+}$ transport
 1.4.4.1 The AtMRS2 gene family
 1.4.5 Summary and conclusions
5. **Plant physiology of Mg$^{2+}$**
 1.5.1 Nutritional requirements and interactions
 1.5.2 Distributing Mg$^{2+}$ ions within the plant
 1.5.3 Chloroplasts and photosynthesis
 1.5.4 Mg$^{2+}$ Stress
6. **Aims**

Chapter 2 Materials and Methods

2. **Enzymes and chemicals**
3. **Miscellaneous materials**
4. **Buffers and solutions**
5. **Antibiotics**
6. **Plasmids**
7. **Oligonucleotides**
8. **Growth media**
 2.7.1 Bacterial growth media
 2.7.2 Yeast growth media
 2.7.3 Plant growth media
9. **Organisms**
 2.8.1 Bacterial strains
 2.8.2 Yeast strains
 2.8.3 Long term storage of bacteria and yeast
 2.8.4 Plant material
2.9 *A. thaliana* growth techniques

2.9.1 General plant growth conditions
2.9.2 Hydroponic plant growth conditions
2.9.3 Growth of seedlings in the dark
2.9.4 Seed sterilisation
 2.9.4.1 For bulk screening of seed
 2.9.4.2 For chloroplast extraction
 2.9.4.3 For screening/growing small numbers of seed

2.10 Transformation of bacteria

2.10.1 Preparation of *E. coli* competent cells for electroporation
2.10.2 Electroporation of *E. coli*
2.10.3 Transformation of *Agrobacterium*
2.10.4 Screening bacteria for recombinant plasmids
 2.10.4.1 Blue/white screen for recombinant plasmids
 2.10.4.2 PCR-based screening for recombinant plasmids

2.11 Transformation of yeast

2.12 Transformation of *Arabidopsis thaliana*

2.12.1 Growth of plants for transformation
2.12.2 *Agrobacterium* culture for plant transformation
2.12.3 Floral dip *A. thaliana* transformation
2.12.4 Selection of transgenic *A. thaliana*
 2.12.4.1 Screening for primary transformants
 2.12.4.2 Detection of single insert transgenic lines
 2.12.4.3 Selection of homozygous lines

2.13 Extraction of plasmids from bacteria and yeast

2.13.1 Preparation of plasmid DNA from *E. coli* for restriction mapping
2.13.2 Preparation of plasmid DNA from *E. coli* for restriction mapping and cloning
 2.13.3 Preparation of plasmid DNA from *E. coli* for sequencing
 2.13.4 Preparation of plasmid DNA from *Agrobacterium*
 2.13.5 Preparation of plasmid DNA from yeast

2.14 Preparation of nucleic acids and protein from *A. thaliana*

2.14.1 Preparation of genomic DNA
2.14.2 Preparation of total RNA
2.14.3 Preparation of protein extracts
 2.14.3.1 Whole plants
 2.14.3.2 Isolated chloroplasts

2.15 Manipulation of DNA and RNA

2.15.1 Agarose gel electrophoresis
2.15.2 Quantification of nucleic acids
2.15.3 Restriction endonuclease digestion of DNA
2.15.4 Ligation of DNA fragments
2.15.5 Polymerase chain reaction (PCR)
 2.15.5.1 General PCR amplification
 2.15.5.2 PCR amplification for cloning
2.15.6 Reverse transcription
2.15.7 Purification of DNA fragments
2.15.8 DNA sequencing
2.15.9 Subcloning of DNA fragments
2.15.10 Blunt ending of DNA fragments
2.15.11 Northern blotting
2.15.11.1 Gel electrophoresis and transfer of RNA to a nylon membrane 51
2.15.11.2 Preparation of radiolabelled DNA probes 51
2.15.11.3 Detection of RNA transcript by hybridisation 51

2.16 Manipulation of protein 52
2.16.1 SDS-PAGE gel electrophoresis 52
2.16.2 Western blotting 52
2.16.3 Immunodetection of protein 52

2.17 Isolation of intact chloroplasts from A. thaliana 53
2.17.1 Growth of plants 53
2.17.2 Extraction and purification of chloroplasts 53
2.17.3 Quantification of chloroplast yield 55

2.18 Microscopy 55
2.18.1 Microscopes and cameras 55
2.18.1.1 Dissecting 55
2.18.1.2 Standard and fluorescence 55
2.18.1.3 Confocal 56
2.18.2 Yeast 56
2.18.2.1 Detection of eGFP fluorescence 56
2.18.2.2 Staining of yeast with Rhodamine B HE 56
2.18.2.3 Bright field and Normarski optics 56
2.18.3 Plants 57
2.18.3.1 eGFP localisation 57
2.18.3.2 GUS staining and visualisation 57

2.19 Yeast Mg$^{2+}$ uptake complementation assays 58

2.20 Phenotypic analysis of A. thaliana 58
2.20.1 Measurement of chlorophyll content in greening seedlings 58
2.20.2 Measurement of Kautsky curves 58
2.20.3 Analysis of chloroplast associated Mg$^{2+}$ by flame atomic absorption spectroscopy (AAS) 59

2.21 Digital image manipulation 59

2.22 Gene terminology 59

Chapter 3 The AtMRS2 gene family of Arabidopsis thaliana has eleven members: identification, cloning and bioinformatic analysis 61

3.1 Introduction 63

3.2 The identification, cloning and sequence of the A. thaliana gene family AtMRS2 64
3.2.1 Introduction 64
3.2.2 Results 64
3.2.3 Discussion 66

3.3 A phylogenetic analysis of the AtMRS2 family 71
3.3.1 Introduction 71
3.3.2 Results 71
3.3.3 Discussion 76

3.4 Identification of the MRS2-like family and the CorA super-family 78
3.4.1 Introduction 78
3.4.2 Results 78
3.4.3 Discussion

3.5 The expansion of the MRS2-like family in the Angiospermae
3.5.1 Introduction
3.5.2 Results
3.5.2.1 Intra-genomic analysis of the AtMRS2 gene family shows that two duplication events occurred as part of the polyploidisation of the genome
3.5.2.2 Inter-genomic comparison between A. thaliana and O. sativa defines four groups of genes common to both species
3.5.3 Discussion

3.6 Predicted transmembrane structure of the AtMRS2 proteins
3.6.1 Introduction
3.6.2 Results
3.6.3 Discussion

3.7 Identification of targeting signals in AtMRS2 proteins
3.7.1 Introduction
3.7.2 Results
3.7.3 Discussion

3.8 Concluding summary and remarks

Chapter 4 Three members of the AtMRS2 family complement a Mg$^{2+}$ uptake deficient mutant of yeast

4.1 Introduction
4.2 Nine members of the AtMRS2 gene family have been cloned into a yeast expression vector
4.3 AtMRS2 transgenic yeast were generated from three strains of yeast
4.4 The AtMRS2 family confers a range of growth phenotypes when expressed in the CM66 mutant yeast background
4.5 The AtMRS2 family show little affect on growth of yeast with varying levels of cations
4.6 Four distinct patterns of AtMRS2:eGFP fusion fluorescence were observed in yeast
4.6.1 Nine AtMRS2 family members have been fused to the N-terminus of eGFP by homologous recombination in yeast
4.6.2 Localisation results
4.7 Discussion
4.7.1 General summation
4.7.2 Mg$^{2+}$ uptake complementation
4.7.3 Cation transport
4.7.4 Protein localisation
4.7.5 Final remarks

Chapter 5 The members of the AtMRS2 family are expressed in most plant organs — further analysis of AtMRS2-11 suggests a relationship with chloroplasts and light

5.1 Introduction
5.2 Most AtMRS2 family members are expressed widely throughout the plant
Chapter 6 The AtMRS2-11 protein is localised to the chloroplast – chloroplast-associated Mg$^{2+}$ is tightly regulated

6.1 Introduction
6.2 The AtMRS2-11 protein is localised to the chloroplast envelope membrane system

6.3 The photosynthetic efficiency of 35S::AtMRS2-11 and 35S::AtMRS2-11:eGFP plant lines is similar to wild type

6.4 The amount of Mg$^{2+}$ associated with isolated chloroplasts is unaffected by the over accumulation of the AtMRS2-11 protein in the chloroplast membrane

6.5 Discussion

Chapter 7 Concluding discussion

7.1 Synopsis
7.2 AtMRS2 and Mg$^{2+}$ transport
7.3 Remarks on the study of Mg$^{2+}$ transport proteins
7.3.1 Introduction 182
7.3.2 The use of the CM66 yeast heterologous expression system 183
7.3.3 Biochemical comparisons of Mg2+ transport function 183
7.3.4 The measurement of Mg2+ flux across membranes 185
7.3.5 Conclusion 185

7.4 Remarks on the study of Mg2+-related plant physiology 186
7.4.1 Introduction 186
7.4.2 Uptake from soil 185
7.4.3 Plant-wide homeostasis 186
7.4.4 Cellular homeostasis 187
7.4.5 Transport of Mg2+ in mitochondria and chloroplasts 188
7.4.6 Future directions for the study of the AtMRS2 family in plants 189
7.4.7 Other Mg2+ transporters in plants 191

7.5 Closing thoughts 192

Appendix 1 195

A1.1 Consensus cDNA sequences of AtMRS2 gene family members as sequenced from *A. thaliana* (Landsberg erecta) 195
A1.2 Predicted protein sequence of the AtMRS2 gene family 199

Appendix 2 ClustalX multiple sequence alignments of the sequenced AtMRS2 cDNAs compared to the TAIR genomic DNA database sequence 201

Appendix 3 ClustalX multiple sequence alignment of the MRS2-like protein family 221

Appendix 4 Predicted *Oryza sativa* MRS2-like (OsMRS2) proteins 225

Appendix 5 ClustalX multiple sequence alignment of the OsMRS2 and AtMRS2 proteins 227

Appendix 6 Construction of the pFLR-A vector 231

A6.1 Summary 231
A6.2 Design 231
A6.3 Making the MCS adapter 232
A6.4 Making pFLR-A

Appendix 7 Output of PLACE

Appendix 8 Construction of AtMRS2-11 promoter GUS fusion transgenic plants

A8.1 Cloning of the AtMRS2-11 promoter region
A8.2 Plant transformation and screening

Appendix 9 Construction of 35S::AtMRS2-11:eGFP transgenic plants

A9.1 Introduction
A9.2 Addition of the CaMV 35S promoter and transfer into a plant transformation vector by subcloning
A9.3 Plant transformation and screening

Appendix 10 Other Mg$^{2+}$ transport genes

A10.1 Introduction
A10.2 Bacterial genes
 A10.2.1 MgtA and MgtB
 A10.2.2 MgtE
A10.3 Protozoan (Paramecium) Mg$^{2+}$ transport
A10.4 Metazoa
 A10.4.1 SLC41 (MgtE)
 A10.4.2 TRPM6/ TRPM7
 A10.4.3 Claudin-16 (Paracellin-1, PCLN-1)
A10.5 Plant genes
 A10.5.1 AtMHX

Appendix 11 Related Articles

References
Abbreviations

S.I. (Systeme Internationale) abbreviations for units and standard notations for chemical elements, nucleotides and amino acids are used in this thesis. Names of buffers and their abbreviations are given in Chapter 2, Table 2.1. Abbreviations of species and gene names are defined in the text. Other abbreviations used in the text are defined as below.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>35S</td>
<td>cauliflower mosaic virus 35S promoter region</td>
</tr>
<tr>
<td>°C</td>
<td>degree celsius</td>
</tr>
<tr>
<td>β-gal</td>
<td>beta-galactosidase</td>
</tr>
<tr>
<td>ΔΨ</td>
<td>electric membrane potential</td>
</tr>
<tr>
<td>ΔpH</td>
<td>change in pH</td>
</tr>
<tr>
<td>AA</td>
<td>amino acid</td>
</tr>
<tr>
<td>AAS</td>
<td>atomic flame spectroscopy</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>AES</td>
<td>atomic emission spectroscopy</td>
</tr>
<tr>
<td>AMP</td>
<td>adenosine monophosphate</td>
</tr>
<tr>
<td>AP</td>
<td>alignment position</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>BAC</td>
<td>bacterial artificial chromosome</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>C-terminus</td>
<td>carboxyl-terminus</td>
</tr>
<tr>
<td>CaMV</td>
<td>cauliflower mosaic virus</td>
</tr>
<tr>
<td>CIP</td>
<td>calf intestinal phosphatase</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>Co(III)Hex</td>
<td>cobalt (III) hexaamine</td>
</tr>
<tr>
<td>cryo-TEM</td>
<td>cryo-transmission electron microscopy</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
</tr>
<tr>
<td>dCTP</td>
<td>2-deoxycytosine 5-triphosphate</td>
</tr>
<tr>
<td>DMDC</td>
<td>dimethyl-dicarbonate</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNase</td>
<td>deoxyribonuclease</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>eGFp</td>
<td>enhanced green fluorescent protein</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol-bis-(β-aminoethyl ether)-N,N,N',N' tetraacetic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>EST</td>
<td>expressed sequence tag</td>
</tr>
<tr>
<td>g</td>
<td>force of gravity at Earth’s surface</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione-S-transferase</td>
</tr>
<tr>
<td>GUS</td>
<td>β-glucuronidase</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-[2-Hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]</td>
</tr>
<tr>
<td>ICP</td>
<td>inductively coupled plasma</td>
</tr>
<tr>
<td>in prep.</td>
<td>in preparation</td>
</tr>
<tr>
<td>ITPG</td>
<td>isopropylthio-β-D-galactoside</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base pair</td>
</tr>
<tr>
<td>kDa</td>
<td>kiloDalton</td>
</tr>
<tr>
<td>K<sub>i</sub></td>
<td>constant of inhibition</td>
</tr>
<tr>
<td>K<sub>m</sub></td>
<td>Michaelis constant</td>
</tr>
<tr>
<td>Kan<sup>R</sup></td>
<td>kanamycin resistant</td>
</tr>
<tr>
<td>Kan<sup>S</sup></td>
<td>kanamycin sensitive</td>
</tr>
<tr>
<td>KO</td>
<td>knockout</td>
</tr>
<tr>
<td>LB</td>
<td>left T-DNA border</td>
</tr>
<tr>
<td>MCS</td>
<td>multiple cloning site</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-[N-Morpholino]propanesulfonic acid</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>MTS</td>
<td>methanethiosulphonate</td>
</tr>
<tr>
<td>N-terminus</td>
<td>amino-terminus</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>pers. comm.</td>
<td>personal communication</td>
</tr>
<tr>
<td>RACE</td>
<td>rapid amplification of genomic ends</td>
</tr>
<tr>
<td>RB</td>
<td>right T-DNA border</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcriptase polymerase chain reaction</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>T-DNA</td>
<td>Transfer DNA</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>TM</td>
<td>transmembrane domain</td>
</tr>
<tr>
<td>T<sub>m</sub></td>
<td>melting temperature</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris (hydroxymethyl)-aminomethane</td>
</tr>
<tr>
<td>U</td>
<td>Unit of enzyme activity</td>
</tr>
<tr>
<td>U.V.</td>
<td>ultra violet</td>
</tr>
<tr>
<td>V<sub>max</sub></td>
<td>maximum rate of uptake</td>
</tr>
<tr>
<td>v/v</td>
<td>volume/volume</td>
</tr>
<tr>
<td>WT</td>
<td>wild-type</td>
</tr>
<tr>
<td>w/v</td>
<td>weight/volume</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indoyl-β-thiogalactoside</td>
</tr>
<tr>
<td>X-gluc</td>
<td>5-bromo-4-chloro-3-indoyl-β-D-glucuronic acid</td>
</tr>
<tr>
<td>yr</td>
<td>year</td>
</tr>
</tbody>
</table>