http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author’s permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence.

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.
Automatic Heuristic Selection, on a Problem by Problem Basis, Using an Analytical Model and In Situ Sampling

Author: Santiago Franco
Supervisor: Dr. Mike Barley

The Department of Computer Science
The University of Auckland
New Zealand

March 2012
Abstract

One of the main drives in automated planning is to automate the translation from the knowledge level description of the problem to the symbol level implementation of a solver for that problem. The field is at the point where there are techniques that can automatically synthesize very large numbers of heuristics that can be used by heuristic search based problem solvers [Holte et al., 2005], [Edelkamp, 2006], [Culberson and Schaeffer, 1994], [Haslum et al., 2007], etc. However, currently there is no a priori method available to automatically tailor them to a specific problem instance. Nor are there any automated techniques to automatically determine which heuristics are best for a problem. There are some automated techniques to generate problem specific heuristics based on in situ gathered information but they are not competitive with state-of-the-art manual heuristic selection.

Currently, the state-of-the-art is for the user to determine this a priori. This is usually done by running each of the heuristics on a wide range of problems in the chosen domain. The heuristic that is best on average for the domain is then used for each problem in the domain. The current approach is empirical, this thesis explores an analytical approach; which uses a simplified run-time formula that represents the important components of the problem-solver. This formula predicts the impact of the selected heuristic subsets upon run-time. Some of the formula’s parameters can be determined a priori (e.g., how long it takes to check for a goal state) while others can only be determined a posteriori. Unfortunately, finding out those values after the problem has been solved is not usually very useful.

This thesis explores the possibility of using the early parts of the problem-solving task (in situ sampling) to determine approximate values for those parameters. A system called RIDA* was created to do this. The danger is that the cost of determining these approximate values may outweigh the benefits those values bring. The ideal situation is to only do as much extra work as is needed to obtain the approximate values that allow us to make a decision that saves enough work to compensate for the time invested.

We found that RIDA* was competitive, and in some cases significantly faster, than manual heuristic selection. However, there are two caveats: RIDA* has a scalability issue for large heuristic sets due to the combinatorial explosion in the heuristics search space. Also RIDA*’s in situ sampling effort is currently determined a priori for the domain, it does not have an in situ mechanism to adjust its sampling effort. Both of these caveats are the subject of future directions for research. This thesis work(RIDA*) significantly advances the automation of in situ heuristic selection.

Finally, RIDA* uses new data structures which significantly reduce the costs associated with in situ sampling. Significantly reducing in situ sampling costs is critical for any technique using problem-specific heuristics to be competitive with state-of-the-art manual heuristic selection.
To my mother, Maria Reyes Aixela Barasona, wife, Susan Elizabeth Quantrell and my two beautiful children, Rodrigo and Megan.
It is with great pleasure that I am able to take this opportunity to express my sincere appreciation to my supervisor, Dr. Mike Barley, to whom I will always be indebted for his guidance, wisdom, dedication to my work, and, most of all, endless support.

I must also express my gratitude to the Computer Science Department at the University of Auckland. Whenever I needed any help, all the administrative and IT support staff were helpful and friendly. I would also like to thank my colleagues in the postgraduate office, always ready for a good nature chat whenever the thesis proved to much, or a bit of LaTeX advice that saved me hours of online search (Thanks Al!).

I would like to mention that I am very thankful to the University of Auckland for fully financing my doctoral studies through a Doctoral Scholarship.

Also thanks to my dear friend, Dr. Clara Palleja-Lopez, whose friendship, advice and support helped me finishing this thesis.

Finally, I must express my deepest gratitude to my wife, Susan Elizabeth Quantrell, whose love and support helped me to never give up and finish this thesis.
Contents

1 Introduction ... 1
 1.1 Introduction ... 1
 1.2 Problem Description .. 3
 1.2.1 Classic Problem .. 3
 1.2.2 Modern Problem .. 3
 1.3 Evaluation Basis ... 6
 1.4 Comparison Basis to the Manual and Automatic Approaches 7
 1.5 Brief Approach Description 10
 1.6 Main Claims .. 13
 1.7 Roadmap ... 16

2 Reconfigurable-IDA* (RIDA*) In Situ Selection Framework 17
 2.1 Introduction .. 17
 2.2 Possible Approaches to Heuristic Selection 20
 2.2.1 A Priori .. 20
 2.2.2 A Posteriori ... 22
 2.3 Best Heuristic Subset on Average for the Domain 22
 2.4 What is Automatic In Situ Heuristic Selection 27
 2.4.1 RIDA* Efficiently Combines Problem Solving and In Situ Sampling 28
 2.5 Time Vs Size as a Performance Metric 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Brief Discussion on the Sampling Effort and Capping</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Main Claims</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>RIDA* Summarized Description and Example</td>
<td>35</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Sampling Module Example</td>
<td>36</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Prediction Module Example</td>
<td>41</td>
</tr>
<tr>
<td>2.9</td>
<td>In Situ Search and the Literature</td>
<td>44</td>
</tr>
<tr>
<td>2.9.1</td>
<td>In Situ Planner</td>
<td>44</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Time Modelling of Overall Search Cost</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>Compacting the In Situ Gathered Data</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>Why the Heuristic Union Search Tree</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>On the Fly Generation of the Heuristic Union Search Tree: the Mintree Rule</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>The HUST’s Credit Assignment Problem</td>
<td>55</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Culprit Counters</td>
<td>56</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Culprit Counters Are Memory Intensive but Time Efficient</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>Solving the Credit Assignment Problem Using the Culprit Counter Lattice</td>
<td>58</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Detailed Example</td>
<td>58</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Parent Improvement</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>Managing Large Heuristic Powersets</td>
<td>61</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Limiting the combination degree</td>
<td>61</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Sparse Representation of the Culprit Counter Lattice</td>
<td>63</td>
</tr>
<tr>
<td>3.6</td>
<td>HUST’s Safe Early Truncation</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>RIDA* Run-time Formula</td>
<td>69</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>69</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Time vs Size as a Performance Comparison Metric</td>
<td>70</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Parametric Modelling for IDA*</td>
<td>72</td>
</tr>
<tr>
<td>4.2</td>
<td>A Generic Parametric Model for IDA*</td>
<td>75</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Generic Algorithm for IDA*</td>
<td>75</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Parametric Equations for Generic Algorithm for IDA*</td>
<td>75</td>
</tr>
</tbody>
</table>
4.3 Obtaining the Parametric Equation Variables Value for IDA* 85
4.3.1 Uniform Search Tree Method . 86
4.3.2 HBF Method . 88
4.3.3 Heuristic Distribution Method . 91
4.3.4 Conclusions Regarding Node Generated Prediction Models 97
4.4 Conclusion . 99
4.5 IDA* Modelling Relevant Literature . 100

5 Extended Literature Review 105
5.1 Introduction . 105
5.2 Hyper-heuristics . 111
5.2.1 Introduction . 111
5.2.2 Classification . 113
5.3 ABSOLVER II . 119
5.3.1 Composer . 120
5.3.2 Dropper . 121

6 Experiments 123
6.1 Introduction . 123
6.1.1 Pattern Databases(PDBs) . 127
6.1.2 Pattern Databases’ Relevant Literature 129
6.2 Experimental Setup . 132
6.2.1 Fifteen Puzzle Experiments Setup . 132
6.2.2 Twenty-four Puzzle Experimental Setup 134
6.2.3 Avoiding Goal Placement Stochastic Performance Comparison Effects136
6.2.4 Competitive Random Generation of Neighboring Patterns 137
6.2.5 Towers of Hanoi Setup . 139
6.2.6 Pattern Database for Towers of Hanoi 140
6.3 Claim #1: Automating Heuristic Selection Using a Run-time Formula . . 142
6.3.1 Run-time Formula . 142
6.3.2 This Runtime Formula Uses In Situ Parameters to Approximate A Posteriori Values. 147
6.3.3 RIDA* Is Faster than The Standard Automated Solution 150
6.3.4 RIDA* Is Competitive With The “Best Heuristic Subset on Average for the Domain” Approach 154
6.3.5 Another Domain: Towers of Hanoi 160
6.4 Claim#2: Compact Representation of HSTs Reduces Overall Sampling Costs 162
6.4.1 Fifteen Puzzle 162
6.4.2 Twenty-four Puzzle 164
6.4.3 Towers Of Hanoi 166
6.5 Claim #3: Solution to the Credit Assignment Problem 168
6.5.1 Towers Of Hanoi Credit Assignment Problem 169
6.6 Summary of Results for Claims 1-3 171
6.6.1 Claim#1 171
6.6.2 Claim #2 176
6.6.3 Claim #3 177
6.7 RandomizationExperiments 178
6.7.1 Introduction 178
6.7.2 Fifteen Puzzle Results 180
6.7.3 Twenty-four Puzzle Results 182
6.7.4 Randomization Approach for Towers of Hanoi 185
6.8 CrossoverExperiments 187
6.8.1 Introduction 187
6.8.2 Fifteen Puzzle 188
6.8.3 Twenty-Four Puzzle 189
6.8.4 Crossovers for Towers of Hanoi 194

7 Conclusions 197
7.1 Problem Description and Solution Approach 197
Contents

7.1 Problem Description
- Problem Description .. 197
- Solution Approach .. 198

7.2 Claims
- First Claim: Using Run-time Formula to Automate Heuristic Selection 200
- Second Claim: Compact Representation Reduces Sampling Costs 204
- Third Claim: A Credit Assignment Solution 206
- Future Work .. 208

7.3 Usefulness of RIDA* to Different Problem Domains
- Generic Heuristic Creation using Abstraction Technique (GHCAT) 211
- Memory Partitioning ... 211
- ABSOLVER II .. 212

7.4 Theory and Definitions
- Algorithm Related definitions ... 215
- Graph Theory ... 217
- Heuristic Search Trees definitions 220

7.5 Detailed Experimental Data
- Fifteen Puzzle Data ... 225
- Twenty-four Puzzle Data .. 227
 - Random Heuristic generation .. 227
 - Full Parametric Model Versus Average Time per Node Model .. 231
 - Results ... 234
 - Results Vs Choosing the Best on Average Heuristic Combination . 236
 - Data Sampling Results .. 237
 - Separated Sampling and In Situ Run-times 239
 - Number of Generated Nodes ... 241
 - Randomization .. 244
List of Figures

1.1 Best On Average Vs Problem By Problem Possible Outcomes 8
1.2 Diagram Showing RIDA* Modules Basic Functionality. 11
2.1 Diagram Showing RIDA* Modules’ Basic Functionality. 37
3.1 HUST example with Culprit Counter Lattice and Final Size Counters. . 52
3.2 Culprit Counters Lattice .. 59
4.1 Iterative HBF comparison of single 6,6,6,6 PDB Heuristic Vs Max of 8 PDBs(5,5,5,5,4) for First 6 Instances of 24 Puzzle in [Holte et al., 2006]. Horizontal axis are F-values, Vertical axis are HBF values. 92
6.1 Our Five 7-1-7 Heuristics ... 133
6.2 Four-Disk four peg Towers of Hanoi HBF. 139
6.3 Iterative HBF for our Twenty-five heuristic set (section 6.2.4). The horizontal axis is the iteration number, the vertical axis are the HBF values. Avg_HBF is the average HBF for the last HBF for each problem. 147
6.4 Optimality Vs Average Savings as a Function of the Capping Limit For the Fifteen puzzle Experiments. (Table B.2, p. 226). Optimality = \(\text{avg}(100 \times \frac{\text{best time}}{\text{chosen time}}) \); AvgSavings = \(\text{avg}(100 \times (1 - \frac{\text{selected time} + \text{sampling time}}{\text{Max of 5 time}})) \) 147
6.5 In this graph we show the overall run-times for both the “maximizing the whole available heuristic set” approach and RIDA*. For each of the heuristic sets we used the maximum combination degree with the best results. We show overall times, for problem specific data see B.8.

6.6 In this graph we show the RIDA*’s run-times compared to using the best subset on average for the problem suite. We show overall times. For problem specific data see B.10. These results are for the Twenty-four puzzle problem suite in [Holte et al., 2006].

6.7 In this graph we show RIDA*’s run-time for the Fifty heuristic set. We also show the run-time when selecting the best subset on average for the problem suite. We also show the results when the best subset on average is selected from a different set of random problems of the same size. We show overall times. For problem specific data see B.10. These results are for the Twenty-four puzzle problem suite in [Holte et al., 2006].

6.8 In this graph we show the Credit Assignment impact on the HUST time compression. The more subsets to assign, the more the original time compression is reduced. The actual number of subsets for each entry is in table 6.11.

6.9 Overall Run Time with/without Randomization for Twenty-four suite of six random problems as in [Holte et al., 2006]

6.10 Schema Displaying the Three Critical Distances in a Crossover.

B.2 PDB-based Heuristic used for testing parametric prediction models. Tiles picked randomly but ensuring that final patterns follow Korf and Felner rule of thumb[Korf and Felner, 2002]

B.2 Invididual Run Time with/without Randomization for Twenty-four suite of six random problems as in [Holte et al., 2006]
List of Tables

2.1 Sampling Phase example for Twenty-Four Puzzle problem #1 [Korf et al., 2001]. Fifty Heuristic Set, Maximum Combination Degree 4. HUST Compression Factors without Including the Credit Assignment Problem. 38

2.2 Sampling Phase example for Twenty-Four Puzzle problem #1 [Korf et al., 2001]. Fifty Heuristic Set, Maximum Combination Degree 4. HUST Compression Factors with/without including the Credit Assignment Problem. 40

2.3 Solving Phase example for Twenty-Four Puzzle problem #1 [Korf et al., 2001]. Fifty Heuristic Set, Maximum Combination Degree 4. Inverse operator check and Early Stopping are being used. Selected four heuristic combination: 5, 18, 31, 37 (Table B.3) 43

3.1 Use only one parent to avoid culprit duplication and reduce additions by almost one order of magnitude 61

3.2 Number of Additions when Limiting Maximum Combination Degree Example 63

3.3 Time to build the HUST vs time to solve its Credit Assignment Problem (C.A.P) as a function of the maximum combination degree. Always using a set with thirty heuristics and the same example problem. See algorithm 3.1. Time in seconds. 65

4.1 Grouping Tasks from Algorithm 4.1, p. 76 as Variables for Parametric Equation. 78
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Advantages and Caveats of Domain Based Sampling vs In Situ Sampling</td>
<td>100</td>
</tr>
<tr>
<td>6.1</td>
<td>Time per Node as a Function of the Number of Heuristics, see Eq (6.2), (p. 143). Each additional heuristic adds 0.096μ seconds.</td>
<td>135</td>
</tr>
<tr>
<td>6.2</td>
<td>Stochastic Changes in Comparative Performance Generated by Stopping Once the Goal Is Found. Using Twenty-four Puzzle PDB-based Heuristics as in [Holte et al., 2006]</td>
<td>136</td>
</tr>
<tr>
<td>6.3</td>
<td>Average Prediction Accuracy per F-bound. For detailed experimental data see table B.6 in appendix B</td>
<td>144</td>
</tr>
<tr>
<td>6.4</td>
<td>Number of Problems Solved while Still in RIDA* Sampling Phase as a Function of the A Priori Fixed Capping Limit. There were 1,000 problems in the Fifteen puzzle experiment suite. For detailed experimental data see table B.2 (p. 226) in appendix B</td>
<td>149</td>
</tr>
<tr>
<td>6.5</td>
<td>Overall Run-time for State-Of-The-Art Heuristic Sets in [Holte et al., 2006] and [Korf and Felner, 2002] and Our Random Generated Heuristics. No heuristic selection, taking the maximal for all heuristics in the set.</td>
<td>152</td>
</tr>
<tr>
<td>6.6</td>
<td>Speed-up ratio when Using In Situ Selection For the Eight, Twenty-five, Fifty and one Hundred Set Overall Times. $Speed_{up} = \frac{Maximize \text{ Whole Set Runtime}}{RIDA^* \text{ Overall Runtime}}$</td>
<td>152</td>
</tr>
<tr>
<td>6.7</td>
<td>Best Subset On Average Vs RIDA* In Situ Selection for Fifteen Puzzle Five (4-4-4-4) Heuristic Set.</td>
<td>156</td>
</tr>
<tr>
<td>6.8</td>
<td>Overall time results for Towers of Hanoi(4 Pegs-16 Disks)</td>
<td>161</td>
</tr>
<tr>
<td>6.9</td>
<td>RIDA* overall time for its three distinct phases (HUST creation or sampling, Credit Assignment or Prediction and Solving time</td>
<td>162</td>
</tr>
<tr>
<td>6.10</td>
<td>HUST Savings</td>
<td>163</td>
</tr>
<tr>
<td>6.11</td>
<td>Redundancy Reduction and Time Compression No Credit Assignment Impact Included. Only overall Results, for problem specific data see B.2.5.</td>
<td>165</td>
</tr>
<tr>
<td>6.12</td>
<td>Redundancy Reduction and Time Compression No Credit Assignment Impact Included.</td>
<td>168</td>
</tr>
<tr>
<td>Table Number</td>
<td>Table Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>6.13</td>
<td>Time Compression with and without Credit Assignment (C.A.)</td>
<td>170</td>
</tr>
<tr>
<td>6.14</td>
<td>Credit Assignment Costs</td>
<td>171</td>
</tr>
<tr>
<td>6.16</td>
<td>Features of the Used Approaches for the 24-Puzzle. All the PDBs Used for the 24-Puzzle were Stored as a Sparse Array in RAM.</td>
<td>182</td>
</tr>
<tr>
<td>6.17</td>
<td>Overall Time Ratios With & Without Randomization. Overall time data in Figure 6.9 (p. 183). Specific time data in Figure B.2 (p. 244).</td>
<td>184</td>
</tr>
<tr>
<td>6.18</td>
<td>Overall Time results when solving the 16 Disk Tower of Hanoi with 4 pegs using the Randomization approach for the whole set (with A*) and for RIDA*’s selected subset with M.C.D = 3 and a capping limit of 100,000 nodes. RIDA* used A* as well for the Solving Phase.</td>
<td>187</td>
</tr>
<tr>
<td>6.20</td>
<td>Crossover Speed-up Ratio for the Twenty-four Puzzle Suite. Suite of six random problems, using the 25, 50 and 100 heuristic sets.</td>
<td>191</td>
</tr>
<tr>
<td>6.21</td>
<td>Crossover Speed-up Ratio for the Twenty-four Puzzle Suite of Six Random Problems. Using the 25, 50 and 100 heuristic sets.</td>
<td>196</td>
</tr>
<tr>
<td>B.1</td>
<td>Time per node</td>
<td>225</td>
</tr>
<tr>
<td>B.2</td>
<td>Fifteen Puzzle Results for a Thousand Random Problems Divided in Ten Groups</td>
<td>226</td>
</tr>
<tr>
<td>B.5</td>
<td>Avg. Cost per Node for “Average Cost per Node” Prediction Model.</td>
<td>232</td>
</tr>
<tr>
<td>B.6</td>
<td>Prediction of Average Run Time for IDA* Iterations on Twenty-Four Puzzle Random Instances, with a PDB-based Heuristic (figB.2) and Inverse Operator Check</td>
<td>233</td>
</tr>
<tr>
<td>B.7</td>
<td>Twenty-four Puzzle Time Results (seconds) when Maximizing across All Heuristic Sets.</td>
<td>234</td>
</tr>
<tr>
<td>B.8</td>
<td>Twenty-Four Puzzle Time Results (seconds) Comparing RIDA* In Situ Heuristic Selection vs Heuristics in [Korf and Felner, 2002, Holte et al., 2006]</td>
<td>234</td>
</tr>
</tbody>
</table>
B.9 Problem Specific Speed-up Ratio using RIDA* vs the Maximization Approach (Definition A.3.11) \(\text{Speedup Ratio} = \frac{\text{MaximizationTime}}{\text{RIDA*Time}} \) for the Twenty-five(5-5-5-5-4), Fifty(5-5-5-5-4) and Hundred(5-5-5-5-4) Set Overall Run-times. ... 235

B.11 HUST Compression Factors for Twenty-four Puzzle Suite Of Six Experiments[Holte et al., 2006]. Twenty Five Heuristic Set, Maximum Combination Degree 4. 237

B.12 HUST Compression Factors for Twenty-four Puzzle Suite Of Six Experiments[Holte et al., 2006]. Twenty Five Heuristic Set, Maximum Combination Degree 5. 237

B.13 HUST Compression Factors for Twenty-four Puzzle Suite Of Six Experiments[Holte et al., 2006]. Fifty Heuristic Set, Maximum Combination Degree 4. 238

B.14 HUST Compression Factors for Twenty-four Puzzle Suite Of Six Experiments[Holte et al., 2006]. Fifty Heuristic Set, Maximum Combination Degree 5. 238

B.15 HUST Compression Factors for Twenty-four Puzzle Suite Of Six Experiments[Holte et al., 2006]. Hundred Heuristic Set, Maximum Combination Degree 3. 239

B.16 HUST Compression Factors for Twenty-four Puzzle Suite Of Six Experiments[Holte et al., 2006]. Hundred Heuristic Set, Maximum Combination Degree 4. 239

B.17 Twenty-four Puzzle Problem Specific Sampling (HUST and C.A.P) vs RIDA* Run-time for Eight(5-5-5-5-5,M.C.D=8), Twenty-five(5-5-5-5-4,M.C.D=4), Fifty(5-5-5-5-4,M.C.D=4) and Hundred(5-5-5-5-4,M.C.D=3) sets. 240

B.18 Twenty-four Puzzle Problem Specific Sampling (HUST and C.A.P) Time vs RIDA*'s Run-Time for Eight(5-5-5-5-5,M.C.D=8), Twenty-five(5-5-5-5-4,M.C.D=5), Fifty(5-5-5-5-4,M.C.D=5) and Hundred(5-5-5-5-4,M.C.D=4) sets. 240

B.19 Twenty-four Puzzle Number of Generated Nodes. Note that Results include both HUST nodes and regular IDA* nodes. Use HUST tables if need to separate data. 242