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Abstract— Estimating the entropy of finite strings has
applications in areas such as event detection, similarity mea-
surement or in the performance assessment of compression
algorithms. This report compares a variety of computable
information measures for finite strings that may be used
in entropy estimation. These include Shannon’sn-block
entropy, the three variants of the Lempel-Ziv production
complexity, and the lesser known T-entropy. We apply these
measures to strings derived from the logistic map, for which
Pesin’s identity allows us to deduce corresponding Shannon
entropies (Kolmogorov-Sinai entropies) without resorting to
probabilistic methods.

I. I NTRODUCTION

The term “entropy” is used in both physics and in-
formation theory to describe the amount of uncertainty
or information inherent in an object or system. Clausius
introduced the notion of entropy into thermodynamics
in order to explain the irreversibility of certain physical
processes in thermodynamics. Boltzmann quantified this as
S = k log W . Shannon recognized that a similar approach
could be applied to information theory. In his famous 1948
paper [1], he introduced a probabilistic entropy measure
HS,n:

HS,n = −
∑

a1,a2,...,an

P (a1, a2, . . . , an) log2 P (a1, a2, . . . , an)

(1)
whereP (a1, a2, . . . , an) is the probability of occurrence
of the patterna1, a2, . . . , an in the output of an informa-
tion source. This entropy measure is known as then-block
entropy. The Shannon entropy rate of a process is then
given by

hS = lim
n→∞

HS,n

n
. (2)

Computation of then-block entropy is straightforward –
provided theP (a1, a2, . . . , an) are known. In many prac-
tical applications, however, one is interested in the entropy
inherent in a finite object, which can usually be represented
in the form of a finite stringx of length |x| = N . Such
applications include, e.g., similarity measurement [2] and
the detection of denial-of-service attacks [3], [4].

However, finite strings imply an absence of genuine
probabilities, thus leaving the entropy of a finite object
undefined from a probabilistic perspective. If one regards
|x| as representative output from some source process,
one may estimateP (a1, a2, . . . , an) from the pattern fre-
quencies observed inx. However, even for well-behaved
sources, only estimates forn < log N are sensible, which

implies a severe trade-off betweenN and estimation accu-
racy. This is the chief motivation behind non-probabilistic
approaches to entropy estimation.

Non-probabilistic approaches have been proposed by
a number of of authors and include the works by Kol-
mogorov [5], [6], Solomonoff [7], and Chaitin [8], as well
as the various parsing algorithms of the Lempel-Ziv fam-
ily. Among the latter, Lempel and Ziv’s original parsing
algorithm for the computation of aproduction complexity,
called LZ76 [9] in our paper, was explicitly designed
to address the question of finite sequence complexity. It
measures the production complexity of a string as the
number of steps required by the parsing algorithm.

The two other algorithms discussed here, LZ77 [10] and
LZ78 [11], were mainly intended for data compression
and both restrict the pattern search space of LZ76 to
achieve linear processing time. However, these algorithms
also perform a number of successive parsing steps. This
number may be used as an estimate for the LZ production
complexity but can never be smaller than the latter. Lem-
pel and Ziv showed that their production complexity is
asymptotically equivalent to Shannon’s entropy asN goes
to infinity. However, for the reasons already mentioned, it
is not possible to show this for finite strings. Evaluating
entropy measures for finite and, in particular, short strings
thus requires a different approach.

Comparing entropy estimates for strings with a known
entropy may supply corroborative evidence for the suitabil-
ity of both probabilistic and non-probabilistic entropy mea-
sures. One source for such strings that is often proposed
in literature is the partitioning of the logistic map with
biotic potential r. Its non-negative Lyapunov exponents
for a givenr are equal to the Kolmogorov-Sinai (Pesin)
entropy of the corresponding string [12].

This paper compares Shannon’s n-block entropy, en-
tropies from three implementations of the Lempel Ziv
complexity measure (LZ-76, LZ-77 with varying win-
dow sizes, and number of steps in LZ-78), and the T-
entropy [13] against the non-negative Lyapunov exponents
for the logistic map.

II. T HE LOGISTIC MAP AS A REFERENCE INFORMATION

SOURCE

The logistic map is defined by the recurrence relation
xt+1 = rxt(1 − xt). The coefficientr (referred to as the
“biotic potential”) is given a value in the range0 ≤ r ≤ 4.
For0 < x0 < 1, xt ∈ (0, 1) for all t. With increasingt, the



values of the series either become periodic or chaotic, i.e.,
unpredictable depending on the choice ofr. One may de-
rive strings of symbols from the values of the logistic map
by partitioning the map’s state space into subspaces known
asMarkov cells. These Markov cells are then labeled with
symbols. The real-valuedxt are then encoded by their
labels to yield a string. Different choices of partition thus
yield different symbolic representations of the series. The
Shannon entropy of the resulting string depends on this
choice of partition. The supremum of the corresponding
Shannon entropies over all possible partitions (finite or
infinite) is known as theKolmogorov-Sinai entropy (KS-
entropy) and is a characteristic of the dynamical system.
For the logistic map, the binary partition (bipartition) is
well known to achieve the KS-entropy [14]. The bipartition
mapsxt to the binary alphabet, i.e.,0 for xt < 0.5 and to
1 otherwise.

Pesin’s identity [12] proves that for certain classes of
dynamical system (including the logistic map), the KS-
entropy equals the sum of the positive Lyapunov exponents
for the dynamical system. The Lyapunov exponent for the
logistic map may be computed from the series[xt] to
numerical accuracy. The Shannon entropy for the strings
produced from the logistic map may thus be computed
directly by way of Pesin’s identity, without reference to
source probabilities.

The logistic map has another useful property at the
Feigenbaum accumulation point r = r∞ ≈ 3.569945670,
which corresponds to the onset of chaos. It is known [15]
that by adding white noiseξ with amplitudeǫ, i.e.,

xt+1 = r∞xt(1 − xt) + ǫξt with ξt ∈ [−1, 1], (3)

results in a KS-entropy proportional toǫ.

III. L EMPEL-ZIV PARSING

Lempel and Ziv’s original 1976 algorithm [9] defines a
production complexity as the minimum number of parsing
steps of a self-learning automaton. LZ-77 [10], primarily
known as a compression algorithm, may similarly be used
to measure complexity in terms of the vocabulary size.
It achieves a speed improvement by restricting parsing
to patterns within a window of a restricted size. LZ-77
defaults to LZ-76 for window sizes that match or exceed
the length of the string being measured. The vocabulary
size is also used as the measure of complexity in LZ-
78 [11], the fastest of the three algorithms.

IV. T- ENTROPY

T-entropy is an information measure derived from a
recursive parsing process known asT-decomposition [16],
[17], [18], [19]. T-decomposition is not unlike Lempel-
Ziv parsing in that it produces a production-style com-
plexity [20], [21], [22], [23] known as the T-complexity.
This is subsequently linearised by the inverse logarithmic
integral [24] to yieldT-information [20], [21], [22], [23].
The T-entropy for the string is the average T-information
per symbol, i.e., the total T-information divided by the
length of the string. It has already been observed [13] that
T-entropy exhibits a correspondence with the KS-entropy.

V. EXPERIMENTS

In the first part of our experiments, we computed

• Shannon’sn-block entropy, computed from Eqn. (1),
• LZ-76 complexity,
• LZ-77 complexity with a selection of window sizes,
• LZ-78 complexity,
• T-entropy,
• and the KS-entropy

for 4000 values ofr.
Each of the first five sets of entropies/complexities was

plotted against the respective KS-entropy values. As the
KS-entropy ranges across several orders of magnitude,
logarithmic axes were chosen for all plots. A perfectly
matched entropy measure (i.e., one for which the com-
puted entropy is exactly equals the KS-entropy) would thus
be rendered as a set of points on the dashed line shown in
the plots. Two types of deviation may be observed in the
plots: scatter around the dashed line and systematic devia-
tions. Scatter is caused by random errors in the observation
and/or deviations of the sample string’s entropy from the
associated Lyapunov exponent, which are a consequence
of the truncated nature of the string. Systematic deviations,
on the other hand, result fromsystematic under- and/or
overestimation of the parameters being plotted. They may
be observed as ensembles that are not scattered around the
dashed line.

Figure 1 shows the Shannonn-block entropies for
n = 1, 4, and 15 versus the corresponding KS-entropy
values. As expected [25], the Shannonn-block entropy
approaches the KS-entropy from above asn increases.
However, asn approaches the logarithm of the sample
string length, Shannonn-block entropy starts to seriously
underestimate higher entropies, while still overestimating
lower entropies. The plots are indicative of the difficulties
inherent in using Shannon’sn-block entropy as a practical
entropy measure.

Figure 2 shows LZ-77 complexities for selected window
sizes. The performance of the LZ-77 algorithm is better
than that of the Shannonn-block entropy. In order to
obtain entropy estimates from Lempel-Ziv complexities, a
further normalisation step is required. This omitted here.

The accuracy of the LZ-77 estimates improves substan-
tially with increasing window size. If the chosen window
size is large enough to cover the sample string, LZ-77 is
equivalent to LZ-76, shown as the bottom scatter diagram
in the plot. The time efficiency of LZ-77 isO(N×M) for
strings of lengthN and windows of sizeM , i.e., O(N2)
in the LZ-76 case. As in data compression, the window
size in LZ-77 thus represents a compromise between speed
and accuracy.

LZ-78 is an O(N log N) algorithm permitting faster
complexity measurement suitable for longer strings. Fig-
ure 3 shows that LZ-78 also severely overestimates lower
entropies, even if the sample string size is increased to
1,000,000 bits. Note that the spread of LZ-78 complexity
values for a given KS-entropy values seems generally
much reduced compared to LZ-77. This can most likely
be attributed to the difference in string length.

Figure 4 similarly depicts the T-entropy values for
1,000,000 bit strings. T-entropy may be computed in



10
-3

10
-2

10
-1

10
0

10
-1

10
0

S
h
a
n
n
o
n
 e

n
tr

o
p
y
 h

1

Kolmogorov-Sinai entropy (bits/bit)

10
-3

10
-2

10
-1

10
0

10
-1

10
0

S
h

a
n

n
o

n
 e

n
tr

o
p
y
 h

4

sample string sizes: 100,000 bits

Kolmogorov-Sinai entropy (bits/bit)

10
-3

10
-2

10
-1

10
0

10
-1

10
0

S
h

a
n

n
o

n
 e

n
tr

o
p
y
 h

1
5

sample string sizes: 100,000 bits

Kolmogorov-Sinai entropy (bits/bit)

Fig. 1. Shannonn-block entropies forn = 1, 4, and15, for sample
strings produced from the logistic map.

O(N log N) [26]. T-entropy behaves similarly to LZ-76
in Fig. 2. As for LZ-76, the graph suggests that there may
be a degree of overestimation for smaller entropy values.
It is an open question whether this is a feature of LZ-76
or T-entropy, or perhaps at least in part attributable to the
KS-entropy measurements.

The second part of our experiments utilizes the fact
that adding noise to the logistic map at the Feigenbaum
point gives us access to an extended range of entropy
values. Figure 5 shows that LZ-76 gives a linear response
across the range, consist with the results by Crutchfield
and Packard [15].

The result for LZ-78 in Fig. 6 confirms the earlier
observation of significant overestimation at low entropies.
In fact, the measure seems to be complete insensitive
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Fig. 2. LZ-77 complexities for selected window sizes as indicated.
Note that a window size of 100,000 covers the entire string. LZ-77 is
equivalent to LZ-76 in this case.
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Fig. 3. LZ-78 complexities versus corresponding KS-entropyvalues.
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Fig. 4. T-entropies versus corresponding KS-entropy values.

below the top decade of entropies.
T-entropy in Fig. 7 once again reflects very much

the characteristics of LZ-76, albeit at a fraction of the
computational effort. This may be seen from Fig. 8, which
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Fig. 5. LZ-76 complexity as a function of additive noise amplitude.
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Fig. 6. LZ-78 complexity as a function of additive noise amplitude.
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Fig. 7. T-entropy as a function of additive noise amplitude.

shows a time comparison of the LZ-76, LZ-78, and T-
entropy measures as a function of entropy (additive noise
amplitude at the Feigenbaum point).
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Fig. 8. A comparison of computation times a function of additivenoise
amplitude.

VI. CONCLUSIONS

Both LZ-76 and T-entropy seem to deliver consistent
performance across the range of values tested and exhibit
close correspondence with KS-entropy. T-entropy may be
implemented as anO(N log N) algorithm. Its time perfor-
mance seems to be largely independent of entropy. LZ-76
on the other hand isO(N2) and its running time seems
to be proportional to entropy. The popular accelerations,
LZ-77 and LZ-78 can achieve up toO(N), but incur a
noticeable penalty in terms of accuracy at low entropies.

There are a number of open problems associated with
our experiments. Among others, the sources of scatter
and systematic deviation need to be investigated for all
complexity and entropy measures presented here.
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