

RESEARCHSPACE@AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

OSMIUM COMPLEXES AS MODELS FOR CO REDUCTION INTERMEDIATES

A thesis presented to the
University of Auckland
for the degree of
Doctor of Philosophy in Chemistry

Christine E L Headford July 1980 ≈

ABSTRACT

This thesis is concerned with the synthesis, and aspects of the chemistry, of carbon-donor complexes of osmium as organometallic models for CO reduction intermediates.

In Chapter 1 some aspects of ligand reactivity of the carbon-donor ligands CO, CS, CSe, CTe and carbenes in transition metal complexes are reviewed. The reduction reactions of these ligands are emphasized.

The preparation and structure of the osmium η^2 -formaldehyde complex $Os(\eta^2-CH_2O)(CO)_2(PPh_3)_2$ is described in Chapter 2. This complex has proved to be a useful synthetic precursor for stable osmium formyl, hydroxymethyl, methoxymethyl and halomethyl $(-CH_2X, X = Cl, Br, I)$ complexes and some facets of the reactivity of these ligands have been investigated. A general synthetic route to neutral osmium formyl complexes $Os(CHO)X(CO)_2(PPh_3)_2$ (X = halide or alkyl) has been developed. The facile preparation of a stable example of an intermediate formed during decarbonylation of a simple aldehyde by a transition metal, the osmium monohapto-acetyl-hydrido complex $Os(\eta^1-C[O]CH_3)H(CO)_2(PPh_3)_2$, has been demonstrated.

A preliminary study of the reactions of the osmium iodomethyl complex $Os(CH_2I)I(CO)_2(PPh_3)_2$ is reported in Chapter 3. The typical reaction of this species is nucleophilic substitution;

in many respects reactivity is analogous to an electrophilic methylidene complex. Reaction with a variety of nucleophiles [e.g. OR^- , H^- , EH^- (E = S, Se, Te), NH_2R and PR_3] has been investigated and the ligand reactivity of some of these derivatives studied.

A synthetic route to η^2 -CSeS and η^2 -CSe $_2$ complexes of osmium without the use of molecular CSeS or CSe $_2$ has been developed and the isolation of the geometrical isomers of the η^2 -CSeS complex Os(η^2 -CSeS)(CO)(CNR)(PPh $_3$) $_2$ (arising from η^2 -C,S or η^2 -C,Se coordination) has been achieved. The synthesis of a stable osmium hydrido-selenocarbonyl complex, OsHC1(CO)(CSe)(PPh $_3$) $_2$, has allowed the direct observation of hydride transfer from metal to CSe ligand. These latter results are discussed in Chapter 4.

TABLE OF CONTENTS

		Page
ABSTRACT		(i)
List of Tab	les	(vii)
List of Abb	reviations	(viii)
PROLOGUE		
THE F	ISCHER-TROPSCH SYNTHESIS REACTION	1
The	Role of Organometallic Chemistry	2
CHAPTER 1		9
INTRO	DUCTION	9
(1)	CARBON MONOXIDE	10
	(i) Nucleophilic Attack	10
	(ii) Migratory Insertion	21
	(iii) Electrophilic Attack	32
(II)	CARBON MONOSULPHIDE	39
	(i) Nucleophilic Attack	39
	(ii) Migratory Insertion	41
	(iii) Electrophilic Attack	48
(777)	CARRON MONOCRIENTER AND CARRON MONOMELLINETER	49
(111)	CARBON MONOSELENIDE AND CARBON MONOTELLURIDE	49
	(a) Selenocarbonyl Complexes	
	(b) Tellurocarbonyl Complexes	51
(IV)	CARBENES	51
	(1) and (2) Reactions at C carb	
	(a) Reactions at Electrophilic C carb	53
	(i) Addition	54
	(ii) Substitution	55

			(iv)
			Page
	(b)	Reactions at Nucleophilic C carb	56
		(i) Addition	56
	(3) A	bstraction Reactions Involving C	
	S	ubstituents	58
	(a)	Electrophilic Carbene Complexes	58
	(b)	Nucleophilic Carbene Complexes	60
	(4)	Insertion into the Metal-C Bond	61
	(5)	Migratory Insertion	63
CHAPEED 3			66
CHAPTER 2	ECTC N	ND REACTIONS OF AN η ² -FORMALDEHYDE COMPLEX	66
SYNTE			66
2.1		esis and Structure of $Os(\eta^2-CH_2O)(CO)_2(PPh_3)_2$	67
2.2	React:	ions of $Os(\eta^2-CH_2O)(CO)_2(PPh_3)_2$ and Derived	
	Produc	cts	74
	(i)	Rearrangement-Elimination Reactions	74
	(ii)	Hydroxymethyl Complexes and Derived Products	80
		(a) Synthesis	80
		(b) Reactions	82
	(iii)	Methoxymethyl Complexes	87
	(iv)	Os (CHO) H (CO) 2 (PPh 3) 2	87
	(v)	Attempted Further Reactions of $Os(\eta^2-CH_2O)-$	
18		(CO) ₂ (PPh ₃) ₂	89
2.3	Attemp	ots to Synthesize Other Dihapto-Aldehyde	
	Comple	exes	90
2.4	A Gene	eral Synthetic Route to Neutral Osmium Formyl	
8	Comple	exes	96
CONCI	JUSION		99

			Page
	GENE	RAL EXPERIMENTAL	101
	EXPE	RIMENTAL	104
CHAPI	ER 3		120
	REACT	FIONS OF THE IODOMETHYL LIGAND	120
	3.1	Alkoxymethyl Complexes	121
	3.2	Methyl Complexes	125
	3.3	Seleno- and Telluroformaldehyde Complexes	127
	3.4	Reactions with Group V Donor Bases	134
	3.5	Further Attempted Reactions of Os(CH2I)I(CO)2-	
		(PPh ₃) ₂	137
	CONCI	LUSION	139
	5		
	EXPER	RIMENTAL	140
СНАРТ	ER 4		166
	SELEN	OCARBONYL, CARBON SELENIDESULPHIDE AND CARBON	
	DISEL	ENIDE COMPLEXES	166
	4.1	Attempts to Find a Synthetic Route to Osmium	
		Selenocarbonyl Complexes (Including the Synthesis	
		of Isomeric Dihapto-Carbon Selenidesulphide	
		Complexes)	166
		(a) Reactions with Carbon Diselenide	167
		(b) SeH Attack at the Thiocarbonyl Carbon Atom	174
	4.2	Ligand Reactions of Selenocarbonyl Complexes	186
		(a) Reduction of the Selenocarbonyl Ligand	187
		(i) An Hydrido-Selenocarbonyl Complex	188
		(ii) Hydride Transfer	190

	Page
(b) Nucleophilic Attack at the Selenocarbonyl	
Ligand	194
CONCLUSION	198
EXPERIMENTAL	200
REFERENCES	215
APPENDIX I	233
SODIUM HYDROSELENIDE AND SODIUM HYDROTELLURIDE	233
(a) Preparation of Sodium Hydroselenide	233
(b) Preparation of Sodium Hydrotelluride	234
APPENDIX II	236
PREPARATION OF CARBON DISELENIDE	236
ACKNOWLEDGEMENTS	240

LIST OF TABLES

		Page
CHAPTER 2		
2.1	I.r. and ¹ H n.m.r. Data for Related Adducts of	
	Os(CO) ₂ (PPh ₃) ₂	68
2.2	Comparative Structural Data for Some Iridium	
	η ² -Oxygen Complexes	71
2.3	Comparative Structural Data for Some η^2 -Carbonyl	
	Complexes	73
2.4	I.r. Data for Osmium Complexes	115
2.5	H n.m.r. Data for Osmium Complexes	117
CHAPTER 3		
3.1	I.r. Data for Alkoxymethyl and Methyl Complexes	158
3.2	H n.m.r. Data for Alkoxymethyl and Methyl Complexes	159
3.3	I.r. Data for Chalcoformaldehyde, Ylide and Derived	
	Complexes	161
3.4	H n.m.r. Data for Chalcoformaldehyde, Ylide and	
	Derived Complexes	163
CHAPTER 4		
4.1	I.r. Data for η^2 -CS ₂ , η^2 -CSeS and η^2 -CSe ₂ Complexes	196
4.2	I.r. Data for η^2 -CSeS, η^2 -CSe $_2$, CSe and Related	
	Complexes	211
4.3	1 H n.m.r. Data for η^{2} -CSeS, η^{2} -CSe $_{2}$, CSe and Related	
	Complexes	213

LIST OF ABBREVIATIONS

n-Bu n-butyl

s-Bu s-butyl

t-Bu t-butyl

CNR p-tolylisocyanide (unless otherwise

specified)

COD 1,5-cyclooctadiene

Cp pentahapto-cyclopentadienyl

Cp' pentahapto-ethyltetramethylcyclopenta-

dienyl

Cp pentahapto-pentamethylcyclopentadienyl

Cy cyclohexyl

dipy 2,2'-bipyridyl

DMF dimethylformamide

diphos 1,2-bis(diphenylphosphino)ethylene

dppe 1,2-bis(diphenylphosphino)ethane

dppm 1,2-bis(diphenylphosphino)methane

Et ethyl

hr(s). hour(s)

i.r. infrared

Me methyl

min. minute(s)

M.p. melting point

n.m.r. nuclear magnetic resonance

PCHO 0-diphenylphosphinobenzaldehyde

Ph phenyl

phen 1,10-phenanthroline

i-Pr

iso-propyl

ру

pyridine

R

alkyl or aryl (unless otherwise

specified)

THF

tetrahydrofuran

triflate

trifluoromethanesulphonate

PROLOGUE

THE FISCHER-TROPSCH SYNTHESIS REACTION

The drastic increase in oil prices since the end of 1973, coupled with world-wide concern regarding the rapid depletion of oil and natural gas reserves, has led to a reassessment of the role of coal as a major world energy source. Success in exploiting the world's huge reserves of coal will depend in the long run on developing technology to convert coal into liquid products and gas². One method of accomplishing this goal is via the Fischer-Tropsch reaction, in which synthesis gas - a mixture of CO and H₂ produced by burning coal in the presence of O₂ and steam - is converted into a wide range of hydrocarbon products.

The Fischer-Tropsch synthesis, which may be broadly defined as the reductive polymerization of CO, can be schematically represented as shown in equation 1. The "CHO" products are any

organic molecules containing C, H, and/or O which are stable under the reaction conditions employed in the synthesis. With most heterogeneous catalysts the primary products of the reaction are straight-chain alkanes, while the secondary products include branched-chain hydrocarbons, alkenes, alcohols, aldehydes, and carboxylic acids. The distribution of the various products depends on both the type of catalyst and the reaction conditions utilized³.

The Role of Organometallic Chemistry

The problems for organometallic chemistry in dealing with the Fischer-Tropsch synthesis are firstly to find homogeneous catalysts and secondly to endeavour to understand the reaction.

The Fischer-Tropsch reaction is at present exclusively dependent upon heterogeneous catalysts which are not highly selective 8 and are thus wasteful of reagents 168. Heterogeneous catalysts do present several advantages over homogeneous catalysts, but the key performance factor which has continued to promote efforts to find homogeneous substitutes is the high and often manipulable selectivity that is the hallmark of a successful homogeneous catalyst. Transition metal cluster complexes have been reported to function as homogeneous catalysts for the reduction of carbon monoxide. Thus, $\text{Os}_3\text{(CO)}_{12}$ or $\text{Ir}_4\text{(CO)}_{12}$ in toluene solution have been found 164 to be mildly catalytic for reduction of CO to $\mathrm{CH}_{\mathtt{A}}$, and the latter ⁷³ also yields ethane in a NaAlCl_A melt at 180°C. Likewise Walker et al. 165 reported salts of the cluster anion $[Rh_{]2}(CO)_{30}]^{2-}$ in THF or dioxane to be active for the hydrogen reduction of CO to methanol, ethylene glycol, glycerol, and propylene glycol. Several mononuclear metal complexes (for example, $CoH(CO)_4$, $MnH(CO)_5^{62}$, and $Ru(CO)_5^{167}$) have recently been shown to homogeneously catalyse the reduction of carbon monoxide by hydrogen to hydrocarbons. However, no homogeneous process is yet in use which is competitive with presently available heterogeneous processes 168.

The elucidation of the mechanism of the Fischer-Tropsch synthesis (both the heterogeneously catalysed reaction and the more

recently developed homogeneous analogues) has been the aim of much research in recent years. While the mechanism of the reaction is still unknown, over the last 50 years several mechanisms have been proposed and these may be divided into three main classes principally on the basis of studies using heterogeneous catalyst systems: (a) metal-carbide mechanisms; (b) hydroxyl "carbene", =C(OH)H, condensation mechanisms; and (c) CO insertion mechanisms.

The earliest theory, advanced by Fischer and Tropsch in 1926⁴, proposed that the reaction proceeded via formation of intermediate metal carbides which reacted on the catalyst surface to form methylene groups. Surface polymerization of these methylene groups was then thought to occur to form hydrocarbon chains, which desorbed as saturated and unsaturated hydrocarbons. For example, the following reaction sequence was proposed for cobalt-based catalysts⁵:

Co + CO
$$\longrightarrow$$
 Co—CO $\xrightarrow{\text{H}_2}$ Co—C + H_2 Co—chemisorbed surface CO carbide

A second theory for the mechanism, proposed by Storch *et al.* in 1951⁶, suggested the formation of =C(OH)H groups on the catalyst surface via hydrogenation of chemisorbed CO:

$$M = C = 0$$
 + $H_2 \longrightarrow M = C < OF$

Chain growth then occurs through condensation of these groups with

concomitant elimination of water and addition of hydrogen:

and termination by means of one of the sequences shown below:

The third class of mechanisms is that originated by Pichler and Schulz in which chain growth is accomplished by direct insertion of an absorbed CO molecule into a carbon-metal bond produced by hydrogenation of a surface carbonyl⁷. This mechanism explains all the various types of products found in the heterogeneously catalysed Fischer-Tropsch synthesis and incorporates many concepts which have now been demonstrated in organometallic chemistry. Several other mechanisms have been proposed^{8,9}; in essence these closely resemble that proposed by Pichler. The mechanism proposed recently by Henrici-Olivé and Olivé⁸ based on individual steps known to occur in

homogeneous catalysis with soluble mononuclear transition metal complexes is depicted in Scheme 1.

$$H-M \xrightarrow{CO} H-C-M \xrightarrow{H_2} H-C-M \xrightarrow{H} H-H-M \xrightarrow{H} H-L-M \xrightarrow{$$

Scheme 1 Mechanism of the Fischer-Tropsch Reaction.

Reference 8.

A major problem associated with the investigation of the mechanism of the heterogeneously catalysed Fischer-Tropsch synthesis is understanding the nature of the molecular species which are formed and the processes which take place at the active sites of a catalytic surface. The nature of chemisorbed species has been indirectly investigated for a long time through the study of bulk properties and some spectroscopic methods have been used to examine the chemisorbed species which are assumed to be either precursors to or intermediates in heterogeneously catalysed reactions. But to a large extent this is an area of heterogeneous catalysis for which a fundamental knowledge is lacking.

Even the structure of metallic catalysts has been the subject of a certain amount of controversy 157, however work by Boudart 158 and others 157,159 suggests that typical industrial metallic catalysts consist of finely divided, irregular particles of 100 or more metal atoms. This is clearly quite different from an ideal metal surface.

Polynuclear transition metal complexes or clusters containing as many as 30 metal atoms 160 forming a central core and bonded together in many different geometries have now been synthesized. Large numbers of such complexes have been characterized by X-ray crystallography 161 and the size of these molecules can, in fact, approach that of particles of finely dispersed metals. Many, but the larger aggregates in particular 161c , have structures resembling those proposed for metal crystallites. An example of the structural relationship is offered by the hexagonally close packed structure of $[{
m Rh}_{13}{
m H}_3({
m CO})_{24}]^{2-162}$. Such hcp structures are common for pure metals occurring, for example for osmium, ruthenium and, under some

conditions, cobalt; pure rhodium however is cubic close packed 163.

It appears, however, that even small transition metal cluster complexes can homogeneously catalyse the reduction of carbon monoxide by hydrogen 73,164,165. On the basis of this catalytic activity and other similarities, a number of workers have suggested that useful analogies may be drawn between the homogeneous stoichiometric (organometallic) chemistry of clusters and the processes which occur on the surfaces of heterogeneous catalysts 166. Moreover, the recent observations of homogeneous catalysis of the reduction of carbon monoxide by several mononuclear metal complexes 62,167 suggest that it would not be unreasonable to surmise that discrete mononuclear transition metal complexes (as well as clusters) are, to a first approximation, reasonable models for metal surfaces in the heterogeneously catalysed Fischer-Tropsch synthesis reaction.

The interrelationship between surface chemistry, heterogeneous catalysis and organometallic chemistry has been discussed by several authors and while the application of models for bonding and reactivity developed in organometallic chemistry to heterogeneous catalysis remains questionable (since no exact homogeneous analogue of the heterogeneous Fischer-Tropsch synthesis is known), the practice has originated through the need to draw reasonable chemical representations of surface species proposed for heterogeneous reactions. Even the utilization of organometallic models for homogeneous Fischer-Tropsch syntheses is open to question. This is particularly so when the known stoichiometric organometallic reactivity is not in agreement with the reactivity proposed for the catalytic organometallic species. However, organometallic reactivity,

in the main, has been investigated at temperatures less than 100°C while catalytic species (both homogeneous and heterogeneous) are often formed or react at much higher temperatures. Some unexpected and possibly enhanced reactivity of organometallic compounds may be anticipated at elevated temperatures.