A large-scale empirical study of practitioners’ use of
object-oriented concepts

Tony Gorschek
Blekinge Institute of
Technology
Ronneby Sweden

tony.gorschek@bth.se

ABSTRACT

We present the first results from a survey carried out over
the second quarter of 2009 examining how theories in object-
oriented design are understood and used by software devel-
opers. We collected 3785 responses from software developers
world-wide, which we believe is the largest survey of its kind.
We targeted the use of encapsulation, class size as measured
by number of methods, and depth of a class in the inheri-
tance hierarchy. We found that, while overall practitioners
followed advice on encapsulation, there was some variation
of adherence to it. For class size and depth there was sub-
stantially less agreement with expert advice. In addition,
inconsistencies were found within the use and perception
of object-oriented concepts within the investigated group of
developers. The results of this survey has deep reaching
consequences for both practitioners and researchers as they
highlight and confirm central issues.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques|: Object-oriented
design methods

General Terms

Survey

Keywords

Encapsulation, Number of methods, Inheritance depth

1. INTRODUCTION

In engineering, the usefulness of a theory is determined
by whether it has a practical application, and whether it
has a practical application is first determined by whether
it is actually used, and second, whether it has been used
properly. For engineers, the real world application of theory
is one type of validation [12]. There are many theories for
software engineering, and in particular for object-oriented

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE ’10, May 2-8 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

Ewan Tempero

Auckland University
Auckland, New Zealand
e.tempero@cs.auckland.ac.nz Thessaloniki, Greece

115

Lefteris Angelis
Aristotle University of
Thessaloniki

lef@csd.auth.gr

design. We would like to understand what theories of object-
oriented design are being used in practice.

Not all used theories are necessarily good ones however.
An engineer may use a theory unaware that a better alterna-
tive exists. Conversely, a engineer may not use a theory due
to doubts as to its usefulness. Thus, to evaluate the practical
usefulness of a theory it is not enough to know that it is used,
it is also important to understand why it has been used, and
how it is used. To gain this understanding, we must look
beyond the theories; we must talk to the engineers. In this
paper we present the first results from a survey carried out
over the second quarter of 2009 examining how theories in
object-oriented design are understood and used by software
developers. We collected 3785 responses from software de-
velopers world-wide, which we believe is the largest survey
of its kind.

There are three main goals of the our empirical study, of
which parts are presented in this paper. The first is to gauge
how the theory and best-practice put forward by experts is
used and interpreted by practitioners. Second is to iden-
tify the actual preferences of practitioners when it comes to
practical issues such as making design decisions, how they
interpret and understand the central concepts, and how they
utilize the strengths of those concepts. Third, but probably
most important, we want to determine whether or not the
practitioners are in agreement. That is, to what degree do
the practitioners, regarding how they work, what they pre-
fer, and what they consider to be important, vary. This third
part speaks to the ability of good practice, as suggested by
experts, to penetrate the every day work performed by prac-
titioners. In addition, if practitioners agree on what is good
design practice, and if this differs from the good practice put
forward by experts, researchers need to take a hard look at
what this entails for state-of-the-art in research. If practi-
tioners disagree on a large scale however, the implications
could be even greater.

Much advice has been and is given regarding how software
should be designed at many granularities, such as criteria for
modules [17], common design idioms [10], and use of compo-
nents [23]. With the increase in availability of open-source
software, a number of empirical studies have been performed
in recent years that give a picture of how software is really
being written, and the results do not always appear consis-
tent with received wisdom (see section 2). We would like to
know whether the perceived inconsistency is real, whether
it is due to lack of understanding by developers, lack of be-
lief that the design principles have the claimed benefits, or
whether the design principles in fact do not have the claimed

benefits. As the bulk of the empirical studies is on code writ-
ten in object-oriented languages, in our survey we focus on
principles for object-oriented design.

The paper is organised as follows. Section 2 presents the
relevant background and related work. Section 3 presents
the research methodology, study design and operation, and
Section 4 presents our results. Section 5 discusses our results
and finally we present our conclusions in Section 6.

2. BACKGROUND AND RELATED WORK

The three concepts we examine are: encapsulation, class
size as measured by number of methods, and depth of class
in the inheritance hierarchy. We chose these concepts be-
cause they are simple enough to reduce misinterpretation in
a survey context. In this section, we discuss what advice
is offered regarding these concepts, and what other research
has examined in relation to how the concepts are actually
applied.

The advice is, roughly, “always encapsulate”’, don’t have
“too many” methods, and don’t have classes “too deep” in
the hierarchy, however the consistency of this advice is vari-
able. Of the three, encapsulation has the strongest message,
which is “always encapsulate.” Others have noted that what
encapsulation means has changed from its original meaning
[2]. In this work, we use the meaning of “hiding representa-
tion”.

Parnas proposed that the criteria for creating modules was
to determine what decisions are likely to change, and hide
those decisions within modules [17]. As the representation
of an object is a decision that is considered to be likely to
change, usually Parnas’ criteria has been interpreted as that
representation should be hidden. That is, the fields (or in-
stance variables or attributes) should be inaccessible from
outside the class, i.e. “encapsulated”.

Some languages directly enforce this advice. Smalltalk, for
example, does not allow any access to fields from clients that
instantiate classes, although, as Schérli et al. note, clients
that inherit from classes do have access [21]. They observe
that this meant that inheriting classes were not protected
from changes to representation and proposed a means to
reduce this exposure. Inherent in their advice is the belief
that all fields should be inaccessible from all other classes.

The advice regarding hiding representation is generally
consistent. Riel’s first heuristic for object-oriented design is
“All data should be hidden within its class”[19] (Heuristic
2.1), introduction to programming books often give similar
advice (for example Sedgewick and Wayne “insist” on the
convention of making all fields private [22], p422), Fowler
lists “Inappropriate Intimacy” as a bad smell [9], Lorenz and
Kidd comment that they “... do not believe in public in-
stance variables, since that breaks encapsulation” [16].

Encapsulation of fields is also implied by some metrics.
For example, the “coupling between objects” (CBO) met-
ric proposed by Chidamber and Kemerer counts accesses
through fields as well as methods, implying such accesses
are to be avoided [6]. Fields that are not accessible (pri-
vate) could therefore not contribute to measurements by
this metric. The MOOD metric suite includes the metric
“attribute hiding factor”, of which the authors say “Ideally,
all attributes would be hidden and only accessed by the cor-
responding class methods” [4].

There are any number of websites who claim good object-
oriented design requires fields be encapsulated. While web-

116

sites are not the most authoritative sources of advice, in
this case they do generally agree with prominent researchers,
books on good design, and programming texts, and are also
perhaps more likely to be accessible to practitioners than
the research literature.

A commonly-suggested alternative to public fields is to
provide accessor methods — methods that exist to either
return the value of a field (“getters”) or change the value of
a field (“setters”). This satisfies the letter of rules such as “all
data should be hidden”. Some languages, such as C# and
Eiffel, provide syntactic sugar for accessors, often referred
to as properties. The intent is to provide protection from
arbitrary access to the fields while having the convenience
of simpler syntax. However, as has been observed, if used
carelessly accessor methods will still expose implementation
decisions such as the type of the field, and claim good object-
oriented design should not need to provide any access to
fields [14].

Despite the advice regarding encapsulation being fairly
consistent, there are nevertheless apparently authoritative
examples of it not being followed. For example, the Java
standard library contains several, such as x and y in the
java.awt.Point class, and in and out in the java.lang.
System class. The existence of such visible examples may
encourage programmers, particularly novices, to ignore the
advice. There is certainly evidence that the advice is not
universality followed. In a recent study of 100 open-source
Java applications, ranging in size from 42 to 17621 classes,
59% of the classes of half the applications had non-private
fields, several applications had more than 20% of classes with
public fields [24].

The advice regarding the number of methods in a class is
less direct, nevertheless the general sense seems clear. The
intuition is that if one thing is bigger than a second, then any
action (especially cognitive action such as making a change)
one wants to perform on the first is going to be more difficult
in some sense than on the second. This intuition is the
basis for one of the metrics proposed by Chidamber and
Kemerer, WMC [6]. They argue the number of methods and
their complexity “is a predictor of how much time and effort
is required to develop and maintain the class”. They cite
Bunge’s definition of complexity to justify their definition
of WMC, however Bunge notes that the number of parts is
a “coarse measure of ontic (nonconceptual) complexity” [5],
implying that there are aspects of complexity that are not
represented by counting parts.

There has been the suggestion that the above intuition
is not correct, at least with respect to fault proneness, i.e.
that there is a size such that modules either smaller or larger
than that size are more fault prone (by Hatton for example,
[13]). However, more recently the evidence suggests that
this so-called “Goldilock’s conjecture” is not true [7, 8]. The
conclusion is then that one should avoid creating classes that
are “too big”. There is the question, however, of how is the
size of a class measured and what exactly constitutes “too
big”?

Fowler lists “Large Class”, “too many instance variables”
[9] and suggests “Extract Class” as a refactoring technique
to reduce the number of fields, which is also likely to reduce
the number of methods. He also suggests that classes with
“t00 many responsibilities” (p141) or “too much behaviour”
(pl42) are candidates for Extract Class. Other techniques
add methods such as “Inline class” however it is intended to

be applied to a “class that isn’t doing very much”.

There is, however, some explicit advice limiting the num-
ber of methods. Lorenz and Kidd [16] (pp50-51) suggest a
heuristic of threshold of 20 methods for “model” classes 40
for “UI” classes “thresholds”, with averages of 12 and 25 re-
spectively. They suggest thresholds of 3 for fields in model
classes and 9 for UI classes.

Empirical studies appear not to support the use of hard
limits on the number of methods in a class. Baxter et al.
examined 56 open-source Java applications and reported dis-
tributions that are close to powerlaws (so called “truncated
curves”), meaning that generally the larger the application,
the more methods the largest class tends to have [1]. They
indicated that large applications generally had classes with
hundreds of methods.

Advice regarding depth in inheritance trees also varies.
Johnson and Foote recommend that “Class hierarchies should
be deep and narrow” [15] (Rule 5) whereas Booch suggests
that developers tend to have classes no deeper than 7+2 [3]
(p280). Riel perhaps best typifies this confusion, at the same
time advising both — “In theory, inheritance should be deep
— the deeper, the better” (Heuristic 5.4) and “In practice,
inheritance hierarchies should be no deeper than an average
person can keep in his or her short-term memory. A popular
value for this depth is six” (Heuristic 5.5).

The empirical evidence regarding the size of inheritance
hierarchies is not so clear. Tempero et al. studied 93 open-
source Java applications and saw either powerlaw or trun-
cated curve distributions for both depth and width (number
of children) of classes [25]. However, while the shapes of the
distributions suggested that the larger the application the
greater the depth of the deepest class, none of the applica-
tions in the studied (which included large applications such
as Eclipse) had classes at depth greater than 10.

The evidence from empirical studies is that the advice of-
fered regarding encapsulation, number of methods, and class
depth may fall on deaf ears. However, as much of the evi-
dence comes from analysing source code, what it cannot tell
us is anything about intent. It may be that by-and-large
practitioners are aware of the advice, and are trying to fol-
low it, but are failing due to misunderstanding or some other
reason. Practitioners may also be aware of it but don’t be-
lieve the advice to be relevant. Another possibility, which
is even more worrying is that practitioners are simply not
aware of it, implying failure in education and the spreading
of research results to practice. Without knowing why practi-
tioners make the decisions they do, we cannot fully evaluate
the usefulness of the advice being offered. The only way we
can find this out is to ask them.

3. RESEARCH METHODOLOGY

This section introduces the research questions, the study
design and execution, and threats to validity.

3.1 Research Question

In order to investigate how object-oriented concepts are
understood, and to what extent theory is practised, the fol-
lowing main research questions were formulated.

RQ1: How are object-oriented concepts understood and used
in practice, and how does the use compare to recom-
mended best-practice?

117

Based on this general RQ two sub-questions were formu-
lated addressing the specific concepts of encapsulation, class
size as measured by number of methods, and depth of a class
in the inheritance hierarchy.

RQ1.1: How is the concept of encapsulation wunderstood
and used in practice, and how does the use compare
to recommended best-practice?

RQ1.2: How are the concepts of size and depth understood
and wused in practice, and how does the use compare to
recommended best-practice?

In this context we use “theory”, “best-practice”, and “ad-
vice” interchangeably.

3.2 Study Design and Operation

The survey was executed through the creation of a on-line
questionnaire that was designed using a mix of closed and
open ended questions [20]. The first version of the question-
naire was piloted using research programmers for the Com-
puter Science department at the University of Auckland,
New Zealand. As the test group took the survey, we moni-
tored time, logged questions, and caught mis-understandings
due to question formulation. We then followed with a de-
brief session. Based on the pilot, the survey instrument was
improved. A second test of the instrument was performed
using research colleagues at Blekinge Institute of Technol-
ogy where four researchers (engineering and science PhDs)
gave additional feedback on the instrument.

The survey had three parts. Part 1 gathered demographic
information. Part 2 mainly addressed the concept of encap-
sulation (RQ1.1). Part 3 covered class size and class depth
(RQ1.2). Part 1 had 7 questions with a mixture of ques-
tion types, including single-choice (radio buttons) multiple-
choice, multi-choice (checkboxes) multiple-choice, and free-
text. All of the questions in parts 2 and 3 were either
single-choice multiple choice or free-text, which all but one
multiple-choice question having a free-text area allowing re-
spondents to expand or qualify their answer. There were 5
questions in part 2 and 10 in part 3 for a total of 22.

The motivation for using an on-line questionnaire was to
maximize coverage and participation. Surveys are an appro-
priate strategy for collecting empirical results from a large
population, and given an adequate response rate, an under-
standing of the population can be achieved [18]. The ques-
tionnaire was made accessible on-line at surveymonkey.com
between March and June of 2009.

Participants were recruited primarily through personal
contacts and forums targeted at software developers, and
encouraging those who participated to spread the word. We
provided information about the goals of the survey on our
website (sefolklore.com), and posted a video to YouTube.
The idea behind our information campaign was to get a
“snow ball effect”, where “word-of-keyboard” spread infor-
mation regarding the survey on the Internet. The campaign
was successful in that the survey was eventually mentioned
on twitter by a high-profile user, resulting in a very good
response.

The theoretical population [11] for the study was any
and all software developers with experience in either closed
or open source development with experience in using any
object-oriented programming language. The actual popu-
lation, or sampling frame, was of course limited by Inter-
net access and our ability to reach the developers within

Continent # respondents | percent
Africa 1 0.03%
Asia, 294 7.77%
Australasia 426 11.25%
Europe 1207 | 31.89%
North America 1724 45.55%
South America 77 2.03%

Table 1: Geographical distribution of respondents.

Open Vs Closed Source Experlence

100 F

"Open s |
Closed E==m=

80 [

Proportion (%)

Figure 1: Distribution of respondents based on years
of development experience.

the given timeframe (and their willingness to participate).
From one aspect the sample can be described as convenience
sampling [20] as we utilized primarily our own contacts ini-
tially, however the sample quickly spread beyond our sphere
of influence and contacts, with several hundred respondents
before the twitter post (approximately 10 days after the sur-
vey went live), and thousands after it.

A total of 4823 respondents started the survey, and 3785
completed all the mandatory questions, a completion rate
of 78.5%, which is well above expected given that the sur-
vey was substantial (three full pages, demanding about 15-
20 minutes, and judging by the free-text responses a large
number may have spent even more).

3.3 Validity Evaluation

We consider the four perspectives of validity and threats
as presented in Wohlin et al. [26].

3.3.1 Construct validity

The construct validity is concerned with the relation be-
tween the theories behind the research and the observa-
tions. The variables in our research are measured through
the survey, including closed as well as open-ended ques-
tions where the participants are asked to share their profes-
sional experiences as developers. Mono-operation bias was
avoided by collecting data from a wide range of sources on
the topic of the study, and the theory was richly elaborated
through the questionnaire by posing multiple questions on
the same topic. To avoid evaluation apprehension, complete
anonymity of the subjects was guaranteed. There is always
a risk that the background of the subjects (e.g. experience)
is a central influence, however, due to the large sample, as
well as the spread of competence and level of experience we
feel the risk is limited. Hypothesis guessing (the respondents
try to guess what the researchers want) is also a potential

118

Programming Languages

100 F
80

60 -
40 -
2 I

ol]

Figure 2: Distribution of respondents based on lan-
guage proficiency.

Proportion (%)

S

Development Type

100 F

@
S
T

Proportion (%)
‘5 8

2

S

/0

C & O,
O”m(/ @% é "5

% O‘F o
% ©

%
3 %
% &

14

Figure 3: Distribution of respondents based on type
of development.

threat. The introduction to the survey (video and web page)
stressed the importance of honesty, however this threat can
not be completely dismissed.

3.3.2 Conclusion validity

Threats to conclusion validity are concerned with the pos-
sibility of incorrect conclusions about a relationship in ob-
servations that may arise from error sources such as, instru-
mental flaws, influence posed on the subjects, or selection.
We can not exclude the possibility that the instrumentation
(survey questions, formulations, explanations etc) were mis-
understood by the subjects, however, pre-tests and reviews
by colleagues, as well as redundancy (several questions ad-
dressing the same thing), hopefully alleviated the risks of
this threat. Regarding subject influence, there can be a
chance that some subjects interacted (e.g. colleagues at a
work place) and that this interaction influenced some of the
subjects’ answers. However, due to the response rate, as
well as substantial sample we feel that the overall influence
of this is limited. The sample selected for the study were
developers, however, we feel that the group was fairly het-
erogeneous (experience, education etc). In a small sample
this might influence the outcome, however, due to sample
size the risk of differences between subject unduly influenc-
ing the result is low.

3.3.3 Internal validity

This threat is related to issues that may affect the causal
relationship between treatment and outcome. Threats to
internal validity include instrumentation, maturation and

Development Roles

100 F

Proportion (%)
n £ [=2] @
=) 8 & 3 8
r T T T T

Figure 4: Distribution of respondents based on de-
velopment roles.

Qualification
100 F T T

80

-3
<1
T

Proportion (%)
5

Figure 5: Distribution of respondents based on qual-
ification.

selection threats. In our study, the instrument was pre-
tested, as mentioned before. Maturation pertains to, for ex-
ample, learning effect or subject’s responses being influenced
by boredom. Each subject participated once, thus learning
effect was small, and the questionnaire took about 20 min-
utes to complete. In addition, the high completion rate of
respondents (a clear majority of the respondents who started
the survey also finished it) indicates an interest in partici-
pating, indicating that the respondents took an interest in
being thorough in their efforts to answer the questions. The
interest of the subject may influence the representativeness
of the subjects. This is a hard threat to counter as willing-
ness to participate and interest in the subject are associated.
The large sample may alleviate this to a degree, however
the threat can not be dismissed. Further, the selection of
subject was performed by using a wide range of media and
channels, far beyond the control or sphere of influence of the
researchers.

3.3.4 External validity

This threat is concerned with the ability to generalize
the findings beyond the actual study. The actual setting of
the study was an environment known to the subjects (from
home/office using the web), thus our control and influence
of the context was minimal. In addition, the sample was
very similar to the population, that is, developers with ex-
perience in object-oriented programming. In addition, due
to sample size we feel confident that generalizability of the
results are possible.

119

Q8. Which of the following best describes your thinking
when adding a field to a class?

1. I always make it private (inaccessible outside the
class)

2. I usually make it private

3. I never make it private,

4. I don’t think about it, I pick whatever is convenient
5. I don’t know what you mean/None of the options
describe my thinking)

Q9. Which of the following best describes your think-
ing when providing access to fields?

1. T always provide “getters” and “setters”

2. I avoid “getters” and “setters” wherever possible

3. I prefer to avoid “getters” and “setters” but will
provide them rather than make large changes to avoid
them,

4. I don’t think about it,

5. I don’t know what you mean

Figure 6: Text of Questions 8 & 9

4. RESULTS AND ANALYSIS

This section presents the results of the survey, organised
according to the research questions presented in Section 3.
This paper presents only a portion of the data gathered due
to space constraints. We focus on the survey questions di-
rectly relevant to RQ1.1 and RQ1.2.

Not all of the questions were compulsory and so in report-
ing completed surveys we refer to those where all compulsory
questions were answered. We will only give full details here
of those questions we report on; the full survey is available
on sefolklore.com.

4.1 Respondent Demographics

A total of 4823 respondents initiated the survey, and 3785
completed the compulsory questions of the survey. Responses
came from 84 different countries. The distribution of re-

Q8 vs. Q9

1200

1000

00000
©OOOO
GRBRHD

800 [1

600 [1

Frequency

400 | 1

Qs:1

Q8:2 Q8:3 Q8:4 Q8:5

Figure 7: Q8 vs. Q9

Q9

1 2 3 4 5 | Total
Q8:1 1042 193 225 18 8 | 1486
% Q8 70.1 13.0 15.1 1.2 0.5 | 100.0
% Q9 471 364 259 140 17.8 | 39.3
% Total | 27.5 5.1 5.9 0.5 0.2 39.3
Q8:2 1001 247 489 37 15 | 1789
% Q8 56.0 13.8 27.3 2.1 0.8 | 100.0
% Q9 45.3 46.6 56.3 28.7 33.3| 473
% Total | 26.4 6.5 129 1.0 04| 47.3
Q8:3 60 48 54 15 2 179
% Q8 335 26.8 302 8.4 1.1 | 100.0
% Q9 2.7 9.1 6.2 11.6 4.4 4.7
% Total 1.6 1.3 1.4 0.4 0.1 4.7
Q8:4 68 25 71 49 4 217
% Q8 31.3 115 327 226 1.8 | 100.0
% Q9 3.1 4.7 82 38.0 8.9 5.7
% Total 1.8 0.7 1.9 1.3 0.1 5.7
Q8:5 41 17 30 10 16 114
% Q8 36.0 149 26.3 8.8 14.0 | 100.0
% Q9 1.9 3.2 3.5 7.8 356 3.0
% Total 1.1 0.4 0.8 0.3 0.4 3.0
Total 2212 530 869 129 45 3785
% Q8 58.4 14.0 23.0 3.4 1.2 | 100.0
% Q9 100.0 100.0 100.0 100.0 100.0 | 100.0
% Total | 58.4 14.0 23.0 3.4 1.2 | 100.0

Table 2: Q8 vs. Q9 Cross tabulation.

sponses by continent is shown in Table 1. As we can seen a
clear majority of the responses originate from North Amer-
ica with Europe following closely.

Just over half the respondents had some open-source de-
velopment experience, with the half of those having done 1-3
years of open source development. Almost all (94.5%) had
done closed-source development, with approximately half
having done 1-8 years and 10% having done more than 20
years (see Figure 1).

For languages used (Figure 2), 91% were experienced with
one of C# (56%), Java (49%), or C++ (45%). The fourth
most chosen language, Python (21%) adds another 2.8%,
meaning there were 235 (6.2%) of respondents who were not
experience in any of these languages. Of those, almost all
(191 or 81%) indicated experience in a language not listed
explicitly in the question.

About half (47.4%) of the respondents had experience
in bespoke software development (Figure 3) and almost all
(95.6%) claimed experience in programming (Figure 4).

With respect to the respondents level of academic quali-
fications (Figure 5), 2420 (50.2%) had a Bachelors degree,
and 1245 (25.8%) had a Masters degree. About 10% also
had participated in trade certificates/professional develop-
ment courses. A total of 429 (8.9%) indicated having no
formal training or degree.

4.2 RQ1.1 Encapsulation

To gauge how encapsulation is understood and used in
practice we consider Question 8 (Q8) and Question 9 (Q9)
as shown in Figure 6. These two questions were intended to
capture practitioners’ attitude towards encapsulation, albeit
without using that term. From our discussion in Section
2, if practitioners follow the expert advice then they would

120

make fields private (Q8, alternative 1). Whether they would
routinely provide getters and setters is not so clear.

The chart in Figure 7 shows one view of how survey partic-
ipants answered these two questions. We use the notation
shown to indicate alternatives answered for questions, for
example “Q8:1” denotes Question 8, alternative 1. Table 2
shows the same data (in the “Total” row and column) as
well as cross-tabulating the responses. The “% Q8” and the
“% Q9” row indicates the conditional probability. For exam-
ple, in the row “% Q8" we see 1042/1486 = 0.701 = 70.1%,
implying that the there is a probability of 70.1% that, for
respondents that have answered Q8:1, they will also have
answered Q9:1. The row “% Q9” indicates the same for Q9,
that is for example, there is a probability of 47.1% that
the ones who have already answered Q9:1 will also have an-
swered Q8:1. The column “% Total” indicates how many
respondents answered Q8:1 and Q9:1, that is, the probabil-
ity of intersection P(Q8:1 and Q9:1)=0.275 (27.5%).

Based on the results shown in Table 2 we cannot claim
that the advice regarding encapsulation, at least as inter-
preted as representation hiding, is being followed without
question. Many, but not quite half (1486/3785, 45.4%) indi-
cated they might consider no private fields. A more generous
interpretation of this question might consider Q8:1 and Q8:2
to indicate adherence to expert advice, in which case, 86.5%
of respondents could be said to follow the advice — but
about 13.5% do not. The responses to Q9 are much more
clear-cut — 58.4% indicating they would provide accessors,
and if Q9:2 were included then 72.4% could be said to follow
this advice.

For those who do make their fields private (Q8:1), they
are more likely than not (70.1%) to provide accessors (Q9:1).
Expanding this to Q8:2 and Q9:2, then 75.8% routinely pro-
vide accessors to private fields. For those who provide get-
ters and setters (Q9:1, Q9:2), 90.6% of them (Q8:1, Q8:2)
will make their fields private. This is perhaps not surprising,
as there is not much point having getters and setters if fields
are public. However it is also the case that 50.8% of those
who generally do not make fields private (Q8:3, Q8:4) also
provide getters and setters! This suggests some confusion as
to the role of these kinds of methods.

Performing a chi-square test [26] on the frequencies gives
a value of significant of p < 0.0005, showing a significant as-
sociation between the answers of Q8 and Q9 (a value <0.05
shows significant dependence (association) between the re-
sponses of each pair tested). The actual cause of this de-
pendency is not totally clear and demands further analysis
of the open question text answers given in association to the
question. However, a preliminary possibility could be that
the respondents had a specific wish to adhere to good prac-
tices (enabling encapsulation), but do not consider the use
of getters and setter to be inconsistent with good encapsu-
lation.

4.3 RQ1.2 Size and Depth

For RQ1.2 we are trying to determine to what degree class
size (as measured by number of methods) or class depth fig-
ured as design decisions. Figure 8 shows two questions relat-
ing to class size and the possible responses. Table 3 shows
the responses to these questions. About 10.9% (Q13:1)
cared enough about class size to specifically track it, how-
ever nearly 50% (Q13:2) were at least aware of the number
of methods. Almost 39% (Q13:3-4) didn’t really care about

Q13. When working on a class, how aware are you of
the number of methods it has?

1. I always try to determine how many methods a class
has

2. I will note classes that seem to have a lot of methods
3. The number of methods is usually not relevant for
me

4. I don’t think about it

5. I don’t know what you mean

Q14. What do you think is the largest number of meth-
ods a class should have? (Choose one of the alternatives,
and add a number in the textbox that replaces “N” in
the text of the alternative you chose)

1. There should be never more than about N methods.
2. I try to avoid having more than about N methods
in a class, but will allow exceptions in extreme circum-
stances.

3. I prefer to avoid having more than N methods in a
class but I am not fanatical about it.

4. 1 don’t really think about how many methods there
are in a class but prefer to avoid having classes with
more than N methods.

5. I don’t think there should be any limit on the number
of methods in a class.

Figure 8: Text of Questions 13 & 14

the number of methods in a class.

Looking at the answers to Q14, we can see that the re-
spondents choosing alternatives 1-3 (42.3%) are for a limit
of some sort with regard to number of methods, while the
respondents choosing alternative 4 and 5, didn’t care or were
against a limit (57.8%). This would indicate that the field
is split, half preferring a limit, and half not in favour of one.

Table 3 gives an overview of Q13 and Q14 in combination.
Performing a chi-square test [26] on the frequencies gives a
value of significant p < 0.0005, showing a significant asso-
ciation between the answers of Q13 and Q14. Comparing
alternatives 1 and 2 for Q13 and alternatives 4 and 5 for
Q14, there are 934 (24.7%) respondents who chose one of
the 4 possible pairs, so nearly one quarter of respondents
reported, on the one hand, being aware of how many meth-
ods a class had, but on the other hand did not act on that
information. That said, the combination with the largest
number of response was Q13:2 and Q14:3, with 839 (22.2%)
responses, which suggests at least an awareness that classes
should not have “too many” methods.

Q14 also requested that respondents suggest a maximum
number of methods they would expect for a class. The re-
sults for this are shown in Tables 4 and 5. From Table 4,
of the 45 respondents who thought there should be an ab-
solute limit (Q14:1), the median was 10, with the largest
suggested limit being 400, and the mode was 10, indicating
that the respondents of Q14:1 preferred a moderate class
size. Of those who were somewhat supportive of a limit
(responses 1-4, 2450 responses — not shown in the table),
the median was 15 and maximum was 1000 (in fact only 4

121

Q14

1 2 3 4 5 | Total
Q13:1 19 133 128 54 77 411
% Q13 46 324 31.1 13.1 187 | 100.0
% Q14 42,2 327 11.2 6.3 5.8 10.9
% Total 0.5 3.5 3.4 1.4 2.0 10.9
Q13:2 18 227 839 391 412 1887
% Q13 1.0 12.0 445 20.7 21.8 | 100.0
% Q14 40.0 558 73.1 459 309 49.9
% Total 0.5 6.0 222 103 10.9 49.9
Q13:3 5 36 156 329 687 | 1213
% Q13 0.4 3.0 129 271 56.6 | 100.0
% Q14 11.1 88 136 38.7 515 32.0
% Total 0.1 1.0 4.1 8.7 182 32.0
Q13:4 3 9 23 75 152 262
% Q13 1.1 3.4 8.8 28.6 58.0 | 100.0
% Q14 6.7 2.2 2.0 8.8 114 6.9
% Total 0.1 0.2 0.6 2.0 4.0 6.9
Q13:5 0 2 1 2 7 12
% Q13 0.0 16.7 83 16.7 58.3 | 100.0
% Q14 0.0 0.5 0.1 0.2 0.5 0.3
% Total 0.0 0.1 0.0 0.1 0.2 0.3
Total 45 407 1147 851 1335 | 3785
% Q13 1.2 108 303 22,5 35.3 | 100.0
% Q14 | 100.0 100.0 100.0 100.0 100.0 | 100.0
% Total 1.2 108 303 225 353 | 100.0

Table 3: Q13 vs. Q14 Cross tabulation.

Q14 Freq. Ave | Median | Mode | Max. | Std. Dev.
Ql4:1 38 | 23.29 10.00 10 400 63.404
Q14:2 | 376 | 14.69 10.00 10 100 10.649
Q14:3 | 1086 15.71 12.00 10 200 12.315
Ql4:4 | 781 | 23.24 20.00 20 | 1000 42.807
Q14:5 70 | 797.86 12.00 0 [10000 | 2530.824
Total | 2351 41.46 15.00 10 | 10000 454.315

Table 4: Descriptive statistics for choice of N (max-
imum number of methods) for Q14.

suggested larger than 100 — see Table 5), and mode 10. Al-
most all (93.6%) of those who were supported of a limit and
suggested a value of 30 methods or less. While this range
is not great, it is wide enough to indicate a general lack
of agreement regarding appropriate class size. However, a
clear majority of the ones being for a size limitation were
moderate in the size recommendation.

Figure 9 shows two questions relating to class depth and
the possible responses. Table 8 shows the cross-tabulation
of the results. About 897 (23.7%) of the respondents al-
ways determine class depth (Q17:1), 2101 respondents have
a rough idea (Q17:2), but a substantial 755 (19.9%) of the
respondents don’t care at all (Q17:3). For Q18 respondents
choosing alternatives 1, 2, and 3 (51.3%) are for being aware
of class depth, and limiting the depth. Respondents answer-
ing alternatives 4 and 5 of Q18, a total of 1846 respondents
(48.7%) either don’t think about it, or do not think there
should be any limitation at all.

Table 8 shows the comparison of Q17 and Q18 (a chi-
square test showed a value of p < 0.0005). The higher
proportions of responses for Q17 alternatives 1 and 2 sug-
gests a higher awareness and concern for the depth of classes

Range | Frequency
None 169
0-10 951
1120 975
21-30 209
31-40 24
41-50 80
51-60 2
61-70 0
71-80 4
81-90 0
91-100 32
100+ 4

Table 5: Distribution of choices of N for limit on
number of methods by participants who chose alter-
natives 1-4 for Q13

Q18 Freq. Ave | Median | Mode | Max. | Std. Dev.
Q18:1 211 3.43 3.00 3 10 1.820
Q18:2 | 686 3.72 3.00 3 12 1.512
Q18:3 | 939 5.37 4.00 3 999 32.817
Q18:4 | 691 5.79 5.00 5 100 5.301
Q18:5 52 | 262.31 5.00 0 [10000 | 1396.507
Total | 2579 | 10.06 4.00 3 | 10000 200.728

Table 6: Descriptive statistics for choice of N (max-
imum class depth) for Q18.

compared with size of classes, as can be seen in comparing
Q13 with Q17. 32% of the respondents in Q13 thought the
number of methods (size) was irrelevant, while for Q17 only
19.9% considered the depth to be irrelevant. This is also
reflected in the responses to Q18, which show increased re-
sponses for alternatives 1 and 2 compared to the equivalent
alternatives for Q14. Nevertheless there were also an larger
number of responses for alternatives 4 and 5 for Q18, par-
ticularly for those who gave alternatives 1 or 2 for Q17 than
the equivalents for Q14 and Q13.

Looking at Q17 and Q18, overall, 1186 respondents (31%)
chose one of the 4 pairs indicating an awareness of depth but
a tendency not to act on this information (one of Q17:1 &
Q17:2 and one of Q18:4 & Q18:5).

Tables 6 and 7 show some of the data regarding choices by
participants of maximum depth of classes. Table 7 shows the
choices of those who thought there should be a hard limit on
the depth (Q18:1, 226 responses), the median was 3 and the
maximum 10. Of those who were generally supportive of a
limit (Q18:1-4, 2682 responses), the median was 4 and the
maximum 999 (in fact there are only two proposed limits
larger than 50, the most usual limit was between 3 and 5).

S. DISCUSSION

How are object-oriented concepts understood and used in
practice, and how does the use compare to recommended
best-practice?

Regarding RQ1.1, on how is the concept of encapsula-
tion is understood and used in practice, and how does the
use compares to recommended best-practice, there is gen-
eral, but by no means universal, adherence to the advice of
“hide representation”. There is, however, significant varia-
tion among the respondents, in both their claimed use and

122

Q17. When working on a class, is its depth in the
inheritance hierarchy important to you?

1. T always try to determine how deep a class is

2. T usually have a rough idea of the depth of a class
3. It is not relevant for me

4. I don’t know what you mean

Q18. What do you think the maximum depth of a class
should be in the inheritance hierarchy? (Choose one of
the alternatives, and add a number in the textbox that
replaces “N” in the text of the alternative you chose)

1. No class should be deeper than N

2. I try to avoid having classes deeper than N but will
allow it in extreme circumstances.

3. I prefer not to have classes deeper than N but I am
not fanatical about it.

4. I don’t really think about how deep classes are but
probably would avoid having them deeper than N

5. I do not think there should be a limit to the depth
of a class.

Figure 9: Text of Questions 17 & 18.

their understanding of the principles involved.

As well as the multiple-choice questions, we also asked for
free-text responses. We have not analysed these formally
but some responses jump out. While we did not use the
term “encapsulation”, it was mentioned quite often in the
free-text responses, for example (some seemingly represen-
tative statements), “One of the basic OO principles is data
encapsulation” and “That’s a golden rule: encapsulation is
a key tenet of OO programming.” There was also confu-
sion evident in the use of accessors. Some associated their
use with encapsulation: “I want to provide encapsulation
for my classes, so I hide the fields using getter/setter pairs”
but others did not: “Getters and setters break encapsula-
tion.” There were also some who were just not convinced:
“encapsulation is mostly overrated.”

N | Frequency
None 15
0 4
1 16
2 38
3 78
4 27
5 30
6 4
7 6
8 2
9 2
10 4

Table 7: Distribution of choices of N (maximum
depth of classes) by participants who answered
Q18:1.

Q18

1 2 3 4 5 | Total
Q17:1 123 298 240 70 166 897
% Q17 | 13.7 332 26.8 7.8 185 | 100.0
% Q18 | 54.4 41.0 24.3 94 15.0 23.7
% Total 3.2 7.9 6.3 1.8 4.4 23.7
Q17:2 73 396 682 460 490 | 2101
% Q17 3.5 188 325 21.9 233 100.0
% Q18 | 323 545 69.1 619 444 55.5
% Total 1.9 105 18.0 122 129 55.5
Q17:3 29 32 63 204 427 755
% Q17 3.8 4.2 83 270 56.6 | 100.0
% Q18 12.8 4.4 6.4 27.5 387 19.9
% Total 0.8 0.8 1.7 54 11.3 19.9
Q17:4 1 0 2 9 20 32
% Q17 3.1 0.0 6.2 281 62.5| 100.0
% Q18 0.4 0.0 0.2 1.2 1.8 0.8
% Total 0.0 0.0 0.1 0.2 0.5 0.8
Total 226 726 987 743 1103 | 3785
% Q17 6.0 192 26.1 19.6 29.1 | 100.0
& Q18 | 100.0 100.0 100.0 100.0 100.0 | 100.0
% Total 6.0 192 26.1 19.6 29.1 | 100.0

Table 8: Q17 vs. Q18 Cross tabulation.

Next, looking at size and depth of classes, the responses
from the survey varied. About half of the respondents where
for some sort of limit to class size, with most being of the
opinion that 10 to 20 methods should be the maximum, and
the other half didn’t really care for any sort of limit. The
implication being that about half of the respondents agree
with the experts that there should be a limit, and the over-
all consensus of 10 to 20 methods seems to be well in the
recommended range. On the other hand, the 22.5% of the
respondents who didn’t really care, and the 35.3% who were
for no limit at all, can be said to be in disagreement with
the accepted wisdom of the experts. The choices for the
maximum number of methods was fairly consistent no mat-
ter what alternative was chosen for Q14 (including Q14:5!),
being in the range 10-20. This is consistent with the advice
given by Lorenz and Kidd [16], but not consistent with how
code is actually being written [1].

The same division of the respondents into two groups can
be seen when it comes to class depth. Even if most re-
spondents had a rough idea of how deep a class they were
working on was, when it came to implications the results
varied. A total of 51.3% of the respondents were in line
with the experts recommendations and opted for a limita-
tion in class depth, most opting for a limit of 10. On the
other hand, 48.7% of the respondents either didn’t care, or
where against any limits on class depth.

An interesting, but far from conclusive, indication could
be seen when comparing views on size and depth. The re-
sults seem to indicate that class depth is considered more
important to monitor (i.e. know the depth of a class) than
the size of a class.

Thus, answering RQ1.2: How are the concepts of Size and
Depth understood and used in practice, and how does the
use compare to recommended best-practice? There does not
seem to be a consensus, but rather a clear division between
the respondents on what constitutes good practice when it
comes to both class size and depth.

123

The data presented in this paper are not complete, and
future work includes detailed analysis of motivation and free
text qualifications of responses offered by many respondents,
however some central and worrying tendencies can be ob-
served. Disagreement among the respondents of what con-
stitutes good utilization of object-oriented concepts bears
possible serious implications. This is further aggravated by
the fact that this also shows a gap between the commonly
held wisdom put forward by researchers and experts and
practitioners.

There can be several interpretations of the results from
this survey. One interpretation can be that there is not
a unified view among practitioners on what actually works
in everyday development. For example, in many cases a
limit in, for example, class depth or size might be counter-
productive in the real world as experienced by the respon-
dents. This interpretation would imply that the experts
and researchers need to increase their efforts and perform
more empirical investigations on both the artifacts (the soft-
ware/systems), and the engineering practice and context of
development in order to study reality.

An other interpretation could be that many developers
simply do not utilize or care about good practice, even if
they “know better”. This would imply that the experts are
correct in their recommendations of what constitutes “good
practice”, but in the real world the benefit to individual de-
velopers in using this best practice is limited. This would
indicate a need for experts and researchers to study the re-
turn on investment of applying good practice, not only on
a company level, or for a product, but also for the individ-
ual developer. Issues such as demands for productivity or
time-to-market might be prioritized.

A third interpretation, and the worst possible one, could
be that many of the respondents simply do not understand
the concepts of object-orientation, and thus do not under-
stand the necessity of following best practice put forward by
experts. This would indicate a fundamental failure in terms
of the training and education of developers, but also in the
ability of experts and researchers to spread their knowledge,
and the benefits of adhering to good practice, to industry
and practice.

A puristic interpretation of the survey results at this time
is most likely counterproductive and premature. Further in-
depth analysis and study is needed, both of the results of the
survey, but also by other researchers performing their own
empirical studies. The central conclusion that can be drawn
from the results in this survey, however, is that the assump-
tions of what constitutes good practice and how the object-
orient concepts are interpreted and used may be flawed and
must be studied in further detail.

6. CONCLUSIONS

We have presented some of the results of a large-scale
empirical study of software developers. Our overall goal is to
better understand how developers make design decisions, in
particular how they understand and apply the expert advice,
or “theory”, on good object-oriented design. We carried out
our study through an on-line survey, which was advertised
through a variety of means including YouTube and Twitter.
In this paper, we focused on the use of encapsulation, class
size as measured by number of methods, and depth of classes
in the inheritance hierarchy.

While our main contribution in this paper is the results

of the survey, we also regard our methodology as an im-
portant contribution. The methodology consists of how to
use and design survey concepts, as well as enable large scale
participation. We are not aware of any other attempt to
determine what advice software developers follow, certainly
not on the scale of the study presented in this paper. Our
results demonstrate that the methodology is sound, and we
encourage other researchers to use it for other similar stud-
ies.

A total of 4823 respondents started the survey, and 3785
completed all the mandatory questions, a completion rate of
78.5%. The results indicate that developers generally, but
not universally, follow the advice on the importance of hid-
ing representation. Regarding the importance of observing,
monitoring and limiting class depth and size, there is a large
inconsistency among the developers. About half are for limi-
tation, half are not. The half that are for limitation however
agree with the experts’ advice and generally choose similar
limits to the experts.

While there is agreement to some degree with the advice
regarding the studied concepts, our results make it quite
clear that there is a significant proportion of software de-
velopers that do not follow the advice. Many may have
suspected this, but our results provide very convincing evi-
dence and not only confirms the suspicions, but also shows
the level of the problem. The question to answer now is why
— is it the theory, is it the training, or is it something else?

Acknowledgements

We would like to thank everyone who participated in our
survey, especially those who encouraged others to do so, and
in particular Nat Torkington and Tim O’Reilly.

7. REFERENCES

[1] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith,
M. Visser, H. Melton, and E. Tempero. Understanding
the shape of Java software. In W. Cook, editor,
OOPSLA, pages 397-412, Oct. 2006.

E. V. Berard. Essays on object-oriented software
engineering (vol. 1). Prentice-Hall, Inc., 1993.

G. Booch. Object-Oriented Analysis and Design: with
Applications. Addison-Wesley, 2nd edition, 1994.

F. Brito e Abreu and W. Melo. Evaluating the impact
of object-oriented design on software quality. In
METRICS ’96: Proceedings of the 3rd International
Symposium on Software Metrics, page 90,
Washington, DC, USA, 1996. IEEE Computer Society.
M. Bunge. Treatise on Basic Philosophy: Ontology I:
The Furniture of the World. Springer, 1977.

S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Softw. Eng.,
20(6):476-493, 1994.

K. El Emam, S. Benlarbi, N. Goel, W. Melo,

H. Lounis, and S. N. Rai. The optimal class size for
object-oriented software. IEEE Trans. Softw. Eng.,
28(5):494-509, 2002.

N. E. Fenton and M. Neil. A critique of software
defect prediction models. IEEE Trans. Softw. Eng.,
25(5):675-689, 1999.

M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

2]
3]

[4]

[5]

(6]

(7]

8]

[9]

124

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley Publishing
Company, 1994.

J. A. Gliner and G. A. Morgan. Methods in Applied
Settings: An Integrated Approach to Design and
Analysis. Lawrence Erlbaum Associates, 2000.

T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. A
model for technology transfer in practice. I[EEE
Softw., 23(6):88-95, 2006.

L. Hatton. Reexamining the fault density-component
size connection. IEEE Softw., 14(2):89-97, 1997.

A. Holub. Why getter and setter methods are evil:
Make your code more maintainable by avoiding
accessors. JavaWorld.com, Sept. 2003.

R. E. Johnson and B. Foote. Designing reusable
classes. Journal of Object-Oriented Programming,
June/July 1988.

M. Lorenz and J. Kidd. Object-oriented software
metrics: a practical guide. Prentice-Hall, 1994.

D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053-1058, 1972.

T. Punter, M. Ciolkowski, B. Freimut, and 1. John.
Conducting on-line surveys in software engineering. In
ISESE ’03: Proceedings of the 2003 International
Symposium on Empirical Software Engineering,

page 80, Washington, DC, USA, 2003. IEEE
Computer Society.

A. Riel. Object-oriented design heuristics.
Addison-Wesley, 1996.

C. Robson. Real World Research: A Resource for
Social Scientists and Practitioner-Researchers.
Wiley-Blackwell, 2nd edition, 2002.

N. Schérli, A. P. Black, and S. Ducasse.
Object-oriented encapsulation for dynamically typed
languages. In Proceedings of the 19th annual ACM
SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 130-149, New York, NY, USA, 2004. ACM.

R. Sedgewick and K. Wayne. Introduction to
Programming in Java. Addison-Wesley, 2006.

C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, 2nd
edition, 2002.

E. Tempero. How fields are used in Java: An empirical
study. In Australian Software Engineering Conference
(ASWEC), pages 91-100, Apr. 20009.

E. Tempero, J. Noble, and H. Melton. How do Java
programs use inheritance? an empirical study of
inheritance in Java software. In J. Vitek, editor, 22nd
European Conference on Object-Oriented
Programming (ECOOP), pages 667-691, Paphos,
Cyprus, July 2008. Springer Berlin / Heidelberg.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson,

R. B., and A. Wesslén. Experimental Software
Engineering — An Introduction. Kluwer Academic
Publishers, 2000.

(11]

(12]

(22]

23]

24]

