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Abstract

Applications that run on mobile devices and which com-
municate over wireless networks are becoming increasingly
ubiquitous. Conventional technologies developed for use
over wired networks are however unsuitable for wireless
environments. In particular, wireless links are relatively
unreliable, bandwidth-constrained and can be expensive to
use. Furthermore, established technologies do not address
the needs of more dynamic pervasive computing environ-
ments that are well suited to mobile devices. In this pa-
per, we present an overview of Jini++, a framework that
supports development of mobile applications and addresses
challenges posed by wireless and pervasive environments.
Applications built using Jini++ are context aware in that
they intelligently adapt to changes in network conditions
and service availability. In addition, Jini++ employs mea-
sures to conserve bandwidth and offers support for develop-
ing crash-resilient applications. Using Jini++, application
developers are free to focus on application logic, thus being
relieved of the complexity associated with remote communi-
cation. Based on evaluation, we have found Jini++’s sim-
ple programming model to reduce development time, and at
run-time Jini++ to make more efficient and effective use of
the network than current mainstream technologies.

1 Introduction

The recent proliferation of wireless networks and de-
creasing costs of mobile devices have fueled much inter-
est in wireless software applications. Mainstream technolo-
gies, such as the ubiquitous TCP/IP protocol and distributed
object middleware, originally developed for wired infras-
tructures are commonly used to implement wireless appli-
cations. Such technologies typically assume a dedicated,
stable and high bandwidth network. Wireless networks,

however, do not exhibit these characteristics, hence conven-
tional technology is less appropriate for developing wireless
applications [10, 19].

Mobile phones are such devices that can be used to host
wireless applications. Consider, for example, an email ap-
plication used to send an attachment over a GPRS connec-
tion, whose bandwidth is in the order of 43Kbps [16]. The
bandwidth capacity of this type of link is several orders
lower than that of a wired infrastructure, 10 to 1000Mbps
[5]. Furthermore, GPRS connections are intermittent. Dur-
ing sending of an email attachment the user may enter a lift
causing connectivity to be lost. In this case, a new connec-
tion would need to be established before making a second
attempt to resend the attachment in its entirety. This is not
only inconvenient to the user, but incurs extra cost in hav-
ing to use the cellular network again. In short, this example
illustrates the limited bandwidth, brittleness and expense as-
sociated with using GPRS wireless connections.

Pervasive computing [20] represents a shift from rigid
fixed network infrastructures to more ad-hoc arrangements.
A pervasive computing environment is one in which a va-
riety of devices are able to interact seamlessly with no pre-
configuration and little or no user intervention. Pervasive
environments tend to be dynamic where devices and ser-
vices can be introduced to and withdrawn from a network
at any time. The aim of pervasive computing is to allow
users to focus on their tasks rather than the technology in-
volved. To illustrate pervasive computing, consider a laptop
user who joins a wireless network and needs to print a doc-
ument. The laptop would find a suitable printer service, for
example one physically close by and with sufficient func-
tionality to meet the user’s needs, and send to it the file to
print. Importantly, the laptop need not have prior knowl-
edge of the printer and is able to install software necessary
to use the printer on the fly1.

1Security of mobile code, although an important issue, is outside the
scope of our work.
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Pervasive computing is partially enabled through mech-
anisms for context awareness, which includes the ability
for services and clients to identify and adjust to changes
in their environment [7]. In the above printer scenario,
context awareness enables the laptop to discover the set of
printer services available as the laptop user moves around
the work environment. Developing this scenario further,
context awareness can also be used to detect and adapt to
events, such as service failure. For example, the laptop
could use knowledge of printer failure to find an alterna-
tive service. In doing so, the laptop would conserve network
bandwidth by not attempting to send a potentially large doc-
ument to the failed printer.

Distributed object middleware, which extends the fa-
miliar and widely adopted object-oriented programming
model to the network, has become an established technol-
ogy for developing distributed applications. However, re-
mote method invocation implicitly imposes a synchronous
mode of interaction in that it requires the presence of a par-
ticular client, network connection and server for the dura-
tion of processing an invocation. Synchronous interaction
does not sit well with dynamic pervasive environments that
are served by a wireless infrastructure [2, 8]. A more natural
model would allow loosely coupled interaction, with clients
being able to generate requests without being connected to
a server but with the assurance that such requests will be
processed by a suitable server when available.

In this paper, we present an overview of Jini++, a frame-
work for developing applications intended to operate in per-
vasive and wireless environments. In addressing the char-
acteristics of such environments, Jini++ offers three core
features:

• Intelligent adaptation through context awareness.
Jini++ makes use of a distributed event mechanism
to propagate information concerning service availabil-
ity. Clients use this information to make decisions re-
garding how to manage outgoing service requests, by
switching services and queuing requests as necessary.
In addition, context awareness is drawn upon to change
the behaviour of the client/service communication pro-
tocol depending on current network conditions.

• Bandwidth conserving communication protocol.
Given that bandwidth is particularly limited in
wireless networks, Jini++’s communication protocol
aims to minimise network traffic. The protocol is
also resilient to high rates of packet loss that can be
experienced in wireless environments. Moreover,
the protocol supports an asynchronous program-
ming model that guarantees request ordering and
at-most-once invocation semantics.

• Support for crash-resilient applications. In recogni-
tion that processes may run on devices with limited

processing capabilities and power supplies, Jini++ pro-
vides support for developing clients and services that
that do not lose state in the event of a crash. This con-
tributes to bandwidth preservation since, for example,
requests once received by a service that crashes and
subsequently recovers need not be retransmitted.

Jini++ provides these features in a way that maintains
a separation of concerns between application logic and re-
mote communication. Jini++ is thus a reusable (i.e. appli-
cation independent) framework that masks the complexity
associated with remote communication from developers. In
doing so, the framework reduces the time to develop mobile
device applications.

The remainder of this paper is structured as follows. In
Section 2, we introduce service discovery protocols as a
foundation for pervasive computing environments. In Sec-
tion 3, we present the Jini++ architecture and programming
model as seen by application developers. We proceed in
Section 4 by describing in more detail how Jini++’s core
features have been implemented. In Section 5, we report on
an evaluation of Jini++’s features that includes a compara-
tive study involving established communication protocols.
Finally, in Section 6, we conclude and identify avenues for
further work.

2 Service discovery protocols

Service discovery protocols (SDPs) enable pervasive
computing environments [17, 21, 11]. In particular, SDPs
may include support for services to announce their presence
on the network, for services to be discovered by potential
clients, for clients to determine the capability of services,
and for clients to find out about the changing state of a ser-
vice [13]. SDPs are clearly distinguished from communica-
tion protocols such as TCP and RMI in that the latter are in-
tended for communicating application data while SDPs are
concerned with offering some level of context awareness.

Three well known SDPs are Sun Microsystems’ Jini
[15], Microsoft’s Universal Plug and Play (UPnP) [13, 1],
and Salutation [13] from the Salutation Consortium. In se-
lecting one of these as the base technology for our frame-
work, we identified a set of criteria discussed in the subsec-
tions that follow.

2.1 Scalability

This criterion is concerned with the ability of the SDP to
support an increasing number of devices and services being
connected to the network.

Jini and Salutation are both directory-based. With this
model, services register with a lookup service and this acts
as a repository that publishes service information. Upon
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Figure 1. Directory-based SDP

registration, services are granted a lease which they must
periodically renew. Clients can use the lookup service to re-
trieve information about services that hold valid leases with
the lookup service. Figure 1 illustrates client and service
interaction with the lookup service.

UPnP avoids the need for a central directory by using a
peer-to-peer multicasting model. With UPnP, upon joining a
network peers multicast a message to announce their pres-
ence. The liberal use of multicasting necessary in UPnP
generates a high volume of network traffic that can rise
disproportionately as the number of devices increases. In
contrast, communication with a known Jini or Salutation
lookup service uses unicast (point-to-point) communica-
tion.

With Jini, multiple lookup services can coexist in a par-
ticular network. Lookup services need not run at well-
known locations but can be found by multicasting a dis-
covery message. Each lookup service that receives such
a request message replies using unicast communication to
the multicasting device. A well-behaved Jini service regis-
ters with each discovered lookup service. The use of multi-
ple services improves scalability since lookup requests from
clients can be spread across lookup services. In addition,
this removes the single point of failure that would otherwise
be associated with a single directory service.

Jini also supports partitioning of a community into fed-
erations or groups of services. When looking up a service,
the lookup request can be targeted at a particular federation,
thereby reducing the number of matches and ultimately the
amount of data returned from a lookup call.

2.2 Context awareness

Context awareness is necessary to be able to detect and
adapt to changes in services and their membership in the

community (presence on the network).
With Jini, the lookup service is augmented with support

for propagating information concerning service arrivals and
departures to/from a community. A client may register with
the lookup service interest in a particular type of service
(i.e. services that implement a particular interface). When
a service registers with the lookup service or fails to re-
new its lease, the lookup service generates an event that
describes the arrival/departure and notifies each registered
client. Salutation lacks an event-based model and clients are
responsible for polling the lookup service to detect changes
in the community.

In UPnP’s case, services periodically multicast the an-
nouncement messages to inform others of their continued
existence in the community.

2.3 Traffic verbosity

Being a scarce resource in wireless networks, band-
width should be conserved. Overhead necessary to sup-
port client/service interaction and context awareness should
therefore be minimised.

As noted above, UPnP communities can generate much
network traffic given their reliance on periodically multicas-
ting service announcement messages. Furthermore, these
messages take the form of arbitrarily complex and poten-
tially expressive XML documents packaged using SOAP.
This format is known to be verbose [5]. Jini and Saluta-
tion are protocol independent, allowing developers to de-
cide how clients should communicate with services; in prac-
tice more concise binary formats are used.

With Jini, use of multicast communication is restricted
to discovering lookup services. In both Jini and Salutation,
services can be registered along with a set of attribute/value
pairs that supplement the service’s interface. Attributes
might, for example, specify the operating system a service
is running on, or in the case of the printer service whether it
supports colour printing. While less expressive than UPnP’s
XML-based approach to representing meta data, supplying
simple attribute/value pairs in registration and lookup re-
quests consumes less bandwidth.

2.4 Heterogeneity

Mobile devices are diverse in nature and include mobile
phones, PDAs and laptops in addition to less conventional
devices such as wristwatches. Hence there is a need for
a communication framework to run on the many hardware
types used to host mobile applications.

Being developed by Microsoft, UPnP is supported by a
number of Windows operating systems that have been de-
veloped for a range of mobile devices. Since communica-
tion between UPnP devices is via SOAP, UPnP is program-
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Figure 2. Jini++ architecture

ing language independent [17]. Salutation and Jini are oper-
ating system independent and the Java virtual machine has
been extensively developed for many types of small device
[9].

3 Framework infrastructure

Given the analysis of the SDPs covered in Section 2, we
have selected Jini as the underlying SDP for our frame-
work. Particular strengths of Jini that are relevant to ad-
dressing our goals include protocol independence, which
offers the opportunity to develop a client/service protocol
that minimises bandwidth consumption. In addition, Jini’s
distributed event mechanism can be leveraged to promote
context awareness concerning changes in service availabil-
ity. Notable drawbacks of UPnP and Salutation are that
the former does little to conserve bandwidth and the lat-
ter, while similar to Jini, lacks desirable features and is no
longer supported.

3.1 Jini++ architecture

Figure 2 shows that Jini++ extends Jini with a job pool
and a Javaspaces component. The job pool forms part of the
client and is used as an intermediary to store outgoing jobs
(service requests). The job pool supports an asynchronous
mode of communication, allowing client application code
to simply deposit jobs in the pool. Being context aware,
the job pool dispatches jobs as appropriate and draws on a
range of techniques including packing, compressing, buffer-
ing, and service switching, as detailed in Section 4.

Javaspaces is a transactional persistence mechanism
which is part of Jini technology. The Javaspaces compo-
nent allows services to recover state following a crash. In
addition, using Javaspaces as persistent storage, we can al-
low substitutable services to take over from one another in

Figure 3. Class structure

processing client jobs. The use of Javaspaces is also dis-
cussed in more detail in Section 4.

With reference to Figure 2, interaction between Jini++
components is as follows:

1. A service first discovers the lookup service and regis-
ters with it.

2. A client obtains a proxy (reference) for a particular ser-
vice and registers to receive availability notifications
about services of that type.

3. Jobs are routed through the client-side job pool, which
prepares jobs for transmission.

4. When connected to an available service, jobs are sent
to the service and replies are retrieved, unpacked and
delivered to the client application.

3.2 Programming model

Figure 3 shows the key classes and interfaces used to
develop a Jini++ application. The example application used
is that of a client that uploads pictures to a Picture Gallery
service.

JppClient is a framework class that masks much of
the complexity of using Jini from the application developer.
JppClient is intended to be subclassed for specific client
applications, hence class PicGalleryClient that im-
plements behaviour to create jobs and process responses
from a PicGalleryService. JppClient subclasses
may also override behaviour for generating a unique client
ID, the default of which is to return the client’s hardware
(MAC) address. JppService is similar to JppClient
in that it is also a base class that should be extended by
application-specific classes.

Instances of JppProxy subclasses are registered
with the lookup service and retrieved by client appli-
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cations. As proxy objects, they are local representa-
tives for remote services. JppProxy implements Jini’s
RemoteEventListener interface allowing instances to
be notified by the Jini lookup service of changes in service
availability. Class JppProxy implements basic packet
parsing functionality used by subclasses to provide a sim-
ple interface that encapsulates interaction with the job
pool. JppProxy subclasses are intended to be used by
JppClient subclasses.

Class JppStateObject is the superclass of classes
whose instances are to be written to the Javaspaces
component. In terms of the Picture Gallery service,
GalleryState is used to store a list of pictures files that
have been processed by the application.

4 Framework design

Having presented a high level description of Jini++, we
now elaborate on the workings of key features: bandwidth
conservation, intelligent adaption, and crash resilience.
Several aspects of these features and Jini++’s operation can
be configured, for example buffer delay which speci-
fies the maximum amount of time jobs should be collected
in the job pool before being sent – assuming an available
service.

4.1 Bandwidth conservation

Jini++’s communication protocol employs a combina-
tion of techniques, as outlined in the following subsections,
to minimise bandwidth consumption.

4.1.1 Job and result groups

Given the asynchronous programming model supported by
Jini++, bandwidth can be efficiently utilised by packing
multiple job requests into a single network packet. As
discussed in Section 4.2.1, the greater the success rate of
packet delivery the more a packet is utilised. This reduces
the amount of header data that would otherwise be sent over
the network from sending each job request in a dedicated
packet.

A job group is a batch of job requests that are stored in
the same packet, sent to a service and processed atomically
by the service. Upon receipt of a job group a service gen-
erates a group result, which contains a sequence of ordered
replies, one for each job in the corresponding job group.

Figure 4 shows the structure of the two types of packet
used by Jini++’s client/service protocol. Request packets
contain at least one job group and are sent by clients to
services. Reply packets contain exactly one job group re-
sult. The rationale for this structure is to allow the re-
sults from executing a single job group to be communicated

Figure 4. Jini++ packet structures

back to the client as soon as they available, without wait-
ing for reply packets to be fully utilised. This represents
a trade off between bandwidth conservation and applica-
tion responsiveness. Application developers can indicate
the degree of responsiveness sought by specifying a value
for the job group size configurability option. Section
4.1.2 explains other aspects of the request and result packet
structure shown in Figure 4.

4.1.2 Established minimal base layer protocol

In developing a communication protocol, one of two oppos-
ing approaches can be taken: start from scratch and create
a purpose-built protocol, or customise an existing protocol.
As Badrinath et al note, while the former approach may re-
sult in a protocol that perfectly satisfies requirements, it will
unlikely be adopted because of the need to convert a sub-
stantial base of infrastructure [3]. Hence, we have opted for
the latter and to work with the ubiquitous Internet protocols.

TCP and UDP are transport protocols, layered above the
IP networking protocol, that enable inter process commu-
nication. TCP [12] offers a virtual connection and stream
abstraction and guarantees message ordering, delivery (as-
suming a connection is not broken), and integrity. In addi-
tion, TCP implements flow control between a pair of com-
municating processes and congestion control for the greater
good of the network. These are attractive properties and
TCP has stood well as the foundation for numerous higher
level protocols and services that run over wired networks.
However, for wireless environments TCP is less desirable.
For example, the high rate of packet loss experienced in
wireless networks is incorrectly diagnosed by TCP as net-
work congestion, causing TCP to throttle back. Conse-
quently, throughput deteriorates unnecessarily [10].

UDP [12] is a bare-bones protocol that does not offer
TCP’s guarantees and services. While UDP detects corrupt
packets using checksums (and simply responds by dropping
them), application developers are responsible for detecting
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and recovering from packets that have been dropped, dupli-
cated or delivered out of sender order. UDP’s lack of inap-
propriate services plus its compact packet header sizes – 8
bytes compared to TCP’s minimal header size of 20 bytes
– make it an ideal basis for Jini++’s client/service protocol.
The protocol must be developed using additional techniques
to satisfy the ordering and at-most-once job invocation se-
mantics required of Jini++.

As introduced earlier, the client/service protocol is based
on two packet types. These packets contain sufficient and
necessary data to support the Jini++ protocol. A request
packet contains an arbitrary number of job groups and is
sent by clients to services. A reply packet stores one re-
sult group. C Flag fields indicate whether or not data is
compressed and ClientID uniquely identifies the sender of
a request packet. Each job group is prefixed by a sequence
number (Seq No) and separated by a delimiter. Reply pack-
ets are structured similarly.

Using the sequence numbers in a request packet, a ser-
vice can detect lost request packets and reorder packets that
arrive out of sender order. Packets arriving out of sender
order are held back from the service application until all
earlier packets arrive. Services utilise reply packets by
piggybacking onto them sequence numbers (Seq-acks) of
job groups that have been received, thereby acknowledging
their receipt in a way that avoids use of dedicated packets
containing only small pieces of coordination data. In cases
where a period has elapsed between a client receiving an ac-
knowledgment for a job group but without a corresponding
job group reply, only the sequence number of the job group
need be resent to request retransmission of the group result
(Seq-retrans). This again reduces the amount of data being
sent over the network, and again retransmission requests are
piggybacked onto request packets.

4.1.3 Data compression

Data compression has been shown to improve effective
throughput over unreliable network connections with high
bit-error rates [6]. Furthermore, compression also reduces
bandwidth consumption because less data are actually pass-
ing over the network. Zip and GZip are widely used com-
pression algorithms that are implemented as part of the stan-
dard JDK.

File type Before (bytes) After (bytes) Saving
Small text 111 215 -93%
Medium text 164536 37646 77%
Large text 493241 102811 79%
Binary 75847 75124 1%
Mixed 18115528 13432248 26%

Table 1. Effects of Zip compression

To determine suitability of Zip in compressing Jini++
packets, we ran a series of tests using different types of data
and different sized data sets. Table 1 summarises the results
of these tests. For small amounts of text, compression ac-
tually led to an increase in data size. Larger text-based data
sets compress well but the savings in compressing binary
data are negligible. In addition, the Picture Gallery appli-
cation revealed that image data does not compress well –
since image data is typically stored in compressed form to
start with.

In addition to the value of compression being dependent
on application data, for small devices such as PDAs with
limited power supplies, compression can be too expensive
to perform [4]. For these reasons, compression can be en-
abled/disabled via the compress configuration option.

4.2 Intelligent Adaptation

Jini++ employs run-time mechanisms that detect and
adapt to the execution context. In particular, Jini++ adapts
the behaviour of its client/service communication protocol
to take account of changes in network conditions. Clients
can also detect changes in service availability and change
their behaviour accordingly. In both cases, adaptations are
handled in a way that is transparent to application code.

4.2.1 Adaptive communication protocol

As discussed earlier, packets can be best utilized by placing
as many jobs as possible into a single request packet. How-
ever, in early experiments with Jini++ we found that this
was not always desirable as large packets were more sus-
ceptible to being dropped. In one experiment, for example,
we used Jini++ to send full packets of jobs to a remote ser-
vice over a wireless connection with a 20% signal strength.
Under these conditions, full packets once sent were not re-
ceived by the service. In experimenting with smaller pack-
ets, we observed that the success rate increased linearly as
we reduced the size of packets sent.

Based on the relationship between packet size and suc-
cessful delivery rate, we developed a simple additive-
increase multiplicative-decrease algorithm, the style of
which is heavily influenced by early work with ALOHA
[18] and which has been widely used since [3]. The idea is
that as more data is successfully transmitted to a receiver,
the amount of data actually sent is gradually increased (ad-
ditive increase). Conversely, as the success rate drops, the
sender significantly reduces the amount of data sent (multi-
plicative decrease). With our algorithm, multiplicative de-
crease involves reducing the amount of data sent by 50%
each time and when conditions improve, using an additive
increase of 10%. Further tests revealed that this algorithm
substantially improved the success rate of transmitting data
over lossy connections.
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Figure 5. Service availability adaptation

4.2.2 Adaptive job processing

As discussed earlier, Jini++’s JppClient class automati-
cally registers to listen for events describing the arrival and
departure of services implementing the service interface of
interest to the client application. Figure 5 illustrates that
when a service fails to renew its lease with the lookup ser-
vice, the lookup service notifies registered JppProxy in-
stances via a match no match2 event. Similarly, when
a service registers with the lookup service, JppProxy in-
stances that have registered interest in that type of service
are notified by a no match match event.

In cases where a client receives a match no match
event that relates to the service it is using, the service may
be switched for a substitutable service that is available. A
service S may be substituted for another, S’ where S imple-
ments an identical interface to S’, or where S’ is a subtype of
S. JppClient instances monitor service arrivals and de-
partures and thus know which services of interest are avail-
able at any given time. In cases where no other services are
available, a JppClient places the client in off-line mode
and has the job pool buffer outgoing jobs. Communication
with a service can be resumed only after the JppProxy re-
ceives a no match match event identifying a service that
is now available.

4.3 Crash resilience

As mentioned earlier, Jini++ applications use a Javas-
paces component to help cope with service failures. Javas-
paces essentially provides a persistent repository for storing
the progress and outcomes of processing jobs. In particu-
lar, services automatically write incoming jobs to Javaspace

2A match no match event is so called because the service the event
relates to used to match what was held in the lookup service, but no longer
does. Similarly, a no match match event represents a service that would
not previously have matched a lookup call but now does.

prior to processing them, and once processed results are
written too. Should a service crash, when restarting it can
recover state information held in Javaspaces and resume job
processing. As noted in Section 4.1.2 clients need not waste
bandwidth by retransmitting jobs that would otherwise have
been lost.

Javaspaces is also useful in supporting substitutable ser-
vices. Where a particular service implementation becomes
unavailable, other service implementations that are substi-
tutable can be used to continue processing a client’s re-
quests. The Javaspaces component is thus shared and ac-
cessible to services, and contains sufficient information to
allow one service to resume processing of client jobs on be-
half of another service.

The framework supports client-side fault tolerance by
automatically persisting job replies immediately following
their receipt. Replies are stored in a local file that is ac-
cessed when a crashed client restarts. Similarly to service-
side persistence, bandwidth is also conserved by crashed
and recovered clients since any replies received but not pro-
cessed prior to the crash need not be retransmitted.

5 Evaluation

In order to evaluate the effectiveness of Jini++ as a
framework for developing pervasive and wireless applica-
tions we conducted a number of experiments. In particular,
we aimed to: quantify the communication protocol’s effect
on bandwidth consumption; measure the cost, in terms of
additional processing time, of using Jini++; and determine
functional correctness of Jini++ applications in the presence
of adaptability and failures.

The test environment comprised a 100Mbps LAN and
a 54Mbps wireless LAN with an average loss rate of ap-
proximately 10%. The client machine had an Intel Centrino
2.0GHz processor and 1GB RAM, the server machine an
Intel Pentium 2.66GHz processor and 512 RAM. Both ma-
chines ran Windows XP service pack 2. To analyse network
traffic generated during the tests we used the Wireshark
packet sniffing program, available under the GNU General
Public License from http://www.wireshark.org.

5.1 Bandwidth reduction

Our approach to determine savings in bandwidth in-
volved developing several implementations of a common
application, differing only in communication protocol. The
application was a transactional banking application that in-
volved clients sending 100,000 requests (jobs) to operate
on bank accounts managed by a remote server. Requests
were expressed using a simple grammar allowing a bank
account to be identified, an operation to be named, plus any

127127



arguments to be given. The application included many non-
idempotent operations and had strong requirements for at-
most-once semantics for executing operations.

The communication protocols selected were UDP, TCP,
Java RMI and Jini++’s client/service protocol. UDP and
TCP were included as they are standard transport proto-
cols that are widely used in practice. Similarly, Java RMI
is representative of higher-level middleware protocols that
add value, such as at-most-once invocation semantics, to
underlying transports.

In all, we developed nine variations of the banking ap-
plication. The basic UDP implementation uses one UDP
packet per job whereas the Optimised UDP version utilises
UDP packets optimally by placing as many jobs as possible
into each UDP packet. A similar pair of TCP-based imple-
mentations, TCP and Optimised TCP were also developed,
the former sending one request in each TCP packet and the
latter allowing TCP to manage packing of jobs into TCP
packets. The basic UDP and TCP implementations plus the
Java RMI implementation all impose a synchronous inter-
action model where a client waits for a reply before sending
the next job request. The optimised UDP/TCP and Jini++
implementations all provide asynchronous communication.
Four Jini++ implementations were developed. Jini++ [gs =
1] is configured with a job group size of 1 to make the appli-
cation most responsive by having the service return replies
immediately in dedicated UDP packets. The Jini++ [gs =
100] variation aims to reduce network traffic by better util-
ising UDP reply packets to store 100 job replies. Finally,
there are two further versions of Jini++ implementations
that differ to the others by using data compression: Jini++
[gs = 1, comp] and Jini++ [gs = 100, comp].

The nine application variants were run in both the wired
and wireless environments. Figure 6 shows the resulting
bandwidth consumption. The figure does not show band-
width consumption for the UDP implementations execut-
ing over a wireless LAN because in this environment they
failed to complete transaction processing. As described ear-
lier UDP alone is unable to recover from packet loss, thus
the UDP applications failed to make progress in the lossy
wireless environment.

Figure 6 shows the relatively high cost of synchronous
communication, indicated by the figures for the basic (un-
optimised) UDP and TCP implementations plus that of Java
RMI, that stems from poor packet utilisation. Beyond low
packet utility, the particularly high bandwidth consumption
of Java RMI is attributed to the use of Java’s serialization
mechanism; studies elsewhere have also found serialization
to be expensive [14].

Jini++ implementations consumed substantially less
bandwidth and are comparable to the optimised UDP and
TCP variations. Larger job group sizes result in notable
bandwidth savings from the reduced number of job group

Figure 6. Bandwidth consumption

reply packets required. With compression enabled, Jini++’s
bandwidth consumption is significantly reduced further, and
in the case of the banking application this is around 25% of
the next best implementation (UDP). Moreover, these sav-
ings are gained while simulateously providing sufficient re-
liability in terms of communication.

5.2 Framework overhead

To measure the overhead in computation time for using
Jini++, we recorded the time taken to process all 100,000
transactions for each application variant. Figure 7 shows
the results for the two environments, highligthing the ad-
ditional increase in processing time for the wireless envi-
ronment. Similarly to Figure 6, Figure 7 does not include
the results for the UDP implementations running over the
wireless LAN as they failed to complete.

Figure 7 shows that the Jini++ applications completed
processing significantly faster than the synchronous appli-
cations, i.e. the basic UDP and TCP variants plus the Java
RMI application. With respect to the optimised UDP and
TCP variants, Jini++ applications were all notably slower,
by a factor of between 2 and 4. The reasoning for this is
twofold. First, the code that implements the Jini++ proto-
col is ordinary Java code that is interpreted and executed as
any other application-level code. Consequently, this runs
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Figure 7. Processing time

relatively slowly compared to protocol code such as a TCP
stack that is native, optimised and which forms part of an
operating system. Second, Jini++ services incur the over-
head of writing to Javaspaces.

Figure 7 also shows that larger group sizes reduce overall
processing time. In the banking application, the gains are in
the order of 10-15% from switching between a group size
of 1 to 100. Furthermore, compression is shown to incur
little computation overhead – around 10% in the case of the
banking application.

5.3 Application correctness

To determine that applications behave functionally cor-
rectly when built using the Jini++ framework, we checked
that the state of the bank account objects managed by the
Jini++ banking service were as expected having processed
all 100,000 transactions. Given that the banking application
is sensitive to corrupt, duplicated or missing operation invo-
cations, correct final states indicated that the client/service
protocol does offer the required at-most-once semantics in
practice.

We also ran further experiments to validate Jini++’s sup-
port for crash resilience and adapting to changes in service
availability. For the former, a single banking service was de-
ployed and crashed at several points through the lifecycle of

job processing: during packet reception, while processing a
job, during sending a reply, and when writing to Javaspaces.
After restarting the service, the client and service were able
to resume and complete job processing and in all cases, final
bank account states were correct. Similarly, in running re-
dundant services, a client was able to switch from a crashed
service to an alternative service and complete processing.

5.4 Ease of use

Based on our use of Jini++ we been able to develop dis-
tributed applications rapidly. We have implemented several
applications that are diverse in nature, for example, a photo
gallery manager, an e-voting application and a simple maze
game. These applications were easy to implement using
Jini++’s programming model and configurability options.

While writing the banking implementations in particular,
it was clear that much of the complexity originating from re-
mote communication and multithreading in UDP/TCP pro-
grams is hidden when using Jini++. Consequently, the time
spent coding and debugging the Jini++ implementations
was notably less than that for the UDP/TCP variations. In
addition, Jini++ application code masks Jini-programming
details such as lease renewal and remote event handling.
Hence, we found Jini++ to effectively separate the concerns
of remote communication and pervasive computing from
application logic. As our evaluation in this sense is informal
and not quantified, an empirical study should be performed.

5.5 Limitations

As a consequence of building on Jini, Jini++ is presently
limited to running on devices with Connected Device Con-
figuration (CDC) support. Relatively small devices, such
as low-end PDAs and mobile phones, tend to support only
Connected Limited Device Configuration (CLDC) and as
such cannot be used to host Jini++ applications.

6 Conclusions

Jini++ offers a holistic solution to the challenges en-
countered in developing wireless and pervasive applica-
tions. Jini++ includes a bandwidth conserving communica-
tion protocol, a means of intelligently adapting to changes
in network conditions and service availability, and support
for developing crash resilient applications. In addition,
Jini++ provides a simple programming model that masks
communication complexity and which enables mobile ap-
plications to be developed rapidly. The price to pay for these
features is a moderate increase in processing time when
compared to using some alternative technologies.

Jini++’s communication protocol supports asynchronous
request/reply interaction, layered atop of the standard UDP
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transport protocol. The protocol ensures at-most-once de-
livery semantics and, where possible, optimises packet util-
isation to minimise bandwidth consumption. The proto-
col can be configured to promote service responsiveness by
trading bandwidth use. Furthermore, the protocol can be
configured to use compression where this is beneficial given
application data characteristics. Evaluation has demon-
strated that the protocol significantly reduces the amount of
data transmitted over a network when compared with estab-
lished transport and middleware protocols.

Given that wireless connections tend to be unstable,
Jini++ employs a simple multiplicative decrease addita-
tive increase algorithm that adapts the communication pro-
tocol’s behaviour according to prevailing network condi-
tions. Essentially, the algorithm allows packets to be bet-
ter utilised with more data being sent as network conditions
improve. Our experience shows that during poor conditions
incurring significant packet loss, data can still be transmit-
ted that would otherwise be dropped in transit.

Further adaptability lies in Jini++’s ability to detect and
adapt to changes in service availability. By leveraging Jini’s
distributed event model a client can be notified when ser-
vices of interest arrive and depart. This allows a Jini++
client to switch between on-line and off-line modes of op-
eration, the latter buffering outgoing jobs for subsequent
transmission when a suitable service is available. Jini++
services are substitutable allowing one service to take over
from another service when it fails or becomes unavailable.

In the future, we intend to enrich Jini++’s context aware-
ness capabilities. In particular, with additional informa-
tion, such as the type of connection(s) over which a service
can be reached plus recent quality of service exhibited by a
service, clients could make more informed decisions about
which services to consume. Once captured, the information
could be propagated efficiently to interested parties using
distributed events. Similarly, knowledge of a device’s lo-
cal resources could be used to more sensibly control which
adaptations to perform at run-time, avoiding those that are
computationally expensive when a device is using limited
battery power for example.
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