How Do Java Programs Use Inheritance?
An Empirical Study of Inheritance in Java Software

Ewan Tempero!, James Noble?, and Hayden Melton®

! Department of Computer Science, University of Auckland, Auckland, New Zealand
ewan, hayden@cs.auckland.ac.nz
2 School of Mathematics, Statistics, and Computer Science, Victoria University of Wellington,
Wellington, New Zealand
kjx@mcs.vuw.ac.nz

Abstract. Inheritance is a crucial part of object-oriented programming, but its
use in practice, and the resulting large-scale inheritance structures in programs,
remain poorly understood. Previous studies of inheritance have been relatively
small and have generally not considered issues such as Java’s distinction between
classes and interfaces, nor have they considered the use of external libraries.

In this paper we present the first substantial empirical study of the large-scale
use of inheritance in a contemporary OO programming language. We present
a suite of structured metrics for quantifying inheritance in Java programs. We
present the results of performing a corpus analysis using those metrics to over
90 applications consisting of over 100,000 separate classes and interfaces. Our
analysis finds higher use of inheritance than anticipated, variation in the use of
inheritance between interfaces and classes, and differences between inheritance
within application types compared with inheritance from external libraries.

1 Introduction

Since the introduction of the object-oriented paradigm, much has been written on the
notion of “inheritance” [1]]. To some, the very idea of “object-orientedness” is bound up
in inheritance [2/3]]. Inheritance does appear to be very prominent in discussions about
good design. All the design patterns have it [4]], frameworks depend on it [3] and it’s
even in UML [@].

Some presentations of the object-oriented paradigm (in textbooks for example) place
so much importance on inheritance that the implication is that any design without “lots
of inheritance” is not a good one (or certainly not “object-oriented”). At the same time,
there is a considerable amount of advice urging caution with respect to use of inheri-
tance, such as “Favor object composition over class inheritance” [4]]. There have also
been studies providing conflicting answers as to its benefits [7I8I9], but also suggesting
that “too much” inheritance is detrimental.

The aim of this paper is to answer a simple question: “How do programs use inher-
itance?”. To make this question concrete, we address this question to Java, thus: “How
do Java™ programs use inheritance?”.

To answer this question, we first consider how Java supports inheritance. Compared
with earlier object-oriented languages such as Smalltalk, Eiffel, or C++, Java distin-
guishes between extends and implements relationships. To understand how Java (and

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 667-1691] 2008.
(© Springer-Verlag Berlin Heidelberg 2008

668 E. Tempero, J. Noble, and H. Melton

other languages making this distinction, such as Cf}) actually use inheritance, we need
to consider each relationship individually. We also consider other issues regarding in-
heritance — for example, we treat inheritance from one of the library classes as being
different to inheritance from another class defined for the system. Our work is grounded
in a systematic consideration of all these issues, resulting in a structured suite of metrics
for measuring the various kinds and usages of inheritance in Java programs.

The suite of inheritance metrics we propose provides a sensitive instrument for char-
acterising various types of inheritance in a particular program. To give an overall answer
to our question — how do Java programs in general use inheritance — we gathered a
substantial corpus of 93 open-source Java applications, including over 100,000 user-
defined types. Then we applied our metrics to this corpus, with the resulting distribu-
tion of metrics values characterising the use of inheritance in that corpus, and hopefully
getting as close to accepted practice in Java programs as possible.

A key point about the methodology we use here is that it is primarily descriptive:
our research question asks simply “what do Java programs do?” We are interested in
understanding “Java as she is spoke” — that is, in the way Java programs are actually
structured in the real world — rather than how we fondly imagine Java programs should
be written. As our terminology suggests, we draw on the established methodology of
corpus linguistics. Our corpus is collected from large, well-known, widely-used Java
programs (such as Eclipse, Open Office, Spring, Tomcat) — programs that are appar-
ently well regarded by other Java programmers, and that we believe constitute as much
a representative sample of Java programs “in the wild” as any other.

In evaluating individual programs (from the corpus or outside it) we can discuss
whether their use of inheritance is typical or extreme with respect to the corpus, that is
whether their use of inheritance seems relatively close to accepted practice embodied
by the corpus, or whether and how it diverges. This is not to say we are uninterested
in questions of how inheritance could or should be used in the abstract — just that
those questions are separate from the questions about how inheritance is actually used
in accepted Java practice, and we do not address them in this paper.

The paper makes the following contributions:

— A fine grained, structured suite of inheritance metrics for Java-like languages.
— A corpus analysis applying these metrics to 93 Java applications containing over
100,000 user-defined types.

Based on the corpus analysis, we demonstrate some important features of the accepted
practice regarding inheritance in Java programs:

— most classes in Java programs are defined using inheritance from other “user-
defined” types.

— classes and interfaces are used in stereotypically different ways, with approximately
one interface being declared for every ten classes.

— client metrics have truncated curve distributions while supplier metrics have power
law-like distributions.

— most types (classes and interfaces) are relatively shallow in the inheritance
hierarchy.

— almost all types have fewer than two types inheriting from them: however for some
very popular types, the bigger the programs, the more types will inherit from them.

How Do Java Programs Use Inheritance? 669

— larger (or older) systems make proportionally more use of inheritance from user-
defined classes, and less use of standard library or third-party library classes.

The rest of this paper is organised as follows. In the next section, we summarise
the related work. Section [3| discusses various issues regarding the characterisation of
inheritance that need to be considered when measuring it. Section @ presents the metrics
we used in our study; our results from collecting these metrics are presented in section
Section [6] presents a discussion of our results, and finally we give our conclusions
and discuss future work in section [71

2 Background and Related Work

The most often mentioned inheritance related metrics are Chidamber and Kemerer’s
DIT and NOC metrics [10/11]]. DIT for a class is defined as the length of the longest
path from the class to the root of the inheritance hierarchy it is in. The authors argue
that the deeper the class, the more complex it would be as it would inherit from more
ancestors, but also the more potential reuse there could be. NOC for a class is defined
as the number of immediate subclasses of that class. The authors suggested that more
children means more reuse, but also the greater the likelihood of improper abstraction.
They also observed that NOC gives an idea of the influence a class has on the design.

DIT and NOC were introduced in 1991 but it was not until the 1994 publication that
Chidamber and Kemerer presented measurements using them. The measurements were
of two sites. One site consisted of two graphical user interface libraries with 634 C++
classes. The other consisted of class libraries used in the implementation of a computer
aided manufacturing system for the production of VLSI circuits and had 1459 Smalltalk
classes.

For DIT, the C++ site had a median value of 1 and maximum of 8, whereas the
Smalltalk site had a median of 3 and maximum of 10. However, it was noted that for
Smalltalk, all classes are subclasses of the class “Object”, meaning that only “Object”
could have a DIT measurement of 0. For NOC, 73% of the C++ classes and 68% of the
Smalltalk classes had no children. The maximum NOC measurements reported were
42 for C++ and 50 for Smalltalk. It is worth noting that the results in this paper were
presented as a frequency distribution. This presentation means that we can determine
such things as for the C++ site about 200 classes had a DIT of 0 (meaning about 400
classes had a non-zero DIT) and just under 300 classes in the Smalltalk site had a DIT
of 1 (and so 1100-1200 classes had a DIT of more than 1).

There have been various efforts to establish the veracity of Chidamber and Kemerer’s
thinking or similar claims about inheritance. We report only the most relevant to our
work.

Daly et al. carried out an investigation on the impact of depth of inheritance on main-
tenance as measured by the amount of time taken to perform a maintenance task [[7].
Their results suggested that inheritance had a negative effect on maintenance time. This
study was later replicated, with the results suggesting the opposite effect — that in-
heritance had a positive effect on maintenance time [8]]. That these two studies could
get such different results suggests there may be more to inheritance than just “depth,”

670 E. Tempero, J. Noble, and H. Melton

although both were sufficiently small that it is possible that some effect other than in-
heritance was observed.

Another replication was carried out by Harrison et al. [9]. They studied two C++ sys-
tems, each with two versions. One system had a version without inheritance consisting
of 360 LOC and a version with 290 LOC with maximum DIT of 3. The other system
had one version with 1200 LOC and the other with 900 LOC and maximum DIT of 5.
Their results suggest that inheritance made it harder to modify systems, but that size
and functionality of a system may affect understandability more than the “amount of
inheritance” used. The authors observed that an external threat to the validity of their
results was the small size of their system. They claimed that the levels of inheritance
investigated were “typical of those found in larger systems.” Our interest is in whether
DIT is sufficient to characterise “amount of inheritance”, and whether the systems used
in this and earlier studies really can be considered “typical.”

On the question of “how inheritance is used”, there appears to be little in the way
of published results. Manel et al. [12] try to determine differences in maintainability
of code written in the OO paradigm vs the structured programming paradigm, which
included use of metrics for inheritance. The two inheritance metrics they use are “num-
ber of derived classes”, and the number of lines of code in the classes a derived class
inherits from (in order to try and gauge the degree of reuse via inheritance). They look
at 5 versions of one “medium sized” application from the telecommunications domain.
The first version had 20 derived classes out of 57, while the 5th version had 87 derived
classes out of 225 (39%).

One of the largest studies that we are aware of is by Succi et al. [13]. They applied
the metrics suite by Chidamber and Kemerer to 100 Java and 100 C++ applications.
They were investigating the statistical properties of the CK metrics but our interest is
in the metric values they report. The Java applications ranged from 28 to 936 classes in
size (median 83.5) and the C++ applications ranged from 30 to 2520 classes (median
59). The actual applications were not identified. Interpreting their box plots, the DIT
measurements for the Java applications were mostly in the range 2-5, with outliers at
10. For the C++ applications, most measurements were in the range 5-6 with outliers
both above and below, and a maximum of 9. For NOC, the Java measurements were
almost entirely less than 10, although there were outliers larger than 150, and for the
C++ measurements, the range was similar, although there appear to be more outliers.

In another large study, Collberg et al. analysed 1132 Java jar files collected from
the Internet [[14]]. According to their statistics they analyse a total of 102,688 classes
and 12,188 interfaces. While no information was given as to what applications were
analysed, this paper is good for the amount of data it provides. Much of it is not directly
relevant to our study, but they did produce histograms of “inheritance graph height per
application” finding a maximum of 10, a median of 4 and a minimum of 1, and also
“number of user-class extenders per application” finding a maximum of 641, a median
of 5, and a minimum of 0.

Other studies involving measuring DIT and NOC have judged the measurements to
be “low”, but consisted of quite small samples. Chidamber et al. studied three systems,
one with 45 C++ classes, one with 27 Objective C classes, and one identifying 25 classes

How Do Java Programs Use Inheritance? 671

in design documents [[13]]. The largest values they report are DIT of 3 and NOC of 11
(both from the design documents).

Basili et al. investigated the Chidamber and Kemerer metric suite as predictors of
fault-prone classes [16]. Their study consisted of 8 teams of 3 students building a
“medium-sized” video rental system, resulting in 8 C++ applications consisting of 180
classes in total. The maximums they observed were 4 for DIT and 5 for NOC. However
it should be noted that with 180 classes spread over 8 applications, each application
must be fairly small.

Briand et al. carried out a study to determine to what extent various metrics are useful
for detecting the probability of detecting faulty classes using the same applications as
that by Basili et al. [17]. In addition to DIT and NOC, they also considered, number of
parents (NOP), number of descendants (NOD), and number of ancestors (NOA). The
maximums were 1 for NOP, 9 for NOD, and 4 for NOA.

Having a measurement by itself is of limited use. We also need what Kitchenham et
al. refer to as the entity population model, which identifies the “normal values” of what
is being measured under specific conditions [18]]. They observe that without knowledge
of such models, we cannot interpret what a measurement means. A starting point to
developing such models for a metric is to apply it to “real” code, that is, code written as
part of a software application, rather than code written to demonstrate the metrics, and,
most importantly, report the results.

3 Characterising Inheritance

The starting point for our work was to determine a meaningful answer to the question
“How much inheritance is being used in this application?” There are several reasons
why having an answer to this question would be useful. This question is fundamental to
evaluate any claims made about its benefits. If we cannot reliably measure inheritance
use, then we cannot be sure that any changes that observed are due to (or just due to)
inheritance. For example, in the studies on the effect of inheritance on maintenance de-
scribed in the previous section, inheritance was characterised by just one measurement
(DIT), whereas other inheritance metrics have been proposed (e.g. NOC).

Given the advice against overuse of inheritance, it would be useful to know to what
extent this advice has been followed. We have previously seen a case where reality does
not match theory [19]. Such situations may indicate problems with the theory, problems
with its application (e.g., lack of appropriate tool support), or perhaps problems with
training. We cannot determine which without appropriate metrics, and knowledge of
how to interpret the measurements produced by the metrics.

To illustrate these points, consider the report by Chidamber and Kemerer on the
Smalltalk site. They reported it consisted of about 1450 classes and had a maximum
DIT of 10. How should we interpret this value of “10”? Chidamber and Kemerer char-
acterised it as “rather small.” But as we observed, other studies suggest that systems
with measurements of 10 would have maintainability issues, implying it should be rare,
which is what the study by Succi et al. suggests.

Another view of the meaning of a DIT value can be gained by considering a complete
binary tree with the maximum number of nodes possible while also having a maximum

672 E. Tempero, J. Noble, and H. Melton

DIT of 10. Such a hierarchy would have 2'' — 1 = 2047 nodes in it, which is com-
fortably more than the 1450 classes of the Smalltalk application. While we should not
expect a realistic inheritance hierarchy to look like a binary tree, it does give an indica-
tion as to what the hierarchy must look like in order to get DIT measurements greater
than 10. Its shape would have to somewhat more “tall and skinny”. Our key observation
is, we do not know what maximum DIT value we should expect for an application with
1450 classes.

In the complete binary tree hierarchy, the maximum NOC would be 2, and all but one
class would inherit from some other class. Yet many variations on this are obviously
possible: fewer classes could inherit from other classes while still having a maximum
DIT of 10 and NOC of 2, the maximum DIT could be much greater than 10 while the
NOC is no more than 2, the NOC can be much greater than 2 while the DIT is less
than 10. On this basis we argue that it is not sufficient to characterise the inheritance
hierarchy of an application by just one (or two) metrics.

Chidamber and Kemerer observed that the Smalltalk distribution is somewhat “top
heavy”, with the frequencies for DIT measurements 1-3 being around 300, and those
for 4 and 5 being around 200. The Smalltalk distribution could be explained by the
presence of the class library that is standard for any Smalltalk distribution. We speculate
that many DIT distributions for Smalltalk software would be dominated by the library
classes, meaning all distributions would look very similar. This raises the question as to
how such standard libraries should be handled when defining metrics.

As we noted, Chidamber and Kemerer originally provided distributions of these met-
rics, and from these we can answer such questions as “how many classes have DIT or
NOC of 0”. The proportion of classes with DIT of 0 is the proportion of classes that do
not use inheritance in their definition. Knowing whether this proportion is 70% rather
than 90% would seem to give us some reasonable idea of the degree to which the ap-
plication uses inheritance to define classes. Similarly it would be useful to know the
proportion of classes with NOC of 0, that is, not providing inheritance relationships
with other classes. Rather than rely on determining these values from frequency distri-
butions, we will define such metrics directly.

Classes can be involved in inheritance in a number of different ways. For example,
in Smalltalk, all classes except “Object” can be said to use inheritance. Perhaps we
should distinguish those that inherit from “Object” from those that inherit from other
classes. Taking this further, perhaps we should distinguish classes that inherit from any
standard library class from those that are defined in the application. Those that inherit
from a library class could be considered to be benefiting the most from reuse (since the
library class doesn’t have to be written) albeit restricted to what the library provides. A
user-defined class inheriting from another user-defined class benefits less from reuse,
but the designs of both classes are under the control of the software developer, and so
this relationship could better represent the “quality” of the design.

The issue with measuring some kind of “DIT” metric in Java is the distinction be-
tween extends and implements. This distinction allows for a certain kind of “mul-
tiple” inheritance. The issue of measuring DIT in the context of multiple inheritance
was defined by Chidamber and Kemerer to be the length of the longest path to the root
[11]]. However, if we are measuring a class that extends another class and implements

How Do Java Programs Use Inheritance? 673

an interface, it’s not clear that paths that follow the extends relationship are the same as
those that follow the implements relationship. Rather than make a judgement, we will
consider all variations.

Another issue in measuring DIT in Java is dealing with the situation where a type
defined in the application inherits from a type for which we do not have the definition.
For example, we create a new class MyVector]that extends|java.util.Vectorl
Since Vectorl has 3 ancestors, DIT (MyVector])) should be 4. If we did not know
Vectorfs ancestry (or at least its DIT value), then we would not be able to measure
DIT for MyVector. It is a limitation of our study that the corpus we use does not
have the complete external libraries, making it impossible to determine the “true” DIT
values in all cases. We will note that as far as the developer is concerned Vector|(and
any other type that is not part of the application) can usually be treated as if it were a
“flattened” type. In the case of our example, we know MyVector]extends Vector],
but in terms of reasoning about MyVectox| it is not so relevant what Vectoxr's true
structure is. For this reason we will define a variant of DIT (and similar metrics) that
considers only the user-defined inheritance structure.

4 Inheritance Metrics for Java

4.1 Modelling Inheritance

In order to unambiguously define metrics for inheritance in Java we need to specify a
model of Java inheritance. What we have been colloquially calling the inheritance “hi-
erarchy” is really a directed acyclic graph (DAG), where the vertices are Java reference
types and edges are inheritance relationships. For the purposes of the definition we al-
ways assume that java.lang.Object is in the graph, and that any classes without
explicit superclasses have an edge to Object. To do otherwise would mean that some
metrics change values if a programmer explicitly includes extends Object.

There are two kinds of edges, one for extends and one for implements. If A
extends Bl then Al is the child and [Bl is the parent, similarly if Al implements Bl
When we “follow an edge”, we traverse the edge from child to parent.

The Java Language rules mean that at most one type of edge can connect any pair
of vertices, and in some cases both may be disallowed. For example, an implements
edge cannot occur between two class vertices. Practically speaking, the most common
connections will be between pairs of classes, pairs of interfaces, or class-interface pairs.
All others are very unlikely (e.g. enum implements annotation) or at least very rare (e.g.
class implements annotation). Table [Tl shows all the possibilities.

We have different kinds of vertices to distinguish different kinds of types, that is,
classes (C), interfaces (1), enums (E), annotations (A) and exceptions (Ex). We dis-
tinguish classes and interfaces as they have quite different inheritance relationships
with each other and play different roles in an inheritance hierarchy. We distinguish
enums and annotations because, although they are respectively implemented as spe-
cialised classes and interfaces, their roles are somewhat different. Furthermore, they
are in fact implemented in terms of inheritance (extending |java.lang.Enum and
java.lang.annotation.Annotation respectively), something that is evident
at the bytecode level, although for the purposes of our metrics we will ignore these

MyVector
java.util.Vector
Vector
MyVector
Vector
MyVector
Vector
MyVector
Vector
MyVector
Vector
A
B
A
B
A
B
java.lang.Enum
java.lang.annotation.Annotation

674 E. Tempero, J. Noble, and H. Melton

Table 1. Allowable type inheritance relationships

Class Interface Enum Annotation Exception

Class extends implements implements

Interface extends extends

Enum implements implements
Annotation

Exception implements implements extends

relationships. Finally, exceptions are distinguished from classes as they also have spe-
cialised roles, and furthermore are explicitly defined in terms of inheritance (extending
java.lang.Exception). Combining exceptions with other classes when trying to
determine the amount of inheritance may therefore give misleading results.

As well as ignoring the implicit inheritance relationships with Annotation|and
Enum we also ignore inheritance relationships with marker interfaces, specifically
java.lo.Serializableandjava.lang.Cloneable.

For each kind of type there are 3 different kinds of vertices: user-defined (that come
from the application we are measuring) standard library (from the Java Standard API),
and third party (any remaining types from neither user code nor the standard library).

Each vertex has a “nesting level” attribute that indicates the level of nesting of the
type represented by the vertex, where 0 indicates a top-level type, and the nesting level
of any nested type (e.g., inner class or interface) is 1 more than its enclosing type.

4.2 Scalar Inheritance Metrics

The first set of metrics are what we refer to as “scalar” metrics — they all produce
a single scalar value for a user-defined type, such as the original DIT and NOC met-
rics do. All the metrics are defined in terms of paths (following edges) in the DAG
and for the purpose of this paper we only present these metrics for classes or inter-
faces (that is, neither enums, annotations, nor exceptions). All paths consist of either
all extends edges, in which case all the vertices are represent either classes or inter-
faces, or at most a single implements edge, which will have only vertices represent
classes before it and vertices representing interfaces after it. In all cases, we do not
count/java.lang.Objectl

There are roughly 4 categories of metrics — one category involves paths going from
the type being measured to a root (“depth in tree” — DIT), one involves the number
of other types reachable from the type either directly (“number of parents” — NOP)
or transitively (“number of ancestors” — NOA), one is the number of other types from
which the type being measured is reachable either directly (“number of children” —
NOC) or transitively (“number of descendants” — NOD), and the last involves paths
from a leaf to the type being measured (“height in tree” — HIT), however we do not
consider this last category in this study.

Within each category, we can specify different metrics by specifying the allowable
vertices and edges in the paths we consider. Some distinctions include: paths that only
begin at classes and only follow extends edges (“CC”), paths that only begin at

java.lang.Exception
Annotation
Enum
java.io.Serializable
java.lang.Cloneable
java.lang.Object

How Do Java Programs Use Inheritance?

[Jobject TPA[| TPB OSLA

A F/E i\g MD OP
////’

B£| E L

KDND

/

675

I:I Standard Library Class
|:| Third Party Class

l:l User Defined Class
O Standard Library Interfacg

O Third Party Interface

O User Defined Interface
———» extends

implements

DITCCUD(A)=0

DITCCUD(B)=1

DITCCUD(C)=1

DITCCUD(E)=3

DITIIUD(G)=1

DITIIUD(H)=2

NOAUD(B)=1 NOCCC(C)=2 NOCII(G)=2
NODCC(C)=3 NODII(G)=2
NOD(G)=5
NOCII(D=1 DITIIUD(J)=2 DITCCUD(K)=0 NOAUD(L)=7 NOPCI(N)=2 DITIIUD(P)=0
NOCCI(D)=1 NOAIIUD(J)=4 NOPC(L)=2 NOPC(N)=2 NOCCI(P)=2
NOCI(I)=2 NOPI(J)=2 NOAIIUD(P)=0
NOAUD())=4

Fig. 1. Example of scalar metrics

interfaces and only follow extends edges (“II”), paths that only begin at a class and
must begin with an implements edge (“CI”), paths that begin at classes and follow
any edges (“C”), similarly for interfaces (“I”), or paths that begin at any type and follow
any edges.

The name of a metric indicates its category and the kinds of edges allowed. Thus, for
example, DITCC (DIT category, CC edges) is the length of the longest path starting at a
class and following only extends edges to the root, NOCII is the number of interfaces
incident (via extends edges) on an interface, and NOPCI is the number of interface
vertices reachable from the type via an implements edge.

Following our discussion in section 3 we have two variants of DIT relating to
whether or not the paths consist only of user-defined (UD) types or not. So, DITCCUD
considers only paths that end at a non user-defined class. If the last class is Object,
then DITCCUD is one less than the length of the path, otherwise it is the length of the
path. DITCCUD is undefined for anything other than classes. DITITUD is the equivalent
for interfaces.

NOCT is a metric that applies only to interfaces and measures the indegree of the
corresponding vertex. As we will see, this is useful as an interface with NOCI of zero is
one that is neither implemented nor extended. NOPC only applies to classes and is the
outdegree of the vertex. This tells us how many parents, following both extends and
implements edges.

There are 2 NOA variants and 3 NOD variants. NOA has the same prob-
lem as DIT with respect to external libraries so we define metrics that refer only to
user-defined types. NOAIIUD, NODCC, and NODII follow the conventions established

676 E. Tempero, J. Noble, and H. Melton

above (NOACCUD is equivalent to DITCCUD). NOAUD and NOD do not restrict the
paths when determining what is an ancestor or descendant. NOAUD for a type X is
then the number of variables with different user-defined types than X to which values
of type X can be assigned. NOD for a type X is then the number of values with types
different to X that can be assigned to a variable of type X.

Figure[Tl gives examples of a number of the metrics. All metrics are also summarised
in Appendix A.

4.3 Inheritance Summary Metrics

Inheritance Summary metrics apply to applications, that is, they produce values that
are measurements of an application rather than an individual type as the scalar met-
rics do. These metrics report the proportion of user-defined types that fall into different
categories. In the following, “DUI” (Defined Using Inheritance) denotes metrics that
consider the types that occupy the child end of an edge in the inheritance DAG and “IF”
(Inherited From) denotes metrics that consider types at the parent end. We can focus
on what kinds of types participate in an inheritance relationship, with “CC” indicating
class—class relationships (i.e., extends), “CI” indicating class—interface relationships
(i.e., implements), “II” indicating interface—interface relationships (i.e., extends),
and so on. As indicated above, we divide the user-defined types involved in an appli-
cation into 3 subsets according to their origins, which we denote [UD| (user-defined), TP
(third-party), and [SL| (standard library).

We begin with two metrics that give an overall idea of how much inheritance exists
in an application.

DUI. The proportion of types that either implement an interface or extend another type
other than Object, or, the proportion of types that occupy a child end of an edge
in the inheritance DAG.

IF. The proportion of types that are either extended or implemented, or, the proportion
of types that occupy a parent end of an edge in the inheritance DAG.

While these two metrics give us the proportion of user-defined types that participate
in an inheritance relationship, we must keep in mind the interface/class distinction. For
example, it seems reasonable to expect that all user-defined interfaces will be imple-
mented, and thus boost the DUI measurement, so we have more refined metrics.

CCDUI. The proportion of user-defined classes that extend some other class.

CIDUI. The proportion of user-defined classes that implement some other interface.

IIDUI. The proportion of user-defined inferfaces that extend some other interface.

CCIF. The proportion of user-defined classes extended by some other (user-defined)
class.

CIIF. The proportion of user-defined interfaces implemented by some (user-defined)
class.

IIIF. The proportion of user-defined interfaces extended by some other (user-defined)
interface.

UD
TP
SL

How Do Java Programs Use Inheritance? 677

We can specify more refined metrics for the “DUI” category by classifying the types
being extended. For each of the possible type relationships (table [I)), we can consider
the proportion of those relationships that have parents in/SL, TP, or UD. We name these
metrics by indicating which parent subset, which relationship, and the fact that we are
measuring proportions at the child end of the relationship. So, for example, the propor-
tion of classes that inherit from standard library classes is SLCCDUI, the proportion of
classes that implement third-party interfaces is TPCIDUI, and the proportion of inter-
faces that extend user-defined annotations is UDIADUI.

Finally, we can specify metrics for types at a given nesting level, indicated by a
subscript denoting the nesting level. So SLIIDUI, is the proportion of level-1 nested
interfaces that extend standard library interfaces.

The metrics are also summarised in Appendix A.

5 Results

We have created a standard corpus of software to use for these kinds of studies [20].
For this study we analysed a total of 239 different codesets from 93 different open-
source Java applications from the corpus. We list the latest version of each application
in Appendix B. Considering only the latest version of each application, we measured
96,302 classes and 12,665 interfaces (108,967 types in total). The instrument we used
for measuring looks at the bytecode version of the codeset.

In the previous section we described over 50 metrics (not counting nesting level dis-
tinctions). Due to space constraints, we present here just those measurements that seem
most interesting. In particular, we provide only measurements relating to all classes
and interfaces regardless of nesting level (leaving out those for enums, annotations, and
exceptions). The full dataset is available on request.

5.1 Scalar Inheritance Metrics

We begin with the scalar metrics. Table 2l shows the maximum values we saw of each
of these metrics, together with the applications that had types with those maximum
measurements.

Some measurements are unsurprising, as are the applications that have the maxi-
mum measurements. For example, the maximum DITCCUD measurement is 10, which
is consistent with other studies. Also, eclipse| is one of the larger applications
in our study (17622 classes, 1926 interfaces), and so it is unsurprising that it has
many of the maximum values, although that one class has 795 children is notewor-
thy. Yet the much smaller jopenoffice| (1320 classes, 1617 interfaces) has an in-
terface with even more interface children. Trove’s NOPCI (number of interfaces a
class implements) value of 56 also seems rather extreme. The class with that value is
gnu.trove.SerializationProcedure, which does notextend anything (other
than Object) and so the NOPC maximum is the same.

Figure 2] shows frequency distributions for various tree depth metrics, summing all
applications across the whole corpus, and reporting results in absolute values of metrics
(z axis) for absolute number of classes with that metric value (y axis) on a log-log scale.

SL
TP
UD
eclipse
openoffice
gnu.trove.SerializationProcedure
Object

678 E. Tempero, J. Noble, and H. Melton

Table 2. Maximum values for scalar metrics

Metric max Applications
DITCCUD 10 netbeans-5.5-beta
DITIIUD 8 scala-1.4.0.3,netbeans-5.5-beta

NOCcCC 795 eclipse SDK-3.1.2-win32
NOCCI 279 eclipse SDK-3.1.2-win32

NOCII 878 openoffice-2.0.0
NOCI 878 openoffice-2.0.0
NOPCI 56 trove-1.1b5
NOPC 56 trove-1.1b5
NOPI 13 luxor-1.0-b9

NODCC 983 eclipse SDK-3.1.2-win32
NODII 1244 openoffice-2.0.0

NOD 1873 eclipse SDK-3.1.2-win32
NOACCUD 11 netbeans-5.5-beta
NOAINIUD 18 glassfish-9.0-b15
NOAUD 57 trove-1.1b5

The first four graphs concern the “client” side of the inheritance relationship, that
is, how a class relates to other classes that it inherits from. The first graph shows
DITCCUD, that is the number of transitive superclasses (ancestors) of each class (not
counting Object). The graph shows, for example, that over 10,000 classes have pre-
cisely 2 transitive superclasses not including Object, for example Vector extends
AbstractList which extends AbstractCollection which extends Object,
while only 100 classes across our corpus have 7 transitive superclasses. The second
graph, DITIIUD, is similar to the first but for interfaces, and counts the length of the
longest chain of transitive superinterfaces of each interface. The shape of the distrib-
utions are similar, except that there are far fewer interfaces than classes in the corpus
— roughly one interface for every ten classes. The third graph, NOPC, shows the num-
ber of parents (classes and interfaces) that each class extends or implements; while the
fourth graph, NOAUD, shows all ancestors, that is the transitive closure of all classes
and interfaces contribution to a definition by any kind of inheritance.

These four client graphs have the same shape, which we have previously described
in software as a “truncated curve” distribution [21]]. Truncated curves are most likely
log normal or stretched exponential distributions, and so quite different from normal
distributions. Truncated curve distributions are highly skewed: almost every class will
have a metric value of at least one, but this then decreases rapidly. Truncated curve
distributions also have a maximum value (as their name suggests, they are truncated
where they meet the x axis) that tends not to depend upon the size of the underlying data
set — for depth (DITCCUD and DITIIUD) this is around 10; for parents (NOPC) 10
and for ancestors (NOAUD) around 12 for most applications. The maximum values for
the parents and ancestors metrics are fromtrovel a library rather than an application,
which is a clear outlier.

trove

DITCCUD for all classes

How Do Java Programs Use Inheritance?

DITHUD for all interfaces

679

100000 10000
D 10000 | . E
=5 . o 1000 ¢ '
123 + [0} +
[0} Q +
2 1000 | - &
© + o +
© 2 100
S 100 | 5 v
(7] —
£ g 10
2 10 + §)
1 1
10 1 10
DITCCUD (log) DITIIUD (log)
NOPC for all classes NOAUD for all types
100000 100000 ‘
2 10000 | B 10000 | e
= g .
a + o +
[} » "
2 1000 | g 1000 T
Ko + = ¥
2 . s .
S 100 | . 5 100 |
8 . 8
g + g - fr
E 10l . z 10 | W,
1 ‘ 1 :
10 100 10 100
NOPC (log) NOAUD (log)
NOCIC for all interfaces NOD for all types
10000 10000 . ‘
g . .
S 1000 ¢ . 8 1000 ¢
< . IS ",
2 100 . z 100 | "
b 2 k3
o * Q ;
5 A o L
Q e € o
e 10 | i 5 10 kAN
5 AN z A
z PR TN TR
1 ‘ . 1 ‘ X .
1 10 100 1000 1 10 100 1000 10000
NOCIC (log) NOD (log)

Fig. 2. Frequency distributions for scalar metrics over entire corpus (log-log)

These distributions mean that most inheritance is shallow — although most classes
use inheritance, they are generally only a few levels down in the inheritance tree. Be-
cause of the skewed, truncated curve distributions, there will still be some classes that
are quite deep in the inheritance hierarchy, but this is bounded — the number of an-
cestors contributing to each class’ definition, and the depth of classes in the inheritance
tree, does not increase with program size.

The other graphs in figure 2l concern the “supplier” side of the inheritance relation-
ship, that is, how a class relates to other classes that inherit from it. The first supplier
graph, NOCCI, shows for each interface, the number of classes that implement that in-
terface (a partial complement to NOPC), while the second supplier graph, NOD, shows

680 E. Tempero, J. Noble, and H. Melton

the total number of types (classes and interfaces) that directly or transitively inherit
from that class or implement that interface (a complement to NOA).

These two supplier graphs show the classic signature of a power-law distribution:
a straight line on a log-log plot. In the centre of the data, a power law behaves quite
similarly to a truncated curve, so that, for example, 1,000 classes implement 2 inter-
faces, but only 100 classes implement 10 interfaces (NOCCI); or 10,000 types have
no descendants, 5,000 types have only one descendant, and around 100 types have 11
descendants (NOD). The key difference between a truncated curve and a power law
occurs on the right hand-side — while the absolute metric values in a truncated curve
distributions are, well, truncated, power laws are unbounded. This is visible towards
the bottom right of the NOCCI and NOD graphs, which show that the corpus contains
one or two classes with large values for these metrics, and in the maxima for the power
law metrics (279 for NOCCI, 1895 for NOD, both from eclipse, one of the largest
applications in our corpus).

Compared with normal distributions, power law distributions are counter-intuitive:
most classes are not used as suppliers in inheritance relationships, while a few classes
are used very commonly. Because power law distributions are unbounded, we can ex-
pect that as programs get larger, the numbers of implementations of popular interfaces
and the number of descendants of popular classes will grow without limit.

In general, these graphs confirm the results of our smaller and much more coarse-
grained study of general dependency topologies in software [21]]: client relationships
are truncated curves, while supplier relationships are power laws. Specifically with re-
spect to inheritance, we see that most classes are defined using some form of inheritance
— either extending another class or implementing at least one interface. Although in-
heritance is used pervasively to help define classes, it is also shallow: we found no class
with more than ten parents, and very few with more twelve or thirteen ancestors (both
classes inherited from, or interfaces implemented). For programmers reading or writing
new class definitions, this means that they only need to consider a limited number of
classes to understand their new classes.

On the other hand, relatively few classes and interfaces participate in the definitions
of other types, but a few of those that do are used very widely indeed — this is the asym-
metry inherent in power law and truncated curve networks. For programmers learning
libraries or applications, this is good news: it means that there will be a few crucial
types that they need to understand in order to implement or subclass to extend appli-
cations, or to use libraries. Furthermore, querying codesets to find the most frequently
extended or implemented classes will likely be a good strategy to use when encoun-
tering an unfamiliar problem. On the other hand, for maintenance programmers, this
is mixed blessing. Most types do not participate in much inheritance as suppliers, so
they can be changed with little effect on the application. There will be some classes and
interfaces, however, that are used very widely throughout a program, and as the pro-
gram gets bigger (as more functionality, or more classes are added) these core classes
and interfaces will be used more and more often. Maintaining or extending such classes
or interfaces will be very difficult indeed, and only get harder as the size of programs
increases.

eclipse

How Do Java Programs Use Inheritance? 681

5.2 Inheritance Summary Metrics

We now turn to the metrics that apply to whole applications. Figure [3] shows the DUI
and IF results. It shows the number of applications having a given measurement, re-
membering that a measurement is a proportion of some kind. Looking at figure 3] the
tallest bar (mode) for DUI is at 72% and has height 7, indicating that 7 applications had
72% of their types defined using inheritance in some way.

DUI IF

Number of applications
Number of applications

o = N W A~ OO N O ©

0 20 40 60 80 100 40 60 80 100
DUI measurement IF measurement

Fig. 3. Frequency distributions for DUI and IF

The striking feature of the DUI results is that the lowest is 29% (mvnforum), and
that is very much an outlier. The next smallest value is 49% (openxchangel|quilt).
The median is 74%, that is, half the applications in our study have 74% or more of their
user-defined types defined using some form of inheritance. For IF, the minimum was
2% (ireportirssowl)), the maximum was 39% (scalal), the median was 17%, and
mode was at 14% (9 applications).

Ccbul CiDul liDUI

Fig. 4. Frequency distributions for CCDUI, CIDUI, and IIDUI

A class contributes to the DUI measurement by either extending another class or
implementing an interface. The first is measured by CCDUI and the second by CIDUI.
An interface contributes to DUI only by extending another interface (IIDUI). Their

mvnforum
openxchange
quilt
ireport
rssowl
scala

682 E. Tempero, J. Noble, and H. Melton

CCIF CIIF F

o 20 a0 60 80 100 o 20 0 60 80 100 o 20 a0 60 80 100

Fig. 5. Frequency distributions for CCIF, CIIF, and IIIF

SLCCDUI TPCCDUI UDCCDUI

B 5 B | |
o Ml su 1 o
o 20 W

o 20 40 60 80 100 60 &0 100 o 20 40 60 80 100

Fig. 6. Frequency distributions for SLCCDUI, TPCCDUI, and UDCCDUI

frequency distributions are shown in figure 4l For CCDUI, the minimum value is 14%
(mvnforum), the median is 52%, the maximum is 91% (jparse), and the mode is
43% (6). For CIDUI, the minimum is 2% (f 1t java), the median 34% , the maximum
76% (scalal), and the mode 41% (5). Generally a lower proportion of classes inherit
from an interface than extend another class. For IIDUI the minimum is 3% (roller), the
median is 21% (ganttproject,xalan, hibernate,/lucene)), the maximum is
99% (scalal), and the mode is at 27% (5).

SLCIDUI TPCIDUI uDCIDUI

Fig. 7. Frequency distributions for SLCIDUI, TPCIDUI, and UDCIDUI

Considering figure] we can see that there was a wide distribution in the use of in-
heritance to define classes and interfaces across our corpus. So it is not the case that the
distribution in figure @is due to (for example) just classes implementing interfaces, but
each of CC, CI, and II relationships make significant contributions. In fact, applications

mvnforum
jparse
fitjava
scala
ganttproject
xalan
hibernate
lucene
scala

How Do Java Programs Use Inheritance? 683

SLIIDUI TPIIDUI ubIiDul

Fig. 8. Frequency distributions for SLIIDUI, TPIIDUI, and UDIIDUI

generally have a lower proportion of classes implementing interfaces than classes ex-
tending classes, and interfaces extending interfaces is lower still (note that a class both
extending another class and implementing one or more interfaces will show in both the
CCDUI and CIDUI results).

A type contributes to the IF measurement by either being an interface that is imple-
mented (CIIF) or extended (IIIF) or a class that is extended (CCIF). Their frequency
distributions are shown in figure Bl We see that rarely are more than 20% of either
classes or interfaces extended, and most of the time more than 80% of interfaces are
implemented. The latter is somewhat surprising — we would expect that if an interface
is created then it would be implemented, but this is true for only 15 of the applications.
One possible explanation is that some interfaces are only extended, hence it is worth
looking at how many children an interface has (NOCI). The lowest CIIF value is 9%
forlopenoffice, but recall that openof £ice had the largest NOCI value.

A class can extend either a standard library class (SLCCDUI), a third-party class
(TPCCDUI), or a user-defined class (UDCCDUI). Figure[@ shows their distributions. It
would appear that most of the CCDUI distribution can be explained by the UDCCDUI
distribution, that is, by and large, classes that extend another class tend to extend user-
defined classes. Figures[7land [§] shows the distributions for the CI and II relationships.

100

ant DUI breakdown

"DUI

azureus DUI breakdown

100

- " pli "+
ccoul x ccoul x
80 CIbul | x| 80 & CIDUI x
€ ¥ oyl e € T HDWI + o
[x x x 0] X x x
€ 60 | x £ 60 F L ox x e oxox *
[o *
5 5
® 40t ® 40T
2 Q x x ox
= = x x o
20 g 5 © 07 o ox oxoxoxoxox 20F " *
g g ® © @® @ @ @ Le 80 o g g g
RIS N S N I O oo oo oo 55005000050
TR Y 80,9575 9 % % G 2585%5%5%72:06% % 0 0 0505050 % %

Tyl '6}/'7 20 %2 %

Version

Version

Fig.9. DUI and its breakdown for 13 versions Fig.10. DUI and its breakdown for 17 versions
of azureus

of ant

openoffice
openoffice

684 E. Tempero, J. Noble, and H. Melton

eclipse DUI breakdown azureus CCDUI breakdown

100
100 —— ccbul -+
bur - SLCCDUI x
.. . , ccou - 80 - TPCCDUI = 1
80 v @1:88: H B uDcCDUI ®
5 £ 60 —
£ 60 1 5
g XXX x x kX 2 40l o i
%] x % % % x x x X X x 3) FE— 04
s 40f ¥ = LT LRI
2 ° 8 5 a8 s o8 o o & 20F o agoa " °]
L B # P a a B
20 O\\%%:‘%\%\§%§§*¥**
e S0 0S 0050505050505 757 oSS et
0 e e A e 98 0 005007070 0
205050505757 757 %0 % Y0 8 Y, CIORIOR OO ORI ORI
R 7Rt R o)
. Version
Version
. . Fig. 12. DUI and its breakdown for 17
Fig. 11. DUI and its breakdown for 13 ver- 8 . CE Ul and its breakdo
. . versions zureus
sions of eclipse ersions ot azureu
azureus IF breakdown
azureus CIDUI breakdown 100
100 L IF =
cibulr -+ x x x x x x GCIF* X "
SLCIDUI x 80 - CIIF = 1
80 TPCIDUI = 1 = WF «
c o [}
; Upcioui 2 e |
E BOF L4 s, .o s e .1 9
[+ =1
3 g 40f]
g 40 ; C s a oo oY 2
20 t’sa“Q**** | 20 r J A S A
5%k RESEEEEREEEEEEEE
(O —— RRRRLLRLLLLLPLLR PR
RRRRLRLRLRL RO Q503505000 30505057 57 6% 0500 0o
0%.0%0%05050%0%0%0% 75 7S SIS 25858 5% 5% 585858052520 50 50 95,
3 ? ? 070527079700 R 7 0 R w0 R0 R e
76%0%0%0%0%0% % %% %% %6 %% %%

. Version
Version

Fig. 14. IF and its breakdown for 17 ver-

Fig.13. CIDUI and its breakdown for 17 .
sions of azureus

versions of azureus

5.3 Longitudinal

Another view of our data is to consider how the various metrics change over time
for an application. Figures and [[1] show DUI and its breakdown (CCDUI,
CIDUI, IIDUI) on one chart each for [ant) @zureus, and leclipse| respectively.
What is particularly interesting about these figures is how consistent the values are,
especially given the changes in size of the three applications: the number of user-
defined types for lant! goes from 102 for ant-1.1] to 1014 for [ant-1.6.5} for
azureuslitis from 163 forlazureus-2.0.1.0/to 2130 forlazureus-2.3.0.4,
and for eclipse it is from 6522 for eclipse SDK-1.0-win32 to 19674 for
eclipse SDK-3.1.2-win32.

Figures[12]and[[3]show the longitudinal views of CCDUI and CIDUI forazureus.
We note that the x-axis is not a linear scale, and that generally the size (in number
of types) of @zureus increases over the period shown. For example, for SLCCDUI,
the earliest version has 15 classes whereas the latest has 42, so the absolute number

ant
azureus
eclipse
ant
ant-1.1
ant-1.6.5
azureus
azureus-2.0.1.0
azureus-2.3.0.4
eclipse
eclipse_SDK-1.0-win32
eclipse_SDK-3.1.2-win32
azureus
azureus

How Do Java Programs Use Inheritance? 685

has increased but the proportion is declining. On the other hand, UDCCDUI shows
a marked increase, from 8%, 13 out 158 (version 2.0.1.0) to 27%, 647 out of 2410
(version 2.3.0.4).

Figure[T4] shows the IF results and the breakdown forazureus. IF shows an initial
increase and then an apparent convergence to 19%. CCIF ends up holding steady at 4%
from about version 2.0.7.0, but that version has 860 classes and the final version has
2410. As a general rule we would expect all interfaces to be implemented (CIIF). As
we noted earlier, reasons for this not to be the case include interfaces that exist only to be
extended by others, or dead code. In this case only around 90% of interfaces are directly
implemented, but there were only 5 in the earliest version and 492 (444 implemented)
in the latest. As there are 492 interfaces and 2410 classes in the latest version, giving
2902 types overall, the fact that 444 are implemented accounts for 15% overall, or most
of the IF measurement (19%). However, from the IIIF data we find that 35 interfaces
appear not be used at all.

6 Discussion

Our study has revealed several interesting features about the way inheritance is actually
used in practice in Java programs. We find the DUI results particularly interesting: as
presented in section[5.2] around three-quarters of user-defined classes use some form
of inheritance in at least half the applications in our corpus. We expected to see much
lower proportions of types using some form of inheritance. Our first thought on seeing
these results was that the high values could be due to heavy use of interfaces, or perhaps
significant use of frameworks from the standard API or third party libraries. Refinement
of our measurements (figures @ and [6) show that neither are the case, instead the most
common (but by no means the predominant) form of inheritance is classes extending
other user-defined classes.

One possible explanation of our observations is that some amount of the inheritance
we see is “bad inheritance” in some sense. It could be that there is so much advice
around advocating avoiding inheritance where possible because it is mainly being used
inappropriately. We cannot rule this out, although various checks we performed on the
accuracy of our tool involved looking at the source code, and these casual observations
did not reveal anything obviously wrong with the use of inheritance we saw, and our
corpus is made up of well-known applications mostly written by professional Java pro-
grammers. So we interpret our data to mean that defining most classes by inheritance is
accepted practice in Java programming.

Our observations thus provide a useful benchmark for managers of Java program-
mers — applications with significantly less than 75% of types defined using inheritance,
or more than 17% are inherited from, or in other ways significantly differ from what we
have observed, are applications that probably need investigation.

While a large proportion of types are defined using inheritance, rarely are more than
20% of classes or interfaces extended. While we have not shown the figures here, it also
turns out that the proportion of interfaces is rarely more than 20% of the total types,
and usually around 10%. This points towards a significant fan-out in the inheritance
relationships, and the NOC category of scalar metrics supports this view.

azureus

686 E. Tempero, J. Noble, and H. Melton

We have noted the NOC frequency distributions appear to have a classic power-law
shape we have seen in other software relationships [22/21]]. If the NOC metrics do have
a power-law distribution, then it follows that the larger the application, the larger the
NOC values we will see, and statistical measures such as mean and standard deviations
will have no useful purpose. This may explain why our NOC results are so different
from the previously published data — our study is so much larger.

Other distributions such as the NOD and NOP categories also appear to be power-
laws (although the NOP could be an artifact due to the small number of data points).
We have also noted the appearance of the “truncated curve” distribution (figure 2) we
have observed in dependency metrics in a previous study [21].

Examination of the longitudinal results also reveals a surprising feature, namely how
constant the use of inheritance is across application evolution and application size.
While 3 data points is hardly a strong trend, the fact that any exist is noteworthy. There is
no obvious reason for why such consistency should occur. Given the significant changes
in size (for example ant grows an order of magnitude across the versions we studied),
it seems unlikely that it is due to something about the delivered functionality, as the de-
livered functionality will have changed significantly. It is possible that this application
is biased by some feature of its problem domain, or the programming style used by the
development team, however it is equally likely that this level of use of inheritance is
simply a standard feature of accepted Java programming practice.

Another interesting feature is how much the component parts of DUI vary despite
DUI itself being so constant. For example in lazureus (figure the proportion
of classes implementing interfaces noticeably increases and then decreases without a
change in DUI and without similar differences in the proportion of classes or interfaces
using inheritance.

Looking at the breakdown of CCDUI forazureus| (figure[[2) we see that the pro-
portion of classes extending other user-defined classes steadily increases while the pro-
portion extending standard library or third-party classes steadily decreases, while (not
shown in the figure) the overall size of @zuzreus grows (although we again note that
the x-axis is not a linear scale). This suggests that applications become more inwards
looking as they age, relying on their own definitions. If externally-provided functional-
ity is required (by inheritance), it may be more likely to be accessed via user defined
classes that either themselves inherit or delegate to external code.

We note that the largest application in our study (netbeans| 19666 classes and
1830 interfaces) only has one maximum scalar measurement, and several different ap-
plications of quite different sizes are represented in the maximum scalar metric mea-
surements. This suggests that our metrics are not simply measuring application size
(at least as measured by number of types), but are actually capturing other features of
programming style or practice.

There are many other points of interest in the data we have collected that we do not
have space to discuss. But for example, we mentioned earlier interfaces that are neither
implemented nor extended (NOCI measurement of 0). There are in fact over 2000 such
interfaces. Some provide only constants, some indicate variation points of frameworks,
and some seem to be just dead code. This raises the question as to how much dead code

azureus
azureus
azureus
netbeans

How Do Java Programs Use Inheritance? 687

is being distributed. We also wonder what other peculiarities we might find in our data,
and in other kinds of similar measurements that could be made of code.

The most likely threat to the validity of our conclusions is the corpus we used, which
consists entirely of successful open-source Java applications, many of small to medium
size. Our results do apply to at least these applications, many of which (openoffice,
eclipsellant) are some of the most used Java programs worldwide. It does however
raise the question as to whether our results indicate something specific to the open-
source development model. We note that the few other similar studies that have been
published generally indicate different results, although their small
size, the lack of data they present, the lack of clarity about what they are measuring, and
the coarse granularity of their metrics makes it difficult to tell. In the scientific tradition,
we hope we have provided sufficient details about our corpus and metrics to allow other
researchers to replicate our study: independent replication will give the best grounds to
claim generalisability.

7 Conclusions

Like all programming language designs, Java is an experiment. Unlike most language
designs, the general adoption of Java, and the resulting widespread availability of sub-
stantial “real-world” Java programs means that we are finally able to evaluate that ex-
periment, in ways that are simply not possible for most other languages.

In this paper, we have introduced a new structured suite of metrics to evaluate, quanti-
tatively, how Java programs use inheritance. More importantly, we have applied these and
some more traditional “scalar” metrics in a large-scale empirical study. We believe such
studies are important to establishing and understanding trends in software development.

Our results show surprisingly high levels of use of inheritance in defining types, with
about 3 out of 4 types in our study being defined using inheritance in one form or other.
In contrast, most types make only a small contribution to other definitions via inheri-
tance; however a few types will be very well used, being inherited or implemented by
many other classes or interfaces. We have also seen evidence that levels of inheritance
are somewhat constant over the lifetime of an application. Our corpus study indicates
that an apparently high use of inheritance is a characteristic of accepted Java program-
ming practice.

The overarching methodological contribution implied by our results is that metrics
for inheritance must distinguish between classes and interfaces, and between extends
and implements relationships. To do otherwise obscures important data about program
structure, because our results show that different kinds of inheritance are used in dif-
ferent ways. Furthermore, distinguishing between user code and “other” code (both
standard libraries or third party components) is also important to give a true picture of
the use of inheritance. So far, our results show that programmers treat standard libraries
and third-party code in the same way — at least as far as inheritance is concerned —
while user-defined classes are treated differently, primarily by being used more often to
define other user-defined classes.

We emphasise that we make no claims as to whether our results are indicative of
“good design”. Without reliable data about such things as development effort, presence

openoffice
eclipse
ant

688 E. Tempero, J. Noble, and H. Melton

of faults, and other quality attributes, we cannot make such an assessment. As others be-
fore us have observed, gathering such data is crucial to understanding the impact of such
things as inheritance structure on software quality. The contribution of this research is
a crucial prerequisite to doing such studies: first, being able to understand and measure
the various uses of inheritance in Java programs in a well-founded manner; and second,
being able to use those measures to quantify the accepted Java programming practice.

There are many directions this work can take. We have collected, but have not yet
analysed, data on the use of nested classes, including static nested classes, in inheritance
relationships. Java also distinguishes abstract from concrete classes, and it would be
interesting to determine how they are used. Others have discussed examining the num-
ber of methods inherited, and other such “internal” inheritance relationships [23I12].
Steimann has identified various roles that interfaces can play, and extending his study
to our corpus may prove interesting [24]. As we noted at the end of the previous sec-
tion, independent replication of our results would give more support for generalisation
across other Java programs. Replication of our studies in other OO languages would
help determine how much our results depend on features Java, and how much they are
in some sense intrinsic to object-orientation.

Given enough data, it is often possible to find some kind of pattern, and we certainly
have plenty of data. Nevertheless we suggest that the patterns we have observed are
indeed an indication of significant structures in software design, and faithfully capture
large-scale aspects of the use of inheritance in accepted Java programming practice. In
other words, we have shown how Java programs use inheritance.

Acknowledgements

We would like to thank the anonymous referees for their comments and suggestions for
improving this paper and the suggestions for new studies.

References

1. Taivalsaari, A.: On the notion of inheritance. Comp. Surv. 28(3), 438—479 (1996)

2. Meyer, B.: Reusability: the case for object-oriented design. IEEE Software, 50-64 (March
1987)

3. Snyder, A.: Inheritance and the development of encapsulated software components. In: Re-
search Directions in Object Oriented Programming, pp. 165-188. MIT Press, Cambridge
(1987)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison Wesley Publish-
ing Company, One Jacob Way, Reading, Massachusetts 01867 (1994)

5. Johnson, R.E., Foote, B.: Designing reusable classes. Journal of Object-Oriented Program-
ming (June/July 1988)

6. Rumbaugh, J., Jacobson, 1., Booch, G.: Unified Modeling Language Reference Manual, 2nd
edn. Addison-Wesley, Reading (2004)

7. Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M.: Evaluating inheritance depth on the
maintainability of object-oriented software. Empirical Software Engineering 1(2), 109-132
(1996)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

How Do Java Programs Use Inheritance? 689

. Cartwright, M.: An empirical view of inheritance. Information and Software Technology 40,

795-799 (1998)

. Harrison, R., Counsell, S., Nithi, R.: Experimental assessment of the effect of inheritance on

the maintainability of object-oriented systems. Journal of Systems and Software 52, 173-179
(2000)

Chidamber, S.R., Kemerer, C.F.: Towards a metrics suite for object oriented design. In: ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pp. 197-211 (1991)

Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Softw. Eng. 20(6), 476493 (1994)

Manel, D., Havanas, W.: A study of the impact of C++ on software maintenance. In: Interna-
tional Conference on Software Maintenance, pp. 63—-69 (1990)

Succi, G., Pedrycz, W., Djokic, S., Zuliani, P., Russo, B.: An empirical exploration of the
distributions of the Chidamber and Kemerer object-oriented metrics suite. Empirical Softw.
Engg. 10(1), 81-104 (2005)

Collberg, C., Myles, G., Stepp, M.: An empirical study of Java bytecode programs. Softw.
Pract. Exper. 37(6), 581-641 (2007)

Chidamber, S., Darcy, D., Kemerer, C.: Managerial use of metrics for object-oriented soft-
ware: an exploratory analysis. IEEE Trans. Software Engineering 24(8), 629-639 (1998)
Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics as
quality indicators. IEEE Trans. Softw. Eng. 22(10), 751-761 (1996)

Briand, L.C., Daly, J., Porter, V., Wiist, J.K.: A comprehensive empirical validation of design
measures for object-oriented systems. In: METRICS 1998: Proceedings of the 5th Interna-
tional Symposium on Software Metrics, pp. 246-257. IEEE Computer Society Press, Los
Alamitos (1998)

Kitchenham, B., Pfleeger, S.L., Fenton, N.: Towards a framework for software measurement
validation. IEEE Trans. Softw. Eng. 21(12), 929-944 (1995)

Melton, H., Tempero, E.: An empirical study of cycles among classes in Java. Empirical
Software Engineering 12(4), 389415 (2007)

Qualitas Research Group: Qualitas corpus (June 2007),
http://www.cs.auckland.ac.nz/~ewan/corpus/

Baxter, G., Frean, M., Noble, J., Rickerby, M., Smith, H., Visser, M., Melton, H., Tempero,
E.: Understanding the shape of Java software. In: Cook, W. (ed.) ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Applications,
Portland, OR, U.S.A, October 2006, pp. 397412 (2006)

Potanin, A., Noble, J., Frean, M., Biddle, R.: Scale-free geometry in OO programs. Commun.
ACM 48(5), 99-103 (2005)

Benlarbi, S., Melo, W.L.: Polymorphism measures for early risk prediction. In: ICSE 1999:
Proceedings of the 21st international conference on Software engineering, pp. 334-344.
IEEE Computer Society Press, Los Alamitos (1999)

Steimann, F., Mayer, P.: Patterns of interface-based programming. Journal of Object Tech-
nology 4(5), 75-94 (2005),

http://www.jot.fm/issues/issue 2005 07/articlel

Appendix A: Metric Summaries

Scalar Metrics

These metrics provide measurements for individual types in alphabetical order. In these
definitions, A is an ancestor of X if, A is not Object and there is a path from X to A

http://www.cs.auckland.ac.nz/~ewan/corpus/
http://www.jot.fm/issues/issue_2005_07/article1

690 E. Tempero, J. Noble, and H. Melton

where all the vertices, with the possible exception of A, are user-defined types, and D
is a descendent of Y if there is a path from D to Y.

DITCCUD. Length of path from a class and consisting only of extends edges to the
first non user-defined class other than Object, or one less than the length of the
path that ends with Object.

DITIIUD. Length of path from an interface and consisting only of extends edges to
the first non user-defined class.

NOACCUD. Number of ancestors a class has (extends edges only).

NOAIIUD. Number of ancestors an interface has (extends edges only).

NOAUD. Number of all ancestors a type has (both implements and extends
edges).

NOCCC. Number of classes inheriting from a given class (via extends edges).

NOCCI. Number of classes implementing a given interface (via implements
edges).

NOCII. Number of interfaces inheriting from a given interface (via extends edges).

NOCI. Total number of classes that implement a given interface and interfaces that
extend that interface (both implements and extends edges).

NODCC. Number of descendants a class has (extends edges only).

NODII. Number of descendants an interface has (implements edges only).

NOD. Number of all descendants a type has (both implements and extends
edges).

NOPCI. Number of interface parents a class has (via implements edges).

NOPC. Number of parents a class has (both classes and interfaces).

NOPI. Number of parents an interface has (via extends edges).

Summary Metrics

These metrics provide measurements over an application. The first set (given in alpha-
betical order) do not consider the source of the types participating in a given relation
(see the table below for that).

CCDUI. The proportion of user-defined classes that extend some other class.

CCIF. The proportion of user-defined classes extended by some other (user-defined)
class.

CIDUI. The proportion of user-defined classes that implement some other interface.

CIIF. The proportion of user-defined interfaces implemented by some (user-defined)
class.

DUI. The proportion of types Defined Using Inheritance, that is, those types that either
implement an interface or extend another type other than Object, or, the propor-
tion of types that occupy a child end of an edge in the inheritance DAG.

IF. The proportion of types Inherited From, that is, those types that are either extended
or implemented, or, the proportion of types that occupy a parent end of an edge in
the inheritance DAG.

IIDUI. The proportion of user-defined inferfaces that extend some other interface.

IIIF. The proportion of user-defined interfaces extended by some other (user-defined)
interface.

How Do Java Programs Use Inheritance? 691

The table below lists the most refined summary metrics. Each row is one of the 7
relationships identified (whether it is extends or implements is implied by the
combination of kinds of type). The columns show the two directions of the relationship.
The cells of the “using” relation have the metrics in the order of: using Standard Library,
using Third Party, or using User Defined.

Defined Using Inheritance Inherited From

(Using) (Used)
Class-Class SLCCDUI, TPCCDUI, UDCCDUI CCIF
Class-Interface SLCIDUI, TPCIDUI, UDCIDUI CIIF
Interface-Interface ~ SLIIDUI, TPIIDUI, UDIIDUI IIIF
Interface-Annotation SLIADUI, TPIADUI, UDIADUI IAIF
Enum-Interface SLEIDUI, TPEIDUI, UDEIDUI EIIF
Exception-Interface SLEXIDUI, TPEXIDUI, UDEXIDUI ExIIF

Exception-Exception SLEXExDUI, TPEXxExDUI, UDExExDUI ExEXIF

Appendix B: Applications from Qualitas Corpus

We believe it is important to provide as complete information as possible regarding
the applications used in our study, although space constraints cramp our presentation
somewhat. The format is application name-version id.

aglets-2.0.2, ant-1.6.5, antlr-2.7.6, aoi-2.2, argouml-0.20, axion-1.0-M2,
azureus-2.3.0.4, ¢ jdbc-2.0.2, colt-1.2.0, columba-1.0, compiere-251e, derby-10.1.1.0,
displaytag-1.1, drawswf-1.2.9, drjava-200508 14, eclipse SDK-3.1.2-win32,
exoportal-v1.0.2, findbugs-1.0.0, fitjava-1.1, fitlibraryforfitnesse-20050923,
freecol-0.6.0, freecs-1.2.20060130, galleon-1.8.0, ganttproject-1.11.1,
geronimo-1.0-MS5, glassfish-9.0-b15, gt2-2.2-rc3, heritrix-1.8.0, hibernate-3.1-rc2,
hsqldb-1.8.0.4, htmlunit-1.8, infoglue-2.3Final, informa-0.6.5, ireport-0.5.2, itext-1.4,
ivatagroupware-0.11.3,j ftp-1.48, jag-5.0.1, jaga-1.0.b, james-2.2.0,
jasperreports-1.1.0, javacc-3.2, jboss-4.0.3-SP1, jchempaint-2.0.12, jedit-4.2,
jeppers-20050607, jetty-5.1.8, jfreechart-1.0.1, jgraph-5.9.2.1, jhotdraw-6.0.1,
jmeter-2.1.1, joggplayer-1.1.4s, jparse-0.96, jrat-0.6, jrefactory-2.9.19, jspwiki-2.2.33,
jtopen-4.9, jung-1.7.1, junit-4.1, log4j-1.2.13, lucene-1.4.3, luxor-1.0-b9,
megamek-2005.10.11, mvnforum-1.0-ga, nekohtml-0.9.5, netbeans-5.5-beta,
openjms-0.7.7-alpha-3, openoffice-2.0.0, openxchange-0.8.0.6, oscache-2.3-full,
pmd-3.3, poi-2.5.1, proguard-3.6, quartz-1.5.2, quickserver-1.4.7, quilt-0.6-a-5,
roller-2.1.1-incubating, rssowl-1.2, sablecc-3.1, sandmark-3.4, scala-1.4.0.3,
sequoiaerp-0.8.2-RC1-all-platforms, servicemix-3.0-SNAPSHOT, soot-2.2.3,
springframework-1.2.7, squirrel sql-2.4, struts-1.2.9, tomcat-5.5.17, trove-1.1b5,
webmail-0.7.10, xalan-j 2 7 0, xerces-2.8.0, xmojo-5.0.0.

	How Do Java Programs Use Inheritance? An Empirical Study of Inheritance in Java Software
	Introduction
	Background and Related Work
	Characterising Inheritance
	Inheritance Metrics for Java
	Modelling Inheritance
	Scalar Inheritance Metrics
	Inheritance Summary Metrics

	Results
	Scalar Inheritance Metrics
	Inheritance Summary Metrics
	Longitudinal

	Discussion
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

