

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand).

This thesis may be consulted by you, provided you comply with the
provisions of the Act and the following conditions of use:

� Any use you make of these documents or images must be for
research or private study purposes only, and you may not make
them available to any other person.

� Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

� You will obtain the author's permission before publishing any
material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the
digital copy of their work to be used subject to the conditions specified on
the Library Thesis Consent Form and Deposit Licence.

Note : Masters Theses

The digital copy of a masters thesis is as submitted for examination and
contains no corrections. The print copy, usually available in the University
Library, may contain corrections made by hand, which have been
requested by the supervisor.

Department of Computer Science

The University of Auckland

New Zealand

Efficient Joins to Process Stream

Data

Muhammad Asif Naeem

March 2012

A thesis submitted in partial fulfillment of the

requirements of Doctor of Philosophy in Science

ii

Abstract

Data integration used to be offline, but real-time data integration has become more and

more important. Research into stream databases can be naturally applied to near-real-

time data integration. Several important problems in near-real-time data integration can

be naturally expressed as joins. Many stream joins assume all join inputs to be streams.

Recently, interest has been growing in joins with heterogeneous input, in particular joins

between streams and disk-based input. MESHJOIN is a well known algorithm published

in this area. The algorithm was designed particularly for application scenarios where

memory resources are limited. However, the algorithm suffers from some limitations.

Briefly, the memory distribution among the join components and the strategy used for

accessing the disk-based data are suboptimal.

This thesis provides an independent analysis of the MESHJOIN algorithm. The focus

of analysis is on equijoins as one of the most important special cases of joins. It has been

shown that if a realistic distribution is assumed on stream data, such as a Zipfian dis-

tribution, MESHJOIN performs suboptimally. A set of algorithms have been developed

that address the problems in MESHJOIN and they perform better than MESHJOIN in

defined settings. In the end, three robust algorithms have been developed for both sorted

and unsorted disk-based data. For these algorithms cost models have been developed for

tuning the algorithms and validation of our implementation. An experimental study has

been carried out for comparing these algorithms empirically. For that purpose a synthetic

workload generator has been designed and developed. With the synthetic datasets, mea-

surements have been taken in experiments that validate the cost models of the algorithms.

The implemented algorithms are made available publicly as open source for independent

analysis.

iii

iv ABSTRACT

In the future this research can be extended in two directions. One is to improve the

join operators further. The other is to apply the join operators in emerging application

scenarios.

Acknowledgements

Firstly I am extremely thankful to Allah Almighty for giving me the strength and fortitude

to accomplish this milestone.

I owe my deepest gratitude to my supervisors Prof. Gillian Dobbie and Dr. Gerald

Weber. Their technical guidance, encouragement and moral support from the preliminary

to the concluding level enabled me to enhance my subject knowledge and polish my

research skills. Their valuable supervision will enable me to undertake challenging research

problems in the future.

I would like to thank Higher Education Commission (HEC), Pakistan and The Uni-

versity of Auckland for giving me the opportunity to do a PhD at this premier institution

and to HEC in particular for funding my research. In Computer Science Department, I

am very thankful to Heather Armstrong, Sithra Sukumaar, Robyn Young and Cynthia

Qu for their administrative support during my study in the department.

I also acknowledge Dr. Allison Heard from the Mathematics Department and Lisa

Chen from the Statistics Department for their help in deriving the cost calculation for

one of my algorithms.

This acknowledgment would not be complete without mentioning my colleagues from

the Knowledge Management Group and the HEC scholar community. Their companion-

ship has been a source of great relief and entertainment in this intellectually challenging

journey.

Last but not the least I would not have been standing at the finish line had it not been

for the selfless love and prayers of my parents and wife. Their affection and encouragement

helped me pass through the thick and thin.

I dedicate this thesis to my little doll, Sheza Naeem.

v

vi

List of Publications

The dissertation is based on the following research publications:

1. M. Asif Naeem, Gillian Dobbie, Gerald Weber, An Event-Based Near Real-

Time Data Integration Architecture, EDOCW’08: Proceedings of the 12th

Enterprise Distributed Object Computing Conference Workshops, IEEE Computer

Society, Washington, DC, USA, 2008.

2. M. Asif Naeem, Gillian Dobbie, Gerald Weber, Comparing Global Optimization

and Default Settings of Stream-based Joins, BIRTE’09: VLDB Workshop,

Lyon, France, 2009.

3. M. Asif Naeem, Gillian Dobbie, Gerald Weber, Shafiq Alam, R-MESHJOIN for

Near-real-time Data Warehousing DOLAP’10: Proceedings of the ACM 13th

International Workshop on Data Warehousing and OLAP, ACM, Toronto, Canada,

2010.

4. M. Asif Naeem, Gillian Dobbie, Gerald Weber, HYBRIDJOIN for Near-Real-

Time Data Warehousing, IJDWM’11: International Journal of Data Warehous-

ing and Mining, IGI Global, 2011.

5. M. Asif Naeem, Gillian Dobbie, Gerald Weber, X-HYBRIDJOIN for Near-

Real-Time Data Warehousing, BNCOD’11: 28th British National Conference

on Databases, Manchester, UK, 2011.

6. M. Asif Naeem, Gillian Dobbie, Gerald Weber, Optimized X-HYBRIDJOIN

for Near-Real-Time Data Warehousing, ADC’12: Proceedings of the 23rd Aus-

tralasian Database Conference, Melbourne, Australia , 2012.

vii

viii

7. M. Asif Naeem, Gillian Dobbie, Gerald Weber, Imran Sarwar Bajwa, Efficient Us-

age of Memory Resources in Near-Real-Time Data Warehousing, IMTIC’12:

Proceedings of the International Multi-topic Conference, Pakistan , 2012.

8. M. Asif Naeem, Gillian Dobbie, Gerald Weber, Imran Sarwar Bajwa, A Parametric

Analysis of Stream based Joins, IMTIC’12: Proceedings of the International

Multi-topic Conference, Pakistan , 2012.

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Data Stream Processing . 2

1.3 Stream-based Joins . 2

1.4 Motivation . 3

1.5 Problem Statement . 4

1.6 Thesis Contributions . 5

1.7 Scope of the Thesis . 7

1.8 Structure of the Thesis . 8

2 Related Work 11

2.1 Introduction . 11

2.2 Basic Characteristics of Stream-based Joins 12

2.2.1 Semantics of Join for Stream-Stream 12

2.2.2 Semantics of Join for Stream-Disk 13

2.3 Stream-Stream . 13

2.3.1 Symmetric Hash Join (SHJ) . 13

2.3.2 Double Pipelined Hash Join (DPHJ) 14

2.3.3 XJoin . 14

2.3.4 Hash-Merge Join (HMJ) . 15

2.3.5 Early Hash Join (EHJ) . 16

2.4 Stream-Disk . 16

2.4.1 Index-Nested-Loop Join . 17

ix

x Contents

2.4.2 MESHJOIN . 17

2.4.3 Partition-based Approach . 17

3 Analysis of MESHJOIN 21

3.1 Introduction . 21

3.2 MESHJOIN . 22

3.2.1 MESHJOIN Components . 23

3.2.2 Basic Operation . 23

3.2.3 Algorithm . 25

3.3 Research Issues . 26

3.3.1 Settings . 26

3.3.2 Dependencies . 26

3.3.3 Disk access . 26

3.3.4 Intermittency . 27

3.4 Settings . 27

3.5 Proposed Investigation . 29

3.5.1 Understanding the Relationships among the Join Components . . . 30

3.5.2 Empirical Analysis . 31

3.6 Tuning and Performance Comparisons . 32

3.6.1 Experimental Setup . 32

3.6.2 Tuning of Disk Buffer for Different Memory Budgets 33

3.6.3 Performance Analysis using Default and Optimal Values for the

Disk Buffer Size . 34

3.6.4 Cost Validation . 36

3.7 Approach for Choosing the Default Value 36

3.8 Summary . 38

4 R-MESHJOIN 39

4.1 Introduction . 39

4.2 Dependencies between MESHJOIN Components 40

4.3 R-MESHJOIN . 42

4.3.1 Algorithm . 44

4.3.2 Understanding the Real Dependency 45

Contents xi

4.4 Cost Model and Tuning . 47

4.4.1 Memory Cost . 48

4.4.2 Processing Cost . 49

4.4.3 Tuning of the Disk Buffer . 50

4.5 Experiments . 51

4.5.1 Experimental Setup . 52

4.5.2 Experimental Results . 52

4.6 Summary . 55

5 A New HYBRIDJOIN 57

5.1 Introduction . 57

5.1.1 Disk Access Strategy in MESHJOIN 57

5.1.2 Intermittency in MESHJOIN . 59

5.2 HYBRIDJOIN . 61

5.2.1 Memory Architecture . 61

5.2.2 Algorithm . 63

5.2.3 Asymptotic Runtime Analysis . 64

5.2.4 Cost Model . 66

5.2.5 Tuning . 69

5.3 Tests with Locality of Disk Access . 70

5.4 Experiments . 74

5.4.1 Experimental Setup . 74

5.4.2 Experimental Results . 75

5.5 Summary . 79

6 X-HYBRIDJOIN 81

6.1 Introduction . 81

6.2 X-HYBRIDJOIN . 83

6.2.1 Memory Architecture . 83

6.2.2 Algorithm . 84

6.2.3 Cost Model . 85

6.3 Experimental Results . 87

6.3.1 Performance Comparisons . 87

xii Contents

6.3.2 Role of the Non-swappable Part in Stream Processing 88

6.4 Tuning . 90

6.4.1 Revised Cost Model . 90

6.4.2 Tuning using Empirical Approach 92

6.4.3 Tuning using Mathematical Approach 93

6.4.4 Comparisons of both Approaches 97

6.5 Performance Evaluation after Tuning . 98

6.5.1 Cost Validation . 99

6.6 Summary . 100

7 Optimised X-HYBRIDJOIN 101

7.1 Introduction . 101

7.2 Optimised X-HYBRIDJOIN . 103

7.2.1 Memory Architecture . 103

7.2.2 Algorithm . 105

7.3 Cost Model . 107

7.3.1 Memory Cost . 107

7.3.2 Processing Cost . 108

7.4 Tuning . 108

7.4.1 Tuning using Empirical Approach 109

7.4.2 Tuning based on Cost Model . 110

7.4.3 Comparisons of both Tuning Approaches 113

7.5 Experimental Study . 114

7.5.1 Performance Evaluation . 114

7.5.2 Cost Validation . 115

7.6 Summary . 116

8 Generalisation of Optimised X-HYBRIDJOIN 119

8.1 Introduction . 119

8.2 CACHEJOIN . 120

8.2.1 Data Structures and Execution Architecture 121

8.2.2 Algorithm . 122

8.2.3 Frequency Comparison . 123

Contents xiii

8.3 Cost Calculation . 123

8.3.1 Memory Cost . 124

8.3.2 Processing Cost . 124

8.4 Tuning . 125

8.4.1 Comparisons of Tuning Results . 126

8.5 Performance Experiments . 127

8.5.1 Cost Validation . 129

8.6 Summary . 130

9 Conclusions and Future Directions 131

9.1 Summary of the Thesis . 131

9.2 Achievements . 133

9.3 Directions for Future Research . 134

9.3.1 Extensions . 134

9.3.2 Applications . 135

9.4 Final Words . 137

A HYBRIDJOIN 153

A.1 Analysis of w with respect to its Related Components 153

A.1.1 Effect of the Size of the Master Data on w 153

A.1.2 Effect of the Hash Table Size on w 154

A.1.3 Effect of the Disk Buffer Size on w 155

B X-HYBRIDJOIN 157

B.1 Analysis of w based on Necessary Components 157

B.1.1 Effect of the Non-swappable Part of the Disk Buffer on w 157

B.1.2 Effect of the Swappable Part of the Disk Buffer on w 158

B.1.3 Effect of Size of R on w . 158

B.1.4 Effect of the Hash Table Size on w 159

C Optimised X-HYBRIDJOIN 161

C.1 Analysis of wS and wN . 161

D Co-authorship Forms 165

xiv Contents

List of Figures

1.1 An example of stream-based joins in mobile networks 4

1.2 Thesis coverage with respect to stream and master data characteristics . . 8

2.1 Graphical representation of stream-based joins 13

3.1 MESHJOIN components . 24

3.2 MESHJOIN before processing R2 . 25

3.3 Effect of the disk buffer on MESHJOIN performance using fixed memory

budget (80MB) . 32

3.4 Optimal values for the disk buffer size with respect to the different memory

budgets . 34

3.5 Performance comparisons using default and optimal values for the disk

buffer size in case of different memory budgets 35

3.6 Disk I/O cost for different sizes of the disk buffer 35

3.7 Performance comparison directly at default and optimal values of the disk

buffer size using different memory budgets 36

3.8 Cost validation of MESHJOIN . 37

4.1 Unnecessary dependencies between MESHJOIN components 41

4.2 Effect of R on the tuning of the disk buffer 42

4.3 Illustration for argument concerning tuning approach and master data size 42

4.4 Data structures used by R-MESHJOIN . 44

4.5 Effect of hash table size on join performance 46

4.6 Effect of disk buffer size on join performance 47

xv

xvi LIST OF FIGURES

4.7 Disk buffer tuning within fixed memory budget 51

4.8 Experimental results . 54

4.9 Disk buffer analysis for different sizes of R: MESHJOIN vs R-MESHJOIN . 55

5.1 Measured rate of page use at different locations of R while the size of total

R is 16000 pages . 59

5.2 Memory architecture for HYBRIDJOIN . 63

5.3 Tuning of the disk buffer . 70

5.4 Pseudo-code for benchmark . 72

5.5 A distribution using Zipf’s law . 73

5.6 An input stream with bursty and self-similarity characteristics 74

5.7 Experimental results . 77

5.8 Cost validation . 79

6.1 A general sketch of the classification of R into non-swappable and swap-

pable parts . 83

6.2 Architecture of X-HYBRIDJOIN . 84

6.3 Experimental results: HYBRIDJOIN vs X-HYBRIDJOIN 89

6.4 Total number of stream tuples processed with the non-swappable part of

the disk buffer in 4000 iterations . 89

6.5 Tuning of X-HYBRIDJOIN using measurement approach 93

6.6 A sketch of matching probability of R in stream 95

6.7 Comparisons of tuning results . 98

6.8 Performance comparisons: Tuned X-HYBRIDJOIN vs X-HYBRIDJOIN

without tuning . 99

6.9 Cost validation . 99

7.1 Memory architecture for Optimised X-HYBRIDJOIN 105

7.2 Tuning of Optimised X-HYBRIDJOIN using empirical approach 110

7.3 Tuning comparisons for Optimised X-HYBRIDJOIN using both empirical

and mathematical approaches . 114

7.4 Performance comparisons of Optimised X-HYBRIDJOIN with other join

algorithms . 115

LIST OF FIGURES xvii

7.5 Cost validation . 116

8.1 Data structure and architecture of CACHEJOIN 122

8.2 Tuning Comparisons: empirical approach vs mathematical approach 126

8.3 Performance comparisons of CACHEJOIN with related join algorithms . . 128

8.4 Cost validation . 130

A.1 Analysis of w while varying the size of necessary components 154

B.1 Analysis of w while varying the size of different components 159

C.1 Analysis of wS and wN while varying the size of different components . . . 163

xviii LIST OF FIGURES

List of Tables

3.1 Notations used in cost calculation of MESHJOIN 28

3.2 Relationship amongst the components disk buffer size, hash table size and

queue size when the total memory budget is 20MB 31

3.3 Experimental data characteristics . 33

4.1 Some new symbols used in R-MESHJOIN 49

4.2 Memory measurements for three different cases of R-MESHJOIN 49

4.3 Processing cost of one loop iteration in three different cases of R-MESHJOIN 50

4.4 Disk buffer analysis for different sizes of R 54

5.1 Memory measurements for major components of HYBRIDJOIN 68

5.2 Processing cost for different operations of HYBRIDJOIN algorithm 69

5.3 Data specification . 75

7.1 Some new symbols used in Optimised X-HYBRIDJOIN 107

xix

xx LIST OF TABLES

1
Introduction

1.1 Introduction

A data stream is a continuous sequence of items produced in real-time fashion. We assume

these items are data records with attributes. A stream can be considered to be a relational

table of infinite size. Due to this it is impossible to maintain an order of the items in the

stream with respect to an arbitrary attribute. Likewise it is impossible to store the entire

stream in memory. Because of these characteristics online stream processing has become

a novel field in the area of data management. A number of common examples where

online stream processing is important are network traffic monitoring [9, 31, 44, 76, 97],

sensor data [16], web log analysis [30, 45], online auctions [7], inventory and supply-chain

analysis [40, 53, 110] and real-time data integration [90, 91].

1

2 Introduction

1.2 Data Stream Processing

Conventional Database Management Systems (DBMSs) are designed using the concept

of persistent and interrelated data sets. These DBMSs are stored in reliable repositories,

which are updated and queried frequently. But there are some modern application do-

mains where data is generated in the form of a stream and Data Stream Management

Systems (DSMSs) are required to process the stream data continuously. A variety of

stream processing engines has been published in the literature [1, 6, 23, 43, 54].

The basic difference between a traditional DBMS and a DSMS is the nature of query

execution. In DBMSs data is stored on disk and queries are performed over persistent

data [14, 15, 29, 55, 95]. While in the stream, data items arrive online and stay in the

memory for short intervals of time. DSMSs need to work in non-blocking mode while

executing a sequence of operations over the data stream [6, 10, 11, 12, 17, 25, 37, 51,

56, 58, 102]. The eight important requirements for processing real-time stream data are

described by Michael et al. [96]. To accommodate the execution of a sequence of operations

DSMSs use the concept of a window. A window is basically a snapshot taken at a certain

point in time and it contains a finite set of data items. When there are multiple operators

each operator executes and stores its output in a buffer, which is further used as an input

for some other operator. Therefore each operator needs to manage the contents of the

buffer before it is overwritten.

Common operations performed by most DSMSs are filtering, aggregation, enrichment,

and information processing. A stream-based join is required to perform these operations.

1.3 Stream-based Joins

A stream-based join is an operation to combine the information coming from multiple data

sources. These sources may be in the form of streams or disk-based. Stream-based joins

are important components in modern system architectures, where just-in-time delivery of

data is expected. There is a number of examples where these joins play an important

role. For example, in the field of networking two streams of data packets can be joined

using their packet id’s to synchronise the flow of packets through routers [97]. Another

example is an online auction system which generates two streams, one stream for opening

1.4 Motivation 3

an auction, while the other stream consisting of bids on that auction [101, 112]. A stream-

based join is required to relate the bids with the corresponding opened auction.

This thesis considers a particular class of stream-based joins, namely a join of a single

stream with a slowly-changing table. Updating of indices is not included in the scope of

the thesis however, there are approaches available to deal with it [26]. Such a join can be

applied in real-time data warehousing [5, 20, 49, 62, 82, 88, 90, 91]. In this application,

the slowly-changing table is typically a master data table. Incoming real-time sales data

may comprise the stream. The stream-based join can be used, for example, to enrich the

stream data with master data. The most natural type of join in this scenario would be

an equijoin, performed, for example, on a foreign key in the stream data.

1.4 Motivation

The demand for real-time processing of applications with huge volumes of stream data

is increasing daily. Common examples of these stream-based applications are daily su-

permarket transactions, network traffic monitoring, web log analysis, fraud detection etc.

The processing of these stream-based applications exploits the concepts of stream-based

join operators.

The large capacity of current main memories can be utilized for executing stream-

based operations, as well as the considerable computing resources. For master data of

the right size, for example, main-memory algorithms can be used. However, there are

several scenarios where master data is huge in volume and stream joins that use minimum

resources are preferable. The focus here is to deal with these kinds of scenarios. One

particular scenario of interest is stream processing in mobile networks. In mobile networks,

multiple operations such as correlation, aggregation, and encoding or decoding execute

on a near-real-time basis. Some operations also use the information stored on disk. A

stream-based join operator is required to fulfill each operation. If multiple operations are

co-located on the same server while each operation needs information from the disk then,

due to limited available memory for each operation, it is difficult to keep the entire disk

data in memory permanently. Using join operators which are less resource-intensive would

be preferable in handling these situations. Figure 1.1 presents a graphical interpretation

of the scenario where end user’s transactions need to be processed online with master

4 Introduction

Stream-based join operator

Transactional

Data Source

End user’s

transactions in the

form of stream.

TDS Near-Real-Time

DWH

Master

Data

Transformed

data

Figure 1.1: An example of stream-based joins in mobile networks

data before being propagated in the data warehouse.

Organisations that become more environmentally aware will try to reduce the carbon

footprint of their IT infrastructure. A main-memory approach can be power-hungry, as

can cloud-computing approaches. Therefore, approaches that can work with limited main

memory are of interest. This does not mean that they are always optimal under all

resource parameters, but they can serve as an option in a portfolio of building blocks for

a resource-aware system-setup.

Another important aspect we can consider in Figure 1.1 is the nature of the end

user’s data. Normally this is a non-uniform distribution with a certain value of skew

parameter. The popular types of distributions in this context are Zipfian distributions.

In the literature these Zipfian distributions are discussed as an acceptable model for sales,

where some products are sold frequently while most are sold rarely [3]. Zipf’s Law is the

special case where the exponent value is equal to 1. Another important case is the 80/20

Rule. This corresponds to a different exponent value namely 0.8614 [66].

1.5 Problem Statement

In the context when a stream is joined with persistent data, one of the significant factors

for choosing the join algorithm is that the inputs in the join come from different sources

with different arrival rates. The stream input is fast, high volume and has a bursty nature

while the access rate of persistent data is comparatively slow due to the disk I/O cost;

therefore, a bottleneck is created during the join execution. The challenge in this case is

to eliminate this bottleneck by amortising the expensive disk I/O cost over a high volume

of stream data.

1.6 Thesis Contributions 5

One well-known approach, MESHJOIN (Mesh Join) [90, 91] has been proposed in the

literature for processing stream data with persistent data, particularly for the scenario of

data warehousing. The main objective of this approach is to amortise the expensive disk

I/O cost over a high volume of stream data. Although it is a useful attempt in this direc-

tion, it leaves some issues open for research. First, due to complex dependencies among

the components of MESHJOIN the algorithm cannot attain maximum performance (de-

tails are available in Chapter 4). Secondly, common market characteristics like Zipfian

distribution for stream data and intermittency were not taken into account when the

algorithm was designed. As a consequence MESHJOIN cannot deal with stream inter-

mittency effectively and also in MESHJOIN the performance is inversely proportional to

the size of the master data (details are presented in Chapter 5).

These motivations have led us to design an efficient algorithm for processing non-

uniform stream data which is a common characteristic of real world applications.

1.6 Thesis Contributions

The primary aim of this thesis is to design a robust stream-based join algorithm for

processing stream data with persistent data. While achieving this aim the thesis also

provides the following contributions.

1. It provides a literature review of stream-based join algorithms. These join algo-

rithms are classified into two categories based on the nature of their input param-

eters. Each category analyses a number of related approaches with their strengths

and weaknesses.

2. The detailed literature review has motivated an investigation of a well-known stream-

based algorithm called MESHJOIN. This has identified a number of research issues

in the MESHJOIN algorithm. MESHJOIN provides a small amount of data on the

position of the optimal value depending on the memory size, and no performance

comparison has been carried out between the optimal and reasonable default sizes

for a key component called disk-buffer. In this research more details are provided

about the optimal and default settings for MESHJOIN.

6 Introduction

3. MESHJOIN distributes memory among its components suboptimally due to some

complex dependencies. An alternative approach called R-MESHJOIN (reduced

Mesh Join) is presented here. R-MESHJOIN removes these complex dependencies

and divides memory among the components optimally.

4. MESHJOIN uses a non-adaptive strategy to access the master data and therefore

cannot deal with the intermittency in stream data efficiently. A new algorithm HY-

BRIDJOIN (Hybrid Join), is introduced to handle both of these issues. A synthetic

workload is also generated to test the performance of HYBRIDJOIN.

5. HYBRIDJOIN does not consider non-uniform distributions such as Zipfian distri-

bution, that can affect the stream data. The stream data is analysed and an appro-

priate algorithm called X-HYBRIDJOIN (Extended Hybrid Join) has been designed

for processing the non-uniform stream data. Further, X-HYBRIDJOIN has been

improved in the form of Optimised X-HYBRIDJOIN by using efficient and more

appropriate data structures. Optimised X-HYBRIDJOIN assumes the master data

is sorted in the order of access frequency. Under this assumption the algorithm can

perform better than all the other approaches described.

6. Finally, this thesis introduces a robust stream-based algorithm called CACHEJOIN

(Cache Join). CACHEJOIN has the capability of dealing with unsorted master data

efficiently. The algorithm performs significantly better than all other approaches on

unsorted master data while a little less well than Optimised X-HYBRIDJOIN on

sorted data.

The aim of this thesis is accomplished by providing a choice of algorithms depending

on the nature of stream input data and the master data being processed. R-MESHJOIN

can perform efficiently when stream input data is uniform and continuous regardless of

whether the master data is sorted or unsorted . Optimised X-HYBRIDJOIN will perform

better when stream input data is non-uniform and the master data has been sorted.

Finally, CACHEJOIN is more appropriate for joining non-uniform stream input data

with unsorted master data.

1.7 Scope of the Thesis 7

1.7 Scope of the Thesis

The scope of the thesis can be defined in two dimensions. One dimension includes the

characteristics of stream data whereas the other dimension covers the characteristics of

master data. On stream data two common characteristics are considered here. The

first characteristic is non-uniform stream data, which can be found in most real world

applications. For example in supermarkets only a few products among all those available

are sold frequently [3]. The second characteristic is related to the flow of stream data.

Again, if we consider the same example of the supermarket, the rate of transactions in peak

hours is much higher than in less busy hours. A number of applications where data streams

have both of these characteristics can be found in literature [32, 63, 65, 67, 74, 89, 116, 117].

With respect to disk-based master data, the characteristics of indexing are important here.

The coverage of the approaches proposed with respect to the specified dimensions

is shown in Figure 1.2. CACHEJOIN is a robust algorithm that can deal with stream

data, having both characteristics, without any assumption about ordering the master

data. The two other algorithms, X-HYBRIDJOIN and Optimised X-HYBRIDJOIN, can

also deal with stream data having both characteristics. However, both these algorithms

assume the master data has been sorted by access frequency. For uniform and intermittent

stream data HYBRIDJOIN is a more appropriate algorithm. HYBRIDJOIN can work

for both sorted and unsorted master data. Neither MESHJOIN nor R-MESHJOIN has

any assumption of an index on the master data and they work effectively only for uniform

and continuous stream data.

The following are some possible extensions that are not covered in this research.

• This research limits its focus to join algorithms which keep resource consumption

low and therefore does not consider those scenarios where a large amount of memory

is available for join processing.

• This research considers unique tuples in master data and an equijoin is applied

between key values in master data with foreign key values in stream data. The

possibility of non-equijoin is not covered in this research.

• The major focus of this thesis is on non-uniform stream data and therefore it does

not consider categorical attributes in master data, e.g. it does not consider equijoins

8 Introduction

Non-uniform

Stream

Intermittency

in stream

Uniform

stream

Continuous

stream

Index

Master Data

sorted by

access

frequency

No index

Characteristics of Stream Data

C
h

a
ra

c
te

ris
tic

s
 o

f M
a

s
te

r D
a
ta

CACHEJOIN

X-HYBRIDJOIN

Optimised

X-HYBRIDJOIN

MESHJOIN

R-MESHJOIN

HYBRIDJOIN

Figure 1.2: Thesis coverage with respect to stream and master data characteristics

over attributes such as gender.

1.8 Structure of the Thesis

Chapter 2 presents a literature review of research on stream-based join operators. For

clarity these stream-based join operators are classified into two categories based on several

characteristics. Under each category a number of stream-based operators are described,

along with their limitations.

Chapter 3 provides the background of the research by exploring MESHJOIN and

highlights the important issues that have been investigated in developing MESHJOIN.

This chapter also addresses the issue of memory setting for a key component of MESHJOIN.

Chapter 4 addresses the second issue of MESHJOIN, which is the unnecessary

dependency between the join components. A revised version of MESHJOIN called R-

MESHJOIN is presented. R-MESHJOIN removes the complex dependencies that create

the problem in MESHJOIN and a simple and accurate cost model for memory distribution

among the components is introduced.

Chapter 5 deals with two further issues in the existing MESHJOIN algorithm. One

is that it uses an inefficient approach to accessing the master data whereas the other one

is that it does not deal efficiently with intermittency in stream data. To resolve these

issues a new join algorithm called HYBRIDJOIN is introduced here. The cost model is

1.8 Structure of the Thesis 9

derived for HYBRIDJOIN and the algorithm is tuned on the basis of that cost model. A

synthetic data set is generated for testing the performance of the algorithm.

Chapter 6 presents an extended version of HYBRIDJOIN, called X-HYBRIDJOIN.

X-HYBRIDJOIN is designed to take the non-uniform characteristics of stream data into

account. X-HYBRIDJOIN contains all the characteristics of HYBRIDJOIN plus an ad-

ditional feature of caching the most frequently-used part of the disk data permanently

in memory. This additional feature adds a significant contribution in the algorithm’s

performance, especially for non-uniform distributions as found in real world applications.

X-HYBRIDJOIN is also tuned to its optimal settings using both empirical and mathe-

matical tuning approaches.

Chapter 7 discusses further improvements to X-HYBRIDJOIN. The X-HYBRIDJOIN

algorithm uses two buffers for loading the master data. One buffer is non-swappable

whereas the other one is swappable. However, the algorithm treats both buffers in the

same way; further it does not use an efficient data structure for the non-swappable buffer.

This chapter discusses some modifications in X-HYBRIDJOIN and presents an alterna-

tive in the form of Optimised X-HYBRIDJOIN. Optimised X-HYBRIDJOIN treats both

buffers independently, using efficient data structures that eventually improve the perfor-

mance of the algorithm.

Chapter 8 describes a generalised approach for processing stream data with master

data. Although Optimised X-HYBRIDJOIN performs optimally for non-uniform distri-

butions, the algorithm includes the assumption that the master data are sorted with

respect to access frequency. In this chapter this assumption is removed and a robust

algorithm called CACHEJOIN is introduced. Experiments prove that for non-uniform

distributions CACHEJOIN performs optimally for all the other algorithms except Opti-

mised X-HYBRIDJOIN when the master data is unsorted. The cost model is also derived

for CACHEJOIN and the algorithm is tuned empirically and mathematically.

Chapter 9 concludes this research by summarising the contributions and providing

some future guidelines.

10 Introduction

2
Related Work

2.1 Introduction

A stream-based join is an operator used for combining or interrelating various streams

or a stream with master data. Chapter 1 listed a number of application scenarios where

stream-based joins play an important role. One question that arises here is why these

stream-based joins are important given that traditional joins already exist and are well

understood. The answer is that in a stream setting the tuples arrive continuously and

they usually need to be processed in the same fashion. In addition to that it is not possible

to store the entire stream in memory and hence one cannot apply the indexing feature to

extract the tuples. Therefore, the traditional blocking join operators [18, 34, 35, 36, 55,

64, 70, 71, 72, 93, 94, 114, 118] will no longer work for these settings.

To process the continuous stream data non-blocking pipelined join operators [38, 41,

56, 57, 75, 79, 100, 105, 113] are required. Normally these joins are stateful operators.

Otherwise they need to keep a record of all past stream tuples and that will ultimately

11

12 Related Work

outgrow the available memory [111]. Therefore, one important challenge for non-blocking

join operators is join state management. One possible solution for this challenge is the

concept of a sliding-window. In the sliding-window concept the scope of the join operator

is restricted to a recent window. There are two further categories within the sliding-

window concept. One is a time-based sliding-window in which the scope of the join

operator is restricted to a particular time period. In this case a new tuple of stream A

can join with a set of tuples of stream B that arrived in the last specified time interval. The

other category is a tuple-based sliding-window in which each new tuple of stream A can

join with n recently arrived tuples of stream B. With both the time-based sliding-window

and the tuple-based sliding-window the slide is forwarded after either a particular time

or a specified number of tuples [111]. More details about the semantics of sliding-window

are presented in Continuous Query Language (CQL) [8].

2.2 Basic Characteristics of Stream-based Joins

A large amount of research has been carried out already in the area of stream-based joins.

The focus of this research is on a particular group of stream-based joins called hash-based

joins. Based on input characteristics these hash-based joins can be classified further into

two categories. The first category includes all those join approaches in which both join

inputs are in the form of streams and later in this chapter the term Stream − Stream

is used for this category. The second category contains those join approaches in which

one input is in the form of a stream whereas the other is disk-based. This category is

represented in this chapter by the term Stream−Disk. The following subsections present

the basic semantics of joins for each category.

2.2.1 Semantics of Join for Stream-Stream

As described earlier a stream is a combination of an infinite number of tuples of the form

< s, t > where s is a tuple and t is a timestamp for that tuple. The two streams S1 and S2

are joined together by maintaining their join states separately as shown in Figure 2.1(a).

A join state of S1 keeps the record of tuples of stream S1. Similarly the join state of S2

keeps the record of received tuples of stream S2. When the tuple s1 ∈ S1 arrives, it is

2.3 Stream-Stream 13

S1

S2
Ө (s1,s2)

(a) Both inputs are in the form
of stream

S

Ө(s,r)

R

(b) One input is stream while
the other is disk-based

Figure 2.1: Graphical representation of stream-based joins

stored in the join state table for S1 and probed into the join state table of S2 and join

output is then generated. Similar operations are performed for stream S2.

2.2.2 Semantics of Join for Stream-Disk

In this type of join each stream tuple s ∈ S is joined with the disk-based tuple r ∈ R [8, 52]

as shown in Figure 2.1(b). Normally the disk-based relation R is stored in a database. The

main issue with these types of joins is that the disk I/O cost for accessing the database

is a dominant factor. The stream arrival rate is fast and therefore, it is necessary to

amortise the dominant I/O cost over the fast stream. The focus of this dissertation is to

deal with such kinds of stream-based join operators. The following sections describe the

relevant join operators under each category.

2.3 Stream-Stream

A number of well known stream-based join approaches are reviewed which take both

inputs in the form of a stream. However the target of this research is to process stream

data with master data stored on disk. The reason for considering the join approaches

under the Stream-Stream category in our literature review is to introduce the common

hash-based architecture used in all these approaches. The strengths and weaknesses of

each approach are also highlighted.

2.3.1 Symmetric Hash Join (SHJ)

Symmetric Hash Join (SHJ) [108, 109] has exploited the concepts of the traditional hash

join algorithms by eliminating the delay for the input streams. SHJ maintains the hash

14 Related Work

tables for both input streams in memory and the algorithm assumes that both inputs can

be held in memory in their entirety. Each new tuple from one stream is joined with the

tuples of the other stream, stored in the hash table, and the output for the joined tuple

is then generated. After the output has been generated, that new tuple is stored in its

own hash table. The algorithm can generate the output as soon as the input tuple from

either stream arrives. However it needs to store both inputs in memory.

2.3.2 Double Pipelined Hash Join (DPHJ)

The double Pipelined Hash Join (DPHJ) [59] is an extension of SHJ and can produce the

output faster than SHJ. The algorithm stores each input in a separate hash table. If the

hash table becomes filled the algorithm flushes the additional tuples to disk to process

them later. The algorithm processes the disk-resident tuples after finishing both inputs.

DPHJ removes one limitation of SHJ that of storing the entire join state in memory.

DPHJ uses a flag strategy to avoid producing the duplicate tuples. This algorithm is

suitable for medium size data and does not perform well for large size data.

2.3.3 XJoin

XJoin [41, 103, 104] is an extended form of SHJ that handles memory overflow by flushing

the largest single partition to disk. XJoin presents a three-stage strategy for switching its

execution state between disk and memory.

First Stage: The first stage of XJoin is quite similar to the standard Symmetric

Hash Join with only one difference; the tuples are organised in partitions both in memory

and on disk. Each partition has two parts. One part exists in memory while the other

part exists on disk. On the arrival of an input tuple from Source S1 the algorithm stores

the tuple in the relative memory partition and probes it into the corresponding partition

of Source S2. If sufficient space is not available in memory then the algorithm chooses

one partition, flushes all its tuples to the disk and resumes the usual process. The first

stage continues until the tuples are received from at least one input. If the algorithm

does not receive any tuple from either input up to a particular time period then it blocks

the first stage and starts the execution of the second stage. The first stage is terminated

permanently when both inputs have finished.

2.3 Stream-Stream 15

Second Stage: The second stage starts its execution when one or both inputs become

blocked. In the second stage the algorithm selects a partition, reads the tuples from

the disk-resident part of that partition and probes them into the corresponding memory

partition of the other source. In the case of a match the algorithm generates the resulting

tuple as an output. When all the tuples of the selected disk-resident partition have been

processed, the algorithm checks the status of the input stream. If any stream resumes

producing tuples the algorithm switches back to the first stage. Otherwise it continues

the second stage by selecting a different disk-resident part.

Third Stage: The third stage is also called the clean-up stage and it starts when

both inputs have finished. The main objective of this stage is to make sure that all the

tuples of both inputs are produced as an output.

XJoin uses a timestamp approach to avoid duplicates. Each tuple is assigned an

arrival time when it is loaded into memory and a departure time when it flushes to the

disk. The overlapping of timestamps for any two tuples indicates the duplication of a

tuple. However, in XJoin the strategy for detecting the duplicate tuples is not effective

and some flushing policy is also required in order to transfer the extra tuples to the disk.

2.3.4 Hash-Merge Join (HMJ)

Hash-Merge Join (HMJ) [79] belongs to the series of symmetric joins. It consists of two

phases, hashing and merging. The algorithm begins with the hashing phase. During this

phase the algorithm reads the input tuples from two data streams and loads them into

hash-buckets in memory. The algorithm then joins these hashed tuples and generates

the output accordingly. When the memory is filled, the algorithm flushes parts of the

hash table to the disk. The second, merging phase of the algorithm starts when both

input streams are blocked. During this phase the disk-resident tuples are joined together.

Once any source becomes unblocked the algorithm switches to the first phase again. This

switching between two phases continues until all the data has been processed. HMJ uses

an effective flushing strategy that helps to keep a balanced memory distribution between

the two inputs. Moreover, as the algorithm flushes a pair of partitions (one from each

source) to disk, no timestamp is required to avoid the duplicate tuples. However, in each

flushing the sorting of both partitions is required.

16 Related Work

2.3.5 Early Hash Join (EHJ)

In all the join operators outlined above the flushing policy aims to optimise the gener-

ation of output. They do not consider minimization of execution time, which is equally

important. MJoin addressed this issue but the experimental analysis for calculating the

benefit is not presented.

Early Hash Join (EHJ) [73] is an improved version of XJoin that considers the factor

of execution time. In EHJ a biased flushing policy is used to flush the data on the disk

and a simplified technique is presented to identify the duplicate tuples. EHJ flushes the

partition with large input first which is similar to the strategy presented in Dynamic

Hash Join [33]. The technique used in EHJ to determine duplicate tuples is based on

cardinality. For one-to-one and one-to-many relationships the algorithm does not use any

timestamp while for many-to-many relationship it requires an arrival timestamp only.

EHJ follows the concepts of Symmetric Hash Join (SHJ). Each input is stored in a

separate hash table. When a tuple arrives from one input, it is probed into the hash table

of the other input and, if the tuple matches, then that tuple is generated as an output.

After generating the output the tuple is added into its own hash table. The default reading

strategy for the in-memory phase is alternative, i.e. the tuples from both inputs are read

alternately. However at any time a user can change the reading strategy to optimise the

output rate. In the case when the memory gets full the algorithm switches to the second

phase, called the flushing phase. The algorithm implements the biased flushing policy

that is based on two given rules: (a) the algorithm first selects the largest non-frozen

partition of the bigger relation for flushing, (b) if no such partition is found the algorithm

selects the smallest non-frozen partition of the smaller relation. When both inputs are

finished the algorithm starts its last phase, the clean-up phase, and processes the tuples

which were missed in the first two phases.

2.4 Stream-Disk

All join algorithms under this category take one input in the form of a stream while the

other input is invoked from the disk. The join processing for such a setup, where the

two inputs arrive with different rates, is more challenging than that where all inputs have

2.4 Stream-Disk 17

similar arrival rates. In the following a selection of join algorithms are discussed, along

with their limitations.

2.4.1 Index-Nested-Loop Join

Index-Nested-Loop Join (INLJ) [92] is a traditional join algorithm that can be used to

join the stream data with the master data. In INLJ, a stream S is scanned tuple by

tuple and the look-up relation R is accessed using a cluster-based index on the join

attribute. Although this join algorithm can deal with a bursty stream, it requires extra

time to maintain an index on the join attribute. Further it processes one tuple at a time,

reducing the throughput.

2.4.2 MESHJOIN

The Mesh Join (MESHJOIN) algorithm [90, 91] has been introduced for scenarios like

real-time data warehouses. One input of the join is end-user updates that come in the

form of a stream, while the other input is master data that resides on disk and is accessed

during the join execution. The key objective of this join is to amortise the fast stream

of updates with the slow disk access rate. To achieve this objective the algorithm keeps

a number of chunks of stream in memory at the same time. In MESHJOIN, the master

data is traversed cyclically in an endless loop and every stream tuple is compared with

every tuple in the master data. Therefore every stream tuple stays in memory for the

time that is needed to run once through the entire master data.

MESHJOIN is an adaptive algorithm with respect to stream amortising, there are

some research issues such as inefficient memory distribution among the join components,

ineffective strategy to access the master data, and inability to deal with intermittency in

the data streams that need to be discussed further. More details about these issues are

presented in Chapter 3.

2.4.3 Partition-based Approach

A partition-based approach [21] has been introduced to deal with intermittency in the

stream. Similar to MESHJOIN, this partitioned-based algorithm also divides the master

data R into segments using a space-partitioning technique. A subset of these segments

18 Related Work

resides in memory. A wait-buffer is another memory-based component that contains

parallel slots which are equal in number to the disk segments. For each stream update

tuple, the join is performed if the required disk tuple is available in memory. Otherwise the

stream tuple is mapped into the corresponding slot in the wait-buffer. The disk-invokes

operations based on the following conditions: (i) if the number of stream tuples in any

slot of the wait-buffer crosses a threshold value or (ii) if the memory space allocated for

the wait-buffer is full. In the case of the first condition the algorithm loads a particular

disk segment into memory (R-buffer) and a join is executed between the tuples residing

in that particular slot of the wait-buffer and the tuples in the disk segment. In the case of

the second condition the algorithm invokes the disk segments one by one according to the

order of the sizes of the slots in the wait-buffer and performs a join between the stream

tuples and the disk tuples. The disk-retrieved segment may also replace an in-memory

disk segment, depending on the frequency of the retrieved segment tuples in the arrival

stream.

A general observation is that the join attribute values waiting in the slots of the

wait-buffer, which are not frequent in the input stream, need to wait even longer than

in the original MESHJOIN algorithm, where the slot does not reach the threshold limit.

In addition the author of the partition-based approach focuses on the analysis of the

stream buffer in terms of back log tuples and the delay time rather than analysing the

performance of the algorithm. The cost model is not provided for the approach. Also, the

algorithm requires a clustered index or an equivalent sorting on the join attribute and it

does not prevent starvation of stream tuples.

Another join operator called Adaptive, Hash-partitioned Exact Window Join (AH-

EWJ) [22] has been introduced to produce accurate results for sliding window joins over

data streams. This approach can also be used in the scenario where a stream joins with

master data. However, the focus of this approach is on the accuracy of the join output

rather than on performance optimisation while considering non-uniform characteristic on

the stream data.

A number of tools have been developed for stream warehousing which can also process

stream data with master data [13, 46, 47, 48, 49, 50]. However, these tools do not provide

optimal solutions for non-uniform characteristic of real world data.

Some other approaches [23, 24, 69] have also considered the problem of joining stream

2.4 Stream-Disk 19

data with master data, but to the best of our knowledge they did not propose any appro-

priate algorithm for it.

20 Related Work

3
Analysis of MESHJOIN

3.1 Introduction

The MESHJOIN algorithm was introduced [90, 91] to perform joins between a continuous

stream and a disk-based relation, we called it master data, using limited memory. One

example of such a scenario is near-real-time data warehousing where the source data needs

to be transformed to a target format during the transformation phase of ETL (Extract,

Transform, Load). One input of the join is received in the form of a stream and consists

of updates performed on the data source. The other input is a table that is stored on a

disk and typically represents slowly-changing master data. The bottleneck occurs while

accessing the master data; therefore the key challenge is to amortise the slow disk access

cost over a fast data stream. MESHJOIN is an algorithm that addresses this issue. It

joins a fast stream S with a large master data R under a limited memory budget. The

algorithm can be tuned to perform optimally for a given memory size or to minimize the

memory usage required for a given service rate. The term service rate or throughput is

21

22 Analysis of MESHJOIN

defined as the total number of stream input tuples processed in unit of time.

This chapter first explains MESHJOIN with respect to its components and basic oper-

ation and goes on to present certain observations about this algorithm. It also evaluates

the MESHJOIN algorithm and proposes default settings in order to remove the tuning

effort that MESHJOIN goes through for every new setting. The performance of the al-

gorithm is compared using both optimal and default settings. The results presented at

the end of this chapter show that under default settings the algorithm performs only

minimally less efficiently (under two percent) than the optimal settings.

In detail, the chapter is structured as follows. Section 3.2 focuses on the working,

architecture and algorithm for MESHJOIN. Observations about MESHJOIN are discussed

in Section 3.3 while the further investigations of it are presented in Sections 3.4 and 3.5.

Tuning and performance comparisons using default and optimal values for the disk buffer

sizes are presented in Section 3.6. Section 3.7 explains the strategy for choosing the

default value for the size of the disk buffer. Finally Section 3.8 presents a summary of

the chapter.

3.2 MESHJOIN

Overall, the MESHJOIN algorithm is a hash join, where the stream serves as the build

input and the master data serves as the probe input. A characteristic of MESHJOIN is

that it performs a staggered execution of the hash table build in order to load stream

tuples more steadily. In MESHJOIN, the whole R is traversed cyclically in an endless

loop and every stream tuple is compared with every tuple in R. Therefore every stream

tuple stays in memory for the time that is needed to run once through R. The stream

tuples that arrive later start the comparison with R from a later point in R (except for the

case that the traversal of R resets to the start of R) and wait until this point is reached

again in the cyclic reading of R. The chunks of stream therefore leave main memory in

the order in which they enter main memory and their time of residence in main memory

is overlapping. This leads to the staggered processing pattern of MESHJOIN. In main

memory the incoming stream data is organised in a queue, each chunk of stream defining

one partition of the queue. At each point in time, each partition has seen a larger number

of iterations than the previous.

3.2 MESHJOIN 23

This section elaborates on the major components and the workings of the MESHJOIN

algorithm. In order to get a better understanding the pseudo-code of the algorithm is

also presented in this section.

3.2.1 MESHJOIN Components

The pictorial representation of MESHJOIN components is shown in Figure 3.1. The

following explains each component, along with its functionality.

Disk buffer: The disk buffer is a key component in MESHJOIN which is used to

load the master data into memory in the form of partitions, but does so one partition at

a time. This is important because the disk I/O cost is directly related to the size of this

component. In MESHJOIN changing the size of the disk buffer also changes the number

of partitions in the queue.

Hash table (H): To amortise the disk I/O cost MESHJOIN keeps a number of stream

tuples in memory at a time. The algorithm loads these stream tuples in chunks which

can be differentiated with respect to their loading time. The hash table is the component

used to store these stream tuples. During execution, disk tuples stored in the disk buffer

are probed in the hash table and output is generated if the probing is successful.

Queue (Q): The queue is another component in MESHJOIN that stores the join

attribute values for stream tuples. The main purpose of the queue is to keep a record of

the oldest tuples. The oldest tuples are the tuples that have been joined with the whole

R; in the next step they have to be deleted from memory. The relationship between the

memory size of the queue and the memory size of the hash table is linear.

Stream buffer: The stream buffer is a small component in MESHJOIN. The main

purpose of this component is to hold the fast stream for a while until the necessary space

is created in the memory.

3.2.2 Basic Operation

As shown in Figure 3.1, there are two input sources, one is a continuous data stream S

and the other is master data R. MESHJOIN continuously scans the data from these input

sources and joins them together in order to generate the result. The usually large master

data R has to be stored on disk, and is read into memory through a disk buffer of size b

24 Analysis of MESHJOIN

Disk-bufferDisk-based

Master Data

R

Stream buffer

Stores the group of disk-pages

that are probed into hash table

while join is executing.

Stores some of the incoming

stream tuples for a while.

Stores all the stream

tuples that are being

Processed.

Keeps record of tuples in hash table for expiring. Stream

S

Hash

table

Queue

tuples=hS

Figure 3.1: MESHJOIN components

pages. The master data R is naturally split into k equal partitions, where each partition

is of size b number of pages. One traversal of R therefore happens in k steps. In each step

a new partition of R is loaded into the disk buffer and replaces the old content. These

steps are referred to as iterations in the following.

The key concept in the execution of the algorithm is that, for each iteration, it loads

one partition from disk into the disk buffer and a set of stream tuples into the hash table,

while also placing the values of their join attributes in the queue. The tuples stored in

the disk buffer are then joined with all the tuples stored in the hash table and the output

is generated. At the start of the next iteration the oldest stream tuples are discarded

from the hash table together with their join attribute values from the queue. In the next

iteration the algorithm again loads the new stream input into the hash table and queue

while the disk input is loaded into the disk buffer. The advantage of this algorithm is

that it amortises the fast arrival rate of the incoming stream by executing the join of disk

pages with a large number of stream tuples. Figure 3.2 shows a pictorial representation

of the MESHJOIN operation at the moment that a partition R2 of R is read into the disk

buffer but has not yet been processed. The figure shows that the stream tuples whose

join attribute values are stored in partition Q1 of the queue have already seen all the

disk partitions except R2. Therefore, after the processing of R2 they will expire while the

stream tuples storing the join attribute values in partitions Q2, Q3 and Q4 will move one

step forward after the processing of R2.

3.2 MESHJOIN 25

R1

R2

R3

R4

Q1Q3Q4 Q2

R2

(R3)

(R4)

(R1)

(R4)

(R1)(R1)

Disk Buffer

Hash-Join

Module

Stream

S
Partition

Queue

Disk-based master data R

Chunks already

seen by Q1

w

Stream buffer

Hash table

Figure 3.2: MESHJOIN before processing R2

Algorithm 1 MESHJOIN [90, 91]

Input: A master data R and a Stream S
Output: S ./ R
Parameters: w tuples of S and b pages of R
Method:

1: while (true) do
2: READ b pages from R and w tuples from S
3: if Q is full then
4: DEQUEUE T from Q where T are w pointers
5: REMOVE the tuples of hash H that correspond to T
6: end if
7: ADD w tuples of S in H
8: ENQUEUE in Q, w pointers to the above tuples in H
9: for each tuple r in b pages of R do

10: Output r ./ H
11: end for
12: end while

3.2.3 Algorithm

The pseudo-code for the original algorithm is shown in Algorithm 1 [90, 91]. For each

iteration, the algorithm takes two parameters, w tuples and b pages, from the input

sources S and R respectively and feeds them into the relevant buffers. Before starting the

join execution the algorithm monitors the status of Q. If it is already full, the algorithm

dequeues the pointer addresses of the oldest tuples and discards the corresponding tuples

from the hash table. In the next step the algorithm stores w tuples in the hash table

with their corresponding addresses into Q. Finally, it generates the required output after

performing the join of b pages with all tuples in the hash table.

26 Analysis of MESHJOIN

3.3 Research Issues

Although the MESHJOIN algorithm is an interesting algorithm for processing stream

data with persistent data by amortising the slow disk access cost on a fast data stream,

there are some research issues that need to be explored further. A brief description of

these issues is presented here, while in later chapters they are discussed in more detail.

3.3.1 Settings

The disk buffer is a key component in the MESHJOIN algorithm used to load the disk

data into memory. MESHJOIN reserves a variable size of memory for this component

and the authors did not evaluate the procedure to measure the size of memory for this

component. Moreover, the algorithm tunes this component for every new setting of mem-

ory. In this chapter it will become clear that using the default memory setting for this

component makes no noticeable decrease in the performance as compared to the optimal

memory setting. There are two main reasons behind this performance analysis. First, it is

important to know how much the tuning module actually contributes in the performance

of the algorithm. Secondly, the analysis provides the user with an option: the acceptance

of a small degradation in performance while avoiding having to use the tuning module.

3.3.2 Dependencies

In MESHJOIN there are some unnecessary dependencies between the components of the

algorithm. As a result, first the algorithm is slightly suboptimal even after tuning, and

second the size of a key component, the disk buffer varies when the size of R on disk is

varied, which is counter intuitive. In our investigations these issues can be resolved by

discovering the true dependency between the components.

3.3.3 Disk access

MESHJOIN reads R sequentially and there can be a number of partitions in R which

do not have a single match with a stream tuple in memory. In such cases the algorithm

produces an overhead in the form of disk I/O cost that affects the performance of the

algorithm negatively. Moreover, increasing the size of R on disk also increases the time

3.4 Settings 27

for which each stream tuple remains in memory.

3.3.4 Intermittency

MESHJOIN cannot deal effectively with intermittency occurring in the stream. The

reason for this is that when a pause occurs, the stream tuples that are already in memory

will hang for an indefinite period of time.

Issue 3.3.1 is addressed in this chapter. Chapter 4 deals with issue 3.3.2. Finally,

issues 3.3.3 and 3.3.4 are addressed in Chapter 5.

3.4 Settings

This chapter discusses an optimisation problem for a critical component of MESHJOIN,

the disk buffer. As shown in Figure 3.2, the disk buffer component of MESHJOIN is used

to load disk data into memory and its size varies with a change in the total allocated

memory for join execution. Therefore, in order to achieve the maximum service rate

within a fixed memory budget, MESHJOIN first tunes that disk buffer component. The

parameters that MESHJOIN uses in tuning are based on a cost model.

To explore the analytical steps behind this tuning process the cost equations are

considered [90, 91], both in terms of memory and processing, used by MESHJOIN. To

calculate the memory cost, MESHJOIN uses Equation 3.1 while the symbols used in the

cost equations are explained in Table 3.1.

M = b · vP + w · vS + w
NR

b
sizeof(ptr) + w · f NR

b
vS (3.1)

where M is the total memory reserved by all join components, which can be less than or

equal to the maximum memory budget, b · vP is the piece of memory allocated for the

disk buffer, w ·vS is the memory reserved for the stream buffer, wNR

b
sizeof(ptr) represents

the memory reserved by the queue and finally, w · f NR

b
vS is the memory allocated for the

hash table.

MESHJOIN processes w tuples in each iteration of the algorithm. The processing cost

28 Analysis of MESHJOIN

Table 3.1: Notations used in cost calculation of MESHJOIN
Parameter name Symbol

Size of each tuple of S (bytes) vS
Number of pages in R NR

Size of each tuple in R (bytes) vR
Size of each page in R (bytes) vP
Number of pages of R in memory for each iteration b
Total number of iterations required to bring the whole R into memory k
Number of stream tuples read into join window for each loop iteration w
Hash table fudge factor f
Cost of reading b disk pages into the disk buffer (seconds) cI/O(b)
Cost of removing one tuple from H and Q (seconds) cE
Cost of reading one stream tuple into the stream buffer (seconds) cS
Cost of appending one tuple into H and Q (seconds) cA
Cost of probing one tuple into H (seconds) cH
Cost to generate the output for one tuple (seconds) cO
Total cost for one loop iteration of MESHJOIN (seconds) cloop
Total memory used by MESHJOIN (bytes) M
service rate (tuples/second) µ

for one iteration is denoted by cloop and can be calculated using Equation 3.2.

cloop = cI/O(b) + w · cE + w · cS + w · cA + b
vP
vR
cH + σb

vP
vR
cO (3.2)

where cI/O(b) is the cost to read b pages from the disk, w · cE is the cost to remove w

tuples from the queue and the hash table, w · cS is the cost to read w tuples from stream

S into the stream buffer, w · cA represents the cost to append w tuples to the queue and

the hash table, bvP
vR
cH denotes the cost of probing all tuples in b pages into the hash table,

and finally, σbvP
vR
cO represents the cost of generating output for b pages.

Equation (3.1) can also be written in the following form:

w =
M − b · vP

vS + NR

b
sizeof(ptr) + NR

b
vS · f

(3.3)

Since cloop, as derived from Equation 3.2, is the processing cost for w tuples, the service

rate µ can be calculated using Equation 3.4.

µ =
w

cloop
(3.4)

3.5 Proposed Investigation 29

Substituting the value of w in Equation 3.4 gives us the following:

µ =
M − b · vP

cloop(vS + NR

b
sizeof(ptr) + NR

b
vS · f)

(3.5)

Finding out the maximum service rate depending on b can be done by finding the

maximum of Equation 3.5 as a function of b using numerical methods. Numerical methods

are necessary, since Equation 3.5 depends on cI/O, which is a measured function of b and

there is no analytical formula for that. MESHJOIN uses a tuning step, where for each

memory budget M, the optimal disk buffer size b is determined by solving this numerical

problem. The size of the disk buffer is not fixed and a tuning effort is made for every new

memory budget. The issue is whether this tuning effort is really necessary.

The algorithm is evaluated here and an alternative solution is proposed [81]1 to the

tuning approach for the MESHJOIN algorithm. The performance of the algorithm is

analysed for different sizes of disk buffer, and the performance for the optimal disk buffer

size is compared with that for a default size that remains constant for all memory budgets.

A difference emerges of less than two percent. In the straightforward implementation of

MESHJOIN, the tuning component has full control over the buffer size. Since the tuning

component has a sizeable code base, it can include errors. A typical estimate assumes 20

errors per 1000 lines of code [42]. These errors can produce widely-deviating buffer sizes,

or worse fatal errors. Widely-deviating buffer sizes create a higher risk than the default

size. Therefore the findings suggest that in critical applications the tuning component

could be omitted and the default size should be chosen.

3.5 Proposed Investigation

The main concern is that the size of the disk buffer is not fixed and this has an effect

on service rate which is difficult to predict. To investigate this problem the MESHJOIN

algorithm was re-implemented in order to understand its architecture and analyse its

performance.

1This work has been published in VLDB Workshop (BIRTE’09).

30 Analysis of MESHJOIN

3.5.1 Understanding the Relationships among the Join Compo-

nents

As shown in Figure 3.1, the components involved in the MESHJOIN algorithm are the

disk buffer, the stream buffer, the queue Q, and the hash table H. In order to distribute

the total memory among these components, first a specific part of the total memory is

assigned to the disk buffer and then the rest of the memory is assigned among all the other

components. The stream buffer component reserves a very small amount of total memory

(0.5 MB memory for the stream buffer is sufficient for all the experiments reported on

here); therefore it is ignored for the moment. The other component is the queue that is

directly connected with the hash table and depends on the hash table linearly with respect

to memory consumption. Therefore, to get the optimal join throughput, the actual trade-

off for memory distribution is between the disk buffer size and the hash table size plus the

queue size. Once the size for the disk buffer has been determined, the memory reserved

for the hash table and the queue can be calculated using the following relation.

Hash table and queue in bytes: M − bvP
where M is the total memory, b is the size of the disk buffer in pages, and vP is the size

of each page in the disk buffer.

The hash table and the queue contain equal numbers of entries. The difference is that the

hash table stores complete tuples while the queue stores only the pointer for that tuple.

Therefore, due to the equal number of entries it creates a linear relationship between the

hash table and the queue with respect to memory consumption.

Hash table size in bytes: Hc×total number of stream tuples in memory

where Hc is constant for hash table and its value depends on the size of each stream tuple

and a fudge factor for the hash table.

Queue size in bytes: Qc×total number of stream tuples in memory

where Qc is constant and its value depends on the pointer size for each tuple.

The number of partitions in the queue is equal to the total number of iterations

required to bring the whole of R into memory. That number of partitions in the queue

depends inversely on the size of the disk buffer. The formulas of MESHJOIN are more

involved because they express the queue size not in bytes or number of tuples but in the

number of partitions in the queue, and these partitions change their size. Only knowing

3.5 Proposed Investigation 31

Table 3.2: Relationship amongst the components disk buffer size, hash table size and queue size when
the total memory budget is 20MB

Total number
of pages in disk
buffer

Total number
of tuples in
hash table

Total number
of pointers in
queue

Total number
of partitions in
queue

50 205000 205000 1024
100 201609 201609 512
200 193024 193024 256
400 176384 176384 128

the total number of partitions in the queue makes it difficult to determine the size of the

queue unless w, the total number of tuples in each partition, is known. As an example,

consider wishing to find out the total number of chairs in a room while knowing the total

number of rows but not knowing how many chairs there are in each row. The total number

cannot be calculated unless the number of chairs in each row is known. In this example,

the number of rows maps to the number of partitions in the queue, while the number of

chairs in each row maps to the number of pointers in each partition.

The relationship between the disk buffer size and the stream buffer size is of less

significance because of the tiny size of w, and therefore increasing or decreasing stream

buffer size does not make a difference. The relationships between the disk buffer size, the

hash table size, the queue size and the stream buffer size are shown in Table 3.2.

3.5.2 Empirical Analysis

In order to assess the necessity of the tuning process for the disk buffer component in

MESHJOIN, empirical results are needed about how the cost function behaves in a real

world scenario, and how much better the performance for the optimal setting is, as com-

pared to reasonable default settings. Since the original code was not available, the problem

was investigated by implementing the MESHJOIN algorithm as part of this project, in-

corporating the same assumptions for the input stream and R as described in Section 3.2.

As a preview of the findings in this chapter and to indicate where it is heading, Figure 3.3

shows a sample performance measurement of MESHJOIN for different sizes of the disk

buffer within a fixed memory budget. Note that in order to magnify the effect under

investigation the y-axis does not start with zero. It is observed that the curve has a

pronounced knee [39]. The figure shows that the service rate grows drastically up to the

32 Analysis of MESHJOIN

0.20.39 0.78 1.17 1.56 1.95 2.34 2.73 3.13 3.52 3.91
4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2
x 10

4

Disk buffer size (MB)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)
Default value Optimum value

Figure 3.3: Effect of the disk buffer on MESHJOIN performance using fixed memory budget (80MB)

knee in the curve. A saturation behavior can be observed, where incrementing the disk

buffer size improves the performance only a little. This is important, because it allows a

default value to be chosen which is near the knee of the curve. In the end, a reasonable

default value will be determined for the disk buffer size that holds for a series of memory

budgets. Before proceeding to the experimental results, we first describe the experimental

setup.

3.6 Tuning and Performance Comparisons

At this point the hardware and software specifications for the experiments are described.

3.6.1 Experimental Setup

A prototype of the MESHJOIN algorithm has been implemented using the following

specifications.

Hardware specifications: The experiments have been conducted using Pentium-IV

machine with 3G main memory. The maximum memory allocated in these experiments is

320MB. The code for the implementations has been written in the Java language. Built-in

plug-ins, provided by Apache, and built-in functions like nanoTime(), provided by the

Java API, have been used to measure the memory and processing time. In addition, the

Java hash table does not support the storage of multiple tuples against one key value. To

resolve this issue a multi-hash-map, provided by Apache, has been used in the experiments.

3.6 Tuning and Performance Comparisons 33

Table 3.3: Experimental data characteristics
Parameter Value

Master data
Size of R 3.5 millions tuples
Size of each tuple 120 bytes
Default size for the disk buffer 0.93MB

Stream data
Size of each tuple 20 bytes
Size of each pointer in Q 4 bytes
Fudge factor for the hash table 4.8

Data specifications: The performance of MESHJOIN has been analysed using syn-

thetic data. The look-up data R is stored on disk using a text file format, while the

stream data is generated at run time using our designed random-number generator. The

experiments have been tested with varying sizes of disk buffer to find its optimal default

value. On the other hand, the size of the stream buffer is flexible and fluctuates with the

size of the disk buffer. Similarly the size of Q (in terms of partitions) also varies with

the total number of iterations required to bring the whole R into the disk buffer. The

detailed specification of the data that is used for analysis is shown in Table 3.3.

System of measurement: The performance of the join is measured by calculating

the number of tuples processed in a unit second, which is the service rate and is denoted

by µ. The measurements are taken after a few iterations of the loop. For increased accu-

racy three readings are taken for each specification and then their average is considered.

Moreover, it is assumed that no other applications run in parallel during the execution of

the algorithm.

3.6.2 Tuning of Disk Buffer for Different Memory Budgets

The optimal values of the disk buffer size for a series of memory budgets have been

analysed first and then the join performance has been observed at these optimal values.

In order to obtain the optimal value for the disk buffer size MESHJOIN has been tuned

for a series of memory budgets. Figure 3.4 depicts the optimal values for the disk buffer

size in the case of different memory budgets. The figure shows that the size of the disk

buffer increases with an increase in the total memory budget. As the total memory M

depends on w and b and that w also depends on b, the optimal size of disk buffer b will

34 Analysis of MESHJOIN

5 10 20 40 80 160 320
0

0.5

1

1.5

2

2.5

3

3.5

4

Total memory (MB)
on log scale

O
pt

im
al

 s
iz

e
fo

r
di

sk
 b

uf
fe

r
(M

B
)

Figure 3.4: Optimal values for the disk buffer size with respect to the different memory budgets

increase with an increase in the total memory budget.

3.6.3 Performance Analysis using Default and Optimal Values

for the Disk Buffer Size

In this experiment the MESHJOIN algorithm has been tested for a series of memory

budgets in order to observe the real difference in performance for a reasonable default value

and optimal values of the disk buffer size. Figure 3.5 shows performance measurements

for different memory budgets along with the default and optimal values for the disk buffer

size. The optimal value for 20MB is 0.93MB. The setting 20MB is the memory budget

from the original MESHJOIN algorithm, and for today’s computing landscape a very

small value for a server component, even when considering limited memory budgets. For

the purposes of this discussion we deemed it most helpful to use the optimal value for

this setting as the default value, because if a reasonable performance is obtained for all

other memory budgets, there is a strong indication that tuning dependent on the overall

memory budget is not necessary.

A clear saturation behavior has been observed for all memory budgets. When 40MB

is the total memory budget, the value for the optimal disk buffer size is 1.35MB and the

improvement in performance as compared to the default size of the disk buffer is only

0.4%. When considering an 80MB total memory budget, the value for the optimal disk

buffer size is 1.91MB, with a 1.17% performance improvement. Finally, when 160MB is

3.6 Tuning and Performance Comparisons 35

0.20.39 0.78 1.17 1.56 1.95 2.34 2.73 3.13 3.52 3.91
0

2

4

6

8

10

12
x 10

4

Disk buffer size (MB)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

160 MB
80 MB
40 MB
20 MBDefault value

for disk buffer
size

Optimal value
for disk buffer
size

Figure 3.5: Performance comparisons using default and optimal values for the disk buffer size in case
of different memory budgets

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
x 10

6

Disk buffer size (MB)

I/O
 c

os
t (

na
no

se
co

nd
s)

Invisible decrement
in I/O cost

II/O cost decreasing

High I/O cost

Figure 3.6: Disk I/O cost for different sizes of the disk buffer

the total memory budget, the optimal value for the disk buffer size is 2.63MB, this again

improves the performance a little, 1.78%. To prove this experimentally we have measured

the I/O cost per page amortised over all pages read into the disk buffer in one iteration.

The per page I/O cost for different sizes of disk buffer is depicted in Figure 3.6. The

figure shows that in the beginning the I/O cost is high due to the small size of the disk

buffer. After that, as the size of the disk buffer increases, the amortised I/O cost per

page decreases. But after a while further increments in the size of the disk buffer do not

reduce the I/O cost considerably. To visualize the performance difference more clearly,

36 Analysis of MESHJOIN

20 40 80 160 320
0

0.5

1

1.5

2

2.5
x 10

5

Total memory (MB)

S
er

vi
ce

ra
te

 (t
up

le
s/

se
c)

optimal settings
default settings

Figure 3.7: Performance comparison directly at default and optimal values of the disk buffer size using
different memory budgets

the MESHJOIN performance has been measured directly on the default value and the

optimal values of the disk buffer size for a series of memory budgets. Figure 3.7 depicts

the experimental results in both cases. It is clear that for small memory budgets the

performance of the algorithm is approximately equal, and even with a large memory limit

(320MB) there is no remarkable difference in performance.

3.6.4 Cost Validation

In this section the implementation of MESHJOIN has been validated by comparing the

calculated cost with the measured cost for different memory budgets. In the case of the

calculated cost, the cost for one loop iteration has been calculated using Equation 3.2.

The results of this experiment are shown in Figure 3.8. It can be observed from the figure

that for every memory budget the measured cost closely resembles the calculated cost,

validating the correctness of the MESHJOIN implementation.

3.7 Approach for Choosing the Default Value

Although the function for the performance of MESHJOIN depending on the disk buffer

size has a pronounced knee (see Figure 3.3), it is still a smooth curve. Therefore a question

arises as to, which exact value should be chosen as a default value. Through practice,

it has been observed that a value for the disk buffer size which is optimal for a specific

3.7 Approach for Choosing the Default Value 37

20 40 80 160 320
0.018

0.02

0.022

0.024

0.026

0.028

0.03

Total memory (MB)
on log scale

P
ro

ce
ss

in
g
 c

o
st

 (
se

co
n
d
s)

measured
calculated

Figure 3.8: Cost validation of MESHJOIN

setting is at the same time a good value for a wide range of settings, and therefore suitable

as a default value.

In order to support this a default size of 0.93MB has been chosen in these experiments,

which is the optimal disk buffer size for a very small memory budget of 20MB. The

experiments have shown that this setting is also sufficient for other memory budgets

allocated for MESHJOIN. In particular the results for this default value have been found

to be less than 2 percent below the optimal for all tested memory settings. These tests

have been restricted to memory sizes up to 320MB. This restriction is motivated by the

fact that MESHJOIN, according to the authors of the original publication, is designed

for a limited memory budget. In fact the original publications only consider memory

budgets up to 40MB, so the investigation up to 320MB has a sufficient security margin.

In summary, these experiments have shown that while the optimal disk buffer size varies

over a certain range, the performance achieved with them varies only in the order of a few

percent. Therefore, in settings where simplicity of the system has precedence over very

small performance gains, the default disk buffer size strategy seems worthwhile.

This default value is still dependent on the underlying hardware. Therefore the focus

here is primarily on the transferability of default values for settings on the same hard-

ware. Nevertheless it is fair to assume that even across different but similar hardware

configurations there will be some transferability.

38 Analysis of MESHJOIN

3.8 Summary

This chapter explores a stream-based join, MESHJOIN. MESHJOIN reserves a variable

size of memory for the disk buffer to store R. The procedure for measuring the size

of the disk buffer has not been evaluated previously. A further issue is that for every

memory setting the algorithm tunes the disk buffer in order to find its optimal value. In

this chapter a complete set of parameter settings has been designed for the setup. The

example default settings for the setup used here are derived from experimental results. It

has been shown here that the default settings are <2% worse than the optimal settings,

which should be taken into account when considering the importance of the optimisation

process. Given that the tuning component is a sizeable fraction of the code, and that any

code can have bugs, this is an important indication that in mission-critical systems one

should consider only using the default setting.

4
R-MESHJOIN

4.1 Introduction

This chapter addresses the issue of unnecessary dependencies between join components

in MESHJOIN and presents our solution to resolve the issue. The MESHJOIN algo-

rithm tunes the size of an important component, the disk buffer. However, the tuned

MESHJOIN does not provide the best possible solution, due to the complex dependencies

in the algorithm. It is further explained in Section 4.2. As a telltale sign, it has been

observed that the size of the disk buffer varies with a change in the size of the master

data. This is counter-intuitive and raises the suspicion that the memory distribution is

not optimal.

These observations have led us to propose a revised version of MESHJOIN called

R-MESHJOIN (reduced Mesh Join) [86]1. The key difference between the two is that R-

1This work has been published in the ACM 13th International Workshop on Data Warehousing and
OLAP (DOLAP’10).

39

40 R-MESHJOIN

MESHJOIN has an additional parameter that can vary freely. This removes the complex

dependencies that create the problem in MESHJOIN. R-MESHJOIN uses a very simple

and accurate cost model which reveals that optimal distribution of the allocated memory

requires the real dependency to be between the disk buffer size and the size of the hash

table.

In addition, for R-MESHJOIN the optimal size of the disk buffer does not vary with

the size of the master data R, thus supporting the intuition that memory distribution in

MESHJOIN is not optimal. This can be shown theoretically through the cost model in

Section 4.4, and it is verified through experimentation in Section 4.5. In particular the

performance of R-MESHJOIN is shown to be slightly better than MESHJOIN.

The rest of the chapter is structured as follows. Section 4.2 explains the dependencies

between the components of MESHJOIN. Section 4.3 presents the R-MESHJOIN algo-

rithm along with its pseudo-code and also explains the real dependency between the join

components. The cost model and tuning for R-MESHJOIN are presented in Section 4.4.

The experimental study is described in Section 4.5 and finally Section 4.6 presents a

summary of the chapter.

4.2 Dependencies between MESHJOIN Components

A general description of MESHJOIN is presented in Chapter 3. Here MESHJOIN is

explored with respect to unnecessary dependencies between the join components.

It has already been stated in Chapter 3 that due to its large size master data R is

stored on disk. Since R is loaded into memory using the disk buffer of size b number of

pages, MESHJOIN divides R into k partitions while the size of each partition is equal to

b pages. To ensure that every stream tuple is joined with the whole of R, the queue also

contains k partitions. This is shown in Figure 4.1, where the value of k is equal to four.

Increasing the size of R on disk increases the value of k and as a result the size of each

partition in the queue decreases. This represents an unnecessary dependency between the

memory components in MESHJOIN. Due to this dependency the size of the disk buffer

varies when the size of R on disk is varied and therefore, MESHJOIN cannot tune its

component optimally. This affects the performance negatively.

To investigate the effect of the size of R on the disk buffer an experiment has been

4.2 Dependencies between MESHJOIN Components 41

Disk-buffer

Stream

S

Partition

Queue

Disk-based master data R

Hash

table

w

tuples

Hash

function

Size of disk-buffer = one partition = b pages

Iterations required to bring all of R into memory = k (in this example k=4)

tuples in stream buffer = # pointers in one queue partition=
k

h
w S

Stream

buffer

b

pages

Figure 4.1: Unnecessary dependencies between MESHJOIN components

conducted in which the total memory budget (100MB) for join execution was fixed and

the disk buffer has been tuned by varying the size of R. The results of this experiment,

shown in Figure 4.2, confirm that in MESHJOIN the optimal value for the disk buffer

varies with a change in the size of the master data R. It has also been confirmed that

this is the prediction of the MESHJOIN cost model; so it is a real effect. However, this

seems to be implausible because of the following argument. Let it assumes that R is

replaced by a table R′ that is composed of two identical copies of the old R on disk, one

after the other, as shown in Figure 4.3. For every given tuning setting, the output and

behavior of MESHJOIN would be identical if the two experiments were run side by side,

one using R and one using R′. The only difference is that in the experiment using R′,

whenever MESHJOIN reads a partition R3 of the second copy of R in R′, it would read

the original R3 in the experiment using R. The optimal tuning setting of the disk buffer

should therefore be the same. But MESHJOIN’s tuning approach gives two different

settings for both R and R′, and therefore one of them is not optimal. R-MESHJOIN’s

tuning approach, in contrast, will give the same tuning settings for both table sizes. This

research project has also investigated whether it is possible to refine the MESHJOIN

algorithm in such a way that the disk buffer size can be kept independent of the size of

R. In the following it is shown that this is possible and that it also improves the service

rate for certain sizes of R.

42 R-MESHJOIN

0 0.5 1 1.5 2 2.5

x 10
5

52

53

54

55

56

57

58

Size of R (number of pages)

O
pt

im
al

 v
al

ue
 fo

r
di

sk
 b

uf
fe

r
si

ze
(n

um
be

r
of

 p
ag

es
)

Figure 4.2: Effect of R on the tuning of the disk buffer

R’

R1

R2

R3

R4

R

R1

R2

R3

R4

R1

R2

R3

R4

Figure 4.3: Illustration for argument concerning tuning approach and master data size

In summary, MESHJOIN tunes its disk buffer size to optimise the performance within

the available memory resources. The tuning process is based on a dependency between

the number of iterations required to bring the master data into the memory and the size

of partitions in the stream queue. Due to this unnecessary dependency the algorithm

cannot tune its components optimally and as a result the algorithm cannot perform with

its maximum efficiency.

4.3 R-MESHJOIN

A modified version of MESHJOIN called R-MESHJOIN (reduced MESHJOIN) has been

proposed here. In R-MESHJOIN the size of the disk buffer is not affected by changes in the

size of the master data R. The data structures and execution architecture for the proposed

R-MESHJOIN are shown in Figure 4.4. In the proposed R-MESHJOIN algorithm, the

4.3 R-MESHJOIN 43

disk buffer is divided into a number l of logical partitions, each of size bP pages. After

completing the probing of each logical partition, new w tuples are scanned from the stream

S into the stream buffer and loaded into the hash table, while enqueuing their pointer

addresses in the queue. The disk pages are read after completing the probing of the whole

disk buffer. The key purpose of dividing the disk buffer into further l logical partitions is

to remove the unnecessary dependency between the numbers of queue partitions and k.

The number l varies when the size of R changes. R-MESHJOIN works like MESHJOIN if

the value of parameter l is set equal to one (i.e. bP=b). Normally, l would be greater than

one (i.e. bP <b). In R-MESHJOIN, as opposed to MESHJOIN, it can react to changes

in the size of R with changes in l to achieve optimal performance. This means that the

total number of partitions in the queue Qp does not have to change with changes in R.

The possibility of varying l provides another degree of freedom. Therefore, R-MESHJOIN

has one degree of freedom more than MESHJOIN for the tuning process. The possibility

to vary Qp still exists in R-MESHJOIN. Therefore the tuning process in R-MESHJOIN

can vary this parameter if it is necessary. Later experiments will show that the optimal

performance is always achieved with the same value for this parameter. Such an outcome

shows that the ability to vary this parameter does not contribute to achieving optimal

performance, if enough other tunable parameters are available, as in R-MESHJOIN. In

MESHJOIN, the parameter l, which, as is known now, has to change to achieve optimal

performance, is not available. MESHJOIN can therefore not reach optimal performance by

varying l and this explains why MESHJOIN varies Qp, as the only alternative parameter

that can alter the performance, albeit with negative consequences for other parameters.

As in MESHJOIN, in R-MESHJOIN it is also assumed that the input stream S is

continuous with a constant arrival rate, and no physical characteristic is considered for

master data R. The performance-related assumptions made here about R-MESHJOIN

types of join algorithms are as follows:

• If the memory available for join execution increases, the service rate µ will also

increase accordingly therefore, µ ∝M .

• The size of R affects the service rate µ because increasing the time to cover R

increases the time that each stream tuple needs to stay in the join window therefore,

µ ∝ 1
R
.

44 R-MESHJOIN

Queue

Master
data

.

.

hash
function

Hash

table

Number of logical partitions in disk-buffer =l

Size of each logical partition (in pages)= bp

Size of disk-buffer (in pages)= b

Iterations required to load R into memory= k

Disk-buffer

Stream-buffer

Stream
S

wl.k . . . w3 w2 w1

Join
output

Figure 4.4: Data structures used by R-MESHJOIN

4.3.1 Algorithm

In R-MESHJOIN, since the disk buffer is divided further into equal-sized logical partitions

and each partition is denoted by bP , for each iteration of the algorithm only a fixed and

small part, bP , of b is probed in the hash table. To keep a record of the total number of

processed logical partitions we introduce a variable probedPages that increases by bP on

each iteration of the algorithm. After the completion of the whole disk buffer, of size b, the

variable probedPages is reset to zero. The pseudo-code for the proposed R-MESHJOIN is

defined in Algorithm 2. Normally the algorithm runs for an infinite amount of time (line

3). For each iteration the algorithm examines the value of probedPages and if it is equal

to zero or equal to b, reads new b disk pages from R and resets the value of probedPages

to zero (lines 4-7). In addition to that, in each iteration the algorithm also scans w stream

tuples from the stream buffer (line 8). Before loading these new scanned tuples of the

stream S into the hash table H, the algorithm checks the status of the queue Q. If Q

is already full the algorithm dequeues the addresses of the oldest w tuples from Q and

removes the corresponding tuples from H (lines 9-12). Once the oldest tuples have been

removed the algorithm appends the new scanned stream tuples into the hash table along

with enqueuing their pointer addresses into the queue (lines 13-14). For each iteration

the algorithm probes all the disk tuples of one logical partition of size bP into the hash

table and generates the output in the case of a match (lines 15-17). Finally, the algorithm

increases the value of variable probedPages by bP (line 18).

4.3 R-MESHJOIN 45

Algorithm 2 R-MESHJOIN

Input: A master data R and a Stream S
Output: S ./ R

Parameters: w tuples of S and b pages of R
Method:

1: probedPages ← 0
2: bP ← Size of each logical partition of the disk buffer
3: while (true) do
4: if probedPages mod b = 0 then
5: READ b pages of R into the disk buffer
6: probedPages ← 0
7: end if
8: READ w tuples of S into the stream buffer
9: if Q is full then

10: DEQUEUE w pointers from Q
11: REMOVE relevant tuples from H
12: end if
13: ENQUEUE w pointers into Q
14: ADD relevant tuples into H
15: for each tuple r in bP pages of R do
16: Output r ./ H
17: end for
18: probedPages ← probedPages+ bP
19: end while

4.3.2 Understanding the Real Dependency

Both algorithms, MESHJOIN and R-MESHJOIN, distribute the total available memory

among several distinct components. For each component, if seen in isolation, a larger

amount of memory is preferable. If, however, a fixed total memory budget is assumed then

a dependency is created for the distribution of memory between the different components,

since more memory for one component means inevitably less memory for some other

components. It is important to understand the exact nature of this dependency.

In MESHJOIN the number of partitions in the queue is equal to the total number of

iterations required to bring the whole of R into memory, and that number of partitions in

the queue depends inversely on the size of the disk buffer. The formulas of MESHJOIN

are more involved because they express the queue size, not in bytes or number of tuples,

but in the number of partitions in the queue, while these partitions change their size.

Simply knowing the total number of partitions in the queue means that it is hard to find

46 R-MESHJOIN

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3
x 10

5

Hash table size (MB)

Se
rv

ice
 ra

te
 (t

up
le

s/
se

c)

Figure 4.5: Effect of hash table size on join performance

out the size of the queue unless we know the value of w, that is, the total tuples in each

partition. In Figure 4.1 the main components that directly affect the performance of the

join are the hash table and the disk buffer. If the allocated memory for the hash table is

increased, the throughput increases accordingly, as shown in Figure 4.5. The performance

of the join directly depends on the memory size for the hash table.

The performance of the join is increased with an increase in the size of the disk buffer,

as shown in Figure 4.6. In the experiment the memory limits for the hash table and

the stream buffer remain fixed, while the total allocated memory for the join execution

increases as the size of the disk buffer increases. From the figure, it can be seen that the

performance improves up to a particular size of the disk buffer and further increments in its

size do not improve the performance significantly. The plausible reason for this saturation

is that the probing of H with disk pages is executed tuple by tuple. Therefore keeping

more disk pages in the memory does not increase the performance once a reasonable buffer

size is reached. On the other hand the buffer size cannot be reduced down to the tuple size

because of the extra overhead of the I/O cost. Besides its slightly better performance, one

of the main contributions of R-MESHJOIN is a better understanding of the true nature

of this dependency. The main dependency, it turns out, is between the size of the buffer

for R and the size of the hash table that is used for the join algorithm. In essence, the

tuning task is to find the optimal distribution of the total memory between these two

components. The important advancement in understanding is that neither the total size

of R nor the stream buffer size plays an important role. This was made possible only

4.4 Cost Model and Tuning 47

0.08 0.18 0.36 0.75 1.45 2.92 5.83
3.855

3.86

3.865

3.87

3.875

3.88

3.885

3.89

3.895

3.9
x 10

4

Disk buffer size (MB)
 on log scale

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

Figure 4.6: Effect of disk buffer size on join performance

through the juxtaposition of MESHJOIN and R-MESHJOIN, because in MESHJOIN

these other parameters, notably the size of the table R, have a spurious influence on the

optimisation process. This influence is spurious because it is owed solely to the lack of one

degree of freedom in the MESHJOIN algorithm. The non-optimality of MESHJOIN and

the slight improvement of R-MESHJOIN are closely related to this difference in degrees

of freedom.

This simple picture is, however, complicated by an additional difficulty in turning

this dependency into an optimal tuning of the algorithm. This additional difficulty is

the fact that certain parameters must be in a whole-number ratio to other parameters.

For instance, the disk buffer size for table R must be an integer fraction of the total

size of R. Similarly, the cells in the queue must in turn be in a whole-number ratio to

the aforementioned fraction. R-MESHJOIN introduces precisely more flexibility that is

necessary to clearly separate the fundamental dependency between the disk buffer and

the hash table on the one hand from the rather technical question of finding a sufficiently

close whole-number relationship between the different parameters.

4.4 Cost Model and Tuning

This section presents the cost calculations for R-MESHJOIN in terms of memory and

processing. The cost model presented here follows the style used for MESHJOIN [90, 91].

Once the cost has been calculated the algorithm is tuned in order to obtain the maximum

48 R-MESHJOIN

performance. Most of the symbols used here have already been mentioned in Chapter 3.

However, some additional symbols are specified in Table 4.1.

4.4.1 Memory Cost

In R-MESHJOIN, the maximum portion of the total memory is used for the hash table

H while a much smaller portion is used for the disk buffer and the queue. Once the

available memory for the join has been determined, a specific part of the total memory

is assigned to the disk buffer and then the rest of the memory is assigned among all the

other components. The stream buffer component reserves a very small amount of the total

memory (0.05 MB memory for the stream buffer is sufficient even up to 1GB, allocated for

the whole join); therefore it is ignored for the moment. The other component is the queue,

which is directly connected with the hash table and linearly depends on the hash table

with respect to size. Therefore once the size for the disk buffer has been determined the

memory reserved for the hash table and the queue can be calculated using the following

relations.

Total allocated memory (bytes) = M

Disk buffer size (bytes) = b · vP
Memory for the hash table plus the queue (bytes) = M − b · vP

To distinguish the amount of memory used for the hash table and the queue, it is first

necessary to know the ratio of both with respect to the amount of memory taken for one

tuple. This ratio r can be specified simply by knowing the pointer size for each tuple in

the queue and the stream tuple size vS in the hash table, along with its fudge factor f, as

given below. The fudge factor is an implementation overhead for the hash table.

r = sizeof(ptr)
f ·vS

Hash memory (bytes) = Hm = α(M − b · vP)

Queue memory (bytes)= Qm = (1− α)(M − b · vP)

Number of partitions in the queue = Qp = k · l

Number of tuples in the hash table = Ht = Hm

vS ·f

The total memory used by R-MESHJOIN can be calculated using Equation 4.1.

M(bytes) = b · vP + α(M − b · vP) + (1− α)(M − b · vP) (4.1)

4.4 Cost Model and Tuning 49

Table 4.1: Some new symbols used in R-MESHJOIN

Parameter name Symbol

Total number of tuples in R (millions) Rt

Number of logical partitions in the disk buffer l
Size of each logical partition in the disk buffer (pages) bP
Memory weight for hash table α
Memory weight for queue 1-α
Memory reserved by hash table (bytes) Hm

Memory reserved by queue (bytes) Qm

Number of partitions in the queue Qp

Total number of tuples in the hash table hS

Table 4.2: Memory measurements for three different cases of R-MESHJOIN

b H Q w Total memory
MB MB MB MB MB

0.31 48.47 1.21 0.0005 49.9905
0.43 97.14 2.42 0.0013 99.9913
0.52 145.83 3.64 0.0024 149.9924

Currently we are not including the memory reserved for the stream buffer because it is

small, however, it can be calculated if w is known. The value for w can be calculated

using the values of Ht and Qp using Equation 4.2.

w(tuples) =
Ht

Qp

(4.2)

In order to explain this further the memory cost has been calculated for three different

cases. Table 4.2 depicts the concrete values for the major components and the total

memory allocated for R-MESHJOIN.

4.4.2 Processing Cost

To calculate the processing cost for R-MESHJOIN the processing cost for one loop itera-

tion is calculated first. As described in Section 4.3 the disk buffer is divided into l logical

partitions and the disk input is taken after every l loop iterations of the algorithm. There-

fore in principle the I/O cost to read b pages should be divided among l loop iterations.

In order to calculate the cost for one loop iteration the major components are:

Cost to read b pages= cI/O(b)

Cost to remove w tuples from H and Q= w · cE

50 R-MESHJOIN

Table 4.3: Processing cost of one loop iteration in three different cases of R-MESHJOIN

w
cI/O(b)

l
w · cE w · cS w · cA b

l
(vP
vR

)cH
b
l
(vP
vR

)cO cloop
tuples nanosecs nanosecs nanosecs nanosecs nanosecs nanosecs secs

25 3318 11454 2514 12851 607116 5496 0.000642749
68 3674 25422 3632 26819 831048 7454 0.000898049
125 3731 53917 5029 54476 1018704 9136 0.001144993

Cost to read w tuples of the stream S= w · cS
Cost to append w tuples into Q and H = w · cA
Cost to probe one logical partition, each of size bP , of the disk buffer with H = b

l
(vP
vR

)cH

Cost to generate the output for one logical partition of the disk buffer= b
l
(vP
vR

)cO

By aggregating all above costs, the total cost for one loop iteration can be calculated

using Equation 4.3. In R-MESHJOIN all the processing costs are measured individually

in nanoseconds and the total cost is converted into seconds as in Equation 4.3.

cloop (secs) = 10−9[
cI/O(b)

l
+ w(cE + cS + cA) +

b

l
(
vP
vR

)(cH + cO)] (4.3)

In each iteration since the algorithm processes w stream tuples, the service rate µ can be

calculated using Equation 4.4.

µ =
w

cloop
(4.4)

In Table 4.3, the processing cost is measured for three different memory budgets set out

in Table 4.2. On the basis of the given cost the service rate is also calculated using

the formula described in Equation 4.4. If we consider the first row of the table using

Equation 4.4 the service rate µ is: µ = 25
0.000642749

= 38895(tuples/sec)

4.4.3 Tuning of the Disk Buffer

In order to achieve maximum performance of the proposed R-MESHJOIN, the disk buffer

is tuned using the proposed cost model while the total memory budget is fixed. Using

Equations 4.2, 4.3 and 4.4 the service rate µ can be specified as a function of b, the

size of the disk buffer, as in Equation 4.5. Therefore by assigning different values to the

parameter b it is possible to find the required value for the disk buffer size on which the

4.5 Experiments 51

0 50 100 150 200 250 300 350 400 450 500
3.55

3.6

3.65

3.7

3.75

3.8

3.85

3.9
x 10

4

Size of disk−buffer (pages)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

Figure 4.7: Disk buffer tuning within fixed memory budget

function returns the maximum service rate.

µ =
α(M − b · vP)

k · l · vS · f · cloop
(4.5)

An experimental analysis has also been conducted to measure the performance depending

on the size of the disk buffer within a fixed memory budget. Figure 4.7 demonstrates

the performance of R-MESHJOIN while increasing the size of the disk buffer sequentially.

It can be observed that an increment in the size of the disk buffer increases the service

rate up to a certain value and for further increments in the size of the disk buffer, the

service rate decreases. This performance behavior can be explained as follows. For a small

disk buffer size the efficiency of reading the disk pages is low, but due to the memory

constraints w cannot be increased to balance this increasing I/O cost. In the case where

the disk buffer gets larger it reduces the memory available for the hash table in order to

accommodate the data within the fixed-size memory budget.

4.5 Experiments

To validate the argument, described in this chapter, an extensive experimental evaluation

of R-MESHJOIN has been carried out, using synthetic data sets. This section describes

the methodology, used to implement the algorithm, and analyses the results.

52 R-MESHJOIN

4.5.1 Experimental Setup

The hardware used in our experiments is the same as described in Chapter 3. However,

the data specifications and the results measurement strategy are slightly different. Details

of both are given below.

Data specification: The performance of R-MESHJOIN has been analysed using

synthetic data. The master data R is stored on disk in a text file format while the stream

data is generated at run time using the same random-number generating script as that

which is used in Chapter 3. In these experiments the size of R is considered to be from 0.5

million tuples to 16 million tuples while the size for each tuple is 120 bytes. The size of

each tuple in the stream is considered to be 20 bytes. While each pointer size in the queue

is 4 bytes and the value of the fudge factor is 8. Currently one assumed characteristic

related to the stream S is that there will be no intermittent arrival of stream data during

join execution. In the experiments the tuning module executes first, before starting the

execution of R-MESHJOIN. The tuning module basically tunes the disk buffer to an

optimal value. Once the optimal size for the disk buffer has been determined then the

memory is divided among all the join components using the proposed memory distribution

strategy, described in Section 4.4.

Measurement strategy: The performance or service rate of the join is measured

by calculating the number of tuples processed in a unit second. In each experiment the

algorithm completes two rounds of R and the measurements are taken from the start of the

second round. For greater accuracy the confidence interval is calculated by considering a

95% accuracy rate. Moreover, during the execution of the algorithm no other application

is assumed to run in parallel.

4.5.2 Experimental Results

Cost validation: In this experiment the cost model has been validated by comparing

the calculated cost with the measured cost. Figure 4.8(a) presents the comparison of

these costs. In the figure it is demonstrated that the calculated cost closely resembles the

measured cost.

Comparison of optimal disk buffer sizes for different memory budgets: In

this part of our experiment the disk buffer has been tuned for a series of memory budgets

4.5 Experiments 53

using both approaches and the optimal values for the disk buffer sizes have been measured

accordingly. Figure 4.8(b) demonstrates the comparisons between the optimal values of

the disk buffer sizes using the MESHJOIN and R-MESHJOIN algorithms. From the figure

it can be observed that for small memory budgets the difference between the optimal values

of both approaches is small (the optimal value in the case of R-MESHJOIN is less than

that of MESHJOIN). But as the memory budget increases, this difference also increases.

The reason for this is that, in the case of MESHJOIN, it is difficult to determine the

accurate optimal value for the disk buffer size, due to the influences of irrelevant factors

in the tuning phase.

Performance comparison with MESHJOIN using different memory bud-

gets: In this experiment the performance of R-MESHJOIN has been compared with

MESHJOIN using different memory budgets. Figure 4.8(c) depicts the comparison be-

tween the two approaches. For small memory budgets the improvement in performance

using R-MESHJOIN is not noticeable but as the total memory budget gets larger this

difference in performance becomes more visible.

Performance comparison with MESHJOIN using different sizes of R: In this

experiment the performance of both algorithms has been compared for the different sizes

of master data R. From Figure 4.8(d), for a small size of R the performance improvement

in case of R-MESHJOIN can be observed clearly. For the larger sizes of R the performance

of R-MESHJOIN is better still. However, this may not be apparent on the graph because

of the scale of the graph. In addition to the comparison analysis, the overall performance

in both approaches has been analysed with respect to the allocated memory and the size

of the master data. The experimental results shown in Figure 4.8(c)and 4.8(d) also verify

the theoretical results described in Section 4.3.

Disk buffer analysis: To further strengthen the argument an analysis of disk buffer

size has been presented against the different sizes of R. Table 4.4 shows the results of

this analysis (for simplicity it is also shown by graph in Figure 4.9). From the table (and

figure) it is clear that the size of the disk buffer b · vP does not change with a change

in the size of R, which is consistent with expectation. Moreover, by introducing a new

component l the variation in the size of R affects neither the total number of partitions

Qp nor the size of each partition w in the queue.

54 R-MESHJOIN

50 100 150 200 250 300

0.8

1

1.2

1.4

1.6

1.8

2

Total memory (MB)

P
ro

ce
ss

in
g

 c
o

st
 (

m
ill

is
e

cs
)

Measured
Calculated

(a) R-MESHJOIN: Measured Vs calculated cost

20 40 60 80 100 120 140 160 180 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Total memory (MB)

O
p
tim

a
l d

is
k−

b
u
ff
e
r

si
ze

 (
M

B
)

R−MESHJOIN
MESHJOIN

(b) Comparison between the optimal values for the
disk buffer size

50 100 150 200 250 300
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

5

Total memory (MB)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

R−MESHJOIN
MESHJOIN

(c) Performance comparison with 95% confidence in-
terval in the case of different memory budgets

0.5 4 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Size of R (million tuples)
 on log scale

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

R−MESHJOIN
MESHJOIN

(d) Performance comparison with 95% confidence in-
terval in the case of different sizes of R

Figure 4.8: Experimental results

Table 4.4: Disk buffer analysis for different sizes of R

M Rt b · vP Hm Qm k l Qp w
MB Millions MB MB MB

100 0.5 0.427 97.145 2.423 134 64 8576 75
100 1 0.427 97.145 2.423 268 32 8576 75
100 2 0.427 97.145 2.423 536 16 8576 75
100 4 0.427 97.145 2.423 1072 8 8576 75
100 8 0.427 97.145 2.423 2144 4 8576 75
100 16 0.427 97.145 2.423 4288 2 8576 75

4.6 Summary 55

0.5 1 2 4 8 16
3550

3600

3650

3700

3750

3800

3850

3900

3950

Size of R (million tuples)

O
pt

im
al

 v
al

ue
 fo

r
di

sk
−b

uf
fe

r
si

ze
 (

tu
pl

es
)

MESHJOIN
R−MESHJOIN

Figure 4.9: Disk buffer analysis for different sizes of R: MESHJOIN vs R-MESHJOIN

4.6 Summary

This chapter presents an analysis of the MESHJOIN algorithm, focusing on the issue

of dependencies between its components. In the process of clarifying the working of

each component, a modification called R-MESHJOIN has been proposed, which helps to

analyse MESHJOIN both theoretically and experimentally. The fact that R-MESHJOIN

delivers a certain small, but both theoretically and empirically unambiguous improvement

is an important corroboration of our analysis. First and foremost, however, the nature

of the dependency between the different components in all MESHJOIN-type algorithms

is now better understood. The cost model for the proposed R-MESHJOIN has been pre-

sented and the tuning of a key component called the disk buffer has also been performed

based on the cost model. Experiments have proved that by implementing the true depen-

dency between the components the performance of the algorithm has also been improved.

Finally, the cost model has been validated by comparing it with empirical costs.

56 R-MESHJOIN

5
A New HYBRIDJOIN

5.1 Introduction

The MESHJOIN [90, 91] algorithm is, in principle, a hash join, where the stream serves

as the build input and the master data serves as the probe input. The main contribution

of this algorithm is a staggered execution of the hash table build and an optimisation of

the disk buffer for the master data.

5.1.1 Disk Access Strategy in MESHJOIN

MESHJOIN was proposed for joining a stream with a slowly changing table using limited

main memory. This algorithm is an interesting candidate for a resource-aware system

setup. The MESHJOIN algorithm also has few requirements with respect to the or-

ganisation of the master data table. The algorithm makes no assumptions about data

distribution or the organisation of the master data. Experiments by the MESHJOIN

57

58 A New HYBRIDJOIN

authors have shown that the algorithm performs less efficiently with non-uniform data.

However, the problem that is being addressed here is that the MESHJOIN performance

is directly coupled to the size of the master data table, and is inversely proportional to

the size of the master data table. This is an undesired behavior if the master data be-

comes very large, and the analysis will show that it is indeed an unnecessary behavior.

The problem becomes even more obvious if there is a large portion of the master data

table that is never joined with the stream data. In MESHJOIN, if one contiguous half

of the master data is unused, its presence halves the performance. This situation can

easily arise if the master data table is storing data for long-term availability, and only a

fraction is used in the current business process. A typical scenario would be catalogue

data for seasonal products. This reduction of performance is undesirable, especially from

a resource-consumption viewpoint, since the algorithm uses the same resources for only

half the performance. This would put the burden on the administrator to clean the master

data meticulously in order to optimise system performance. Therefore it would be a great

advantage to have an algorithm that shares the advantages of MESHJOIN, but adapts

itself to certain situations, for example if the algorithm could be made more sensitive to

the usage of the master data.

To determine the access rate of disk pages of R an experiment has been performed

using a benchmark that is based on Zipfian distribution. The detail of this benchmark

is provided in Section 5.3. In this experiment it has been assumed that R is sorted in

ascending order with respect to the frequency of join attribute values in the stream. The

rate of use has been measured for the same size of partitions (each partition contains 20

pages) at different locations of R. From the results shown in Figure 5.1 it can be observed

that the rate of page-use decreases towards the end of R. The MESHJOIN algorithm does

not consider this factor and loads the unused or less-used pages of R into memory with

equal frequency, which increases the processing time for every stream tuple in the queue

due to extra disk I/O. Processing time is the time that every stream tuple spends in the

join window from loading to join, without including any delay due to the low arrival rate

of the stream. The average processing time in the case of MESHJOIN can be estimated

using the following formula.

Average processing time (secs) = 1
2
(seektime+ accesstime) for the whole of R

5.1 Introduction 59

1939

1336

910

630

471

0

500

1000

1500

2000

2500

R
a

te
 o

f
u

s
a

b
ili

ty

Segments of pages at different locations in R

Figure 5.1: Measured rate of page use at different locations of R while the size of total R is 16000
pages

5.1.2 Intermittency in MESHJOIN

In addition to the above issue, MESHJOIN cannot deal with bursty input streams effec-

tively. There are many practical scenarios where the stream arrival rate is bursty and the

distribution of data items in the stream is non-uniform [32, 63, 65, 67, 74, 89, 98, 106,

115, 116, 117]. In MESHJOIN a disk invocation occurs when the number of tuples in the

stream buffer is equal to or greater than the stream input size w. If the input stream has

an intermittent or low arrival rate (λ), the tuples already in the queue need to wait longer

due to a disk invocation delay. This waiting time affects the performance negatively. The

average waiting time can be calculated using the following formula.

Average waiting time (secs) = w
λ

The Index Nested Loop Join (INLJ) [92] algorithm traditionally is used for non-stream

data, but it can easily be set up so that it joins a continuous data stream with a master

data, which is capable of dealing with intermittent data streams. However, every index

needs to be considered as non-clustered with respect to the stream data, because stream

data arrive in the order that the updates are performed. This is a natural assumption, for

example, purchases are not sorted on product numbers. INLJ is known to be inefficient for

non-clustered index access. The disk I/O cost cannot be amortised over multiple tuples

of the stream and eventually produces a low service rate.

Based on these observations a new stream-based join algorithm, called HYBRIDJOIN

60 A New HYBRIDJOIN

(Hybrid Join) [83]1 has been proposed in this chapter. The key difference between HY-

BRIDJOIN and MESHJOIN is that HYBRIDJOIN does not read the entire master data

sequentially but instead accesses it using an index. This can reduce the disk I/O cost

by guaranteeing that every partition read from the master data is used to remove at

least one stream tuple from the memory, while in MESHJOIN there is no such guarantee.

Further, performance in HYBRIDJOIN is not affected if a large set of unused data is

added to the master data table. To amortise the disk read over many stream tuples, the

algorithm performs the join of disk partitions with all the stream tuples currently in mem-

ory. This approach guarantees that HYBRIDJOIN is never asymptotically slower than

MESHJOIN. HYBRIDJOIN can perform worse than MESHJOIN in only one case when

the stream data is completely uniform. Moreover HYBRIDJOIN can provide the worst

case constant, which can be determined by disk seek time. In addition, in HYBRIDJOIN,

unlike MESHJOIN, the disk load is not synchronised with the stream input, providing

better service rates for bursty streams.

One of the concerns in this chapter is to understand the relative performance of the

MESHJOIN and HYBRIDJOIN algorithms. The main result of the analysis is that HY-

BRIDJOIN performs better on a non-uniform data set that models a Zipfian distribution.

As noted above HYBRIDJOIN is unaffected by contiguous unused master data. Therefore

it is easy to create data sets where HYBRIDJOIN is arbitrarily better than MESHJOIN.

However, in order to test the HYBRIDJOIN algorithm in a scenario that is not biased

against any algorithm, it is desirable to look for characteristics of data that are considered

ubiquitous in real world scenarios. A Zipfian distribution of the foreign keys in the stream

data matches with distributions that are observed in a wide range of applications [3]. A

data generator has therefore been created which can produce such a Zipfian distribution.

A Zipfian distribution is parameterized by the exponent of the underlying power law.

Different exponents are observed in different scenarios and determine whether the distri-

bution is considered to have a short tail or a long tail. HYBRIDJOIN would give better

performance from the outset for distributions with a short tail, therefore it was decided

not to use a distribution with a short tail in order to not bias the experiment towards

HYBRIDJOIN. Instead the most natural exponent observed in a variety of areas was

chosen, including the original Zipf’s Law in linguistics [66] that gave rise to the popular

1This work has been published in International Journal of Data Warehousing and Mining (IJDWM’11).

5.2 HYBRIDJOIN 61

name of these distributions.

HYBRIDJOIN performs at most by a constant factor worse than MESHJOIN. The

worst performance is obtained when the key distribution is completely uniform and an

adaptive approach is not needed. MESHJOIN performs better in this case since it elimi-

nates seek times by reading the master data sequentially.

The rest of the chapter is structured as follows. Section 5.2 presents the architecture,

algorithm, theoretical analysis, cost model, and tuning of the proposed HYBRIDJOIN.

The design and implementation of a benchmark for testing HYBRIDJOIN are described

in Section 5.3. The experimental study is discussed in Section 5.4 and finally Section 5.5

presents a summary of the chapter.

5.2 HYBRIDJOIN

In Section 5.1 certain observations about the MESHJOIN and INLJ algorithms are iden-

tified. As a solution to the stated observations a new stream-based join algorithm called

HYBRIDJOIN is proposed. HYBRIDJOIN achieves two major aims: (a) efficient strat-

egy to access the master data R by loading only the useful part of R into memory, and

(b) dealing with bursty streams effectively.

HYBRIDJOIN joins a master data R with a stream S. A sorted index by access

frequency is assumed for the join attribute in R, and it is also assumed that the join

attribute is unique within the master data. This is a very natural set of assumptions and

matches the application domain described above, for example in key exchange applica-

tions. Requiring only sorting of index keeps the algorithm’s assumptions small.

This section describes the architecture, pseudo-code and run-time analysis of the pro-

posed algorithm. This section also presents the cost model that is used for estimating the

cost for the algorithm, and for tuning the algorithm.

5.2.1 Memory Architecture

The memory architecture for HYBRIDJOIN is shown in Figure 5.2. The key components

of HYBRIDJOIN are the disk buffer, the hash table, the queue and the stream buffer.

The master data R and stream S are the inputs. This algorithm assumes that R is sorted

62 A New HYBRIDJOIN

and has an index on the join attribute. The stream is used as the build input. This means

that the algorithm keeps stream tuples in a hash table which occupies the largest share

of the memory, and the hash table is filled with the next pending stream tuples up to its

full capacity. Additionally the algorithm keeps identifiers of the stream tuples in a queue

which allows random deletion. The simplest implementation is a doubly-linked-list. The

role of the stream buffer is simply to hold the fast stream if necessary.

HYBRIDJOIN is an iterative algorithm, and in each iteration it uses a partition of

the master data R as a probe input. For that purpose, the partition is loaded into the

disk buffer. After that, the algorithm performs the typical operation of a hash join, i.e.,

it loops over all the tuples of the disk buffer and looks them up in the hash table. In the

case of a match, the algorithm generates the resulting stream tuple as an output. Also,

in each iteration, HYBRIDJOIN evicts stream tuples that have been matched. This is

justified through the assumption that the join attribute is unique in R. Evicting a tuple

means it is deleted from the hash table and the queue. The algorithm also keeps a counter

w of the evicted tuples. After processing the whole disk buffer, the algorithm reads w

new tuples from the stream buffer and loads them into the hash table, along with entering

their identifiers in the queue.

When choosing the next partition of R, HYBRIDJOIN looks at the join attribute of

the oldest stream tuple in the queue. Using the index, it loads the partition of R with that

join attribute value into the disk buffer. It is this last step which makes HYBRIDJOIN

adaptive, because in HYBRIDJOIN every loaded partition removes at least one stream

tuple from the memory. As a simple example, assume that R has a section that is not

referred to in the stream, for example an obsolete group of products. In MESHJOIN,

this section would still be loaded, while in HYBRIDJOIN it would not be loaded, because

no stream tuple will trigger the loading of that section. Also when the disk partition is

loaded into memory using the join attribute value from the queue as an index, instead of

only matching one tuple as in INLJ, the algorithm checks the disk partition against all

the stream tuples in the queue. This helps to amortise the fast arrival stream.

To deal with the intermittencies in the stream, for each iteration the algorithm loads

a disk partition into memory and checks the status of the stream buffer. In the case

where no stream tuples are available in the stream buffer the algorithm will not stop but

continues its working until the hash table becomes empty. However, the queue keeps on

5.2 HYBRIDJOIN 63

Disk buffer

………...

………...

………...

Stream buffer

Hash

function

Hash table

Stream

S

Join

output

Join window

Disk-based

master data

R

. . . .

Queue

Figure 5.2: Memory architecture for HYBRIDJOIN

shrinking continuously and will become empty when all tuples in the hash table have

been joined. When the stream resumes, the queue begins to grow again. However, in

MESHJOIN every disk input is dependent on stream input.

HYBRIDJOIN works for any data distribution, as MESHJOIN does. However, in

practice, certain distributions are more common. Current research has shown that sales

data typically follows a power law, or Zipfian distribution [3]. The power law is charac-

terized by its exponent. For an exponent <1 the distribution is said to have a long tail,

for an exponent >1 the distribution has a short tail. For exponent 1 we get the distribu-

tion of Zipf’s law, which gave rise to the general term Zipfian distribution. In sales, the

80/20 rule is used to model the scenario where the frequency of selling a small number of

products is significantly higher compared to the rest of the products, often simplified in

the 80/20 rule. The 80/20 rule corresponds to an exponent slightly smaller than 1 [66].

The aim here is to describe an algorithm that takes advantage of the likely distribution

of the data. Therefore a dataset generator was created that can create artificial data sets,

following a power law with an exponent that can be chosen freely. In all the experiments

reported in this chapter, the master data is assumed to be sorted with respect to the

access frequency.

5.2.2 Algorithm

Once the memory has been distributed among the join components HYBRIDJOIN starts

its execution, according to the procedure defined in Algorithm 3. Initially since the hash

64 A New HYBRIDJOIN

table is empty, hS is assigned to stream input size w where hS is the total number of

slots in the hash table H (line 1). The algorithm consists of two loops: one is called the

outer loop while the other is called the inner loop. The outer loop, which is an endless

loop, is used to build the stream input in the hash table (line 2), while the inner loop is

used to probe the disk tuples in the hash table (line 9). In each outer loop iteration, the

algorithm examines the availability of stream input in the stream buffer. If stream input

is available, the algorithm reads w tuples of the stream and loads them into the hash

table while also placing their join attribute values in the queue. Once the stream input

is read the algorithm resets the value of w to zero (lines 3-6). The algorithm then reads

the oldest value of a join attribute from the queue and loads a disk partition into the disk

buffer, using that join attribute value as an index (lines 7,8). After the disk partition has

been loaded into memory the inner loop starts and for each iteration of the inner loop

the algorithm reads one disk tuple from the disk buffer and probes it into the hash table.

In the case of a match, the algorithm generates the join output. Since the hash table

is a multi-hash-map, there may be more than one match against one disk tuple. After

generating the join output the algorithm deletes all matched tuples from the hash table,

along with the corresponding nodes from the queue. Finally, the algorithm increases w

with the number of vacated slots in the hash table (lines 9-15).

5.2.3 Asymptotic Runtime Analysis

This section presents the asymptotic runtime comparison of HYBRIDJOIN with that of

MESHJOIN and INLJ. The time needed to process a stream segment is used as a unit of

measurement. The time needed to process a single tuple is the inverse of the service rate,

which is the number of tuples processed in a time interval. The unit of measurement used

here has the advantage that “smaller is better”, in accordance with common usage in the

asymptotic analysis of algorithms. Consider a concrete stream prefix s. The time needed

to process a stream section s is denoted as MEJ(s) for MESHJOIN, as INLJ(s) for index

nested loop join, and as HYJ(s) for HYBRIDJOIN. Every stream section represents a

binary sequence, and by viewing this binary sequence as a natural number, asymptotic

complexity classes can be applied to the functions above. Note therefore that the following

theorems do not use functions on input lengths, but on concrete inputs. The resulting

5.2 HYBRIDJOIN 65

Algorithm 3 HYBRIDJOIN

Input: A master data R with an index on join attribute and a stream of updates S
Output: S ./ R
Parameters: w tuples of S and a partition of R
Method:

1: w ← hS
2: while (true) do
3: if (stream available) then
4: READ w tuples form the stream buffer and load them into H while enqueuing

their join attribute values in Q.
5: w ← 0
6: end if
7: READ the oldest join attribute value from Q.
8: READ a partition of R into disk buffer using that join attribute value as an index.
9: for each tuple r in the chosen partition do

10: if r ∈ H then
11: OUTPUT r ./ H
12: DELETE all matched tuples from H along with the corresponding nodes from

Q.
13: w ← w+ number of matching tuples found in H
14: end if
15: end for
16: end while

theorems imply analogous asymptotic behavior on input length, but are stronger than

statements on input length. It is assumed that the setup for HYBRIDJOIN and for

MESHJOIN is such that they have the same number hS of stream tuples in the hash

table, and accordingly in the queue.

Comparison with MESHJOIN:

Theorem 1: HYJ(s) = O(MEJ(s))

Proof: To prove the theorem, it has to be proved that HYBRIDJOIN performs no worse

than MESHJOIN. The cost of MESHJOIN is dominated by the number of accesses to R.

For analysing asymptotic run-time, random access of disk partitions is as fast as sequential

access (seek time is only a constant factor). For MESHJOIN with its cyclic access pattern

for R, every partition of R is accessed exactly once after every hS stream tuples. It is

necessary to show that for HYBRIDJOIN no partition is accessed more frequently. For

that an arbitrary partition p of R at the time it is accessed by HYBRIDJOIN is considered.

The stream tuple at the front of the queue has some position i in the stream. There are

hS stream tuples currently in the hash table, and the first tuple of the stream that has

66 A New HYBRIDJOIN

not yet been read into the hash table has position i+hS in the stream. All stream tuples

in the hash table are joined against the master data tuples on p, and all matching tuples

are removed from the queue. Now the earliest time that p could be loaded again by

HYBRIDJOIN has to be determined. For p to be loaded again, a stream tuple must be

at the front of the queue, and has to match a master data tuple on p. The first stream

tuple that can do so is the previously mentioned stream tuple with position i+hS, because

all earlier stream tuples that match data on p have been deleted from the queue. This

proves the theorem.

Comparison with INLJ:

Theorem 2: HYJ(s) = O(INLJ(s))

Proof: INLJ performs a constant number of disk accesses per stream tuple. For the

theorem it suffices to prove that HYBRIDJOIN performs not more than a constant number

of disk accesses per stream tuple as well. The first to be considered here are those stream

tuples that remain in the queue until they reach the front of the queue. For each of

these tuples, HYBRIDJOIN loads a part of R and hence makes a constant number of disk

accesses. For all other stream tuples, no separate disk access is made. This proves the

theorem.

The theorems show that, except for a single constant factor c, HYBRIDJOIN performs

on each individual input at least as well as either of the other two algorithms. The

maximum factor is determined by the ratio of continuous disk access time to random disk

access time for different disk portions. This is a free parameter in the cost model. In

practice it depends on the technical parameters of the disk used, particularly the seek

time, and on the choice of the disk portions that are loaded in one step. In the setup used

here the factor is smaller than 2 for Theorem 1 and smaller than 5 for Theorem 2, i.e.

even in the worst case, HYBRIDJOIN would be at most 2 times slower than MESHJOIN

and at most 5 times slower than index nested loop join.

5.2.4 Cost Model

This section explains the general formulas used to calculate the cost for HYBRIDJOIN.

Since it is important to compare this cost model with the cost model presented for

MESHJOIN in [90, 91], the same notations are used here where possible and the cost

5.2 HYBRIDJOIN 67

is also calculated in terms of memory and processing time. Equation 5.1 describes the

total memory used to implement the algorithm (except the stream buffer). Equation 5.3

calculates the processing cost for w tuples, while the average size for w can be calculated

using Equation 5.2. Once the processing cost for w tuples has been measured, the service

rate µ can be calculated using Equation 5.4. The symbols used to measure the cost have

already been specified in Chapter 3 and Chapter 4.

Memory Cost

In HYBRIDJOIN, the largest portion of the total memory is used for the hash table H

while a comparatively smaller amount is used for the disk buffer. The queue size is linear

in the hash table size, but considerably smaller. The separate size for each of them can

be calculated easily.

Memory reserved for the disk buffer (bytes)= vP

Memory reserved for the hash (bytes)= α(M − vP)

Memory reserved for the queue (bytes)= (1− α)(M − vP)

The total memory used by HYBRIDJOIN can be determined by aggregating all the above.

M = vP + α(M − vP) + (1− α)(M − vP) (5.1)

The memory reserved by the stream buffer is not included here because it is negligible (0.05

MB was sufficient in all these experiments). In order to explain this further the memory

cost has been calculated for each component when the total available memory is 50MB.

Table 5.1 depicts the concrete values of memory required for the major components.

Processing Cost

This section presents the calculation of the processing cost for HYBRIDJOIN. To achieve

this it is necessary to calculate the average stream input size w first.

Calculate average stream input size w : In HYBRIDJOIN the average stream

input size w depends on the following four parameters.

• Size of the hash table, hS (in tuples)

• Size of the disk buffer, d (in tuples)

68 A New HYBRIDJOIN

Table 5.1: Memory measurements for major components of HYBRIDJOIN

Disk buffer Hash table Queue MHY BRID

MB MB MB MB

0.059 (or 60KB) 47.66 2.24 49.959

• Size of the master data, Rt (in tuples)

• The exponent value for the benchmark, e

In our experiments w is directly proportional to hS and d (where d = vP
vR

), and is inversely

proportional to Rt. Further details about these relationships can be found in Appendix A.

The fourth parameter represents the exponent value for the stream data distribution as

explained in Section 5.3, and using an exponent value equal to 1 the 80/20 Rule [3] can

be formulated approximately for market sales. Therefore, the formula for w is:

w ∝ hS · d
Rt

w = k
hS · d
Rt

(5.2)

where k is a constant influenced by system parameters. The value of k has been obtained

from measurements. In this setup it is 1.36.

On the basis of w the processing cost can be calculated for one loop iteration. In order

to calculate the cost for one loop iteration the major components are:

Cost to read one disk partition= cI/O(vP)

Cost to probe one disk partition into the hash table= vP
vR
cH

Cost to generate the output for w matching tuples= w · cO
Cost to delete w tuples from the hash table and the queue= w · cE
Cost to read w tuples from the stream S= w · cS
Cost to append w tuples into the hash table and the queue= w · cA
By aggregation, the total cost for one loop iteration is:

cloop = 10−9[cI/O(vP) +
vP
vR
cH + w · cO + w · cE + w · cS + w · cA] (5.3)

Since the algorithm processes w tuples of the stream S in cloop seconds, the service rate

5.2 HYBRIDJOIN 69

Table 5.2: Processing cost for different operations of HYBRIDJOIN algorithm

w cI/O(vP) w · cE w · cS w · cA vP
vR
cH w · cO cloop

tuples nanosecs nanosecs nanosecs nanosecs nanosecs nanosecs secs

109 9939229 572032 408641 391092 1308500 218000 0.012837

can be calculated by dividing w by the cost for one loop iteration.

µ =
w

cloop
(5.4)

Table 5.2 provides measurements of the processing cost for different operations of the

algorithm. Based on the processing cost the service rate has also been calculated using

the formula described in Equation 5.4. By using Equation 5.4 the service rate µ is:

µ = 109
0.012837

= 8491 tuples/sec

5.2.5 Tuning

Tuning of the join components is important in order to make efficient use of the available

resources. In HYBRIDJOIN the disk buffer is the key component for tuning to amortise

the disk I/O cost on fast input data streams. From Equation 5.4 the service rate depends

on w and the cost cloop required to process these w tuples. In HYBRIDJOIN, for a

particular setting (M = 50MB) assuming that the size of R and the exponent value

for the distribution are fixed (Rt = 2Millions and e = 1), according to Equation 5.2 w

then depends on the size of the hash table and the size of the disk buffer. Furthermore,

the size of the hash table is also dependent on the size of the disk buffer, as shown in

Equation 5.1. Therefore, using Equations 5.2, 5.3 and 5.4, the service rate µ can be

specified as a function of vP and the value for vP at which the service rate is maximum

can be determined by applying standard calculus rules.

Figure 5.3 shows the relationship between the I/O cost and service rate as measured

in the experiments. It can be observed that in the beginning, for a small disk buffer

size, the service rate is also small because there are fewer matching tuples in the queue.

However, the service rate increases with an increase in the size of the disk buffer due to

there being more matching tuples in the queue. After a particular value of the disk buffer

70 A New HYBRIDJOIN

30 60 120 240 480 960
0

50

100

150

200

250

Disk buffer size (KB)
 on log scale

Service rate (102 tuples/sec)
I/O cost (milliseconds)

Figure 5.3: Tuning of the disk buffer

size is reached the trend changes and performance decreases with further increments in

the size of the disk buffer. The plausible reason behind this decrease in performance is the

rapid increase in the disk I/O cost and the decrease in memory size for the hash table.

5.3 Tests with Locality of Disk Access

A crucial factor for the performance of HYBRIDJOIN is the distribution of master data

foreign keys in the stream. If the distribution is uniform, then HYBRIDJOIN may perform

worse than MESHJOIN, but by a constant factor, in line with the theoretical analysis.

Note however, that HYBRIDJOIN still has the advantage of being efficient for intermittent

streams, while the original MESHJOIN would pause in intermittent streams, and leave

tuples unprocessed for an open-ended period.

It is also obvious that HYBRIDJOIN has advantages if R contains unused data, for

example, if there are old product records that are currently accessed very rarely, that

are clustered in R. HYBRIDJOIN would not access these areas of R, while MESHJOIN

accesses the whole of R.

More interesting, however, is whether HYBRIDJOIN can also benefit from more gen-

eral locality. Therefore the question arises whether we can demonstrate a natural distri-

bution where HYBRIDJOIN measurably improves over a uniform distribution, because

of locality.

The popular types of distributions are Zipfian distributions, which exhibit a power law

5.3 Tests with Locality of Disk Access 71

similar to Zipf’s law. Zipfian distributions are discussed as at least plausible models for

sales [3], where some products are sold frequently while most are sold rarely. This kind

of distribution can be modelled using Zipf’s law.

A generator for synthetic data has been designed that models a Zipfian distribution,

and it has been used to demonstrate that HYBRIDJOIN performance increases through

locality, and that HYBRIDJOIN outperforms MESHJOIN.

In order to simplify the model, it has been assumed that the product keys are sorted

in the master data table according to their frequency in the stream. This is a simplifying

assumption that would not automatically hold in typical warehouse catalogues, but it

provides a plausible locality behavior and makes the degree of locality very transparent.

Finally, in order to demonstrate the behavior of the algorithm under intermittence, a

stream generator has been implemented that produces stream tuples with a timing that

is self-similar.

This bursty generation of tuples models a flow of sales transactions which depends upon

fluctuations over several time periods, such as market hours, weekly rhythms and seasons.

The pseudo-code for the generation of the benchmark used here is shown in Figure 5.4.

In the figure STREAMGENERATOR is the main procedure while GETDISTRIBUTIONVALUE

and SWAPSTATUS are the sub-procedures that are called from the main procedure. Ac-

cording to the main procedure a number of virtual stream objects (in this case 10), each

representing the same distribution value obtained from the GETDISTRIBUTIONVALUE pro-

cedure, are inserted into a priority queue, which always keeps sorting these objects into

ascending order (lines 5 to 7). Once all the virtual stream objects have been inserted

into the priority queue the top most stream object is taken out (line 8). A loop is ex-

ecuted to generate an infinite stream (lines 9 to 18). In each iteration of the loop, the

algorithm waits for a while (which depends upon the value of variable oneStep) and then

checks whether the current time is more than the time when that particular object was

inserted. If the condition is true the algorithm dequeues the next object from the priority

queue and calls the SWAPSTATUS procedure (lines 11 to 14). The SWAPSTATUS procedure

enqueues the current dequeued stream object by updating its time interval and band-

width (lines 19 to 27). Once the value of the variable totalCurrentBandwidth has been

updated, the main procedure generates the final stream tuple values as an output, using

the procedure GETDISTRIBUTIONVALUE (lines 15 to 17). For each call of the procedure

72 A New HYBRIDJOIN

PROCEDURE STREAMGENERATOR

1: totalCurrentBandwidth← 0
2: timeInChosenUnit← 0
3: on← false
4: d← GETDISTRIBUTIONVALUE()
5: for i← 1 to N do
6: PriorityQueue.enqueue(d, bandwidth ← Math.power(2,i), timeInChosenUnit ←

currentTime())
7: end for
8: current← PriorityQueue.dequeue()
9: while (true) do

10: wait(oneStep)
11: if (currentTime() > current.timeInChosenUnit) then
12: current← PriorityQueue.dequeue()
13: SWAPSTATUS(current)
14: end if
15: for j ← 1 to totalCurrentBandwidth do
16: OUTPUT GETDISTRIBUTIONVALUE()
17: end for
18: end while

PROCEDURE SWAPSTATUS(current)

19: timeInChosenUnit ← (current.timeInChosenUnit + getNextRandom()
×oneStep× currentBandwidth)

20: if on then
21: totalCurrentBandwidth← totalCurrentBandwidth - current.bandwidth
22: on← false
23: else
24: totalCurrentBandwidth← totalCurrentBandwidth + current.bandwidth
25: on← true
26: end if
27: PriorityQueue.enqueue(current)

PROCEDURE GETDISTRIBUTIONVALUE()

28: sumOfFrequency ←
∫

1
x
dxat x=max -

∫
1
x
dxat x=min

29: random← getNextRandom()
30: distributionV alue← inverseIntegralOf(random×sumOfFrequency+

∫
1
x
dxat x=min)

31: RETURN bdistributionV aluec

Figure 5.4: Pseudo-code for benchmark

5.3 Tests with Locality of Disk Access 73

(a) On plain scale (b) On log scale

Figure 5.5: A distribution using Zipf’s law

GETDISTRIBUTIONVALUE, it returns the random value by implementing Zipf’s law(lines

28 to 31).

The experimental representation of the benchmark is shown in Figure 5.5 and Fig-

ure 5.6, while the environment in which the experiments have been conducted is described

in Section 5.4.1. As described previously in this section, the benchmark is based on two

characteristics; one is the frequency of sales of each product while the other is the flow of

these sales transactions. Figure 5.5 validates the first characteristic i.e. Zipfian distribu-

tion for market sales. In the figure the x-axis represents the variety of products while the

y-axis represents the sales. It can be observed that only a limited number of products

(20%) are sold frequently while the rest of the products are sold rarely.

The HYBRIDJOIN algorithm is adapted to these kinds of benchmarks in which only

a small portion of R is accessed again and again while the rest of R is accessed rarely.

Figure 5.6 represents the flow of transactions, which is the second characteristic of the

benchmark. It is clear that the flow of transactions varies with time and the stream is

bursty rather than input appearing at a regular rate.

74 A New HYBRIDJOIN

Figure 5.6: An input stream with bursty and self-similarity characteristics

5.4 Experiments

An extensive experimental evaluation of the HYBRIDJOIN has been performed on the

basis of synthetic data set. This section illustrates the environment of the experiments

and analyses the results that are obtained using different scenarios.

5.4.1 Experimental Setup

In order to implement the prototypes of the existing MESHJOIN, Index Nested Loop

Join(INLJ) and proposed HYBRIDJOIN the same hardware and measurement strategy

have been used as in R-MESHJOIN. However the data specifications are different.

The performance of each of the algorithms has been analysed using synthetic data. In

the case of R-MESHJOIN (in Chapter 4) R was stored in a text file while in HYBRID-

JOIN, since index is used on R, the master data R has been stored on disk using a MySQL

version 5.0 database. The bursty type of stream data has been generated at run time

using the benchmark algorithm that was described previously.

In the transformation, a join is normally performed between the primary key (a key in

R) and the foreign key (a key in the stream tuple) and therefore HYBRIDJOIN supports

5.4 Experiments 75

Table 5.3: Data specification
Parameter value

Memory
Total allocated memory M 50MB to 250MB

Exponent
Zipfian exponent value e 0 to 1

Master data
Size of the master data R 0.5 millions to 8 millions tuples
Size of each tuple 120 bytes

Stream data
Size of each tuple 20 bytes
Size of each node in the queue 12 bytes
Stream arrival rate λ 125 to 2000 tuples/sec

Benchmark
Based on Zipf’s law
Characteristics Bursty and self-similar

joins for both one-to-one and one-to-many relationships. In order to implement the join for

one-to-many relationships it is necessary to store multiple values in the hash table against

one key value. However the hash table provided by the Java API does not support this

feature. Therefore, Multi-Hash-Map, provided by Apache, has been used as the hash table

in the experiments. The detailed specification of the data set that has been used for the

analysis is shown in Table 5.3. The performance of HYBRIDJOIN has been compared

with that of MESHJOIN and INLJ while varying the total allocated memory M , the size

of R on disk, the value of the Zipfian exponent, and the stream arrival rate λ. However,

the other parameters, such as the size of the stream buffer, the size of each disk tuple, the

size of each stream tuple, and the size of each node in the queue are considered fixed. The

stream data set used to evaluate HYBRIDJOIN here is based on Zipf’s law and has two

important characteristics, bursty and self-similarity which are described in Section 5.3.

The performance of all the algorithms has been tested by varying the Zipfian exponent

value from 0 to 1.

5.4.2 Experimental Results

The experiments have been conducted in two dimensions. First dimension covers the

performance evaluation of all three approaches, while second dimension validates the cost

by comparing it with the calculated cost.

76 A New HYBRIDJOIN

Performance comparison

In these experiments the performance has been compared in two different ways. First,

HYBRIDJOIN has been compared with MESHJOIN and INLJ with respect to time, both

the processing time and the waiting time. Secondly, the performance has been compared

in terms of service rate.

Performance comparisons with respect to time: To test the performance with

respect to time two different types of experiments have been conducted. The experiment,

shown in Figure 5.7(a), presents the comparisons with respect to the processing time,

while Figure 5.7(b) depicts the comparisons with respect to waiting time. The terms

processing time and waiting time have already been defined in Section 5.2. According to

Figure 5.7(a) the processing time in the case of HYBRIDJOIN is significantly smaller than

that of MESHJOIN. The reason behind this is that in HYBRIDJOIN a different strategy

has been used to access R. The MESHJOIN algorithm accesses all disk partitions with

the same frequency without considering the rate of use of each partition on the disk. In

HYBRIDJOIN an index-based approach that never reads unused disk partitions has been

implemented to access R. The experiment has not reflected the processing time for INLJ

because it was constant even when the size of R changes.

In the experiment shown in Figure 5.7(b) the time that each algorithm waits has been

compared. In the case of INLJ, since the algorithm works at tuple level, the algorithm

does not need to wait, but this delay then appears in the form of a stream backlog that

occurs due to a faster incoming stream rate than the processing rate. The amount of this

delay increases further when the stream arrival rate increases.

Turning to the other two approaches, from the figure the ratio of waiting time in

MESHJOIN is greater than in HYBRIDJOIN. In HYBRIDJOIN, since there is no con-

straint to match each stream tuple with the whole of R, each disk invocation is not

synchronised with the stream input. However, for stream arrival rates of less than 150

tuples/sec, the waiting time in HYBRIDJOIN is greater than that in INLJ. A plausible

reason for this is the greater I/O cost in the case of HYBRIDJOIN when the size of the

input stream has been assumed to be equal in both algorithms.

Performance comparisons with respect to service rate: In this category of

experiments the performance of HYBRIDJOIN has been compared with that of the other

5.4 Experiments 77

0.5 1 2 4 8
10

−1

10
0

10
1

Size of R (tuples in millions)
on log scale

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

fo
r

ea
ch

 tu
pl

e
(m

in
ut

es
)

on
 lo

g
sc

al
e

HYBRIDJOIN
MESHJOIN

(a) Processing time (y-axis is on log scale)

125 250 500 10001000 2000
10

1

10
2

10
3

10
4

Stream arrival rate (tuples/sec)
 on log scale

W
ai

tin
g

tim
e

(m
ili

se
co

nd
s)

 o

n
lo

g
sc

al
e

HYBRIDJOIN
MESHJOIN
INLJ

(b) Waiting time

0.5 1 2 4 8
0

0.5

1

1.5

2

2.5

3
x 10

4

Size of R (million tuples)
 on log scale

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

HYBRIDJOIN
MESHJOIN
INLJ

(c) Performance comparison with 95% confidence in-
terval while M=50MB and Rt varies.

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
x 10

4

Total memory (MB)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

HYBRIDJOIN
MESHJOIN
INLJ

(d) Performance comparison with 95% confidence in-
terval while Rt=2 million tuples and M varies.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.25 0.5 0.75 1

S
e

rv
ic

e
 r

a
te

 (
tu

p
le

s
/s

e
c

o
n

d
)

x 104

Zipfian exponent value

HYBRIDJOIN
MESHJOIN
INLJ

(e) Performance comparison with 95% confidence in-
terval when M=50MB, Rt=2 million tuples while
the value of Zipfian exponent varies.

Figure 5.7: Experimental results

78 A New HYBRIDJOIN

two join algorithms in terms of the service rate by varying both the total memory budget

and the size of R with a bursty stream. In the experiment shown in Figure 5.7(c) the total

allocated memory for the join is assumed fixed while the size of R varies exponentially. It

can be observed that for all sizes of R, the performance of HYBRIDJOIN is significantly

better than the other join approaches.

In the second experiment of this category the performance of HYBRIDJOIN has been

analysed using different memory budgets, while the size of R is fixed (2 million tuples).

Figure 5.7(d) depicts the comparisons of all three approaches. From the figure it is clear

that for all memory budgets the performance of HYBRIDJOIN is better than the other

two algorithms.

Finally, the performance of HYBRIDJOIN has been evaluated by varying the skew in

the input stream S. The value of the Zipfian exponent e is varied in order to vary the

skew. In these experiments it was allowed to range from 0 to 1. At 0 the input stream S

is uniform and the skew increases as e increases. Figure 5.7(e) presents the results of the

experiment. It is clear from Figure 5.7(e) that under all values of e except 0, HYBRID-

JOIN performs considerably better than MESHJOIN and INLJ. Also this improvement

increases with an increase in e. The plausible reason for this better performance in the

case of HYBRIDJOIN is that the algorithm does not read unused parts of R into memory

and this saves unnecessary I/O cost. Moreover, when the value of e increases the input

stream S becomes more skewed and, consequently, the I/O cost decreases due to an in-

crease in the size of the unused part of R. However, as mentioned in Section 5.2.3, in a

particular scenario, when e is equal to 0, HYBRIDJOIN performs worse than MESHJOIN

but worse only by a constant factor.

Cost Validation

In this experiment the cost models for all three approaches are validated by comparing the

calculated cost with the measured cost. Figure 5.8 presents the comparisons of both costs.

In the figure it is demonstrated that the calculated cost closely resembles the measured

cost in every approach, which validates the accuracy of the cost models.

5.5 Summary 79

50 100 150 200 250
0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

Total memory (MB)

P
ro

ce
ss

in
g

co
st

 (s
ec

on
ds

)

measured
calculated

(a) HYBRIDJOIN

50 100 150 200 250
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Total memory (MB)

P
ro

ce
ss

in
g

co
st

 (
se

co
nd

s)

measured
calculated

(b) MESHJOIN

50 100 150 200 250
200

210

220

230

240

250

260

270

280

290

300

Total memory (MB)

P
ro

ce
ss

in
g

co
st

 (s
ec

on
ds

)

measured
calculated

(c) INLJ

Figure 5.8: Cost validation

5.5 Summary

In this chapter two issues in the existing MESHJOIN algorithm have been addressed.

One is an inefficient approach for accessing the master data and the other is dealing with

intermittency in stream data. As a solution a new join algorithm, HYBRIDJOIN, has been

proposed. The main objectives in HYBRIDJOIN are: (a) to minimize the stay of every

stream tuple in the join window by improving the efficiency of the access to the master

data, and (b) to deal with the true nature of update streams. A cost model has been

developed for HYBRIDJOIN. To validate that cost model and to achieve the maximum

performance within the limited resources a tuning module has also been presented for

HYBRIDJOIN. A benchmark based on Zipfian distribution has been designed to test this

approach. To validate the arguments a prototype of HYBRIDJOIN has been implemented

that demonstrates a significant improvement in service rate under limited memory.

80 A New HYBRIDJOIN

6
X-HYBRIDJOIN

6.1 Introduction

The HYBRIDJOIN algorithm as discussed in Chapter 5 was designed to address two

particular concerns. The first objective was to amortise the disk I/O cost over the fast

input data stream more effectively by introducing an index-based approach for accessing

the master data R. The second objective was to deal with the bursty nature of the data

stream effectively.

The HYBRIDJOIN algorithm developed here efficiently amortises the fast input stream

using an index-based approach to access the master data and can deal with bursty streams.

However, the performance can be improved more by considering non-uniform character-

istic of market data. Current market data analysis shows that a few items in a product

range are bought with higher frequency [3]. According to one market survey [3] the sales

frequency of products can be formulated using the 80/20 Rule, i.e. 80% of total sales are

made from only 20% of the products. To elaborate on this further, we consider Figure 5.5

81

82 X-HYBRIDJOIN

shown in Chapter 5. In the figure it can be observed that the frequency of selling a small

number of products is significantly higher compared to the rest of the products. There-

fore, in the stream that propagates toward the warehouse, most of the tuples need to join

with a small number of records on the disk again and again. Currently the HYBRID-

JOIN algorithm does not consider this feature and loads pages from the disk frequently.

Consider the reduction in I/O costs if these pages could be held permanently in memory.

Therefore, the question remains how much potential for improvement remains untapped

in HYBRIDJOIN because the algorithm does not cache the master data.

These considerations have motivated the proposal of an extension of HYBRIDJOIN,

called X-HYBRIDJOIN (Extended Hybrid Join) [84]1. The key difference between the two

is that in X-HYBRIDJOIN the algorithm stores in memory the portion of the master data

which matches the frequent items in the stream. This reduces the I/O cost substantially,

which improves the performance of the algorithm.

The ideal approach for obtaining high performance for the algorithm would be to fit

all of that 20% of R into the memory permanently. But this is impractical because of the

large size of R and the fact that there would then be less memory available to execute the

join operator. In these kinds of situations a smaller portion of R is normally loaded into

memory, as shown in Figure 6.1. In the figure the total master data R is divided into two

parts. One is 20% of R while the other is 80% of R. If the 20% of R (i.e. 0.2R) is still

bigger than the non-swappable part then again 0.2R is divided into two parts containing

20% and 80%. This practice will continue until 0.2nR becomes less or equal to the size of

the non-swappable part. Initially the size of each swappable and non-swappable part are

set to be equal to one disk partition of size d, which is equal to the size of the disk buffer

in HYBRIDJOIN. However, in the latter part of this chapter we perform tuning in order

to determine the optimal memory size for each component of the algorithm.

The rest of the chapter is structured as follows. Section 6.2 presents the memory archi-

tecture, algorithm, and cost model for the proposed X-HYBRIDJOIN. The experimental

study is discussed in Section 6.3. In Section 6.4 the tuning module for X-HYBRIDJOIN

is presented. Section 6.5 compares the performance results before and after the tuning of

X-HYBRIDJOIN. Finally Section 6.6 presents a summary of the chapter.

1This work has been published in 28th British National Conference on Databases (BNCOD’11).

6.2 X-HYBRIDJOIN 83

R

0.22R

0.8R

0.2X0.8R

0.2R

0.22X0.8R0.23R

0.8S

0.82S

0.83S

Probability of

stream matching

Portion of R on disk

.

.

Portion of R

in memory

0.2n-1R

0.2n-1X0.8R0.2nR

0.8n-1S

.

Figure 6.1: A general sketch of the classification of R into non-swappable and swappable parts

6.2 X-HYBRIDJOIN

This section describes the memory architecture, pseudo-code and cost model for an en-

hanced version of HYBRIDJOIN, called X-HYBRIDJOIN.

6.2.1 Memory Architecture

The execution architecture for X-HYBRIDJOIN is shown in Figure 6.2. In the X-

HYBRIDJOIN algorithm the disk buffer is divided into two parts. One part stores the

most popular part of the master data R in memory permanently; this is called the non-

swappable part of the disk buffer. The other part of the disk buffer is swappable and is

used to load the rest of R into memory in the same way as in HYBRIDJOIN. Initially,

the same amount of memory is assigned to both parts. The role of other components like

queue Q, hash table H and the stream buffer is quite similar to that in HYBRIDJOIN.

Similarly to HYBRIDJOIN, it is also assumed here that R is sorted with respect to the

access frequency and has an index with the join attribute as the key. The main objective

of the X-HYBRIDJOIN algorithm is that, for each iteration when the disk partition is

loaded into the swappable part of the disk buffer, apart from matching with that parti-

tion as in HYBRIDJOIN, the algorithm matches both parts of the disk buffer with all

the stream tuples available in memory without any extra disk I/O cost. This additional

feature amortises the fast arrival stream by minimizing the disk I/O cost.

84 X-HYBRIDJOIN

Disk buffer

………...

………...

………...

Stream buffer

Hash

function

t2 t1

Hash table

Stream

S

Join

output

. . . . t3tm

Queue

Non-

swappable

Swappable

p1

p2

…..
pn

Disk-based

master data

R

Join window

Figure 6.2: Architecture of X-HYBRIDJOIN

6.2.2 Algorithm

Once the available memory has been distributed among the join components, the algo-

rithm is ready to execute according to the procedure described in Algorithm 4. Before

starting the actual join execution, the algorithm reads a particular portion of the master

data R into the non-swappable part of the disk buffer (line 1). Similarly to HYBRID-

JOIN, in the beginning all slots in the hash table H are empty; therefore, hS is assigned

to w (line 2). In the abstract level description, the algorithm contains two kinds of loops.

One is called the outer loop, which is an endless loop (line 3). The key objective of the

outer loop is to build the stream in the hash table. Under the outer loop, the algorithm

runs two independent inner loops. One loop implements the probing module for the non-

swappable part of the disk buffer, while the other inner loop implements the probing of

the swappable part of the disk buffer. As the outer loop begins, the algorithm observes

the status of the stream buffer. If stream input is available the algorithm reads the w

tuples from the stream buffer and loads them into the hash table, while also enqueuing

their attribute values into the queue. After completing the stream input the algorithm

resets w to 0 (line 4-7). The algorithm then executes the first inner loop, in which it reads

all tuples one-by-one from the non-swappable part of the disk buffer and looks them up

in the hash table. In the case of a match, the algorithm generates the join output. Due

to the multi-hash-map, there can be more than one match against one disk tuple. After

generating the join output the algorithm deletes all matched tuples from the hash table,

along with the corresponding nodes from the queue. The algorithm also increments w

with the number of vacated slots in the hash table (line 8-14). Before starting the second

6.2 X-HYBRIDJOIN 85

Algorithm 4 X-HYBRIDJOIN

Input: A master data R with an index on join attribute and a stream of updates S
Output: S ./ R
Parameters: w tuples of S and a partition pi of R
Method:

1: LOAD first partition p1 of R into the non-swappable part of the disk buffer.
2: w ← hS
3: while (true) do
4: if (stream available) then
5: READ w tuples from the stream buffer, load them into H and enqueue their join

attribute values into Q.
6: w ← 0
7: end if
8: for each tuple r in p1 do
9: if r ∈ H then

10: OUTPUT r ./ H
11: w ← w+number of matching tuples found in H
12: DELETE all matched tuples from H and the corresponding nodes from Q.
13: end if
14: end for
15: READ the oldest join attribute value from Q.
16: LOAD a disk partition pi (where 2 ≤ i ≤ n)of R into the swappable part of the

disk buffer using the join attribute value as an index.
17: for each tuple r in pi do
18: if r ∈ H then
19: OUTPUT r ./ H
20: w ← w+number of matching tuples found in H
21: DELETE all matched tuples from H and the corresponding nodes from Q.
22: end if
23: end for
24: end while

inner loop, the algorithm reads the oldest value of the join attribute from the queue and

loads a disk partition pi (where 2≤ i ≤ n) into the swappable part of the disk buffer,

using that join attribute value as an index (line 15, 16). As the specified disk partition is

loaded into the swappable part of the disk buffer, the algorithm starts the second inner

loop and repeats all the steps described in the first inner loop (line 17-23).

6.2.3 Cost Model

X-HYBRIDJOIN uses one more component than HYBRIDJOIN. Therefore a new cost

model for X-HYBRIDJOIN is presented here. By adopting a similar cost calculation

86 X-HYBRIDJOIN

approach, as described for the earlier algorithms, separate formulas for the calculation of

memory and processing time are derived here. Equation 6.1 describes the total memory

used to implement the algorithm except for the stream buffer, whereas Equation 6.2

calculates the processing cost for w tuples. The symbols used to measure the cost have

already been specified partially in Chapter 3 and Chapter 4.

Memory Cost

In X-HYBRIDJOIN, the disk buffer is divided into two equal parts. One is swappable,

the other is non-swappable. As noted above, the largest share of the total memory is

used for the hash table; a much smaller portion is used for the disk buffer. The queue

size is a constant fraction of the hash table size. The memory for each component of

X-HYBRIDJOIN can be calculated as shown below.

Memory reserved for the swappable and non-swappable part of the disk buffer = vP +vP =

2vP

Memory reserved for the hash table= α(M − 2vP)

Memory reserved for the queue= (1− α)(M − 2vP)

The total memory used by X-HYBRIDJOIN can be determined by aggregating all of the

above.

M = 2vP + α(M − 2vP) + (1− α)(M − 2vP) (6.1)

Currently the memory reserved by the stream buffer is not included because of its

small size.

Processing Cost

This section calculates the processing cost for X-HYBRIDJOIN. The cost for one loop

iteration of the algorithm is denoted by cloop and expressed as the sum of the costs for

the individual operations. To make it simple, the processing cost for each component is

calculated separately first.

Cost to read swappable or non-swappable parts of the disk buffer= cI/O(vP)

Cost to look-up swappable and non-swappable parts of the disk buffer in the hash table=

2d · cH where d is the size of each part in tuples.

Cost to generate the output for w matching tuples= w · cO

6.3 Experimental Results 87

Cost to remove w tuples from the hash table and the queue= w · cE
Cost to read w tuples from stream S= w · cS
Cost to append w tuples into the hash table and the queue= w · cA
As the non-swappable part of the disk buffer is read only once before execution starts,

this is excluded. By aggregating the terms, the total cost for one loop iteration is:

cloop(secs) = 10−9[cI/O(vP) + 2d.cH + w(cO + cE + cS + cA)] (6.2)

In cloop seconds the algorithm processes w tuples of stream S ; therefore, the service rate

µ can be calculated by dividing w by the cost for one loop iteration, as shown in Equa-

tion 6.3.

µ =
w

cloop
(6.3)

6.3 Experimental Results

The experimental study analysed the results from two different perspectives. The results

presented in Section 6.3.1 compare the performance of both algorithms while the results

in Section 6.3.2 focus on the role of the non-swappable part of the disk buffer in stream

processing. The setup used for these experiments has already been described in Chapter 5.

6.3.1 Performance Comparisons

The two possible parameters that can vary and directly affect the performance of an algo-

rithm are the total memory available for the algorithm and the size of the master data. In

the current experiments the algorithm has been tested for different values of these param-

eters and the performance has been compared with HYBRIDJOIN at each specification.

As an example, to clarify this comparison further the performance of HYBRIDJOIN has

also been tested by keeping the disk buffer size equal to the size of the swappable plus

non-swappable part of the disk buffer in X-HYBRIDJOIN.

Performance comparisons when the size of the master data varies: In the

experiment shown in Figure 6.3(a), it has been assumed that total allocated memory for

the join is fixed while the size of the master dataR is increased exponentially. Figure 6.3(a)

shows that for all sizes of R, the performance of X-HYBRIDJOIN is substantially better

88 X-HYBRIDJOIN

than all the other approaches. Another key observation is that when R is 0.5 million

the performance of HYBRIDJOIN is almost 70% of X-HYBRIDJOIN, but when R is

equal to 8 million this percentage decreases to 50%. This means that, compared to X-

HYBRIDJOIN, the performance of HYBRIDJOIN decreases more sharply as R increases.

Performance comparisons when the size of available memory varies: In

our second experiment, the performance of X-HYBRIDJOIN has been analysed using

different memory budgets while the size of R is fixed (2 million tuples). Figure 6.3(b)

presents the results of the experiment. The figure indicates that, for all memory budgets,

the performance of X-HYBRIDJOIN is better than all the other algorithms. The reason

behind this improvement is the addition of a non-swappable part in the component disk

buffer. In our calculations, introducing the non-swappable part into X-HYBRIDJOIN

can save about 33% of the disk I/O cost. Although keeping the non-swappable part in

memory increases the look-up cost and reduces the memory available for the hash table,

both these factors are very small compared to the other significant factor, the disk I/O

cost.

As an example and for further satisfaction the performance of HYBRIDJOIN has

also been tested while keeping the size of the disk buffer equal to the size of the X-

HYBRIDJOIN disk buffer. The performance results in both cases, i.e. when the size of

R and the total memory budget change, are shown in Figure 6.3(a) and Figure 6.3(b). In

both figures, it can be observed that the performance under these settings is even worse

than HYBRIDJOIN with optimal disk buffer size. The plausible reason for this behaviour

may be that, once the optimal size of the disk buffer has been reached, a further increase

does not increase the stream-matching probability anymore after getting the maximum,

while on the other hand it increases the disk I/O cost and the look-up cost. In addition

it also reduces the memory budget for the hash table.

6.3.2 Role of the Non-swappable Part in Stream Processing

As described in Section 6.1, a large number of tuples in the stream belongs to a small

number of products; therefore, to join with the master data, the relative part of the

master data is required to be brought into the memory again and again. To observe this

factor more closely an experiment has been performed that accumulates the stream tuples

6.3 Experimental Results 89

0.5 1 2 4 8
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Size of R (million tuples)
 on log sacle

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

X−HYBRIDJOIN
HYBRIDJOIN
R−MESHJOIN
MESHJOIN
HYBRIDJOIN
with double disk buffer

(a) Performance comparison with 95% confidence in-
terval while M= 50MB and Rt varies.

50 100 150 200 250
0.5

1

1.5

2

2.5

3

3.5
x 10

4

Total memory (MB)

S
e

rv
ic

e
 r

a
te

 (
tu

p
le

s/
se

c)

X−HYBRIDJOIN
HYBRIDJOIN
R−MESHJOIN
MESHJOIN
HYBRIDJOIN
with double disk buffer

(b) Performance comparison with 95% confidence in-
terval while Rt=2 million tuples and M varies.

Figure 6.3: Experimental results: HYBRIDJOIN vs X-HYBRIDJOIN

0

0.5

1

1.5

2

2.5

50 100 150 200 250

P
ro

c
e

s
s
e

d
 s

tr
e

a
m

 t
u

p
le

s

(m

il
li
o

n
s
)

(a
b

o
u

t
4

3
%

 o
f

to
ta

l)

Total allocated memory (MB)

Figure 6.4: Total number of stream tuples processed with the non-swappable part of the disk buffer in
4000 iterations

which are processed using only the non-swappable part of the disk buffer. The results

of this experiment are shown in Figure 6.4. As in the experimental settings, the size of

the non-swappable part has been set to be equal to the size of the swappable part. It

is clear from the figure, that in 4000 iterations when the memory budget is 50 MB and

the size of R is 2 million tuples, about 0.4 million stream tuples are processed through

the non-swappable part of the disk buffer. This ratio increases when the total allocated

90 X-HYBRIDJOIN

memory is increased. For 250 MB memory with the same size of R (which is 2 million)

tuples, the number of tuples processed reaches more than 2 million. In HYBRIDJOIN,

since this non-swappable part is loaded from the disk each time, the I/O cost is increased

significantly.

6.4 Tuning

The stream-based join operators normally execute within limited memory resources where

a number of operations are executing in parallel. Therefore, to avoid the blocking of these

operations, a join operator should not be resource-intensive. The tuning process, which

is also an application of the cost model, is used to optimise the performance of the

algorithm under resource constraints. Normally if these kinds of algorithms are seen in

isolation, having more memory available would be better for each component. However,

assuming a fixed memory allocation provides a trade-off in the distribution of memory.

Assigning more memory to one component means that less memory is available for other

components. Therefore it is necessary to find the optimal distribution of memory among

all components in order to attain maximum performance. A very important component

here is the disk buffer because reading data from disk to memory is very expensive.

X-HYBRIDJOIN minimizes the disk access cost and improves performance signifi-

cantly by introducing the non-swappable part of the disk buffer. But in X-HYBRIDJOIN

the memory assigned to the swappable part of the disk buffer is equal to the size of

the disk buffer in HYBRIDJOIN and the same amount of memory is allocated to the

non-swappable part of the disk buffer. In the following it will be shown that this is not

optimal. Therefore, in this section the tuning of the X-HYBRIDJOIN is performed to

assign the optimal amount of memory among the components of the algorithm [87]2.

6.4.1 Revised Cost Model

In order to tune X-HYBRIDJOIN, it is first necessary to revise the cost model. The reason

for this revision is that X-HYBRIDJOIN uses equal memory for both the swappable and

the non-swappable parts of the disk buffer, and therefore the formulas do not apply for

2This work has been published in International Multi-topic Conference (IMTIC’12).

6.4 Tuning 91

other relative sizes. Using a revised cost model, Equation 6.4 describes the total memory

used to implement the algorithm, while Equation 6.5 calculates the processing cost for w

tuples.

Memory cost: Since the optimal values for the sizes of both the swappable part and

non-swappable part can be different, k number of pages is assumed for the swappable

part and l number of pages for the non-swappable part. The memory for each component

can be calculated as given below:

Memory for the swappable part of the disk buffer (bytes)= k · vP
Memory for the non-swappable part of the disk buffer (bytes)= l · vP
Memory for the hash table (bytes)= α[M − (k + l)vP]

Memory for the queue (bytes)= (1− α)[M − (k + l)vP]

The total memory used by the algorithm can be determined by aggregating the above.

M = (k + l)vP + α[M − (k + l)vP] + (1− α)[M − (k + l)vP] (6.4)

The memory reserved by the stream buffer is not included due to its small size.

Processing cost: This section revises the processing cost for X-HYBRIDJOIN. The

cost for one iteration of the algorithm is denoted by cloop and expressed as the sum of the

costs for the individual operations. The processing cost for each component is calculated

separately first.

Cost to read the non-swappable part of the disk buffer (nanoseconds) = cI/O(l · vP)

Cost to read the swappable part of the disk buffer (nanoseconds)= cI/O(k · vP)

Cost to look-up the non-swappable part of the disk buffer in the hash table (nanoseconds)

= dNcH where dN = l vP
vR

is the size of the non-swappable part of the disk buffer in terms

of tuples.

Cost to look-up the swappable part of the disk buffer in the hash table (nanoseconds)=

dScH where dS = k vP
vR

is the size of the swappable part of the disk buffer in terms of

tuples.

Cost to generate the output for w matching tuples (nanoseconds)= w · cO
Cost to delete w tuples from the hash table and the queue (nanoseconds)= w · cE
Cost to read w tuples from stream S into the stream buffer (nanoseconds)= w · cS
Cost to append w tuples into the hash table and the queue (nanoseconds)= w · cA

92 X-HYBRIDJOIN

As the non-swappable part of the disk buffer is read only once before the actual execution

starts, it is excluded. The total cost for one loop iteration is:

cloop(secs) = 10−9[cI/O(k · vP) + (dN + dS)cH + w(cO + cE + cS + cA)] (6.5)

If the algorithm processes w tuples in cloop seconds then the service rate µ can be calculated

using Equation 6.6.

µ =
w

cloop
(6.6)

Once the cost has been calculated, the algorithm can be tuned on the basis of this cost

model. In the following two subsections the algorithm is tuned using both empirical and

mathematical approaches. Finally, the tuning results obtained in both approaches are

compared to validate our cost model.

6.4.2 Tuning using Empirical Approach

This section focuses on obtaining samples for the approximate tuning of the key compo-

nents. The performance is a function of two variables, the size of the swappable part of

the disk buffer, dS, and the size of the non-swappable part of the disk buffer, dN . The

performance of the algorithm has been tested for a grid of values for both components,

i.e. for each setting of dS the performance was measured against a series of values for dN .

The performance measurements for the grid of dS and dN are shown in Figure 6.5. The

figure shows that the performance increases rapidly as the size for the non-swappable part

increases. After reaching a particular value for the size of the non-swappable part, the

performance starts decreasing. The plausible reason behind this behavior is that in the

beginning when the size for the non-swappable part increases, the probability of match-

ing stream tuples with disk tuples also increases and that improves the performance. But

when the size for the non-swappable part is increased further it does not make a signifi-

cant difference in stream-matching probability due to the factor of skew in distribution.

The higher look-up cost associated with the increased non-swappable part and the fact

that less memory is available for the hash table means that the performance gradually

decreases.

A similar behavior has been observed when the performance has been tested for the

6.4 Tuning 93

1000
1250

1500
1750

2000

750
800

850
900

950
1.1

1.15

1.2

1.25

1.3

1.35

x 10
4

Size of non−swappable part of disk buffer

 (tuples)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

Size of swappable part of disk buffer

 (tuples)

Figure 6.5: Tuning of X-HYBRIDJOIN using measurement approach

swappable part. Initially the performance increases, since the costly disk access is amor-

tised for a larger number of stream tuples. This effect is of crucial importance, because

it is this gain that gives the algorithm an advantage over a simple index-based join. It

is here that the hash table is used in order to match more tuples than just the one that

was used to determine the partition that was loaded. After attaining a maximum, the

performance decreases because of the increase in I/O cost for loading more of R at one

time in a non-selective way.

From the measurements shown in Figure 6.5 it is possible to approximate the optimal

settings for both the swappable and the non-swappable parts by considering the intersec-

tion of the values of both components at which the algorithm individually performs at a

maximum.

6.4.3 Tuning using Mathematical Approach

A mathematical model for the tuning is also derived based on the cost model presented

in Section 6.4.1. From Equation 6.6 it is clear that the service rate depends on the

size of w and the cost cloop. To determine the optimal settings it is first necessary to

calculate the size of w. The value of w in X-HYBRIDJOIN is the total number of stream

tuples which match with both the swappable and non-swappable parts in each iteration.

94 X-HYBRIDJOIN

Before deriving a mathematical formula for w the main components that can affect w are

discussed. The main components on which the value of w depends are listed below.

a. Size of non-swappable part, dN

b. Size of swappable part, dS

c. Size of the master data, Rt

d. Size of hash table, hS

Typically the stream of updates can be approximated through Zipfs law with a certain ex-

ponent value. Therefore, a significant part of the stream is joined with the non-swappable

part of the disk buffer. Hence, if the size of the non-swappable part (i.e. dN) is increased,

more stream tuples will match as a result. But the probability of matching does not

increase at the same rate as increasing dN because, according to Zipfian distribution, the

matching probability for the second tuple in R is half of that for the first tuple and simi-

larly the matching probability for the third tuple is one third of that for the first tuple and

so on [3, 66]. Due to this property, the size of R (denoted by Rt) also affects the matching

probability. The swappable part of the disk buffer deals with the rest of the master data

denoted by R′ (where R′ = Rt − dN), which is less frequent in the stream than that part

which exists permanently in memory. The algorithm reads R′ in partitions, where the

size of each partition is equal to the size of the swappable part of the disk buffer dS. In

each iteration the algorithm reads one partition of R′ using an index on join attribute and

loads it into memory through a swappable part of the disk buffer. In the next iteration

the current partition in memory is replaced by a new partition, and so on. As mentioned

earlier, using the Zipfian distribution the matching probability for every next tuple is less

than the previous one. Therefore, the total number of matches against each partition

is not the same. This is explained further in Figure 6.6, where n total partitions are

considered in R′. From the figure it can be seen the matching probability for each disk

partition decreases continuously as we move toward the end position in R. The size of

the hash table is another component that affects w. The reason is simple: if there are

more stream tuples in memory, the number of matches will be greater and vice versa.

Before driving the formula to calculate w it is first necessary to understand the working

6.4 Tuning 95

Master Data on disk

F
re

q
u

e
n

c
y
 i
n

 s
tr

e
a

m

Part of master data

that exists permanently in memory.

Part of master data

that is loaded into memory

in the form of partitions.

. . .

Figure 6.6: A sketch of matching probability of R in stream

strategy of X-HYBRIDJOIN. Consider for a moment that the queue contains stream tu-

ples instead of just join attribute values. It has already been stated in Section 6.2.2 that

X-HYBRIDJOIN uses two independent inner loops under one outer loop. After the end of

the first inner loop, which means after finishing the processing of the non-swappable part,

the queue only contains those stream tuples which are related to only the swappable part

of R, denoted by R′. For the next outer iteration of the algorithm these stream tuples in

the queue are considered to be an old part of the queue. In that next outer iteration the

algorithm loads some new stream tuples into the queue and these new stream tuples are

considered to be a new part of the queue. The reason for dividing the queue into two parts

is that the matching probability for both parts of the queue is different. The matching

probability for the old part of the queue is denoted by pold and it is only based on the

size of the swappable part of R i.e. R′. On the other hand, the matching probability for

the new part of the queue, known as pnew, depends on both the non-swappable as well as

the swappable parts of R. Therefore, to calculate w we first need to calculate both these

probabilities.

Therefore, if the stream of updates S obeys Zipf’s law, then the matching proba-

bility for any swappable partition k with the old part of the queue can be determined

96 X-HYBRIDJOIN

mathematically as shown below.

pk =

dN+kdS∑
x=dN+(k−1)dS+1

1
x

Rt∑
x=dN+1

1
x

Each summation in the above equation generates a harmonic series, which can be summed

up using the formula [2]
k∑
x=1

1
x

= ln k + γ + εk, where γ is a Euler’s constant [2] whose

value is approximately equal to 0.5772156649 and εk is another constant which is ≈ 1
2k

.

The value of εk approaches 0 as k goes to ∞ [2]. In our case the value of 1
2k

is small and

therefore, it is ignored.

If there are n partitions in R′, then the average probability of an arbitrary partition

of R′ matching the old part of the queue can be determined using Equation 6.7.

pold =

n∑
k=1

pk

n
=

1

n
(6.7)

Now the probability of matching is determined for the new part of the queue. Since the

new input stream tuple can match either the non-swappable or the swappable part of R,

the average matching probability of the new part of the queue with both parts of the disk

buffer can be calculated using Equation 6.8.

pnew = pN +
1

n
pS (6.8)

where pN and pS are the probabilities of matching for a stream tuple with the non-

swappable part and the swappable part of the disk buffer respectively. The values of pN

and pS can be calculated as below.

pN =

dN∑
x=1

1
x

Rt∑
x=1

1
x

6.4 Tuning 97

pS =

Rt∑
x=dN+1

1
x

Rt∑
x=1

1
x

Assume that w are the new stream tuples that the algorithm will load into the queue in

the next outer iteration. Therefore,

The size of the new part of the queue (tuples)=w

The size of the old part of the queue (tuples)=(hS − w)

If w are the average number of matches per outer iteration with both the swappable and

non-swappable parts in the disk buffer, then w can be calculated by applying the binomial

probability distribution on Equations 6.7 and 6.8 as given below.

w = (hS − w)pold(1− pold) + wpnew(1− pnew)

After simplification the final formula to calculate w is described in Equation 6.9.

w =
hSpold(1− pold)

1 + pold(1− pold)− pnew(1− pnew)
(6.9)

A number of experiments have been conducted to observe the effect of all necessary

components on w. The results and detailed descriptions of these experiments can be

found in Appendix B.

6.4.4 Comparisons of both Approaches

To validate the cost model the algorithm has been tuned using both the empirical and

mathematical approaches and the results have been compared.

Swappable part: In this experiment the tuning results have been compared for the swap-

pable part of the disk buffer using both the measurement and cost model approaches. The

tuning results for each approach (with a 95% confidence interval in the case of the empir-

ical approach) are shown in Figure 6.7(a). It is evident that at every position the results

in both cases are similar, with only 0.5% deviation.

Non-swappable part: Similarly, the tuning results of both approaches have been com-

pared for the non-swappable part of the disk buffer. The results are shown in Figure 6.7(b).

Again, it is clear from the figure that the results in both cases are nearly equal, with a

98 X-HYBRIDJOIN

750 800 850 900 950
1

1.1

1.2

1.3

1.4

1.5
x 10

4

Size of the swappable part of the disk buffer(tuples)

S
e

rv
ic

e
 r

a
te

 (
tu

p
le

s/
se

c)

Measured
Calculated

(a) Tuning comparison for swappable part: based
on measurements vs based on cost model

1000 1250 1500 1750 2000
1

1.1

1.2

1.3

1.4

1.5
x 10

4

Size of the non−swappable part of the disk buffer(tuples)
S

e
rv

ic
e

 r
a

te
(t

u
p

le
s/

se
c)

Measured
Calculated

(b) Tuning comparison for non-swappable part:
based on measurements vs based on cost model

Figure 6.7: Comparisons of tuning results

deviation of only 0.6%.

6.5 Performance Evaluation after Tuning

Performance comparisons for different sizes of R: In these experiments the perfor-

mance of X-HYBRIDJOIN has been compared with and without tuning by varying the

size of R. It is assumed that the size of R varies exponentially while the total memory

budget remains fixed (50MB) for all values of R. For each value of R the X-HYBRIDJOIN

algorithm has been run both with and without optimal settings, and the performance has

been measured in both cases. The performance results that have been obtained using

both experiments are shown in Figure 6.8(a). It is clear that for all settings of R X-

HYBRIDJOIN performed significantly better with tuning than without.

Performance comparisons for different memory budgets: In these experiments

the performance in both cases has been compared using different memory budgets while

the size of R is fixed (2 million tuples). Figure 6.8(b) depicts the comparisons of both

cases. It can be observed that for all memory budgets the tuned X-HYBRIDJOIN again

performed significantly better than simple X-HYBRIDJOIN.

6.5 Performance Evaluation after Tuning 99

0.5 1 2 4 8
0

1

2

3

4

5
x 10

4

Size of R (million tuples)

S
er

vi
ce

 r
at

e(
tu

pl
es

/s
ec

)

Tuned X−HYBRIDJOIN
X−HYBRIDJOIN

(a) Performance comparison with 95% confidence
interval while M= 50MB and Rt varies.

50 100 150 200 250
1

1.5

2

2.5

3

3.5

4
x 10

4

Total memory(MB)

S
e
rv

ic
e
 r

a
te

(t
u
p
le

s/
se

c)

Tuned X−HYBRIDJOIN
X−HYBRIDJOIN

(b) Performance comparison with 95% confidence
interval while Rt=2 million tuples and M varies.

Figure 6.8: Performance comparisons: Tuned X-HYBRIDJOIN vs X-HYBRIDJOIN without tuning

50 100 150 200 250
0.025

0.03

0.035

0.04

0.045

0.05

0.055

Total Memory(MB)

P
ro

ce
ss

in
g

co
st

(s
ec

on
ds

)

Measured
Calculated

Figure 6.9: Cost validation

6.5.1 Cost Validation

The cost model for X-HYBRIDJOIN has been validated by comparing the calculated

cost with the measured cost. Figure 6.9 presents the comparisons of both costs. The

figure shows that the calculated cost closely resembles the measured cost, which proves

the correctness of the cost model.

100 X-HYBRIDJOIN

6.6 Summary

In this chapter, HYBRIDJOIN has been explored and an extended version of it named X-

HYBRIDJOIN has been presented. The main objective in X-HYBRIDJOIN is to minimize

the disk access cost by taking into account the real world characteristics of stream data.

The cost model for X-HYBRIDJOIN has also been presented. To validate the argument

a prototype of X-HYBRIDJOIN has been implemented that demonstrates a significant

improvement in performance. In addition to that X-HYBRIDJOIN has been tuned to

achieve the optimal memory distribution among the components. The cost model for

X-HYBRIDJOIN has also been revised to implement the tuning module. At the end of

the chapter it has been proven that X-HYBRIDJOIN with tuning performs significantly

better than X-HYBRIDJOIN without tuning.

7
Optimised X-HYBRIDJOIN

7.1 Introduction

This chapter describes an optimisation of X-HYBRIDJOIN. X-HYBRIDJOIN is partic-

ularly designed for non-uniform distributions by incorporating Zipf’s law into its imple-

mentation. According to long-tail market economics, a significant portion of sales comes

through a small number of products [3]. Therefore, a small number of pages in the master

data are used frequently during the join operation. X-HYBRIDJOIN divides the disk

buffer, used to load master data into memory, into two parts. One part is non-swappable.

This holds the most frequently used page(s) of master data permanently in memory. The

other part is swappable and it exchanges its contents on each iteration of the algorithm.

The main argument reflected in the algorithm is that, storing the most frequently-used

part of the master data permanently in memory minimizes the disk I/O cost and that

eventually amortises the fast incoming stream of updates.

X-HYBRIDJOIN achieves better performance compared to earlier algorithms by pin-

101

102 Optimised X-HYBRIDJOIN

ning frequently-accessed data from the master data in the main memory. Apart from

being held in the main memory, X-HYBRIDJOIN does not treat this frequently-accessed

data differently from other data coming from the master data. Therefore, the swappable

and non-swappbale parts of the disk buffer cannot work independently of each other.

This generates some unnecessary processing costs that negatively affect the performance

of the algorithm. For example, in each iteration the algorithm matches all the tuples in

the non-swappable part of the disk buffer with the hash table, regardless of whether the

matching is successful or unsuccessful. This increases the unnecessary look-up cost for

the algorithm. Similarly, the algorithm stores all the stream tuples in memory, whether

they join with the swappable or the non-swappable part of the disk buffer, increasing the

cost in terms of loading and unloading the stream tuples into memory. In contrast if only

those stream tuples which join with the swappable part of the disk buffer are stored in

memory, it can save the unnecessary costs of loading and unloading those stream tuples

which join with non-swappable part of the disk buffer. Also more stream tuples can be

accommodated in memory at the same time.

Based on these motivations an improved version of X-HYBRIDJOIN known as Op-

timised X-HYBRIDJOIN (Optimised Extended Hybrid Join) [85]1 is presented in this

chapter. Optimised X-HYBRIDJOIN divides the algorithm into two phases which can

work independently. One phase deals with the swappable part while the other phase deals

with the non-swappable part of the master data, using appropriate data structures for

each phase. In the proposed algorithm, due to choosing an appropriate architecture, all

unnecessary costs are minimized and performance is improved significantly. The tuning

module for the algorithm is also presented, which is based on a mathematical cost model

and which makes the algorithm more efficient.

The remainder of the chapter is structured as follows. Section 7.2 presents Optimised

X-HYBRIDJOIN with its execution architecture and pseudo-code. In Section 7.3 the

cost model for Optimised X-HYBRIDJOIN is derived. Section 7.4 describes the tuning

phase for the algorithm. The experimental study is presented in Section 7.5 and finally

Section 7.6 summarises the chapter.

1This work has been published in 23rd Australasian Database Conference (ADC’12).

7.2 Optimised X-HYBRIDJOIN 103

7.2 Optimised X-HYBRIDJOIN

To overcome the problems stated in the introduction section an alternative algorithm

called Optimised X-HYBRIDJOIN is proposed. Optimised X-HYBRIDJOIN decomposes

the algorithm into two hash join phases that can execute separately. One phase uses R

as the probe input; the largest part of R will be stored in tertiary memory. This phase is

called disk-probing phase. The other join phase uses the stream as the probe input and

it is called stream-probing phase. This phase deals only with a small part of R. For each

incoming stream tuple, Optimised X-HYBRIDJOIN first uses the stream-probing phase

to find a match for frequent requests quickly, and if no match is found, the stream tuple is

forwarded to the disk-probing phase. The details of the proposed algorithm are presented

in the following subsections.

7.2.1 Memory Architecture

This section gives a high-level description of Optimised X-HYBRIDJOIN, while a detailed

walk-through of the algorithm can be found in Section 7.2.2. From the architectural

point of view, the key concept in Optimised X-HYBRIDJOIN is to execute both the

disk-probing phase and the stream-probing phase independently, using appropriate data

structures. The reason for doing this is to eliminate unnecessary costs, as it is described

later in this section.

The memory architecture for Optimised X-HYBRIDJOIN is shown in Figure 7.1.

The largest components of Optimised X-HYBRIDJOIN with respect to memory size are

two hash tables, one storing stream tuples, denoted by HS, and the other storing tuples

from the master data, denoted by HR. The other main components of Optimised X-

HYBRIDJOIN are a disk buffer, a queue and a stream buffer. R and stream S are the

external input sources. Similar to X-HYBRIDJOIN R is assumed to be sorted according

to the frequency of access. The hash table HR contains the most frequently-accessed part

of R, which is stored permanently in memory.

Optimised X-HYBRIDJOIN alternates between the stream-probing and disk-probing

phases. The hash table HS is used to store only that part of the update stream which

does not match tuples in HR. A stream-probing phase ends if HS is completely filled or if

the stream buffer is empty. Then the disk-probing phase becomes active. The length of

104 Optimised X-HYBRIDJOIN

the disk-probing phase is determined by the fact that only a small number of disk pages

of R have to be loaded at one time in order to amortise the costly disk access. In the

disk-probing phase of Optimised X-HYBRIDJOIN, the oldest tuple in the queue is used

to determine the partition of R that is loaded for a single probe step. This is also the step

where Optimised X-HYBRIDJOIN needs an index on table R in order to find the partition

in R that matches the oldest stream tuple. After one probe step, a sufficient number of

stream tuples are deleted from HS, so the algorithm switches back to the stream-probing

phase. One phase of stream-probing with a subsequent phase of disk-probing constitutes

one outer iteration of Optimised X-HYBRIDJOIN. The disk-probing phase could work on

its own, without the stream-probing phase. Therefore, the stream-probing phase can be

switched-off if it is required and the memory needed for that phase would be reassigned.

In this case the algorithm simply operates as HYBRIDJOIN, described in Chapter 5.

The stream-probing phase is used to boost the performance of the algorithm by quickly

matching the most frequently-used master data. The disk buffer stores the swappable

part of R and for each iteration it loads a particular partition of R into the memory. The

other component queue is based on a doubly-linked-list, and is used to store the values

for the join attribute. Each node in the queue also contains the addresses of its neighbour

nodes. The reason for choosing this data structure is to allow random deletion from the

queue. The stream buffer is included in the diagram for completeness, but is in reality

always a tiny component and will not be considered in the cost model. There are two

key advantages of Optimised X- HYBRIDJOIN over X-HYBRIDJOIN. First, due to the

independent processing of each phase the stream tuples can be looked-up directly in HR

without loading them into memory. This not only eliminates an unnecessary look-up cost,

but also allows more of the stream to be accommodated in memory. In contrast to this,

X-HYBRIDJOIN stores a major part of the stream, related to the non-swappable part, in

memory and for each iteration, the algorithm looks-up all the tuples of the non-swappable

part in the hash table one-by-one. In the situation when the tuples do not match, the

algorithm faces an additional look-up cost. Secondly, since Optimised X- HYBRIDJOIN

does not store a large part of the stream in memory, it eliminates the costs of loading and

unloading that part of the stream into the hash table, HS. These additional features in

Optimised X-HYBRIDJOIN help in reducing the overall processing cost for the algorithm

and that eventually improves the performance.

7.2 Optimised X-HYBRIDJOIN 105

Output

.

.

. . .

Disk-based

master data

R

If not matched

Disk buffer

Stream buffer

tm t1

Queue

pnp1 p2 p3

Hash

function

Output

Hash table (HR)

contains disk pages

Hash table (HS)

contains stream

If matched

t3 t2

Stream

S

. . .

Hash

function
map

Figure 7.1: Memory architecture for Optimised X-HYBRIDJOIN

7.2.2 Algorithm

After dividing the available memory among the join components, the algorithm starts its

execution. The pseudo-code for Optimised X-HYBRIDJOIN is shown in Algorithm 5.

The outer loop of the algorithm is an endless loop (line 2). The body of the outer loop

has two main phases, the stream-probing phase and the disk-probing phase. Due to the

endless loop, these two phases are executed alternately.

Lines 3 to 11 comprise the stream-probing phase. The stream-probing phase has to

know the number of empty slots in HS. This number is kept in variable hSavailable. At

the start of the algorithm, all the slots in HS are empty (line 1). The stream-probing

phase has an inner loop that continues while stream tuples as well as empty slots in HS

are available (line 3). In the loop, the algorithm reads one input stream tuple t at a time

(line 4). The algorithm looks up t in HR (line 5). In the case of a match, the algorithm

generates the join output without storing t in HS (line 6). In the case where t does not

match, the algorithm loads t into HS, along with enqueuing its key attribute value in the

queue (line 8). The counter of empty slots in HS then has to be decreased (line 9).

106 Optimised X-HYBRIDJOIN

Algorithm 5 Optimised X-HYBRIDJOIN

Input: A master data R with an index on join attribute and a stream of updates S.
Output: R ./ S
Parameters: w (where w=wS+wN)tuples of S and k pages of R.
Method:

1: hSavailable← hS
2: while (true) do
3: while (stream available AND hSavailable > 0) do
4: READ a stream tuple t from the stream buffer
5: if t ∈ HR then
6: OUTPUT t ./ HR

7: else
8: ADD the stream tuple t into HS while also placing its join attribute values

into Q
9: hSavailable← hSavailable− 1

10: end if
11: end while
12: READ the oldest join attribute value from Q
13: READ a partition of R into the disk buffer using the oldest join attribute value

from the queue for the index look-up.
14: for each tuple r in the disk buffer do
15: if r ∈ HS then
16: OUTPUT r ./ HS

17: f ← number of matching tuples found in HS

18: DELETE all matched tuples from HS along with the corresponding nodes from
Q

19: hSavailable← hSavailable+ f
20: end if
21: end for
22: end while

Lines 12 to 21 comprise the disk-probing phase. At the start of this phase, the algo-

rithm reads the oldest key attribute value from the queue and loads a partition of R into

the disk buffer, using that key attribute value as an index (lines 12 and 13). In an inner

loop, the algorithm looks up all tuples r from the disk buffer in hash table HS one-by-one.

In the case of a match, the algorithm generates the join output (line 16). Since HS is

a multi-hash-map, there can be more than one match, the number of matches being f

(line 17). The algorithm removes all matching tuples from HS along with deleting the

corresponding nodes from the queue (line 18). This creates empty slots in HS (line 19). In

the next outer iteration the algorithm fills these empty slots if stream input is available.

7.3 Cost Model 107

Table 7.1: Some new symbols used in Optimised X-HYBRIDJOIN

Parameter name Symbol

Number of stream tuples processed in each iteration through HR wN
Number of stream tuples processed in each iteration through HS wS
Size of disk buffer (pages) k
Size of disk buffer (tuples) d = k vP

vR

Size of HR (pages) l
Size of HR (tuples) hR = l vP

vR

Size of HS (tuples) hS

7.3 Cost Model

As the execution layout of Optimised X-HYBRIDJOIN is different from that of simple

X-HYBRIDJOIN, this needs to revise the cost model for Optimised X-HYBRIDJOIN.

The main objective in developing the cost model is to inter-relate the key parameters

like the algorithm input size w, the processing cost cloop for these w tuples, the available

memory M and the service rate µ. The other important application for the cost model

is in the tuning process, where the optimal size is determined for each component of the

algorithm. The details of the tuning process are presented in Section 7.4. As stated in

earlier chapters, the main costs for an algorithm are described in terms of memory and

processing time. The memory cost in the case of Optimised X-HYBRIDJOIN is exactly

the same as for X-HYBRIDJOIN, due to their having the same number of components.

However, the processing cost is different due to the different execution layouts. Most

of the notations used in this cost model have already been specified in Table 3.1 and

Table 4.1 however some further symbols are shown in Table 7.1.

7.3.1 Memory Cost

As described above, the memory cost for Optimised X-HYBRIDJOIN is the same as that

for X-HYBRIDJOIN. Therefore, Equation 6.4 (which is 7.1 here) describes the memory

cost for Optimised X-HYBRIDJOIN.

M = k · vP + l · vP + α [M − (k + l)vP] + (1− α) [M − (k + l)vP] (7.1)

108 Optimised X-HYBRIDJOIN

7.3.2 Processing Cost

Due to its different execution layout, the processing cost of Optimised X-HYBRIDJOIN

is different from that of X-HYBRIDJOIN and, therefore, it is calculated here. To make

it simpler the processing cost for individual components is calculated first and then all

these costs are summed up to calculate the total processing cost for one iteration.

Cost to read the most frequent l number of pages of R into HR= cI/O(l · vP)

Cost to read k number of pages into the disk buffer= cI/O(k · vP)

Cost to look-up wN tuples into HR = wN · cH
Cost to look-up disk buffer tuples into HS= d · cH
Cost to generate the output for wN tuples= wN · cO
Cost to generate the output for wS tuples= wS · cO
Cost to read wN tuples from the stream buffer= wN · cS
Cost to read wS tuples from the stream buffer= wS · cS
Cost to append wS tuples into the HS and the queue= wS · cA
Cost to delete wS tuples from the HS and the queue= wS · cE
The hash table HR is filled only once before the actual execution of the algorithm starts;

therefore its cost is excluded. By aggregating the costs for individual components, the

total cost for one loop iteration is:

cloop = 10−9
[
cI/O(k.vP) + d · cH + wS(cO + cE + cS + cA) + wN(cH + cO + cS)

]
(7.2)

Since the algorithm processes wN and wS tuples of stream S in cloop seconds, the service

rate µ can be calculated using Equation 7.3.

µ =
wN + wS
cloop

(7.3)

7.4 Tuning

Normally the stream-based join algorithms are executed online, where limited memory

resources are available. Due to the fixed and small amount of available memory, each

component in the join faces a trade-off with respect to memory distribution. Assigning

more memory to one component means assigning less memory to some other components.

7.4 Tuning 109

On close observation it can be seen that a component like the hash table HS, used to store

the stream, requires more memory compared to the other components, such as the disk

buffer, the stream buffer and the hash table HR, used to store the frequently-used disk

pages. The disk buffer and the hash table HR are the key components for tuning, and

the memory assigned to the other components depends on them. The reason for tuning

the disk buffer is that the dominant I/O cost is directly connected to the disk buffer. The

tuning of the algorithm uses the cost model that has been derived before. Tuning is not

performed merely using a theoretical approach, rather the optimal tuning settings are

approximated using an empirical approach. Finally the experimentally-obtained tuning

results are compared with the results obtained using the cost model.

7.4.1 Tuning using Empirical Approach

This section focuses on the tuning of key components, namely the disk buffer and the

hash table HR using an empirical approach. The performance of the algorithm has been

tested for a set of values for both components, rather than for every consecutive value.

It has been assumed that the total allocated memory and the size of the master data

are fixed. The sizes for the disk buffer and the hash table HR are varied in such a way

that for each size of the disk buffer the performance is measured against a series of values

for the size of HR. The performance measurements for the grid of values for the sizes

of disk buffer denoted by d and the size of HR denoted by hR are shown in Figure 7.2.

The figure shows that, if the performance for each fixed value of d is observed against all

values of hR, in the beginning the performance increases rapidly with an increase in hR.

However, after reaching a particular value of hR, the performance starts decreasing with

further increases in hR. A plausible reason for this behavior is that initially, increasing hR

increases the probability of matching the stream tuples with HR rapidly. After attaining

the optimal value, further incrementing hR makes no significant difference to the stream-

matching probability, due to the skew factor in stream distribution. On the other hand,

the associated reduction in memory size for the hash table HS means that the performance

begins to decrease. Similarly when the performance is analysed for each fixed value of

hR against all the values of d, initially the performance increases, since the costly disk

access is amortised for a larger number of stream tuples. After attaining a maximum, the

110 Optimised X-HYBRIDJOIN

1500
1750

2000
2250

2500
2750

3000
3250

3500

500

600

700

800

900

1000
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

x 10
4

Size of hash table H R
 (tuples)

Size of disk buffer (tuples)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

Figure 7.2: Tuning of Optimised X-HYBRIDJOIN using empirical approach

performance decreases because of the increase in I/O cost for loading more of R at one

time in a non-selective way.

The figure shows that the optimal memory settings for both the disk buffer and the

hash table HR can be determined by considering the intersection of the values of both

components at which the algorithm individually performs at a maximum.

7.4.2 Tuning based on Cost Model

To validate the cost model against measurements, the algorithm has also been tuned based

on the cost model. Under Equation 7.3 the service rate depends on the values of wS, wN

and the cost cloop. Therefore, to determine the settings at which the algorithm performs

optimally, it is first necessary to calculate the sizes of wN and wS. A similar approach for

mathematical tuning to that described in Chapter 6 is used here. However, the formulas

to calculate wN and wS are different from the formula to calculate w in Chapter 6. The

reason is that in Optimised X-HYBRIDJOIN the processing of the stream-probing phase

is independent of the disk-probing phase. Also the stream related to the stream-probing

phase is not stored in memory. Therefore, most cost factors related to the stream-probing

phase are removed. In contrast to X-HYBRIDJOIN, wS and wN need to be calculated

separately.

7.4 Tuning 111

Mathematical model to calculate wN : The main components that directly affect

wN are the total size of R (denoted by Rt) on the disk and the size of the hash table HR

(denoted by hR) that contains the most frequently-used part of R in the memory. If the

stream of updates S is formulated using Zipfs law with the exponent value being equal

to 1, then the matching probability pN for stream S with HR can be determined using

Equation 7.4.

pN =

hR∑
x=1

1
x

Rt∑
x=1

1
x

≈ ln (hR)

ln (Rt)
(7.4)

Now using Equation 7.4 the constant factors of change can be determined in pN by

changing the values of hR and Rt individually. Assumes that pN decreases by a constant

factor φN if the value of Rt is doubled, and increases by a constant factor ψN if the value

of hR is doubled. Knowing these constant factors the value of wN can be calculated.

Consider a hypothesis

pN = Ry
th

z
R (7.5)

where y and z are unknown constants whose values need to be determined.

By doubling Rt, the matching probability pN decreases by a constant factor φN , Equa-

tion 7.5 becomes:

φNpN = (2Rt)
yhzR

Dividing the above equation by Equation 7.5 we get 2y = φN and therefore, y = log2(φN).

Similarly by doubling hR the matching probability pN increases by a constant factor ψN

therefore, Equation 7.5 can be written as:

ψNpN = Ry
t (2hR)z

By dividing the above equation by Equation 7.5 we get 2z = ψN and therefore, z =

log2(ψN). After putting the values of constants y and z in Equation 7.5 we get:

pN = R
log2(φN)
t h

log2(ψN)
R

If S is the total number of stream tuples that are processed (through both the stream-

probing and disk-probing phases) in N iterations, then wN can be calculated using Equa-

112 Optimised X-HYBRIDJOIN

tion 7.6

wN =
(R

log2(φN)
t h

log2(ψN)
R)S

N
(7.6)

Mathematical model to calculate wS: The second phase of the Optimised X-

HYBRIDJOIN algorithm, also called the disk-probing phase, deals with the rest of the

master data R′ (where R′ = Rt − hR), which occurs less frequently in the stream input

as compared to that part which exists permanently in memory. The algorithm reads

R′ in partitions while the size of each partition is equal to the size of the disk buffer

d. As mentioned earlier, the daily market transactions typically formulate the Zipfian

distribution, which means that matching probability for every next partition in R′ is

less than the previous one. Therefore, the matching probability for each partition is

calculated by taking the summation over the discrete Zipfian distribution separately and

then aggregating all of them as shown below.

hR+d∑
x=hR+1

1

x
+

hR+2d∑
x=hR+d+1

1

x
+

hR+3d∑
x=hR+2d+1

1

x
+ · · ·+

hR+nd∑
x=hR+(n−1)d+1

1

x

We simplify this to:
hR+nd∑
x=hR+1

1

x
⇒

Rt∑
x=hR+1

1

x

From this the average matching probability pS can be obtained in the disk probe phase,

which is needed for calculating wS. Let n be the total number of partitions in R′, then

the average matching probability pS can be determined by dividing the above summation

by n. In the denominator, a similar normalization term to that used in Equation 7.4 is

used.

pS =

Rt∑
x=hR+1

1
x

n
Rt∑
x=1

1
x

=
ln(Rt)− ln(hR + 1)

n(ln(Rt) + γ)
(7.7)

To determine the effects of d, hR and Rt on pS the same number of steps is required as

in the case of wN . If d is doubled then n will be halved in Equation 7.7 and therefore,

the value of pS increases with a constant factor of θS. Similarly, if hR and Rt are doubled

one-by-one in Equation 7.7, the value of pS decreases with a constant factor of ψS and φS

7.4 Tuning 113

respectively. A similar hypothesis is considered here as in Equation 7.5.

pS = dxhyRR
z
t (7.8)

The values for the constants x, y and z in this case will be x = log2(θS), y = log2(ψS)

and z = log2(φS) respectively. Therefore by replacing the parameters with constants,

Equation 7.8 will become.

pS = dlog2(θS)h
log2(ψS)
R R

log2(φS)
t

If hS are the number of stream tuples stored in the hash table then the average value for

wS can be calculated using Equation 7.9.

wS(average) = dlog2(θS)h
log2(ψS)
R R

log2(φS)
t hS (7.9)

Once the values of wN and wS have been determined, the algorithm can be tuned using

Equation 7.3.

A number of experiments have been conducted to observe the effect of all necessary

components on wN and wS. The results and detailed descriptions of these experiments

can be found in Appendix C.

7.4.3 Comparisons of both Tuning Approaches

In this section, in order to validate the cost model, the tuning results obtained through

measurements are compared with the tuning results calculated using the cost model.

Tuning of the swappable part: In this experiment tuning of the disk buffer is

performed using both the empirical and the mathematical approaches. The tuning results

of each approach are shown in Figure 7.3(a). It can be observed that the results in both

cases are very similar, with a deviation of only 1.5%.

Tuning of the non-swappable part: Tuning comparisons are also made for the

hash table HR using both approaches. The experimental results in this case are shown

in Figure 7.3(b). The results in both cases are again closely related, with a deviation of

only 0.33%. This proves the accuracy of the cost model.

114 Optimised X-HYBRIDJOIN

600 700 800 900 1000 1100 1200
1.4

1.45

1.5

1.55

1.6

1.65
x 10

4

Disk buffer size (tuples)

S
e

rv
ic

e
 r

a
te

 (
tu

p
le

s/
se

c)

Measured
Calculated

(a) Tuning Comparison for swappable part: based
on measurements vs cost model

1500 2000 2500 3000 3500
1.4

1.45

1.5

1.55

1.6

1.65
x 10

4

Size of disk−based hash table (tuples)
S

e
rv

ic
e

 r
a

te
 (

tu
p

le
s/

se
c)

Measured
Calculated

(b) Tuning Comparison for non-swappable part:
based on measurements vs cost model

Figure 7.3: Tuning comparisons for Optimised X-HYBRIDJOIN using both empirical and mathematical
approaches

7.5 Experimental Study

This section presents a series of experimental results. The experiments are conducted in

two dimensions. Section 7.5.1 compares the performance of Optimised X-HYBRIDJOIN

with other related algorithms. While Section 7.5.2 compares the calculated cost for Op-

timised X-HYBRIDJOIN with the measured cost.

7.5.1 Performance Evaluation

Similar to the performance analysis strategy used in previous chapters, the performance of

Optimised X-HYBRIDJOIN is compared by varying two parameters, the total allocated

memory M and the size of the master data R.

Performance comparisons when the size of R varies: In this experiment the per-

formance of Optimised X-HYBRIDJOIN has been compared with other join algorithms.

In this experiment it has been assumed that the size of the master data R varies expo-

nentially while the total allocated memory is fixed for all values of R. The performance

results are shown in Figure 7.4(a). It is clear that for all settings of R the performance

in the case of Optimised X-HYBRIDJOIN is significantly better than that of the other

algorithms.

7.5 Experimental Study 115

0.5 1 2 4 8
0

1

2

3

4

5

6
x 10

4

Size of R on disk (million tuples)
 on log scale

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

Optimised X−HYBRIDJOIN
X−HYBRIDJOIN
HYBRIDJOIN
R−MESHJOIN
MESHJOIN

(a) Performance comparison with 95% confidence in-
terval while M= 50MB and Rt varies.

50 100 150 200 250
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Total allocated memory (MB)

S
e
rv

ic
e
 r

a
te

 (
tu

p
le

s/
se

c)

Optimised X−HYBRIDJOIN
X−HYBRIDJOIN
HYBRIDJOIN
R−MESHJOIN
MESHJOIN

(b) Performance comparison with 95% confidence in-
terval while Rt=2 million tuples and M varies.

Figure 7.4: Performance comparisons of Optimised X-HYBRIDJOIN with other join algorithms

Performance comparisons for different memory budgets: In the second exper-

iment the performance of all algorithms has been tested using different memory budgets

while keeping the size of R fixed (2 million tuples). Figure 7.4(b) presents the comparisons

between all the approaches. For all memory budgets, Optimised X-HYBRIDJOIN again

performs significantly better than the other approaches.

In both scenarios the reason for the improvement in performance is the better execu-

tion layout of Optimised X-HYBRIDJOIN. In X-HYBRIDJOIN the data structures used

for some components are ineffective, causing unnecessary costs in processing the stream

tuples, and eventually this affects the performance of the algorithm negatively.

7.5.2 Cost Validation

In the second part of the experiments the cost model for each algorithm is validated by

comparing the calculated cost with the measured cost. Figure 7.5 presents the comparisons

of these costs. From the figure it can be observed that for each memory setting the

calculated cost is closely matched with the measured cost.

116 Optimised X-HYBRIDJOIN

50 100 150 200 250
0.015

0.02

0.025

0.03

0.035

0.04

0.045

Total memory (MB)

P
ro

ce
ss

in
g

 c
o

st
 (

se
co

n
d

s)

measured
calculated

Figure 7.5: Cost validation

7.6 Summary

In this chapter a significant optimisation has been presented for X-HYBRIDJOIN. X-

HYBRIDJOIN was designed to make use of non-uniformly distributed data as found in

real-world applications. In the investigation it has been discovered that the algorithm

has some architectural limitations which affect its performance. Data structures used for

some components, such as the non-swappable part of the disk buffer, are not optimal,

and create an additional look-up cost. In addition, the algorithm stores a major part of

the stream in memory. That part of the stream matches with the non-swappable part of

the disk buffer. This is unnecessary and generates extra costs in the form of loading and

unloading stream tuples into memory. On the basis of these observations an optimised

version of the existing X-HYBRIDJOIN called Optimised X-HYBRIDJOIN has been pre-

sented. In Optimised X-HYBRIDJOIN, efficient data structures allow stream tuples that

match with the non-swappable part of the master data to be processed independently

from those that match with the swappable part of the master data. The stream that

matches with the non-swappable part does not need to be stored in memory. This has

two advantages: (a) it eliminates the additional costs required for loading and unloading

the stream tuples into memory; (b) more stream tuples related to the swappable part can

be accommodated in memory. Mathematical costs have been calculated for the algorithm.

To obtain the maximum performance the algorithm has been tuned empirically as well as

mathematically (based on the cost model). A prototype of Optimised X-HYBRIDJOIN

7.6 Summary 117

has been implemented to compare its performance with that of related algorithms. The

experiments have proved that Optimised X-HYBRIDJOIN performs significantly better

than the other related approaches.

118 Optimised X-HYBRIDJOIN

8
Generalisation of Optimised

X-HYBRIDJOIN

8.1 Introduction

Chapter 7 presented a stream-based algorithm called Optimised X-HYBRIDJOIN, which

is designed particularly for non-uniform distributions. The algorithm consists of two major

phases, the stream-probing phase and the disk-probing phase, both of which can execute

independently using efficient data structures. The experiments presented in Chapter 7

show that Optimised X-HYBRIDJOIN produces a better service rate than the other

approaches described in this research. However, the algorithm assumes that master data

is sorted on the basis of the frequency with which it has been accessed. Therefore, when

the most frequently accessed tuples in the master data change while the algorithm is

running, the performance of the algorithm slows down due to the presence of unsorted

master data. To scale up the performance, the master data needs to be sorted again and

119

120 Generalisation of Optimised X-HYBRIDJOIN

this interrupts the working of the algorithm.

This issue provides motivation for presenting a generalised form of Optimised X-

HYBRIDJOIN called CACHEJOIN (Cache Join). CACHEJOIN introduces a new op-

eration known as frequency detection. The main purpose of this operation is to calculate

the frequency of matching for each disk tuple when it is loaded in the disk-probing phase.

If the frequency for any disk tuple crosses a certain threshold limit, that disk tuple is

switched into the stream-probing phase. The stream-probing phase contains those disk

tuples which are frequent in the input stream. Further details about CACHEJOIN are

presented in Section 8.2.

The key benefit of CACHEJOIN is that it removes the constraint of sorting the master

data. The experiments presented at the end of the chapter show that, for non-uniform

distributions, which are common in real-world applications [32, 63, 65, 67, 74, 89, 98,

106, 115, 116, 117], CACHEJOIN performs significantly better than MESHJOIN, R-

MESHJOIN and HYBRIDJOIN. However, CACHEJOIN performs slightly worse than

Optimised X-HYBRIDJOIN due to the additional costs required to compare the frequency

of matching for each disk tuple with the given threshold value and to switch the disk

tuple into the stream-probing phase if the condition is true. But against this small

performance loss CACHEJOIN removes the constraint of sorting the master data, which

is an acceptable contribution.

The rest of the chapter is structured as follows. Section 8.2 presents the memory

architecture, the execution layout and the pseudo-code for CACHEJOIN. In Section 8.3

the cost model for CACHEJOIN is derived. Section 8.4 describes the tuning module for

the algorithm. The experimental study is presented in Section 8.5 and finally Section 8.6

summarises the chapter.

8.2 CACHEJOIN

The main objective of CACHEJOIN is to eliminate the constraint of sorting the master

data with respect to the access frequency. CACHEJOIN performs optimally for non-

uniform distributions while unsorted master data exists on disk.

8.2 CACHEJOIN 121

8.2.1 Data Structures and Execution Architecture

This section gives a high-level description of CACHEJOIN, the detailed execution steps of

the algorithm being described in Section 8.2.2. Similar to Optimised X-HYBRIDJOIN the

CACHEJOIN algorithm also possesses two complementary hash join phases, somewhat

similar to Symmetric Hash Join [108, 109]. The memory architecture and the working lay-

out of the CACHEJOIN algorithm are mostly identical to the Optimised X-HYBRIDJOIN

algorithm except for the addition of one new operation, frequency detection. This section

does not repeat the details about the operations which are common between CACHEJOIN

and Optimised X-HYBRIDJOIN, and focuses only on the newly-added operation.

The execution architecture for CACHEJOIN is shown in Figure 8.1. As described

in the beginning of this section, the CACHEJOIN algorithm deals effectively with non-

uniform stream input by caching the frequent tuples of master data on a permanent basis.

In addition, the algorithm eliminates the constraints of sorting the master data. In order

to achieve these objectives, the algorithm compares the total number of matches against

each disk tuple with a certain threshold value while executing the disk probing phase. If

the total number of matches for any disk tuple is greater than the threshold value, that

tuple is then switched into the hash table HR. Moreover, the algorithm uses multi-hash-

map for storing the stream tuples in memory storing multiple stream tuples with the same

join attribute value. One advantage of choosing this data structure is that the algorithm

does not need an additional operation to determine the frequency of matching each disk

tuple. Further details about the process are presented in Section 8.2.3. The stream-

probing phase is used to boost the performance of the algorithm by quickly matching

the frequently-used master data. The question of where to set the threshold arises, i.e.

how frequently must a stream tuple be used in order to get into this phase, so that the

memory sacrificed for this phase really delivers a performance advantage. In Section 8.3

a precise and comprehensive analysis is given that shows that a remarkably small stream-

probing phase can deliver a substantial performance gain. In fact, CACHEJOIN will

be tuned to a provably optimal distribution of memory between the two phases, and

the components within the phases. In order to corroborate this theoretical model, the

experimental performance measurements are also provided later in this chapter to show

that the model is highly accurate.

122 Generalisation of Optimised X-HYBRIDJOIN

Output

.

.

. . .

Disk-based

master data

R

If not matched

Disk buffer

Stream

buffer

tm t1

Queue

Hash

function

Output

Hash table (HR)

contains frequent

disk tuples

Hash table (HS)

contains stream

If matched

t3 t2

Stream

S

Hash

function

Frequency

detection

frequency ≥ threshold value

mapping

Stream probing

phase
Disk probing

phase

Figure 8.1: Data structure and architecture of CACHEJOIN

One additional feature that CACHEJOIN supports is the changing of the size of

the master data on disk while the algorithm is running. It does not interrupt the al-

gorithm, unlike the some existing approaches e.g. X-HYBRIDJOIN and Optimised X-

HYBRIDJOIN.

8.2.2 Algorithm

The pseudo-code for CACHEJOIN, shown in Algorithm 6, is mostly similar to that of

Optimised X-HYBRIDJOIN stated in Chapter 7 with only the addition of some steps

about frequency comparison. The outer loop of the algorithm is an endless loop (line

2). The body of the outer loop has two main parts, the stream-probing phase and the

disk-probing phase. Due to the endless loop, these two phases are executed alternately.

Lines 3 to 11 comprise the stream-probing phase. The stream-probing phase has to

know the number of empty slots in HS. This number is kept in variable hSavailable. At

the start of the algorithm, all slots in HS are empty (line 1). The stream-probing phase

has an inner loop that continues while stream tuples and empty slots in HS are available

(line 3). In the loop, the algorithm reads one input stream tuple t at a time (line 4).

The algorithm looks up t in HR (line 5). In the case of a match, the algorithm generates

the join output without storing t in HS (line 6). In the case that t does not match, the

algorithm loads t into HS while also enqueuing its key attribute value in the queue (line

8.3 Cost Calculation 123

8). The counter of empty slots in HS has to be decreased (line 9).

Lines 12 to 24 comprise the disk-probing phase. At the start of this phase, the al-

gorithm reads the oldest key attribute value from the queue and loads a segment of R

into the disk buffer, using that key attribute value as an index (line 12, 13). In an inner

loop, the algorithm looks up all tuples r one-by-one from the disk buffer into hash table

HS. In the case of a match, the algorithm generates the join output (line 16). Since HS

is a multi-hash-map, there can be more than one match, the number of matches being

f (line 17). The algorithm removes all matching tuples from HS while also deleting the

corresponding nodes from the queue (line 18). This creates empty slots in HS (line19).

Lines 20 to 22 are concerned with the frequency comparison and are explained separately

in the next section.

8.2.3 Frequency Comparison

The frequency comparison is described in lines 20 to 22 of the algorithm. Line 20 tests

whether the matching frequency f of the current tuple is larger than a pre-set threshold.

If yes, then this tuple is entered into HR. If there is no empty slot in HR the algorithm

overwrites any existing tuple in HR and increases the threshold value by one. The thresh-

old is a flexible barrier. Initially, an appropriate value is assigned to it while later on this

value can be varied depending on the frequency of disk tuples.

8.3 Cost Calculation

In this section the cost model is developed for the proposed CACHEJOIN. The memory

cost for CACHEJOIN is the same as that for Optimised X-HYBRIDJOIN because no

separate component is required to implement the frequency detection operation. How-

ever, the processing cost for CACHEJOIN is slightly different from that of Optimised

X-HYBRIDJOIN due the one additional operation. It is intuitively clear that there is a

trade-off between the memory consumption of the various components. The equations of

the cost model are used in the tuning process to find the optimal size for each component

of the algorithm using calculus of variations. The notations used in the cost model are

given in Tables 3.1, 4.1 and 7.1.

124 Generalisation of Optimised X-HYBRIDJOIN

Algorithm 6 CACHEJOIN

Input: A master data R with an index on join attribute and a stream of updates S.
Output: R ./ S
Parameters: w (where w=wS+wN)tuples of S and k number of pages of R.
Method:

1: hSavailable← hS
2: while (true) do
3: while (stream available AND hSavailable > 0) do
4: READ a stream tuple t from the stream buffer
5: if t ∈ HR then
6: OUTPUT t ./ HR

7: else
8: ADD stream tuple t into HS along with placing its join attribute values into Q
9: hSavailable← hSavailable− 1

10: end if
11: end while
12: READ the oldest join attribute value from Q
13: READ a segment of R into the disk buffer using the oldest join attribute value from

the queue for the index look-up.
14: for each tuple r in the disk buffer do
15: if r ∈ HS then
16: OUTPUT r ./ HS

17: f ← number of matching tuples found in HS

18: DELETE all matched tuples from HS along with the corresponding nodes from
Q

19: hSavailable← hSavailable+ f
20: if (f ≥thresholdvalue) then
21: SWITCH the tuple ri into hash table HR

22: end if
23: end if
24: end for
25: end while

8.3.1 Memory Cost

As mentioned above, the memory cost for CACHEJOIN and Optimised X-HYBRIDJOIN

are the same therefore, Equation 7.1 is reused here for calculating the memory cost of the

CACHEJOIN components.

8.3.2 Processing Cost

Due to an additional operation the processing cost of CACHEJOIN is slightly different

from that of Optimised X-HYBRIDJOIN and therefore, it needs to calculate the process-

8.4 Tuning 125

ing cost for CACHEJOIN. Similar to the previous strategies the processing cost for each

individual component is calculated first and then these costs are accumulated to calculate

the total processing cost for one iteration.

I/O cost to load the swappable part (nanosec)= cI/O(k.vP)

Cost to load frequently used tuples of master data into the disk-based hash table(nanosec)=

hR.cS

Cost for probing wN stream tuples in the disk-based hash table (nanosec)= wN .cH

Probing cost for the swappable part (nanosec)= d.cH

Cost to compare the frequency of all the tuples in the disk buffer with the threshold value

(nanosec)= d.cF

Cost to generate output for wN tuples (nanosec)= wN .cO

Cost to generate output for wS tuples (nanosec)= wS.cO

Cost to read wN tuples from stream S (nanosec)= wN .cS

Cost to read wS tuples from stream S (nanosec)= wS.cS

Cost to delete wS tuples from the hash table and the queue (nanosec)= wS.cE

Cost to append wS tuples into the hash table and the queue (nanosec)= wS.cA

Since the most frequently used disk-based tuples are loaded into the disk-based hash table

only once and they are very small in number, hR.cS is ignored. By aggregating all the

above costs except hR.cS the total cost of the algorithm for one iteration can be calculated

as given in Equation 8.1.

cloop(secs) = 10−9[cI/O(k.vP)+d(cH+cF)+wS(cO+cE+cS+cA)+wN(cH+cO+cS)] (8.1)

Since the algorithm processes wN plus wS tuples of stream S in cloop seconds, the service

rate µ can be calculated using Equation 8.2.

µ =
wN + wS
cloop

(8.2)

8.4 Tuning

Similar to the other approaches the CACHEJOIN algorithm is also tuned in order to

obtain the optimal performance under limited resources. Both empirical and mathe-

126 Generalisation of Optimised X-HYBRIDJOIN

500 600 700 800 900 1000 1100 1200
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
x 10

4

Size of disk buffer (tuples)

S
e

rv
ic

e
 r

a
te

 (
tu

p
le

s
/s

e
c
)

measured
calculated

(a) Tuning of disk buffer

1500 2000 2500 3000 3500
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
x 10

4

Size of hash table H
R

 (tuples)

S
e
rv

ic
e
 r

a
te

 (
tu

p
le

s
/s

e
c
)

measured
calculated

(b) Tuning of hash table HR containing disk pages

Figure 8.2: Tuning Comparisons: empirical approach vs mathematical approach

matical approaches for tuning the CACHEJOIN algorithm are quite similar to those

which have been presented for the Optimised X-HYBRIDJOIN algorithm. The rea-

son for this similarity is that, CACHEJOIN also implements the two phases, stream-

probing and disk-probing, in an identical way. However, the tuning results obtained in

the case of CACHEJOIN are different from those which have been achieved in Optimised

X-HYBRIDJOIN because of the additional cost due to the frequency comparison opera-

tion. Therefore, the details of the tuning approaches are skipped and the comparisons of

the tuning results using both empirical and mathematical approaches are made directly.

8.4.1 Comparisons of Tuning Results

In this section the tuning results obtained through measurements are compared with the

tuning results calculated using the cost model. Figure 8.2(a) shows the empirical and the

mathematical tuning results for the disk buffer size d. It can be observed from the figure

that the results in both cases are reasonably similar, with a deviation of only 2.5%.

Figure 8.2(b) shows the empirical and the mathematical tuning results for the size of hash

table HR. Again it is fair to say that the results in both cases are reasonably similar, with

a deviation of only 0.65%. This is already a corroboration of the accuracy of the cost

model.

8.5 Performance Experiments 127

8.5 Performance Experiments

This section presents a series of experimental comparisons between CACHEJOIN and

other relevant approaches. The main objective is to analyse how much less efficiently

CACHEJOIN performs as compared to Optimised X-HYBRIDJOIN. However, both of

these approaches are also compared with HYBRIDJOIN, R-MESHJOIN and MESHJOIN

to clarify how much the stream-probing phase contributes in the performance. This is

necessary because none of the other three approaches, HYBRIDJOIN, R-MESHJOIN and

MESHJOIN, contain the stream-probing phase.

The behaviour of the algorithm has been tested using three different parameters. These

three parameters are: the size of the master data table R, the total memory available, and

the exponent of the Zipfian distribution. In the presentation here, for the sake of brevity,

the discussion for each parameter has been restricted to the one-dimensional variation,

i.e. one parameter has been varied at a time.

Performance comparisons for varying size of R: In this experiment the perfor-

mance of all approaches has been tested by varying the size of the master data. While the

values of the other two parameters are fixed, the Zipfian exponent is equal to 1 and the

total memory available is equal to 50MB. The exponent value of the Zipfian distribution

has been set to 1 because it is a type of skew that is observed frequently in practice. The

discrete sizes of the parameter, the size of the master data R, from a simple geometric

progression have been chosen. One thing which is important to mention here is that it

is only for Optimised X-HYBRIDJOIN where the master data R has been considered

to be sorted with respect to access frequency, while for all other approaches R has been

considered to be unsorted. The performance results are shown in Figure 8.3(a). It can be

observed that for all settings of R CACHEJOIN performs slightly worse than Optimised

X-HYBRIDJOIN while it performs significantly better than the other three approaches.

Performance comparisons for different memory budgets: In the second ex-

periment the performance of all these algorithms has been tested using different memory

budgets while keeping the size of R fixed (2 million tuples) and choosing 1 as the Zip-

fian exponent. Figure 8.3(b) presents the performance comparisons of all approaches. In

this experiment, for all memory budgets CACHEJOIN again performs significantly better

than the other three approaches, while slightly worse than Optimised X-HYBRIDJOIN.

128 Generalisation of Optimised X-HYBRIDJOIN

1 2 4 8
10

3

10
4

10
5

Size of R (million tuples)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

Optimised X−HYBRIDJOIN
CACHEJOIN
HYBRIDJOIN
R−MESHJOIN
MESHJOIN

(a) Performance comparison with 95% confidence in-
terval while M= 50MB and Rt varies (on log scale).

50 100 150 200 250
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Total memory (MB)

S
e

rv
ic

e
 r

a
te

 (
tu

p
le

s/
se

c)

Optimised X−HYBRIDJOIN
CACHEJOIN
HYBRIDJOIN
R−MESHJOIN
MESHJOIN

(b) Performance comparison with 95% confidence in-
terval while Rt=2 million tuples and M varies.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.25 0.5 0.75 1

S
e
rv

ic
e
 r

a
te

 (
tu

p
le

s
/s

e
c
)

x 104

Zipfian exponent value

Optimised X-HYBRIDJOIN

CACHEJOIN

HYBRIDJOIN

R-MESHJOIN

MESHJOIN

(c) Value of Zipfian exponent varies

Figure 8.3: Performance comparisons of CACHEJOIN with related join algorithms

Performance comparisons by varying skew in stream S : The performance

of CACHEJOIN has also been tested with the other related algorithms while varying

the skew in input stream S. To vary the skew, the value of the Zipfian exponent has

been varied. In the experiment it is allowed to range from 0 to 1. At 0 the input

stream S is uniform while at 1 the stream has a larger skew. The results presented

in Figure 8.3(c) show that CACHEJOIN performs nearly equally with Optimised X-

HYBRIDJOIN for uniform and moderately-skewed data. However, for largely skewed

data the performance of CACHEJOIN decreases slightly, compared to Optimised X-

HYBRIDJOIN. If CACHEJOIN is compared with the other three approaches, it performs

better for moderately-skewed data, and this improvement becomes more pronounced for

8.5 Performance Experiments 129

larger-skewed data. The data for exponents larger than 1 is not presented, which would

imply short tails. It is clear that the trend continues for such short tails, but the focus was

on understanding the limitations of the proposed approach. For completely uniform data,

however, CACHEJOIN and Optimised X-HYBRIDJOIN perform worse than MESHJOIN

and R-MESHJOIN by a constant factor because the former two approaches make pro-

visions for adaptation that remain unused while both MESHJOIN and R-MESHJOIN

reduce seek time.

There are two plausible reasons behind this slightly worse performance in the case

of CACHEJOIN for all the above three parameters: one is the addition of the new op-

eration, frequency detection, which increases the processing cost for CACHEJOIN. The

other reason is the unsorted master data. Although this does not affect the performance

of stream-probing phase, it affects performance of the disk-probing phase because the

disk-probing phase can produce a comparatively lower number of matchings than Opti-

mised X-HYBRIDJOIN. But besides this slightly lower performance, the advantage of

CACHEJOIN is that it removes the need to sort the huge amount of master data on disk,

which is an important contribution.

Finally, it can be concluded that after presenting both the Optimised X-HYBRIDJOIN

and CACHEJOIN algorithms one has at least the option of choosing the best alternative

based on the nature of the master data. When the master data is not changing frequently,

Optimised X-HYBRIDJOIN would probably be a better option than CACHEJOIN for

obtaining the maximum performance. The reason for this is that the master data needs

to be sorted only once before starting the execution of the algorithm. On the other hand,

when the master data is changing frequently, CACHEJOIN is a more appropriate option

than Optimised X-HYBRIDJOIN.

8.5.1 Cost Validation

In the second dimension of the experiments the cost for the CACHEJOIN algorithm has

been validated by comparing the calculated cost with the measured cost. Figure 8.4

presents the comparisons of both costs at different memory settings. The figure demon-

strates that at each memory setting the calculated cost is closely matched with the mea-

sured cost, which is evidence that the implementation of the CACHEJOIN algorithm is

130 Generalisation of Optimised X-HYBRIDJOIN

50 100 150 200 250
0.018

0.02

0.022

0.024

0.026

0.028

0.03

Total memory (MB)

P
ro

ce
ss

in
g

co
st

 (
se

co
n

d
s)

measured
calculated

Figure 8.4: Cost validation

accurate.

8.6 Summary

In this chapter a new generalised stream-based join called CACHEJOIN has been pre-

sented that can be used to join a stream with a disk-based, slowly-changing master data

table. This is called a generalised approach because of two reasons: first, it involves

no assumption about sorting the master data, secondly it performs considerably better

than the other approaches discussed except Optimised X-HYBRIDJOIN for all kinds of

skewed, non-uniformly distributed data, as found in real-world applications. A cost model

for CACHEJOIN has been presented that has also been used to precisely tune the rela-

tive size of the components of the algorithm. The provided experimental data has showed

an improvement of CACHEJOIN over the other three approaches. The cost model of

CACHEJOIN has been validated by comparing it with empirical results.

9
Conclusions and Future Directions

9.1 Summary of the Thesis

The primary focus of this research was to design an efficient join algorithm for the process-

ing of stream data with persistent data. The key challenge that these kinds of algorithms

normally face is to minimize the bottleneck that occurs due to disk access cost. One

well known algorithm called MESHJOIN was designed previously to address this issue.

Although it is a successful attempt in this direction, there are limitations, which are

described and addressed in this thesis.

One issue that MESHJOIN faces is the allocation of memory to a key component

called disk buffer of the algorithm. MESHJOIN did not provide data on the position of the

optimal value depending on the memory size. In the literature the algorithm was tested at

one particular memory settings for this component and no performance comparisons were

made between this particular and default memory settings for the specified component.

In Chapter 3 this research provided more data which shows that by adopting the default

131

132 Conclusions and Future Directions

settings the algorithm performs worse by only a small constant factor. Although tuning of

such algorithms is good to obtain the maximum performance, at least one has the option

to bypass the tuning module if a small drop in performance is acceptable.

The second issue in MESHJOIN that was explored in this research is the unnecessary

dependency between the join components. Due to this dependency the algorithm is unable

to optimally distribute the memory among the components. This issue was resolved in

Chapter 4 after presenting a revised version of MESHJOIN called R-MESHJOIN. The

R-MESHJOIN algorithm removed the complex dependency that creates the problem in

MESHJOIN. A simple and accurate cost model for distributing the memory among the

components was presented for R-MESHJOIN.

The other two important issues explored in this research are: (a) the approach to

accessing the master data (b) dealing effectively with intermittency in stream data. Fol-

lowing these observations a new join algorithm called HYBRIDJOIN was introduced in

Chapter 5. HYBRIDJOIN uses an efficient strategy to access the master data and can

deal with intermittency in stream data effectively. A new cost model was derived for HY-

BRIDJOIN and the algorithm was tuned based on the cost model. A synthetic workload

was also generated for testing the performance of the algorithm.

HYBRIDJOIN is an adaptive approach for joining stream data with the master data

data however, it does not take into account some features of real world data. Therefore,

an extended version of HYBRIDJOIN called X-HYBRIDJOIN was proposed in Chap-

ter 6. X-HYBRIDJOIN includes all the features of HYBRIDJOIN plus some additional

features. These additional features add a significant contribution in the performance of

the algorithm, especially for non-uniform stream data. A cost model was derived for

X-HYBRIDJOIN and it was validated empirically.

The X-HYBRIDJOIN algorithm was an effective first step in dealing with features

of real world data. However, the data structures chosen for some components of X-

HYBRIDJOIN were not optimal. To improve the performance of the algorithm some

modifications were made and a robust Optimised X-HYBRIDJOIN algorithm was intro-

duced in Chapter 7. The Optimised algorithm uses efficient data structures for all its

components improving the performance of the algorithm significantly.

Optimised X-HYBRIDJOIN algorithm is the most optimal one among those described

however, it assumes that the master data is sorted in the order of access frequency.

9.2 Achievements 133

To remove this assumption another attempt was made in the form of CACHEJOIN in

Chapter 8. CACHEJOIN is a generalised algorithm that was designed to process non-

uniform stream data with unsorted disk data. It was proven through experimentation

that CACHEJOIN performs better than all the other algorithms except Optimised X-

HYBRIDJOIN. The cost model was derived for tuning CACHEJOIN and the cost model

was validated empirically.

9.2 Achievements

The following list highlights the major achievements of this research:

1. A detailed literature review was conducted into stream-based join algorithms. This

comprehensive review enabled us to find the research gap in this area.

2. A well known stream-based join algorithm MESHJOIN was explored and a number

of research issues were identified. The performance of the algorithm at default

memory settings for a key component was not described in the literature. A rigorous

performance analysis at both optimal as well as at default settings was carried out.

The experiments proved that using default settings the algorithm performs worse

only by a small constant factor which is important especially when the tuning is an

overhead that gains only a small increase in performance.

3. An alternative approach called R-MESHJOIN was introduced to remove the complex

dependencies between the MESHJOIN components. A simple and accurate cost

model was proposed for R-MESHJOIN. This enabled R-MESHJOIN to optimally

distribute the memory among the components. The performance of the algorithm

was also improved slightly.

4. A new algorithm HYBRIDJOIN was introduced to resolve the issues related to disk

access strategy and stream intermittency. The cost of HYBRIDJOIN was calculated

and the algorithm was tuned based on the cost model. A synthetic work load was

designed in order to test the performance of the algorithm.

5. To make HYBRIDJOIN more specific to real world applications an extension of

it was proposed in the form of X-HYBRIDJOIN. The cost model and the tuning

134 Conclusions and Future Directions

of the algorithm were also carried out. The experimental study proved that X-

HYBRIDJOIN performs remarkably better than HYBRIDJOIN. To enhance the

performance further the data structures used by the components of X-HYBRIDJOIN

were improved. This was achieved in Optimised X-HYBRIDJOIN. A cost model and

tuning module for Optimised X-HYBRIDJOIN were also derived.

6. Finally, a generalised approach for processing stream data with persistent data was

presented in the form of CACHEJOIN. The CACHEJOIN algorithm removed one

limitation of Optimised X-HYBRIDJOIN to do with sorting the master data. The

cost of the algorithm was calculated and the algorithm was tuned based on the cost

model. Experiments proved that CACHEJOIN performs significantly better than

other approaches and only slightly worse than Optimised X-HYBRIDJOIN.

9.3 Directions for Future Research

This section describes two directions in which this research can be extended. The first is

to explore further improvements to the join operators. The second is to investigate how

the join operator can play a role in emerging application scenarios. In the following a

number of possible examples are discussed for each direction.

9.3.1 Extensions

There are various ways that the join operators could be extended further. Two directions

are presented here.

Non-equijoin

The focus of this research was on equijoins, but there are many other join operators that

are widely used, such as non-equijoin. Equijoins are used in the transformation layer

of ETL (Extract-Transform-Loading) where joins are executed between the foreign key

attribute in stream data and the primary key attribute in master data. However, there

are practical scenarios where non-equijoin operators are needed to process stream data.

Consider for example a warehouse that contains temperature-sensitive merchandise,

where temperature sensors are deployed throughout the warehouse, reporting tempera-

9.3 Directions for Future Research 135

tures at regular intervals to a main system [101]. The sensor recordings will arrive in

a stream, and each product in the master data will have a temperature at which the

product will expire. One likely query will raise an alarm if the temperature of any part

of the warehouse is greater than the predefined temperature limit for a product stored

in the warehouse. The challenge of implementing non-equijoin queries is to organise the

master data appropriately. In this example, the speed of the query would be improved if

a clustered index on temperature is maintained on the master data.

Categorical Attributes

Another extension is to describe a join operator that deals with categorical attributes in

the master data efficiently. The current research focused on key values that were not used

to describe categories. Categorical data are binary attributes e.g. gender type (male or

female) or multiclass attributes e.g. product size (small, medium, large, extra large). The

join operators described in this research may be suboptimal for categorical data because

of I/O cost. The challenge here is to minimize this disk I/O cost by efficiently organising

the master data.

9.3.2 Applications

This section presents a number of real world applications where the future of these join

operators is bright.

Sensor Networks

Sensor networks are an emerging area for research in the field of computer science. A

number of applications can be found in the real world that have already adopted this

technology e.g. traffic monitoring systems [19], streetlight monitoring systems [60, 61],

telemonitoring in health [19], weather control systems [28], environment monitoring [4,

68, 99], etc.

Consider traffic management and road monitoring systems where sensors are installed

both on streets (toll monitoring) and vehicles (GPS, road conditions) [19]. These sensors

generate a large amount of data which needs to be processed in near-real-time. Efficient

join execution is necessary so that the required and accurate information can be sent to

136 Conclusions and Future Directions

all relevant destinations.

Mobile Networks

Mobile devices such as cellular phones, ipods, and laptops are becoming more and more

popular everyday. According to recent statistics there are about 5 billion mobile sub-

scribers worldwide. More than 700 mobile operators are spread across 222 countries and

territories of the world [80].

Users of mobile devices communicate with each other or with network servers. They

use remote data and services. Application scenarios include weather information, stock

trading, electronic email, market transactions, airline information, bill payment, transport

information, etc [77]. In every second a large number of requests are generated by the

users and most of these requests interact with databases. The processing of this high

volume of data is a challenging task requiring joins between data streams. Algorithms

that are less resource intensive for query processing are sought to scale the performance.

Green Networking

The revolution of green networking is becoming a hot topic. The major objectives of

green networking are [27]:

• less energy consumption,

• efficient energy utilisation,

• consideration of the environmental impact of network components from design to

end of use,

• integration of networks,

• making the network more intelligent.

According to a survey [78] the power consumption of desktop computers is 39% of total

power consumption. Local Area Network (LAN) is another power hungry infrastructure

that includes routers, switches, modems, and cabling. According to one study [107] this

power consumption can be decreased up to 90% if all desktop PCs are replaced with

laptops. It can be reduced further by replacing the wired infrastructure with wireless. In

9.4 Final Words 137

power saving environments less resource intensive algorithms are preferable for processing

data.

9.4 Final Words

The key contribution of this research in the area of stream processing is to design an

efficient join operator to process stream data with the master data. On the basis of

various intermediate steps three robust approaches were developed in this research. The

first one, called R-MESHJOIN, is efficient for uniform and continuous stream input data.

The second one, called Optimised X-HYBRIDJOIN, is robust for non-uniform stream

input data while the master data is sorted. The third one, called CACHEJOIN, is efficient

when the stream input data is non-uniform and the master data is unsorted.

There are further extensions that can be considered, one direction is to adapt the

algorithms for different kinds of data and different kinds of operators. The second direction

is to consider how the algorithms can be used in different application areas.

138 Conclusions and Future Directions

Bibliography

[1] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,

Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a

new model and architecture for data stream management. The VLDB Journal,

12:120–139, August 2003.

[2] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. Dover, New York, Ninth Dover

printing, tenth GPO printing edition, 1964.

[3] Chris Anderson. The Long Tail: Why the Future of Business Is Selling Less of

More. Hyperion, 2006.

[4] Kurt M. Anstreicher, Marcia Fampa, Jon Lee, and Joy Williams. Maximum-entropy

remote sampling. Discrete Appl. Math., 108:211–226, March 2001.

[5] Francisco Araque. Real-time data warehousing with temporal requirements. In

CAiSE Workshops, 2003.

[6] A Arasu, B Babcock, S Babu, J Cieslewicz, Keith Ito, Rajeev Motwani, Utkarsh

Srivastava, and U Srivastava. STREAM: The Stanford Data Stream Management

System. Concrete, 2004.

[7] Arvind Arasu, Shivnath Babu, and Jennifer Widom. An abstract semantics and

concrete language for continuous queries over streams and relations. Technical Re-

port 2002-57, Stanford InfoLab, 2002.

139

140 BIBLIOGRAPHY

[8] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query

language: semantic foundations and query execution. The VLDB Journal, 15:121–

142, June 2006.

[9] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S. Maskey,

Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. Linear road: a stream

data management benchmark. In Proceedings of the Thirtieth International Con-

ference on Very Large Data Bases - Volume 30, VLDB ’04, pages 480–491. VLDB

Endowment, 2004.

[10] Arvind Arasu and Jennifer Widom. Resource sharing in continuous sliding-window

aggregates. In Proceedings of the Thirtieth international conference on Very large

data bases - Volume 30, VLDB ’04, pages 336–347. VLDB Endowment, 2004.

[11] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer

Widom. Models and issues in data stream systems. In PODS ’02: Proceedings

of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, pages 1–16, New York, NY, USA, 2002. ACM.

[12] Shivnath Babu and Jennifer Widom. Continuous queries over data streams. SIG-

MOD Rec., 30:109–120, September 2001.

[13] Mohammad Hossein Bateni, Lukasz Golab, Mohammad Taghi Hajiaghayi, and

Howard Karloff. Scheduling to minimize staleness and stretch in real-time data

warehouses. In Proceedings of the twenty-first annual symposium on Parallelism in

algorithms and architectures, SPAA ’09, pages 29–38, New York, NY, USA, 2009.

ACM.

[14] Philip A. Bernstein and Dah-Ming W. Chiu. Using semi-joins to solve relational

queries. J. ACM, 28:25–40, January 1981.

[15] M W Blasgen and K P Eswaran. Storage and access in relational data bases. IBM

System, 16(4):363, 1977.

[16] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards sensor database

systems. In Proceedings of the Second International Conference on Mobile Data

Management, MDM ’01, pages 3–14, London, UK, 2001. Springer-Verlag.

BIBLIOGRAPHY 141

[17] Irina Botan, Gustavo Alonso, Peter M. Fischer, Donald Kossmann, and Nesime Tat-

bul. Flexible and scalable storage management for data-intensive stream processing.

In Proceedings of the 12th International Conference on Extending Database Tech-

nology: Advances in Database Technology, EDBT ’09, pages 934–945, New York,

NY, USA, 2009. ACM.

[18] Kjell Bratbergsengen. Hashing methods and relational algebra operations. In Pro-

ceedings of the 10th International Conference on Very Large Data Bases, VLDB

’84, pages 323–333, San Francisco, CA, USA, 1984. Morgan Kaufmann Publishers

Inc.

[19] G. Brettlecker, H. Schuldt, P. Fischer, and H.J. Schek. Integration of reliable sensor

data stream management into digital libraries. In Proceedings of the 1st Interna-

tional Conference on Digital Libraries: Research and Development, pages 66–76.

Springer-Verlag, 2007.

[20] Robert M. Bruckner, Beate List, and Josef Schiefer. Striving towards near real-

time data integration for data warehouses. In DaWaK 2000: Proceedings of the 4th

International Conference on Data Warehousing and Knowledge Discovery, pages

317–326, London, UK, 2002. Springer-Verlag.

[21] Abhirup Chakraborty and Ajit Singh. A partition-based approach to support

streaming updates over persistent data in an active datawarehouse. In IPDPS ’09:

Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed

Processing, pages 1–11, Washington, DC, USA, 2009. IEEE Computer Society.

[22] Abhirup Chakraborty and Ajit Singh. A disk-based, adaptive approach to memory-

limited computation of windowed stream joins. In Proceedings of the 21st Interna-

tional Conference on Database and Expert Systems Applications: Part I, DEXA’10,

pages 251–260, Berlin, Heidelberg, 2010. Springer-Verlag.

[23] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,

Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred

Reiss, and Mehul A. Shah. TelegraphCQ: continuous dataflow processing. In Pro-

142 BIBLIOGRAPHY

ceedings of the 2003 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’03, pages 668–668, New York, NY, USA, 2003. ACM.

[24] Sirish Chandrasekaran and Michael Franklin. Remembrance of streams past:

overload-sensitive management of archived streams. In Proceedings of the Thir-

tieth International Conference on Very Large Data Bases - Volume 30, VLDB ’04,

pages 348–359. VLDB Endowment, 2004.

[25] Sirish Chandrasekaran and Michael J. Franklin. Psoup: a system for streaming

queries over streaming data. The VLDB Journal, 12:140–156, August 2003.

[26] Su Chen, Mario A. Nascimento, Beng Chin Ooi, and Kian-Lee Tan. Continu-

ous online index tuning in moving object databases. ACM Trans. Database Syst.,

35:17:1–17:51, July 2010.

[27] Naveen Chilamkurti, Sherali Zeadally, and Frank Mentiplay. Green networking for

major components of information communication technology systems. EURASIP

J. Wirel. Commun. Netw., 2009:35:1–35:7, January 2009.

[28] H.L. Choi and J.P. How. Efficient targeting of sensor networks for large-scale sys-

tems. IEEE Transactions on Control Systems Technology, (99):1–9, 2010.

[29] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan Srinivasan.

An efficient SQL-based RDF querying scheme. In Proceedings of the 31st Interna-

tional Conference on Very Large Data Bases, VLDB ’05, pages 1216–1227. VLDB

Endowment, 2005.

[30] Corinna Cortes, Kathleen Fisher, Daryl Pregibon, and Anne Rogers. Hancock: a

language for extracting signatures from data streams. In Proceedings of the Sixth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’00, pages 9–17, New York, NY, USA, 2000. ACM.

[31] Chuck Cranor, Yuan Gao, Theodore Johnson, Vlaidslav Shkapenyuk, and Oliver

Spatscheck. Gigascope: High performance network monitoring with an SQL in-

terface. In Proceedings of the 2002 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’02, pages 623–623, New York, NY, USA, 2002.

ACM.

BIBLIOGRAPHY 143

[32] Tamraparni Dasu, Shankar Krishnan, Suresh Venkatasubramanian, and Ke Yi.

An information-theoretic approach to detecting changes in multi-dimensional data

streams. In In Proc. Symp. on the Interface of Statistics, Computing Science, and

Applications, 2006.

[33] David J. DeWitt and Jeffrey F. Naughton. Dynamic memory hybrid hash join.

Technical report, University of Wisconsin, 1995.

[34] David J. DeWitt, Jeffrey F. Naughton, and Joseph Burger. Nested loops revisited.

In Proceedings of the 2nd International Conference on Parallel and Distributed In-

formation Systems, PDIS ’93, pages 230–242, Washington, DC, USA, 1993. IEEE

Computer Society.

[35] David J. DeWitt, Jeffrey F. Naughton, and Donovan A. Schneider. An evaluation

of non-equijoin algorithms. In Proceedings of the 17th International Conference on

Very Large Data Bases, VLDB ’91, pages 443–452, San Francisco, CA, USA, 1991.

Morgan Kaufmann Publishers Inc.

[36] David J. DeWitt, Jeffrey F. Naughton, and Donovan A. Schneider. Parallel sorting

on a shared-nothing architecture using probabilistic splitting. In Proceedings of the

First International Conference on Parallel and Distributed Information Systems,

PDIS ’91, pages 280–291, Los Alamitos, CA, USA, 1991. IEEE Computer Society

Press.

[37] Nihal Dindar, Baris Güç, Patrick Lau, Asli Ozal, Merve Soner, and Nesime Tatbul.

Dejavu: declarative pattern matching over live and archived streams of events. In

Proceedings of the 35th SIGMOD International Conference on Management of Data,

SIGMOD ’09, pages 1023–1026, New York, NY, USA, 2009. ACM.

[38] Jens P Dittrich and Bernhard Seeger. Progressive merge join: A generic and non-

blocking sort-based join algorithm. In VLDB, pages 299–310, 2002.

[39] M. Fogiel. Basic electricity. Research & Education Assn, 2002.

[40] Michael J. Franklin, Shawn R. Jeffery, Sailesh Krishnamurthy, and Frederick Reiss.

Design considerations for high fan-in systems: The hifi approach. In Proceedings

144 BIBLIOGRAPHY

of Second Biennial Conference on Innovative Data Systems Research (CIDR’05),

pages 290–304, 2005.

[41] MJ Franklin and T. Urhan. Xjoin: A reactively-scheduled pipelined join operator.

IEEE Data Engineering Bulletin, 23(2):27–33, 2000.

[42] John E. Gaffney. Estimating the number of faults in code. IEEE Transactions on

Software Engineering, SE-10(4):459 –464, Jul. 1984.

[43] P.B. Gibbons, B. Karp, Y. Ke, S. Nath, and Srinivasan Seshan. Irisnet: an ar-

chitecture for a worldwide sensor web. Pervasive Computing, IEEE, 2(4):22 – 33,

2003.

[44] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Quicksand: Quick

summary and analysis of network data. Technical report, 2001.

[45] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss. Surfing

wavelets on streams: One-pass summaries for approximate aggregate queries. In

Proceedings of the 27th International Conference on Very Large Data Bases, VLDB

’01, pages 79–88, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[46] L. Golab, T. Johnson, and V. Shkapenyuk. Scheduling updates in a real-time stream

warehouse. In ICDE 2009: Proceedings of the 25th International Conference on Data

Engineering, pages 1207 –1210, 2009.

[47] Lukasz Golab and Theodore Johnson. Consistency in a stream warehouse. In

Conference on Innovative Data Systems Research (CIDR11), pages 114–122, 2011.

[48] Lukasz Golab, Theodore Johnson, Nick Koudas, DivesIvesh Srivastava, and David

Toman. Optimizing away joins on data streams. In Proceedings of the 2nd Inter-

national Workshop on Scalable Stream Processing System, SSPS ’08, pages 48–57,

New York, NY, USA, 2008. ACM.

[49] Lukasz Golab, Theodore Johnson, J. Spencer Seidel, and Vladislav Shkapenyuk.

Stream warehousing with datadepot. In SIGMOD ’09: Proceedings of the 35th

SIGMOD International Conference on Management of Data, pages 847–854, New

York, NY, USA, 2009. ACM.

BIBLIOGRAPHY 145

[50] Lukasz Golab, Theodore Johnson, and Oliver Spatscheck. Prefilter: predicate push-

down at streaming speeds. In Proceedings of the 2nd International Workshop on

Scalable Stream Processing System, SSPS ’08, pages 29–37, New York, NY, USA,

2008. ACM.

[51] Lukasz Golab and M. Tamer Özsu. Issues in data stream management. SIGMOD

Rec., 32(2):5–14, 2003.

[52] Lukasz Golab and M. Tamer Özsu. Update-pattern-aware modeling and processing

of continuous queries. In Proceedings of the 2005 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’05, pages 658–669, New York, NY,

USA, 2005. ACM.

[53] Hector Gonzalez, Jiawei Han, Xiaolei Li, and Diego Klabjan. Warehousing and

Analyzing Massive RFID Data Sets. In Proceedings of the 22nd International Con-

ference on Data Engineering, ICDE ’06, pages 83–83, Washington, DC, USA, 2006.

IEEE Computer Society.

[54] The STREAM Group. STREAM: The Stanford Stream Data Manager. Technical

Report 2003-21, Stanford InfoLab, 2003.

[55] Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized views:

Problems, techniques, and applications. IEEE Data Engineering Bulletin, 18:3–18,

1995.

[56] Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online aggregation. SIG-

MOD Rec., 28:287–298, June 1999.

[57] Moustafa A. Hammad, Walid G. Aref, and Ahmed K. Elmagarmid. Stream window

join: tracking moving objects in sensor-network databases. In Proceedings of the

15th International Conference on Scientific and Statistical Database Management,

SSDBM ’03, pages 75–84, Washington, DC, USA, 2003. IEEE Computer Society.

[58] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation.

SIGMOD Rec., 26:171–182, June 1997.

146 BIBLIOGRAPHY

[59] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Levy, and Daniel S. Weld.

An adaptive query execution system for data integration. SIGMOD Rec., 28(2):299–

310, 1999.

[60] Chunguo Jing, Dongmei Shu, and Deying Gu. Design of streetlight monitoring

and control system based on wireless sensor networks. In Proceedings of 2nd IEEE

Conference on Industrial Electronics and Applications, ICIEA’07, pages 57 –62,

May 2007.

[61] Chunguo Jing, Dongmei Shu, Deying Gu, and Bin Liu. Streetlight power cable

monitoring system based on wireless sensor networks. volume 0, pages 1284–1288,

Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[62] Alexandros Karakasidis, Panos Vassiliadis, and Evaggelia Pitoura. ETL queues

for active data warehousing. In IQIS ’05: Proceedings of the 2nd International

Workshop on Information Quality in Information Systems, pages 28–39, New York,

NY, USA, 2005. ACM.

[63] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in data

streams. In Proceedings of the Thirtieth International Conference on Very Large

Data Bases, VLDB ’04, pages 180–191. VLDB Endowment, 2004.

[64] Won Kim. A new way to compute the product and join of relations. In Proceed-

ings of the 1980 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’80, pages 179–187, New York, NY, USA, 1980. ACM.

[65] Jon Kleinberg. Bursty and hierarchical structure in streams. In Proceedings of the

Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’02, pages 91–101, New York, NY, USA, 2002. ACM.

[66] Donald E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting

and searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,

USA, 1998.

[67] Flip Korn, S. Muthukrishnan, and Yihua Wu. Modeling skew in data streams. In

Proceedings of the 2006 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’06, pages 181–192, New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 147

[68] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-Optimal Sensor Placements

in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies. J.

Mach. Learn. Res., 9:235–284, June 2008.

[69] S. Krishnamurthy, S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin,

J.M. Hellerstein, W. Hong, S. Madden, F. Reiss, and M.A. Shah. TelegraphCQ: An

architectural status report. IEEE Data Engineering Bulletin, 26(1):11–18, 2003.

[70] Wilburt Labio and Hector Garcia-Molina. Efficient snapshot differential algorithms

for data warehousing. In VLDB ’96: Proceedings of the 22th International Con-

ference on Very Large Data Bases, pages 63–74, San Francisco, CA, USA, 1996.

Morgan Kaufmann Publishers Inc.

[71] Wilburt Labio, Jun Yang, Yingwei Cui, Hector Garcia-Molina, and Jennifer Widom.

Performance issues in incremental warehouse maintenance. In VLDB ’00: Proceed-

ings of the 26th International Conference on Very Large Data Bases, pages 461–472,

San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[72] Wilburt Juan Labio, Janet L. Wiener, Hector Garcia-Molina, and Vlad Gorelik.

Efficient resumption of interrupted warehouse loads. SIGMOD Rec., 29(2):46–57,

2000.

[73] Ramon Lawrence. Early Hash Join: a configurable algorithm for the efficient and

early production of join results. In VLDB ’05: Proceedings of the 31st International

Conference on Very Large Data Bases, pages 841–852. VLDB Endowment, 2005.

[74] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. On the

self-similar nature of ethernet traffic (extended version). IEEE/ACM Transaction

on Networking, 2:1–15, February 1994.

[75] Gang Luo, J.F. Naughton, and C.J. Ellmann. A non-blocking parallel spatial join

algorithm. In ICDE’02. Proceedings of 18th International Conference on Data En-

gineering, pages 697 –705, 2002.

[76] S. Madden and M.J. Franklin. Fjording the stream: An architecture for queries

over streaming sensor data. In Proceedings of 18th International Conference on

Data Engineering, 2002., pages 555–566. IEEE, 2002.

148 BIBLIOGRAPHY

[77] Rajeswari Malladi and Karen C. Davis. Applying multiple query optimization in

mobile databases. In Proceedings of the 36th Annual Hawaii International Con-

ference on System Sciences (HICSS’03) - Track 9 - Volume 9, HICSS ’03, pages

294–303, Washington, DC, USA, 2003. IEEE Computer Society.

[78] S. Mingay. Green it: the new industry shock wave. Gartner RAS Core Research

Note G, 153703:2, 2007.

[79] Mohamed F. Mokbel, Ming Lu, and Walid G. Aref. Hash-merge join: A non-

blocking join algorithm for producing fast and early join results. In Proceedings of

the 20th International Conference on Data Engineering, ICDE ’04, pages 251–263,

Washington, DC, USA, 2004. IEEE Computer Society.

[80] M. Moretti. Globalization of mobile and wireless communications: Bridging the

digital divide. pages 19–29. Springer, 2011.

[81] M. Asif. Naeem, G. Dobbie, and G. Weber. Comparing global optimization and

default settings of stream-based joins. In VLDB Workshop (BIRTE’09), pages 155–

170, Lyon, France, 2009.

[82] M. Asif Naeem, Gillian Dobbie, and Gerald Weber. An event-based near real-

time data integration architecture. In EDOCW ’08: Proceedings of the 2008 12th

Enterprise Distributed Object Computing Conference Workshops, pages 401–404,

Washington, DC, USA, 2008. IEEE Computer Society.

[83] M. Asif Naeem, Gillian Dobbie, and Gerald Weber. HYBRIDJOIN for near-real-

time data warehousing. International Journal of Data Warehousing and Mining

(IJDWM), 7, 2011.

[84] M. Asif Naeem, Gillian Dobbie, and Gerald Weber. X-HYBRIDJOIN for near-

real-time data warehousing. In BNCOD’11: 28th British National Conference on

Databases, Manchester, UK., 2011. Springer.

[85] M. Asif Naeem, Gillian Dobbie, and Gerald Weber. Optimised X-HYBRIDJOIN

for near-real-time data warehousing. In ADC’12: 23rd Australasian Database Con-

ference, pages 21–30, Melbourne, Australia, 2012. Australian Computer Society.

BIBLIOGRAPHY 149

[86] M. Asif Naeem, Gillian Dobbie, Gerald Weber, and Shafiq Alam. R-MESHJOIN

for near-real-time data warehousing. In DOLAP’10: Proceedings of the ACM 13th

International Workshop on Data Warehousing and OLAP, pages 53–60, Toronto,

Canada, 2010. ACM.

[87] M. Asif Naeem, Gillian Dobbie, Gerald Weber, and Imran Sarwar Bajwa. Effi-

cient usage of memory resources in near-real-time data warehousing. In IMTIC’12:

Proceedings of the International Multi-topic Conference, Pakistan, 2012. Springer.

[88] A Nguyen and A Tjoa. Zero-latency data warehousing for heterogeneous data

sources and continuous data streams. In iiWAS’2003 - The Fifth International

Conference on Information Integrationand Web-based Applications Services, pages

55–64, 2003.

[89] Vern Paxson and Sally Floyd. Wide-area traffic: the failure of Poisson modeling.

SIGCOMM Comput. Commun. Rev., 24:257–268, October 1994.

[90] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, and N.E. Frantzell. Sup-

porting streaming updates in an active data warehouse. In ICDE 2007: Proceedings

of the 23rd International Conference on Data Engineering, pages 476–485, Istanbul,

Turkey, 2007.

[91] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, and N.E. Frantzell. Mesh-

ing streaming updates with persistent data in an active data warehouse. IEEE

Trans. on Knowledge and Data Engineering, 20(7):976–991, 2008.

[92] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.

McGraw-Hill, Inc., New York, NY, USA, 2nd edition, 1999.

[93] Leonard D. Shapiro. Join processing in database systems with large main memories.

ACM Trans. Database Syst., 11(3):239–264, 1986.

[94] Eugene J. Shekita and Michael J. Carey. A performance evaluation of pointer-based

joins. SIGMOD Rec., 19:300–311, May 1990.

[95] John Miles Smith and Philip Yen-Tang Chang. Optimizing the performance of a

relational algebra data base interface. In Proceedings of the 1975 ACM SIGMOD

150 BIBLIOGRAPHY

International Conference on Management of Data, SIGMOD ’75, pages 64–64, New

York, NY, USA, 1975. ACM.

[96] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 requirements of

real-time stream processing. SIGMOD Rec., 34:42–47, December 2005.

[97] Mark Sullivan and Andrew Heybey. Tribeca: a system for managing large databases

of network traffic. In Proceedings of the Annual Technical Conference on USENIX,

ATEC ’98, pages 2–2, Berkeley, CA, USA, 1998. USENIX Association.

[98] Aaron Sun, Daniel Dajun Zeng, and Hsinchun Chen. Burst detection from multiple

data streams: a network-based approach. Trans. Sys. Man Cyber Part C, 40:258–

267, May 2010.

[99] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson, and David

Culler. An analysis of a large scale habitat monitoring application. In Proceedings of

the 2nd International Conference on Embedded Networked Sensor Systems, SenSys

’04, pages 214–226, New York, NY, USA, 2004. ACM.

[100] Yufei Tao, Man Lung Yiu, Dimitris Papadias, Marios Hadjieleftheriou, and Nikos

Mamoulis. RPJ: producing fast join results on streams through rate-based opti-

mization. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD International

Conference on Management of Data, pages 371–382, New York, NY, USA, 2005.

ACM.

[101] Peter A. Tucker, David Maier, and Tim Sheard. Applying punctuation schemes to

queries over continuous data streams. IEEE Data Eng. Bull., 26(1):33–40, 2003.

[102] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and D. Kossmann. Predictable

performance for unpredictable workloads. Proc. VLDB Endow., 2:706–717, August

2009.

[103] Tolga Urhan and Michael J. Franklin. Xjoin: Getting fast answers from slow and

bursty networks. Technical report, University of Maryland, 1999.

[104] Tolga Urhan and Michael J. Franklin. Dynamic pipeline scheduling for improving

interactive query performance. In Proceedings of the 27th International Conference

BIBLIOGRAPHY 151

on Very Large Data Bases, VLDB ’01, pages 501–510, San Francisco, CA, USA,

2001. Morgan Kaufmann Publishers Inc.

[105] Stratis D. Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the output

rate of multi-way join queries over streaming information sources. In VLDB ’2003:

Proceedings of the 29th International Conference on Very large Data Bases, pages

285–296. VLDB Endowment, 2003.

[106] Michail Vlachos, Kun-Lung Wu, Shyh-Kwei Chen, and Philip S. Yu. Correlating

burst events on streaming stock market data. Data Min. Knowl. Discov., 16:109–

133, February 2008.

[107] M. Webb. Smart 2020: Enabling the low carbon economy in the information age.

The Climate Group London, 2008.

[108] A. N. Wilschut and P. M. G. Apers. Pipelining in query execution. In Proceedings of

the International Conference on Databases, Parallel Architectures and Their Appli-

cations (PARBASE 1990), Miami Beach, FL, USA, pages 562–562, Los Alamitos,

March 1990. IEEE Computer Society Press.

[109] Annita N. Wilschut and Peter M. G. Apers. Dataflow query execution in a par-

allel main-memory environment. In PDIS ’91: Proceedings of the First Interna-

tional Conference on Parallel and Distributed Information Systems, pages 68–77,

Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.

[110] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event pro-

cessing over streams. In Proceedings of the 2006 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’06, pages 407–418, New York, NY,

USA, 2006. ACM.

[111] J. Xie and J. Yang. A survey of join processing in data streams. Data Streams,

pages 209–236, 2007.

[112] Y. Ya-xin, Y. Xing-hua, Y. Ge, and W. Shan-shan. An indexed non-equijoin algo-

rithm based on sliding windows over data streams. Wuhan University Journal of

Natural Sciences, 11(1):294–298, 2006.

152 BIBLIOGRAPHY

[113] Yin Yang and Dimitris Papadias. Just-in-time processing of continuous queries. In

Proceedings of the 2008 IEEE 24th International Conference on Data Engineering,

pages 1150–1159, Washington, DC, USA, 2008. IEEE Computer Society.

[114] Xin Zhang and Elke A. Rundensteiner. Integrating the maintenance and synchro-

nization of data warehouses using a cooperative framework. Information System,

27(4):219–243, 2002.

[115] Xin Zhang and D. Shasha. Better burst detection. In ICDE ’06: Proceedings of the

22nd International Conference on Data Engineering, pages 146–146, April 2006.

[116] Shanzhong Zhu and Chinya Ravishankar. A scalable approach to approximating

aggregate queries over intermittent streams. In Proceedings of the 16th Interna-

tional Conference on Scientific and Statistical Database Management, pages 8–94,

Washington, DC, USA, 2004. IEEE Computer Society.

[117] Yunyue Zhu and Dennis Shasha. Efficient elastic burst detection in data streams.

In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’03, pages 336–345, New York, NY, USA, 2003.

ACM.

[118] Yue Zhuge, Héctor Garćıa-Molina, Joachim Hammer, and Jennifer Widom. View

maintenance in a warehousing environment. In SIGMOD ’95: Proceedings of the

1995 ACM SIGMOD International Conference on Management of Data, pages 316–

327, New York, NY, USA, 1995. ACM.

A
HYBRIDJOIN

A.1 Analysis of w with respect to its Related Com-

ponents

Chapter 5 provides a list of components which have a direct impact on the input size

w of the algorithm. This appendix presents details of the experiments which have been

conducted to observe the individual effects of each component on w.

A.1.1 Effect of the Size of the Master Data on w

An experiment has been conducted to observe the effect of the size of the master data,

denoted by Rt, on w. In this experiment the value of Rt has been increased exponentially

while keeping the values for all other parameters, hS and d, fixed. The results of this

experiment are shown in Figure A.1 (a). It is clear that the increase in Rt affects w

negatively. This can be explained as follows: increasing Rt decreases the probability of

153

154 HYBRIDJOIN

0.5 1 2 4 8
10

1

10
2

10
3

Size of R (million tuples)
 on log−log scale

w
 (

tu
pl

es
)

(a) Effect of size of R on w

0.32 0.64 1.28 2.56 5.12
10

2

10
3

10
4

Size of hash table (million tuples)
 (on log−log scale)

w
 (

tu
pl

es
)

(b) Effect of size of hash table on w

250 500 1000 2000 4000
10

1

10
2

10
3

Size of disk buffer (tuples)
 (on log−log scale)

w
 (

tu
pl

es
)

(c) Effect of size of disk buffer on w

Figure A.1: Analysis of w while varying the size of necessary components

matching the stream tuples for the disk buffer. Therefore, the relationship of Rt with w

is inversely proportional, represented mathematically as w ∝ 1
Rt

.

A.1.2 Effect of the Hash Table Size on w

This experiment has been conducted to examine the effect of hash table size hS on w. In

order for us to observe the individual effect of hS on w, the values for other parameters, Rt

and d, have been assumed to be fixed. The value of hS has been increased exponentially

and w has been measured for each setting. The results of the experiment are shown in

Figure A.1 (b). It can be observed that w increases at an equal rate while increasing hS.

A.1 Analysis of w with respect to its Related Components 155

The reason is for this is that by increasing hS more stream tuples can be accommodated

in memory. Therefore, the matching probability for the tuples in the disk buffer with the

stream tuples increases and that causes w to increase. Hence, w is directly proportional

to hS which can be described mathematically as w ∝ hS.

A.1.3 Effect of the Disk Buffer Size on w

Another experiment has been conducted to analyse the effect of the disk buffer size d on w.

Again so that the effect of only d on w can be observed, the values for other parameters,

Rt and hS, have been considered to be fixed. The size of the disk buffer has been increased

exponentially and w has been measured against each setting. Figure A.1 (c) presents the

results of this experiment. It is clear that increasing d result in w increasing at the same

rate. The reason for this behavior is that, when d increases, more disk tuples can be

loaded into the disk buffer. This increases the probability of matching for stream tuples

with the tuples in the disk buffer and eventually w increases. The relationship of w with

d is directly proportional, i.e. w ∝ d.

156 HYBRIDJOIN

B
X-HYBRIDJOIN

B.1 Analysis of w based on Necessary Components

A list of the necessary components that can affect the input size w of the X-HYBRIDJOIN

algorithm has been presented in Chapter 6. To visualise the individual effect of each com-

ponent on w a number of experiments have been carried out. The following subsections

describe these experiments one-by-one.

B.1.1 Effect of the Non-swappable Part of the Disk Buffer on w

This experiment has been conducted to analyse the effect of the size of the non-swappable

part of the disk buffer, denoted by dN , on w. Note that the non-swappable part contains

the highly-used pages of R. To observe the individual effect of this component, the values

of the other parameters dS, Rt, and hs have been fixed. The results of this experiment are

shown in Figure B.1(a) where dN has been increased sequentially and w has been measured

157

158 X-HYBRIDJOIN

against each setting of dN . It is clear that when dN is increased, w also increases, but the

rate of increase in w is not same as that of dN . However, this increasing rate can be defined

by some power factor. This behaviour can be explained as follows: initially increasing dN

increases the matching probability of the stream tuples with the non-swappable part of

the disk buffer rapidly and this ultimately increases w. However, further increases in dN

do not increase this probability by the same rate, because the frequency of matching the

stream tuples with the disk-pages, stored at later positions in the non-swappable part,

decreases.

B.1.2 Effect of the Swappable Part of the Disk Buffer on w

Another experiment has been performed to analyse the effect of the size of the swappable

part of the disk buffer, denoted by dS, on w. Similar to the above the values for other

parameters have been fixed. The value of dS has been increased exponentially while

measuring w. From the results shown in Figure B.1(b) it can be observed that increasing

dS, also increases w at the same rate. The reason for this behavior is that when dS

increases, more stream tuples are matched with the swappable part of the disk buffer.

This increases the stream input size w. Therefore, the relationship between dS and w is

directly proportional.

B.1.3 Effect of Size of R on w

The disk-based master data is another important component that has direct influence

on w. An experiment has been carried out to observe this influence empirically. In this

experiment the size of R, denoted by Rt, has been increased exponentially while the

remaining parameters have been assumed to be fixed. The outcomes of the experiment

are shown in Figure B.1 (c). It is clear that the increase in Rt has an inverse effect on

w. This behaviour can be explained as follows: when Rt is increased it equally decreases

the matching probability of the stream tuples for both the swappable and non-swappable

parts of the disk buffer. Therefore, w decreases.

B.1 Analysis of w based on Necessary Components 159

1000 2000 3000 4000 5000
320

340

360

380

400

420

440

460

d
N

 (tuples)

w
 (

tu
pl

es
)

measured
calculated

(a) Effect of the size of non-swappable part on w

0 1000 2000 3000 4000
0

200

400

600

800

1000

1200

1400

1600

1800

d
S
 (tuples)

w
 (

tu
pl

es
)

measured
calculated

(b) Effect of the size of swappable part on w

0 2 4 6 8

x 10
6

0

1000

2000

3000

4000

5000

6000

R
t
 (tuples)

w
 (t

up
le

s)

measured
calculated

(c) Effect of size of R on w

0 1 2 3 4 5

x 10
6

0

1000

2000

3000

4000

5000

6000

h
S
 (tuples)

w
 (

tu
pl

es
)

measured
calculated

(d) Effect of the size of hash table on w

Figure B.1: Analysis of w while varying the size of different components

B.1.4 Effect of the Hash Table Size on w

The hash table is a larger component of the X-HYBRIDJOIN algorithm which is used

to store the stream tuples in memory. This component also has a direct impact on w.

To examine this impact an experiment has been conducted in which the size of the hash

table hS has been increased exponentially and w has been measured at each setting. As in

the above experiments the values for the other parameters have been kept constant. The

results of the experiment are shown in Figure B.1 (d). It can be observed that by increasing

hS, w increases at the same rate. A plausible reason for this is that by increasing hS more

stream tuples can be accommodated in memory. Therefore, it increases the matching

probability of stream tuples with both the swappable and non-swappable parts of the

disk buffer.

160 X-HYBRIDJOIN

C
Optimised X-HYBRIDJOIN

C.1 Analysis of wS and wN

An experimental study has been carried out to visualize the effect of each component on

wN and wS. Another objective is to validate mathematical formulas for both wN and wS.

In the following the effect of each component is discussed individually.

An experiment has been conducted to observe the effect of the size of the non-

swappable part on wS and wN . In this experiment the values of other parameters (d,M ,

Rt) have been kept fixed. The size of the non-swappable part (denoted by hR) has been

increased sequentially and the values for both wS and wN have been measured against ev-

ery setting of hR. Figures C.1(a) and C.1(b) depict the results for wN and wS respectively.

From Figure C.1(a) it can be observed that incrementing the size of the non-swappable

part increases wN . Further analysis shows that wN increases, not at a constant rate but

with some power factor. The reason for this is that initially increasing the size of the

non-swappable part increases the probability of matching stream tuples rapidly. This

161

162 Optimised X-HYBRIDJOIN

eventually increases wN , as the non-swappable part contains frequently-accessed disk tu-

ples of R. However, incrementing the size of the non-swappable part further does not

make a large difference in wN due to the decrease in the probability of matching the disk

tuples (stored at, later positions in HR) with stream tuples. In the case of wS however,

the effect of changing the size of the non-swappable part is the opposite, i.e. increasing

the size of the non-swappable part decreases wS. A plausible reason for this behaviour is

that the more we increase the size of the non-swappable part, the more it covers the more

frequent part of R and as a result the average matching probability pS for the swappable

part decreases.

Another experiment has been conducted to observe the effect of the size of R on both

wS and wN . In the experiment the size of R has been increased exponentially while

keeping the sizes of all join components fixed. The results of this experiment are shown in

Figures C.1(c) and C.1(d). As shown in the figures, a change in the size of R affects both

wS and wN inversely, but at different rates. If the size of R is increased, wN decreases

but at a slower rate. While in the case of wS it is approximately inversely proportional.

An acceptable reason for this is that increasing the size of R decreases the probability of

matching the stream tuples for both the swappable and the non-swappable parts. But in

the case of the non-swappable part, even if the size of R is increased, the probability of

matching for the non-swappable part is not reduced significantly due to Zipf’s law.

In order to visualize the effect of the size of the swappable part on wS, one experiment

has been performed in which the size of the swappable part has been increased expo-

nentially. The results of the experiment are shown in Figure C.1(e). It can be observed

that increasing the size of the swappable part also increases wS and at an equal rate.

The reason behind this behaviour is very simple. Loading a bigger segment of R into

memory increases the probability of matching accordingly. However, the change in the

size of the swappable part does not affect wN because of the independent execution of the

non-swappable part.

Finally, the effect of changes in the size of the hash table (used to store stream input)

on wS has also been analysed. Figure C.1(f) describes the results of the experiment

where wS increases at the same rate as that the size of the hash table. The reason is that

increasing the size of the hash table allows more stream tuples to be accommodated in

memory, increasing the probability of matching for the swappable part.

C.1 Analysis of wS and wN 163

0 2000 4000 6000 8000 10000
180

190

200

210

220

230

240

250

h
R

 (tuples)

w
N

 (
tu

pl
es

)

measured
calculated

(a) Effect of size of non-swappable part on wN

0 2000 4000 6000 8000 10000
70

80

90

100

110

120

130

h
R

 (tuples)

w
S
 (

tu
pl

es
)

measured
calculated

(b) Effect of size of non-swappable part on wS

0 1 2 3 4

x 10
6

190

200

210

220

230

240

250

R
t
 (tuples)

w
N

 (
tu

pl
es

)

measured
calculated

(c) Effect of size of R on wN

0 1 2 3 4

x 10
6

50

100

150

200

250

300

350

R
t
 (tuples)

w
S
 (

tu
pl

es
)

measured
calculated

(d) Effect of size of R on wS

0 1000 2000 3000 4000
0

100

200

300

400

500

d (tuples)

w
S
 (

tu
p
le

s)

measured
calculated

(e) Effect of size of swappable part on wS

1 2 3 4 5 6 7 8

x 10
5

0

50

100

150

200

250

300

350

h
S
 (tuples)

w
S
 (

tu
pl

es
)

measured
calculated

(f) Effect of size of stream-base hash table on wS

Figure C.1: Analysis of wS and wN while varying the size of different components

164 Optimised X-HYBRIDJOIN

In addition to the above analysis another objective of these experiments is to validate

calculated formulas for wS and wN by comparing them with our empirical results. As

shown in Figure C.1 the calculated results are very close to the measured results.

D
Co-authorship Forms

165

	Introduction
	Introduction
	Data Stream Processing
	Stream-based Joins
	Motivation
	Problem Statement
	Thesis Contributions
	Scope of the Thesis
	Structure of the Thesis

	Related Work
	Introduction
	Basic Characteristics of Stream-based Joins
	Semantics of Join for Stream-Stream
	Semantics of Join for Stream-Disk

	Stream-Stream
	Symmetric Hash Join (SHJ)
	Double Pipelined Hash Join (DPHJ)
	XJoin
	Hash-Merge Join (HMJ)
	Early Hash Join (EHJ)

	Stream-Disk
	Index-Nested-Loop Join
	MESHJOIN
	Partition-based Approach

	Analysis of MESHJOIN
	Introduction
	MESHJOIN
	MESHJOIN Components
	Basic Operation
	Algorithm

	Research Issues
	Settings
	Dependencies
	Disk access
	Intermittency

	Settings
	Proposed Investigation
	Understanding the Relationships among the Join Components
	Empirical Analysis

	Tuning and Performance Comparisons
	Experimental Setup
	Tuning of Disk Buffer for Different Memory Budgets
	Performance Analysis using Default and Optimal Values for the Disk Buffer Size
	Cost Validation

	Approach for Choosing the Default Value
	Summary

	R-MESHJOIN
	Introduction
	Dependencies between MESHJOIN Components
	R-MESHJOIN
	Algorithm
	Understanding the Real Dependency

	Cost Model and Tuning
	Memory Cost
	Processing Cost
	Tuning of the Disk Buffer

	Experiments
	Experimental Setup
	Experimental Results

	Summary

	A New HYBRIDJOIN
	Introduction
	Disk Access Strategy in MESHJOIN
	Intermittency in MESHJOIN

	HYBRIDJOIN
	Memory Architecture
	Algorithm
	Asymptotic Runtime Analysis
	Cost Model
	Tuning

	Tests with Locality of Disk Access
	Experiments
	Experimental Setup
	Experimental Results

	Summary

	X-HYBRIDJOIN
	Introduction
	X-HYBRIDJOIN
	Memory Architecture
	Algorithm
	Cost Model

	Experimental Results
	Performance Comparisons
	Role of the Non-swappable Part in Stream Processing

	Tuning
	Revised Cost Model
	Tuning using Empirical Approach
	Tuning using Mathematical Approach
	Comparisons of both Approaches

	Performance Evaluation after Tuning
	Cost Validation

	Summary

	Optimised X-HYBRIDJOIN
	Introduction
	Optimised X-HYBRIDJOIN
	Memory Architecture
	Algorithm

	Cost Model
	Memory Cost
	Processing Cost

	Tuning
	Tuning using Empirical Approach
	Tuning based on Cost Model
	Comparisons of both Tuning Approaches

	Experimental Study
	Performance Evaluation
	Cost Validation

	Summary

	Generalisation of Optimised X-HYBRIDJOIN
	Introduction
	CACHEJOIN
	Data Structures and Execution Architecture
	Algorithm
	Frequency Comparison

	Cost Calculation
	Memory Cost
	Processing Cost

	Tuning
	Comparisons of Tuning Results

	Performance Experiments
	Cost Validation

	Summary

	Conclusions and Future Directions
	Summary of the Thesis
	Achievements
	Directions for Future Research
	Extensions
	Applications

	Final Words

	HYBRIDJOIN
	Analysis of w with respect to its Related Components
	Effect of the Size of the Master Data on w
	Effect of the Hash Table Size on w
	Effect of the Disk Buffer Size on w

	X-HYBRIDJOIN
	Analysis of w based on Necessary Components
	Effect of the Non-swappable Part of the Disk Buffer on w
	Effect of the Swappable Part of the Disk Buffer on w
	Effect of Size of R on w
	Effect of the Hash Table Size on w

	Optimised X-HYBRIDJOIN
	Analysis of wS and wN

	Co-authorship Forms

