
                                                 

Conditions of Calculating Amplifier Cut-Off    

Frequency by Time Constant 

                               

Jun
 
Tang

 1
, Su

 
Tang

 2 
,Yuan Ming Wu

 3
 

     
1,3

School of Opto-Electronic Information 

The University of Electronic Science and Technology of China 

Chengdu, China 

Email: tj_tangjun @163.com 

Email: ymwu@uestc.edu.cn 

  

2
Department of Electrical and Computer Engineering 

The University of Auckland 

PO Box 92019, Auckland, New Zealand 

Email:s.tang@auckland.ac.nz 

 

Abstract:   This paper mathematically proves the condition of estimating am amplifier cut-off 

frequency by the time constant method. Under the condition of unrelated capacitor loop circuit, a simple 

one to one relationship exists between each pole and time constant. The pole can therefore determined by 

its corresponding time constant. 
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1. INTRODUCTION 

An amplifier has a lower and an upper cut-off 

frequency. To find the cut-off frequencies precisely, 

the transfer method can be used. The procedure of the 

transfer function method for the lower cut-off 

frequency can be summarized as:  

 

(1) Find the small signal equivalent circuit at the 

lower frequency band.  

(2) Find the transfer function of the equivalent 

circuit.  

(3) Find all the poles and zeros of the transfer 

function.  

(4) Determine the cut-off frequency from the poles 

and zeros either by Bode plot or the dominant 

pole method.  

 

The procedure of the transfer function method for the 

upper cut-off frequency is the similar but need to use 

small signal equivalent circuit at upper frequency 

band.  

 

For the amplifier that has only one single capacitor, 

the transfer function method is not too difficult to use. 

For an amplifier that has multiple capacitors, in theory, 

it is also possible to calculate the cu-off frequencies by 

using transfer function. However, the calculation 

becomes very complex and difficult as the circuit is 

topologically complex. This paper presents a simple 

and easy method that can be used in engineering 

estimation of the cut-off frequency – named the time 

constant method.  

 

The time constant method is an engineering 

approximation. It does not require a precise 

mathematical analysis of the amplifier. The 



approximation however satisfies the engineering 

requirements. Particularly for the multiple capacitor 

amplifier, when it is impossible to determine the 

dominant pole, the time constant method can be very 

effective way to estimate the cut-off frequency.  

 

In this paper, the relationships between transfer 

function poles, time constants, and cut-off frequencies 

are developed and discussed. The condition and 

procedure of using time constant method is also 

presented.  

 

2. THEORETICAL ANALYSIS 

 

2.1 Lower cut-off frequency  

 

Consider Figure 1 of two-port linear network. 

Assume the capacitor C1 and C2 are independent from 

each other and there are no other capacitors and 

independent sources in the network. The two-port 

network may consist of resistors and dependent 

sources, but free of any independent sources and 

capacitors or inductors. When v2=0, the short circuit 

equivalent admittance Y1s is in parallel with C1. When 

v1=0, the short circuit equivalent admittance Y2s is in 

parallel with C2. The transfer admittances are Y12 and 

Y21.  

 

Figure 1.  Network model for short-circuit time 

constant  
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Let the determinant │Y│＝0. We can find the root  

p1 and p2. When frequency f =p1 or p2, I1(s)=0 and 

I2(s)=0, even if V1(s)≠0 or V2(s)≠0 . Therefore, 

p1 and p2 are the natural frequencies and the poles at 

lower frequency.  

Assume K a constant,  

 

K ( s - p1) (s - p2 ) =│Y│          (3) 

 

K(s-p1)(s-p2)=(Y1s+sC1)(Y2s+sC2) -Y12Y21          (4) 

K[s2-(p1+p2)s+p1p2]=C1C2s
2
+ 

(C1Y2s + C2Y1s )s +Y1s Y2s - Y12Y21          (5) 

 

Equating the coefficients,   

 

K=C1C2                             (6) 

- K(p1+p2)= C1Y2s + C2Y1s          (7) 

K p1p2=Y1s Y2s-Y12Y21               (8) 

 

Solving (6), (7), and (8), simultaneously gives 

-(p1+p2)=Y1s/ C1+Y2s/ C2= 1/R1s C1+1/R2s C2  

=1/ τ1s+1/ τ2s         (9) 

 

p1p2=(Y1s Y2s-Y12Y21)/C1C2      (10)                          

If C1 loop circuit and C2 loop circuit are independent 

from each other, i.e. the short-circuit time constants 

are independent, the transfer admittances Y12=0, and 

Y21=0, then,  

-(p1+p2)=1/R1s+1/R2s =1/τ1s+1/τ2s     (11)  

p1p2=G1sG2s/C1C2=1/τ1s·1/τ2s      (12)  

where τ1s and τ2s are the short-circuit time constant,  

τ1s = R1sC1, τ2s = R2sC2.  

And, p1= -1/τ1s, p2= -1/τ2s.       (13)  

From (13), it states that the two poles p1 and p2 are 

directly related to two short-circuit time constants 

τ1s and τ2s and can be calculated simply through (13).  

 

Conclusion statement 1:  If C1 loop circuit and C2 

loop circuit are independent, the two poles p1 and p2 

are directly related to two short-circuit time constants 

τ1s and τ2s and can be calculated simply through (13).  

 

After finding the poles, the lower cut-off frequency 

ωL can be found easily through these poles.  

 

Due to linearity of the circuit, same approach can be 

used to prove the following conclusion statement 

two.  

 



Conclusion statement 2:  For a circuit with N 

capacitors, if the N capacitor loops are independent, 

the poles are directly related to the corresponding 

time constants and can be calculated simply through 

 pi= -1/τis., i= 1, 2,… N.  

 

2.2 Upper cut-off frequency  

 

Consider a two-port linear circuit of Figure 2. The 

circuit has two independent capacitors C1 and C2. 

There are no other capacitors or inductors in the 

circuit. The two-port network may consist of resistors 

and dependent sources, but free of any independent 

sources and capacitors or inductors. When i2=0, C1 is 

in series with input resistor R1o. When i1=0, C2 is in 

series with output resistor R2o. The transfer resistances 

are R12 and R21.  

 
Figure 2. Network model for open-circuit time 

constant  

 

Z– Parameter matrix of the circuit is given by   
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Let the determinant │Z│=0. We can find the root p1 

and p2 of the equation. When frequency f = p1 or p2,  

V1 (s) =0 or V2 (s) = 0, even if I1(s)≠ 0 and 

 I2(s)≠0 . Therefore, p1 and p2 are the natural 

frequencies and the poles at the upper frequency 

band.  

 

Assume K a constant,  

K(s - p1/s)(s - p2/s)=│Z│           (16) 

 

K(s-p1/s)(s-p2/s)=(R1o+1/sC1)(R2o+1/sC2)-R12R21  (17) 

 

Multiply（17）with s2,  

K[s2-(p1+p2)s+p1p2]=(R1oR2o-R12R21)s
2
 

+(R1o/C2+R2o/C2)s+1/C1 C2           (18) 

 

Equate the coefficients,   

K=R1oR2o-R12R21            (19) 

-K(p1+p2)=R1o/C2+R2o/C1         (20) 

K p1p2=1/C1 C2                    (21) 

 

Divide (20) by (21),  

 

-(1/p1+1/p2)=R1o C1+R2o C2=τ1o+τ2o         (22) 

 

p1p2=1/ C1C2( R1oR2o-R12R21)       (23) 

Whereτ1o andτ2o are the open-circuit time constant, 

 τ1o = R1oC1, τ2o = R2oC2.  

 

When two capacitor loop circuits are independent, i.e., 

the two open-circuit time constants are not related, 

the transfer impedance R12=0, and R21=0.  

And  

-(1/p1+1/p2)=τ1o+τ2o         (24)  

p1p2=1/ C1C2R1oR2o=1/τ1o·1/τ2o            (25)  

Therefore,  p1= -1/τ1o, p2= -1/τ2o       (26) 

From (26), it states that the two poles p1 and p2 are 

directly related to two open-circuit time constants   

τ1o andτ2o and can be calculated simply through (26)  

 

Conclusion statement 3:  If C1 and C2 loop circuits 

are independent, the two poles p1 and p2 are directly 

related to two open-circuit time constants τ1o and τ2o 

and can be calculated simply through (26).  

  

Same approach can be used to prove the following 

conclusion statement.   

 

Conclusion statement 4:  For a circuit with N 

capacitors, if the N capacitor loop circuits are 

independent, the poles are directly related to the 

corresponding open-circuit time constants and can be 

calculated simply through pi= -1/τio, where 

i= 1, 2,… N.  

After finding the poles, the upper cut-off frequency 



ωu can be found easily through the poles.  

 

3.  CONCLUSION  

From the analysis in section 2, the following 

conclusion can be drawn.  

 

(1) When the capacitance loops are independent from 

each other, i.e., the time constant are not related, a 

pole is determined exclusively by its corresponding 

time constant. This is expressed by pi = - 1/τi., 

 i= 1, 2,… N. The lower and upper cut-off 

frequencies can then be determined by Bode plot or 

the dominant pole method.  

  

(2) When the capacitance loops are not independent 

from each other, i.e., the time constant are related, a 

pole can not be determined exclusively by its 

corresponding time constant.  
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